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Abstract—The popularity of online social networks and the
social interactions they allow has brought great benefits in terms
of ease of communication, allowing them to hold a major role
in the dissemination and consumption of information. Users of
media can be exposed to a wide range of opinions, either actively
or passively. Recommendation systems have been developed to
steer users towards like-minded content, to the detriment of
new, niche, or diverse content. This can lead to fake news, filter
bubbles, and opