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Abstract

Recent results on electron tunneling across a potential barrier, inferred from observations or

obtained from theoretical models, have suggested superluminal or instantaneous barrier traversal

times. In this work we investigate relativistic wavepacket dynamics for an electron tunneling through

a potential barrier employing space-time resolved solutions to relativistic quantum �eld theory

(QFT) equations. We prove by linking the QFT property of microcausality to the wavepacket

behavior that the tunneling dynamics is fully causal, precluding instantaneous or superluminal

e�ects. We illustrate these results by performing numerical computations for an electron tunneling

through a potential barrier for standard tunneling as well for Klein tunneling. In all cases (Klein

tunneling or regular tunneling across a standard or a supercritical potential) the transmitted

wavepacket remains in the causal envelope of the propagator, even when its average position lies

ahead of the average position of the corresponding freely propagated wavepacket.
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I. INTRODUCTION

Tunneling is one of the most intriguing quantum phenomena. Although tunneling un-

derlies many important processes in about every area concerned by quantum physics (see

e.g. [1�7] for recent observations), its precise mechanism has remained controversial [8, 9].

Despite experimental data coming from di�erent areas, from strong �eld tunneling ioniza-

tion [2, 5, 10�12] to cold atoms [3] neutron optics [13] or condensed matter [14], there seems

to be no solution in view [15] to the tunneling time problem (the time spent by a particle

inside the barrier), or equivalently the arrival time (whether a particle that tunnels through

a barrier arrives earlier than a freely propagating particle). Indeed, due to the ambiguity of

measuring time in quantum mechanics � there is no time operator in the standard formal-

ism � any observed tunneling time will depend on the model employed to extract the time

interval from the observed data.

In particular, experiments involving electron photoionization have reported results inter-

preted to indicate instantaneous tunneling times [2, 5, 10, 11]. Such interpretations rely on

models that intrinsically involve disputed approximations [16], generally employing a non-

relativistic and often semiclassical framework. Perhaps somewhat more surprisingly, several

works based on a �rst-quantized relativistic framework [17�25] have concluded on the pos-

sibility of superluminal arrival times for electrons. Such superluminal transmissions could

potentially bring serious issues with causality, even though it is sometimes asserted that

these e�ects do not seem to lead to signaling [24]. Other investigations carried out within

relativistic quantum mechanics have on the contrary not noted any superluminal e�ects at

the level of the wavefunction [26�29].

In this work, we investigate the tunneling dynamics in a second quantized framework.

More speci�cally, we will employ a computational relativistic quantum �eld theory (QFT)

approach in order to follow the space-time resolved dynamics of an electron tunneling

through an electrostatic potential barrier represented by a background �eld. The electron

is modeled as a wave-packet initially de�ned on a compact support launched towards a po-

tential barrier. We will prove that microcausality of the fermionic quantum �eld implies

that the electron wavepacket density evolves causally, thereby ensuring the absence of any

superluminal e�ects such as instantaneous tunneling times. The present method allows us

to treat on the same footing di�erent types of tunneling e�ects: the familiar one charac-
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terized by exponentially decaying waves inside the barrier, as well as Klein tunneling (with

undamped oscillating waves in the barrier) for supercritical barriers (that is barriers with a

potential above the pair-production threshold).

We will begin by describing our theoretical approach in Sec. II, where we will de�ne the

wavepacket as a second quantized state and introduce the particle density operator from �eld

operators obeying the Dirac equation. In Sec. III, we will see that microcausality holds for a

fermionic �eld in the presence of a background potential and use this result to show that the

tunneled wavepacket density is constrained by a causal evolution � the wavepacket density

cannot leak outside the light-cone. We will then give (Sec. IV) numerical results obtained

with our QFT framework for three typical cases of tunneling, all cases displaying a causal

behavior of the transmitted wavepacket: standard tunneling through a non-radiating barrier

(similar to the familiar tunneling situation known in non-relativistic quantum mechanics),

standard tunneling in the presence of a slightly radiating barrier (in which the transmitted

wavepacket is overshadowed by the electron density due to pair-production), and Klein

tunneling through a supercritical barrier, in which it is known that tunneling is mediated

by pair production. We will discuss our results and conclude in Sec. V.

II. FRAMEWORK: QFT WITH A BACKGROUND POTENTIAL

A. First and second quantized evolutions

Our approach is based on a computational QFT framework [30], recently extended to

treat particle scattering across a �nite barrier [31] (see also [32, 33] for related recent work).

In this framework, an electron wavepacket is described by a relativistic fermionic Dirac �eld,

while the potential barrier on which the electron scatters will be described by a background

�classical� �eld [34].

Let us �rst introduce the free Dirac Hamiltonian

H0 = −ih̵cαx∂x + βmc2 (1)

which has the eigenvalues ± ∣Ep∣ = ±
√
p2c2 +m2c4. α and β are the usual Dirac matrices

(recall that in one spatial dimension, we can neglect spin-�ip and replace αx and β by the

Pauli matrices σ1 and σ3 respectively), m the electron mass and c is the light velocity. The

3



positive and negative energy solutions of Eq. (1) are respectively given by

vp(x) =
⎛
⎜
⎝

1

cp
mc2+Ep

⎞
⎟
⎠
eipx

wp(x) =
⎛
⎜
⎝

1

cp
mc2−Ep

⎞
⎟
⎠
e−ipx

. (2)

The full �rst quantized Hamiltonian

H =H0 + V (x) (3)

where V (x) is a rectangular-like potential barrier. The Hamiltonian H generates a unitary

evolution. Let U denote the unitary evolution operator of the full Hamiltonian with elements

in the free Dirac basis given by

Uvkwp(t) ≡ ⟨vk∣ exp (−iHt/h̵) ∣wp⟩ . (4)

The second quantized creation and annihilation operators for particle and antiparticles

will be labeled b�p and bp (for particles) and d�p and dp (for antiparticles). Since we are dealing

with a fermionic �eld the creation and annihilation operators anti-commute, [bp, b�k]+ =

[dp, d�k]+ = δ(p−k). ∥0⟫ de�nes the vacuum state, i.e. bp∥0⟫ = dp∥0⟫ = 0. We will be working

as usual in the Heisenberg picture, so that these operators evolve according to [30]

bp(t) = ∫ dk (Uvpvk(t)bk(0) +Uvpwk
(t)d�k(0)) (5)

d�p(t) = ∫ dk (Uwpvk(t)bk(0) +Uwpwk
(t)d�k(0)) (6)

and their conjugates. Eqs. (5) and (6) give the QFT dynamics in terms of the �rst quantized

evolution operators. These equations will be seen to be the building blocks of to carry out

numerical computations.

B. Densities and �eld operators

For the purpose of investigating causality, we �nd it convenient for a matter of presenta-

tion to start from an initial wavepacket perfectly localized within a compact spatial support.

The second quantized state describing this initial wavepacket is written as

∥χ⟫ = ∫ dp(g+(p)b�p(0) + g−(p)d�p(0))∥0⟫, (7)
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where g±(p) are the wavepacket amplitudes in momentum space. As it is well-known [35, 36]

a compactly localized state must contain both positive and negative energy components,

hence the presence of both creation operators b�p and d�p in Eq. (7).

The particle density at any given time is given by the expectation value

ρ(t, x) = ⟪χ∥ρ̂(t, x)∥χ⟫ (8)

where the density operator ρ̂(t, x) is de�ned by

ρ̂(t, x) = Φ̂�(t, x)Φ̂(t, x). (9)

Recall that in the absence of a wavepacket, the density would be given instead by the vacuum

expectation value ⟪0∥ρ̂(t, x)∥0⟫.

Φ̂(t, x) is the �eld operator. Since we are working with states having compact spatial

support, we depart from the usual de�nition of the �eld operators and de�ne them instead

through [37]

Φ̂(t, x) = ∫ dp (b̂p(t)vp(x) + d̂p(t)wp(x)) (10)

and its Hermitian conjugate

Φ̂�(t, x) = ∫ dp (b̂�p(t)v�p(x) + d̂�p(t)w�
p(x)) . (11)

Indeed the standard �eld operators [36] cannot describe a compactly localized state. We

stress however that the results described in this work do not depend on taking an initial

compact state � the proofs given below also hold for the standard �eld operators and the

quantum states of pure positive energy presenting in�nite tails. The �eld operators (10)-(11)

obey an important property: the equal-time anti-commutator is given by

[Φ̂�(t, x′), Φ̂(t, x)]+ = δ(x′ − x) (12)

just like the familiar �eld operators of the free Dirac �eld [38]. Eq. (12) is proved in

Appendix A.

The computation of the density proceeds by pluging-in Eqs. (9), (7) and (10)-(11) into
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Eq. (8). This gives

ρ(t, x) =⟪0∥∫ dp(g∗+(p)b̂p + g∗−(p)d̂p) (13)

{∬ dp1dp2v
�
p1(x)vp2(x)b̂

�
p1(t)b̂p2(t) (14)

+∬ dp1dp2w
�
p1(x)wp2(x)d̂�p1(t)d̂p2(t)+ (15)

(∬ dp1dp2v
�
p1(x)wp2(x)b̂�p(t)d̂p(t) +HC)} (16)

∫ dp(g+(p)b̂�p + g−(p)d̂�p)∥0⟫, (17)

where HC is the conjugate of the preceding term. This density can be parsed as a sum of

three terms, each term corresponding to the expectation value obtained for each of the lines

given by Eqs. (14)-(16),

ρ(t, x) = ρ1(t, x) + ρ2(t, x) + ρ3(t, x). (18)

ρ1(t, x) represents a �particle� density, in the sense in which ρ1 is given only in terms of the

positive energy spinor vp of Eq. (2). The computation is derived by following Eqs. (B1)-

(B5) of Appendix B. For the same reason, ρ2(t, x) will be said to represent an �antiparticle�

density [it is given by Eq. (B6)], and ρ3(t, x) represents a �mixed term� [see Eq. (B7)].

Note while ρ3 only depends on the wavepacket (ρ3 vanishes if there is no wavepacket),

in the expressions of ρ1 and ρ2 there is only a single term that does not depend on the

wavepacket (the �rst line in Eqs. (B5) and (B6)). This term gives the density originating

from pair production. Hence by subsuming these two lines into ρvac(t, x), the total density

can also be parsed as

ρ(t, x) = ρvac(t, x) + ρwp(t, x), (19)

where ρvac is the �vacuum� particle density (due solely to the background potential) and ρwp

is the part of the density due to the presence of the wavepacket.

The total number of particles N(t) = ∫ dxρ(t, x), obtained by integrating the density over

all space, can be parsed as [37]

N(t) = ∫ dx (ρ1(t, x) + ρ2(t, x)) = Nvac(t) + 1 (20)

given that ∫ dxρ3(x) = 0 (the wavepacket counts as one particle). N(t) can also be written

as the normal-ordered expectation value of the number operator N̂(t) written in the standard

form

N̂(t) = ∫ dp (b̂�p(t)b̂p(t) + d�p(t)dp(t)) . (21)
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III. MICROCAUSALITY AND THE IMPOSSIBILITY OF SUPERLUMINAL TUN-

NELING

A. Microcausality with a background �eld

Microcausality as a general statement is the assertion that observables that are space-like

separated commute. While it may sometimes be considered as an axiom in some versions

of QFT [39], microcausality can be explicitly proved for some given quantum �elds. In

particular the proof that a non-interacting free Dirac �eld obeys microcausality is a well-

known textbook result [38, 40]: if Ô(t, x) and Ô′(t′, x′) are two obervables then

[Ô′(t′, x′), Ô(t, x)] = 0 (22)

for c2 (t′ − t)2 − (x′ − x)2 < 0. The standard proof involves writing an arbitrary observable as

a bilinear combination of �eld operators,

Ô(t, x) = Φ̂�(t, x)o(t, x)Φ̂(t, x) (23)

where o(t, x) is a matrix consisting of c-numbers [38, 40]. The commutator in Eq. (22)

is then written in terms of the anti-commutators [Φ̂�(t′, x′), Φ̂(t, x)]+. For free Dirac �elds,

these anti-commutators can be computed in closed form [38] and are proved to vanish for

space-like separated intervals. Note that the density operator given by Eq. (9) is the simplest

bilinear form involving �eld operators; this is the only observable we will be interested in in

this work.

A straightforward way to verify that microcausality holds here for free Dirac �elds is to

compute the commutator (22) in a reference frame in which the events are simultaneous,

which is always possible (due to Lorentz invariance) for space-like separated points. In this

reference frame the commutator for the density becomes [ρ̂(t, x), ρ̂(t, y)] (with x ≠ y) which

can be readily computed as

[ρ̂(t, x), ρ̂(t, y)] = Φ̂�(t, x) ([Φ̂(t, x), Φ̂�(t, y)] Φ̂(t, y) + Φ̂�(t, y) [ ˆΦ(t, x), Φ̂(t, y)])

+ ([Φ̂�(t, x), Φ̂�(t, y)] Φ̂(t, y) + Φ̂�(t, y) [Φ̂�(t, x), Φ̂(t, y)]) Φ̂(t, x)

= Φ̂�(t, x) [Φ̂(t, x), Φ̂�(t, y)]+Φ(t, y) − Φ̂
�(t, y) [Φ̂�(t, x), Φ̂(t, y)]+ Φ̂(t, x)

= 0 (x ≠ y)

(24)
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where the last line follows from Eq. (12) involving the equal time �eld anti-commutators.

It turns out that Eq. (12) also holds for non-interacting Dirac �elds in the presence of a

background potential. The proof is given in Appendix A (see Eqs. (A5)-(A9)). Therefore

Eq. (24), the microcausality condition for the density observable, also holds in the presence

of a potential barrier. We now hinge on this result to show that the density resulting from

tunneling cannot display a superluminal behavior.

B. Microcausality and wavepacket tunneling

We consider the following situation. An electron wavepacket is prepared, say to the left

of a potential barrier, with its density initially (t = 0) localized within a compact support D

de�ned by D = [x−, x+] . Let us label x0 to be the position of the wavepacket maximum

at t = 0, and x+ being the point closest to the barrier. The wavepacket is launched towards

the barrier; we are interested in the part of the electron density due to the wavepacket's

dynamical evolution appearing to the right of the barrier density, i.e. the part that has

tunneled through the barrier.

Let x′ be a point located to the right of the barrier and ρ (t′, x′) the density at that point.

This density is given as per Eq. (8) by the expectation value

ρχ(t′, x′) = ⟪χ∥ρ̂(t′, x′)∥χ⟫. (25)

To be clear ρχ represents the full electron density at (t′, x′) when an initial wavepacket

is present; the origin of this density can either be due to the wavepacket or to the elec-

tron/positron pairs created by the potential. Let us now write the density at (t′, x′) in a

di�erent setting, identical to the preceding one except that there is no wavepacket at t = 0.

This density is now given by the vacuum expectation value

ρ0(t′, x′) = ⟪0∥ρ̂(t′, x′)∥0⟫, (26)

and a non-vanishing density can only result from the pair production process.

Assume (t′, x′) and (t = 0, x+) are space-like separated, implying that (t′, x′) is space-like

separated from any point of D over which the wavepacket is non-zero at t = 0. Let us de�ne

the function

C(t′, x′; 0, x) = ⟪χ∥ρ̂(t′, x′)ρ̂(0, x)∥χ⟫, x ∈ D (27)
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correlating an observation of the density at a position x inside the initial wavepacket followed

by an observation of the density at the space-like separated point (t′, x′). From Eqs. (7) and

(10) we obtain, using b̂pb̂
�
p′∥0⟫ = δ(p − p′)∥0⟫ and d̂pd̂

�
p′∥0⟫ = δ(p − p′)∥0⟫,

Φ̂(0, x)∥χ⟫ = ∫ dp (g+(p)vp(x) + g−(p)wp(x)) ∥0⟫ = χ(0, x)∥0⟫. (28)

Similarly we have

⟪χ∥Φ̂�(0, x) = ⟪0∥χ�(0, x). (29)

We can now write Eq. (27) as

C(t′, x′; 0, x) = ⟪χ∥ρ̂(t′, x′)ρ̂(0, x)∥χ⟫ = ρ0(t′, x′)ρχ(0, x), x ∈ D (30)

where we have used the de�nition (9), Eqs. (28)-(29) and the fact that both Φ̂�(t′, x′) and

Φ̂(t′, x′) anti-commute with Φ̂(0, x) given that the two spacetime points (0, x) and (t′, x′)

are space-like. We have also used Eqs. (25)-(26), writing

ρχ(0, x) = ⟪χ∥ρ̂(0, x)∥χ⟫ = χ�(0, x)χ(0, x). (31)

Eq. (30) implies not only that the densities at the two space-like separated points are

independent, but further highlights that the density at (t′, x′) is a vacuum expectation value

� that is it does not depend at all on the wavepacket (it can neverteless be non-zero due to

pair-production induced by the potential). Eq. (30) rules out the possibility of superluminal

tunneling, because in that case there would be some space-time points (t′, x′) outside the

light-cone for which the density at that point would depend on the presence and shape of the

wavepacket. It is noteworthy that the result (31) does not depend on the shape, width or

height of the background potential. This result holds of course for all types of tunneling � for

regular tunneling (characterized by an exponentially decreasing density inside the barrier)

or for Klein tunneling (oscillating particle density inside the barrier).

IV. ILLUSTRATIONS

A. Method

We illustrate here our QFT approach by carrying out numerical computations for an elec-

tron wavepacket, initially localized on a compact support, launched towards a background
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(a) (b)

(c)

Figure 1. Space-time resolved desnities for the Case 1 tunneling wavepacket. (a) The density of

the transmitted wavepacket is shown (dotted blue) as it is exiting the barrier (t = 1.5 × 10−2 a.u.)

for a comparatively low potential (V0 = 0.5mc2) giving rise to standard tunneling, with a negligible

pair creation rate (the electron density created by the potential is shown in red). The inset displays

snapshots of the wavepacket dynamics at (b) t = 0 and at (c) t = 1.5×10−2 a.u (note the transmitted

wavepacket is hardly visible on that scale in (c)). The dotted vertical line in (b) represents the

right edge of the support D over which the initial wavepacket is de�ned. The same line in (a) and

(c) represents the position of the light-cone emanating from this right edge at the time of the plot.

The initial wavepacket parameters in atomic units (a.u.) are x0 = −120λ, p0 = 100 a.u. and D = 70λ
and for the barrier L = 4λ and ε = 0.3λ, where λ = h̵/mc is the Compton wavelength of the electron.

potential having a rectangular-like shape. We will focus on the transmitted part of the

wavepacket and consider 3 typical cases encompassing both standard and Klein tunneling.

In the �rst illustration, we will consider a �low� background potential displaying features

similar to the familiar non-relativistic tunneling case, characterized by a wavepacket mostly

re�ected and transmitted with a very small amplitude. In the second illustration, we will

increase the potential barrier, which remains below the supercriticial threshold (2mc2) but

is already su�cient in order to visualize the non-trivial interplay between the transmitted

wavepacket and the exponentially small electron density due to pair production. In the third

illustration, we will consider a backround potential lying in the supercritical regime, with

a wavepacket energy giving rise to Klein tunneling: the density oscillates inside the barrier

and the wavepacket is transmitted with a very high amplitude.

To be speci�c, we will deal in all cases with an initial wave-packet given by the Dirac

spinor

G(x) = (cos8(x − x0

D
)eip0x,0) [θ(x − x−) − θ(x − x+)] (32)
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de�ned to be non-zero only over the compact support x ∈ D (θ is the units-step function). D

is de�ned by D = [x−, x+] with x± = x0 ±Dπ/2 and is localized to the left of the barrier (πD

is the length of the support and x0 is the position of the maximum of the wavepacket). The

cos8 function was chosen for computational convenience; p0 is the initial mean momentum.

p0 and D are chosen such that the electron wavepacket moves towards the right as time

evolves and the entire wavepacket remains below the potential threshold. By projecting

G(x) over the free Dirac basis vp(x) and wp(x) we obtain the coe�cients g±(p) of Eq. (7)

de�ning the initial second quantized wave-packet1 which is in turn fed in Eq. (8) in order

to obtain the space-time resolved density ρ(t, x).

To this end we need to compute the unitary evolution elements appearing in the den-

sity expressions [see Eqs. (B5)-(B7)], such as Uvkwp(t) given by Eq. (4). The background

potential is set to be

V (x) = V0

2
[tanh((x +L/2) /ϵ) − tanh((x −L/2) /ϵ)] (33)

where V0 and L are the barrier height and width respectively and ϵ a smoothness parameter.

We then determine the evolution operator by solving the corresponding Dirac equation on a

discretized space-time grid using a split operator [42] method (the evolution operator is split

into a kinetic part propagated in momentum space and a potential-dependent part solved in

position space). Note that in order to simplify the numerics we have chosen t = 0 as the time

the barrier is raised and starts radiating and also as the time the wavepacket is launched

(although these two starting times are independent).

B. Standard tunneling

1. Case 1

Fig. 1 shows the transmitted wavepacket as well as the electron density due to pair

production for a comparatively �low� potential (V0 = 0.5mc2). Snapshots of the density

evolution are given in the inset; leaving aside pair production, this situation is a QFT

account of the familiar Schrödinger-type tunneling dynamics, where most of the incoming

electron amplitude is re�ected and only a very small amplitude is transmitted.

1 Recall that the �rst quantized wavepacket is obtained from the Fock space state through χ(t, x) =
⟪0∥Φ̂(t, x)∥χ⟫ [37, 41]

11



Note that the light-cone (emanating from the space-time point t = 0, x = x+) lies far

ahead of the transmitted wavepacket. Indeed, although the wavepacket is ultrarelativistic

(p0 = 100 a.u.) the mean velocity, roughly estimated as u ≃ pc/
√
p2 +m2c2 = 0.59c is still

far from c. A computation of the momentum distribution of the initial state shows that

coe�cients ∣g+(p)∣ with p > p0 + 20 a.u. become vanishingly small and do not contribute to

the wavepacket, while any contribution with p > 153.2 a.u. would go over the barrier and

would therefore not tunnel.

2. Case 2

Fig. 2 shows the situation for a higher barrier (V0 = 1.77mc2) at tp = 3 × 10−3 a.u.

Pair-production is still small, as the total number of electrons due to pair production is

Nvac(tp)/2 = 0.31 [see Eq. (20)], but the transmitted wavepacket amplitude is even smaller.

As a result, the transmitted wavepacket appears as a small bump in the overall density (red

line in Fig. 2). This is con�rmed by applying Eq. (19) that allows for the computation of the

part of the density due to the wavepacket (blue line in Fig. 2). Note that some of the works

[17�25] investigating relativistic tunneling within the �rst quantized approximation have

computed numerical results for barrier heights in cases in which QFT calculations show that

the tiny amplitude of the transmitted wavepacket would be completely overshadowed by the

larger (or much larger if supercritical barriers are considered) electron density produced by

the barrier.

Fig. 2 also shows the light cone, emanating from the right edge x+ of the initial wavepacket

density distribution; it can be seen that although the electron is in the relativistic regime

(the mean velocity of the initial distribution is 0.83c), the transmitted wavepacket remains

well inside the light cone, in line with the results of Sec. III.

C. Klein tunneling

Klein tunneling takes place for supercritical potentials (V0 > 2mc2) and wavepacket en-

ergies for which (E − V0)2 > m2c4; in this case the transmission of the electron wavepacket

is mediated by pair production [31, 43] giving rise to an oscillating density inside the bar-

rier. These modulations in pair-production give rise to a transmitted wavepacket with an
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(a) (b)

(c)

Figure 2. Numerical computations corresponding to Case 2, i.e. standard tunneling with a slightly

radiating potential V0 = 1.77mc2. (a) The total density of the transmitted wavepacket is shown in

red. The transmitted wavepacket is barely visible as a bump in the total density, although calcu-

lations show the wavepacket desnity (dotted blue). The inset displays snapshots of the wavepacket

dynamics at (b) t = 0 and at (c) t = 3 × 10−3 (the time of the plot (a)). The initial wavepacket

parameters are (in a.u.) x0 = −35λ, p0 = 200 and D = 16λ and for the barrier L = 4λ and ε = 0.3λ,
where λ = h̵/mc.

undamped amplitude (as opposed to an exponentially decreasing tranmission in the case

of regular tunneling). Relative to the freely propagated wavepacket, the transmitted Klein

tunneled one can be accelerated by the barrier (since the negative energy wavepacket com-

ponents see a potential well [44]) but never faster than light, since our result Eq. (30) holds

for any type of potential barrier. A computation illustrating Klein tunneling is given in Fig.

3, for V0 = 9mc2.

V. DISCUSSION AND CONCLUSION

Although we have shown in Sec. III that according to our space-time resolved relativistic

QFT framework to spin-1/2 fermions there can be no superluminality in tunneling trans-

mission, it is often asserted that tunneling can be superluminal or instantantaneous. It is

worthwhile brie�y recalling on which gounds such assertions have been made.

First, we must discard models based on non-relativistic frameworks, like the Schrödinger

equation, for which propagation is indeed instantaneous [45]. The same holds for semi-

classical approaches based on the Schrödinger equation. Experimental results, in particular

those involving the attoclock technique in strong �eld ionization (see e.g. [2, 5, 10, 11]), have
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usually relied on such models when estimating tunneling times. Superluminality appears

here as an artifact of employing a non-relativistic approach.

Second, there is the problem of de�ning traversal times during the tunneling process.

Indeed, there is no unambiguous manner to de�ne a tunneling time [15]. Various candidates

have been proposed (phase delays, dwell times, Larmor times, time operators, weak values).

These quantities not only lead to con�icting results (predicting strikingly di�erent traversal

times) but furthermore by construction they can yield superluminal values, including when

they are employed with relativistic wave equations [17, 19�21, 23, 25].

Third, some �rst quantized works based on relativistic wave equations have suggested

superluminal transmission based on the fact that the maximum of the density (or of the

current density) of the transmitted wavepacket arrives earlier than the maximum of the freely

propagating one [18, 23, 24]. We note that in the three numerical cases given in Sec. IV we

can also observe the same phenomenon: as illustrated in Fig. 4 the maximum of the tunneled

wavepacket has traveled, at a given time, a longer distance than the maximum of an initially

identical wavepacket that would have evolved freely. This is of course compatible with the

(a) (b)

(c)

Figure 3. Numerical results for Case 3 (Klein tunneling), with a supercritical barrier of height

V0 = 9mc2. (a) The electron wavepacket density is shown (dotted blue) at t = 4.5 × 10−3 a.u. well

after the transmitted wavepacket (centered at x ≈ 0.3 a.u.) has exited the barrier (solid vertical

lines). Note that the transmitted wavepacket density is signi�cantly larger than the one of the

re�ected wavepacket (centered at x = −0.19 a.u. and moving toward the left). (b) The initial

wavepacket (light blue) is shown along with the support D (dashed lines) and the barrier. (c)

The plot (a) is zoomed out in order to visualize the electron density due to pair production (red

line). The wavepacket is not visible at this scale. The initial wavepacket parameters in a.u. are

x0 = −40λ,p0 = 450 a.u. and D = 16λ and for the barrier L = 16λ and ε = 0.3λ with λ = h̵/mc.
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(a) (b) (c)

Figure 4. (a), (b) and (c) display for each case considered respectively in Figs. 1, 2 and 3, the

position of the transmitted peak along with the position of the same initial wavepacket that would

have evolved freely. The vertical dotted lines indicate the maxima of the transmitted peak and the

free wavepackets (see text for details).

causal dynamics implied by Eq. (30). Indeed, having the maximum of a peak appearing

earlier at a given position does not imply faster or superluminal dynamics: the important

point is that the �advanced� peak still lies within the envelope of the free wavepacket.

Note that even within �rst quantized quantum mechanics it would be incorrect to asso-

ciate part of the quantum state (the transmitted wavepacket) with a single particle somehow

emerging faster from the barrier. Such a view would be clearly incompatible with a QFT

based framework. According to QFT, a particle at each space-time point of a wavepacket is

seen as a �eld excitation at that particular point, and the �eld excitation at that point can

only be related causally to the �eld excitation at some other space-time point, in particular

to the �eld excitation at a di�erent position in a given reference frame. Put di�erently, the

causality implied by Eq. (30) only imposes that the �eld excitation at the maximum of the

transmitted wavepacket must lie within the forward light-cone emanating from D.

To sum up, we have investigated the tunneling wavepacket dynamics for an electron

within a relativistic QFT framework in which the barrier is modeled as a background �eld.

We have shown that if the electron wavepacket is initially (t = 0) localized to the left of the

barrier, the electron density at a space-like separated point to the right of the barrier does

not depend on the presence or absence of the wavepacket at t = 0, thereby precluding any

superluminal e�ects related to tunneling. We have numerically computed the space-time

resolved electron density in typical cases of tunneling with potentials below, close to or

above the supercritical value. We hope our results will contribute in clarifying the models

and approximations employed when accounting for results involving traversal or detection

times in tunneling related e�ects. We can expect similar results to hold for other types of

relativistic quantum �elds known to obey microcausality.

15



Acknowledgments. We are grateful for grant PID2021-126273NB-I00, funded by

MCIN/AEI/10.13039/ 501100011033 and �ERDF A way of making Europe�. We acknowl-

edge �nancial support from the Basque Government, grant No. IT1470-22. MP acknowl-

edges support from the Spanish Agencia Estatal de Investigacion, grant No. PID2022-

141283NB-100.

Appendix A: Field operators: equal-time anti-commutators

We prove here the equal-time anti-comutator given by Eq. (12) with the �eld operator

Φ̂(t, x) given in terms of the annihilation operators of particles and antiparticles by Eq.

(10).

1. Field free case

In the �eld free case, the time evolution of the creation and annihilation operators is

trivial (b̂p(t) = eiEptb̂p, d̂
�
p(t) = e−iEp′ td̂�p, etc.) and the equal-time anti-commutator reads

[Φ̂�(x), Φ̂(y)]+ =

[∫ dpb̂�pv
�
p(x)eiEpt + ∫ dpd̂�pw

�
p(x)e−iEpt,∫ dp′b̂p′vp′(y)e−iEp′ t + ∫ dpd̂p′wp′(y)e−iEp′ t]

+
(A1)

Using the anti-commutation relations

[b̂�p, b̂p′]+ = [d̂�p, d̂p′]+ = δ(p − p′),

[b̂�p, d̂p′]+ = [d̂�p, b̂p′]+ = δ(p − p′),
(A2)

and

v�p(x)vp(y) = eip(y−x)

w�
p(x)wp(y) = e−ip(x−y),

(A3)

we obtain

[Φ̂�(x), Φ̂(y)]+ = ∫ dp(eip(y−x) + eip(x−y)) (A4)

which leads to Eq. (12) of the paper.
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2. Background potential

In the presence of a background potential, the equal-time anti-commutation relation

[Φ̂�(t, x), Φ̂(t, y)]+ = [∫ dp (b̂�p(t)v�p(x) + d̂�p(t)wp(x)�) ,∫ dp (b̂p(t)vp(x) + d̂p(t)wp(x))]
+

(A5)

involves the anti-commutators of the type

[b̂�p1(t), bp2(t)] =

[∫ dp′1 (U∗vp1wp′
1

b̂�p′1
+U∗vp1wp′

1

d̂p′1) ,∫ dp′2 (Uvp2vp′2
b̂p′2 +Uvp2wp′

2
d̂�p′2
)]
+
.

(A6)

Using Eq. (5) of the main text, one obtains

[b̂�p1(t), bp2(t)]+

= ∫ dp′1 (U
∗
vp1vp′1

Uvp2vp′1
+U∗vp1wp′

1

Uvp2wp′
1
)

= ∫ dp′1 (⟨vp2 ∣Û ∣vp′1⟩⟨vp′1 ∣Û
�∣vp1⟩ + ⟨vp2 ∣Û ∣wp′1

⟩⟨wp′1
∣Û �∣vp1⟩)

= ⟨vp2 ∣Û Û �∣vp1⟩ = ⟨vp2 ∣vp1⟩ = δ(p1 − p2),

(A7)

where in the last line, we used the completeness relation:

∫ dp′ (∣vp′⟩⟨vp′ ∣ + ∣wp′⟩⟨wp′ ∣) = 1

and the orthonormality of the solutions of the free Dirac equation. Similarly, we �nd that

[d̂�p1(t), dp2(t)]+ = δ(p1 − p2). (A8)

Pluging-in these anti-commutators into Eq. (A5) leads to

[Φ̂�(t, x), Φ̂(t, y)]+ = ∫ dp(eip(y−x) + eip(x−y)) (A9)

and hence again to Eq. (12) of the paper.

Appendix B: Derivation of the density expressions

We derive here the expression of the particle density, given by Eq. () which becomes Eq.

(18).
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Let us �rst compute the expectation value of the operator written in Eq. (14), written

as

ρ1(t, x) = ⟪0∥∫ dp(g∗+(p)b̂p + g∗−(p)d̂p){∬ dp1dp2v
�
p1(x)vp2(x)∫ dp′(U∗vp1vp′(t)b̂

�
p′ +U∗vp1wp′

(t)d̂p′)

∫ dp′(Uvp2vp′
(t)b̂p′ +Uvp2wp′

(t)d̂�p′)}∫ dp(g+(p)b̂�p + g−(p)d̂�p)∥0⟫

(B1)

which expands to

ρ1(t, x) = ⟪0∥∫ ⋯∫ dq1dq
′
1dq2dq

′
2dp1dp2g

∗
−(q1)g−(q2)U∗vp1wq′

1

(t)Uvp2wq′
2
(t)v�p1(x)Φp2(x)d̂q1 d̂q′1 d̂

�

q′2
d̂�q2∥0⟫

+ ⟪0∥∫ ⋯∫ dq1dq
′
1dq2dq

′
2dp1dp2g

∗
+(q1)g+(q2)U∗vp1wq′

1

(t)Uvp2wq′
2
(t)v�p1(x)vp2(x)b̂q1 d̂q′1 d̂

�

q′2
b̂�q2∥0⟫

+ ⟪0∥∫ ⋯∫ dq1dq
′
1dq2dq

′
2dp1dp2g

∗
+(q1)g+(q2)U∗vp1vq′1

(t)Uvp2vq′2
(t)v�p1(x)vp2(x)b̂q1 b̂

�

q′1
b̂q′2 b̂

�
q2∥0⟫.

(B2)

Using the anti-commutation relations of creation and annihilation operators

⟪0∥d̂q1 d̂q′1 d̂
�

q′2
d̂�q2∥0⟫ = δq′1q′2δq1q2 − δq1q′2δq′1q2

⟪0∥b̂q1 d̂q′1 d̂
�

q′2
b̂�q2∥0⟫ = δq1q2δq′1q′2

⟪0∥b̂q1 b̂
�

q′1
b̂q′2 b̂

�
q2∥0⟫ = δq1q′2δq2q′2 ,

(B3)

we get

ρ1(t, x) = ∫ dq∣g−(q)∣
2

∫ dq (∫ Uvpwq(t)vp(x))
�

(∫ Uvpwq(t)vp(x))

+ ∫ dq∣g+(q)∣
2

∫ dq (∫ Uvpwq(t)vp(x))
�

(∫ Uvpwq(t)vp(x))

+ (∫ dpdqg+(p)Uvpvqvp(x))
�

(∫ dpdqg+(p)Uvpvqvp(x))

− (∫ dpdqg−(p)Uvpwqvp(x))
�

(∫ dpdqg−(p)Uvpwqvp(x)))

(B4)

Using the normalization of the initial QFT state yields

ρ1(t, x) = ∫ dq (∫ Uvpwq(t)vp(x))
�

(∫ Uvpwq(t)vp(x))

+ (∫ dpdqg+(p)Uvpvq(t)vp(x))
�

(∫ dpdqg+(p)Uvpvq(t)vp(x))

− (∫ dpdqg−(p)Uvpwq(t)vp(x))
�

(∫ dpdqg−(p)Uvpwq(t)vp(x))) .

(B5)

The �rst line in the expression of ρ1(t, x) represents the electron density created by the

background potential due to the vacuum excitation while the second line represents the
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density corresponding to the incoming particle. The third line represents the modulation in

the number density of the created particles due to the incident particle wave packet. The

terms ρ2(t, x) and ρ3(t, x) are computed similarly, yielding

ρ2(t, x) = ∫ dp(∫ dqUwpvq(t)wp(x))
�

(∫ dqUwpvq(t)wp(x))

+ (∫ dpdqg−(q)Uwpwq(t)wp(x))
�

(∫ dpdqg−(q)Uwpwq(t)wp(x))

− (∫ dpdqg+(q)Uwqwp(t)wp(x))
�

(∫ dpdqg+(q)Uwqvq(t)wp(x))

(B6)

and

ρ3(t, x) = 2R(∫ dpdqg∗−(q)U∗wpwq
(t)g+(q)Uvpvqw

�
q(x)vp(x))

+ 2R(∫ dpdqg∗−(q)U∗wpvq(t)g+(q)Uvpwqw
�
q(x)vp(x))

(B7)

ρ2(t, x) is the counterpart of ρ1(t, x) for the positron density while ρ3(t, x) involves cross

terms between positive and negative energy modes of the initial wave-packet. ρ3(t, x) cancels

the in�nite tails of ρ1(t, x) and ρ2(t, x). When integrated over the entire space however the

contribution of this term vanishes, ensuring that ρ obeys

∫ dxρ(t, x) = ∫ dxρ1(t, x) + ∫ dxρ2(t, x) (B8)

which is the sum of the particle and antiparticle numbers.
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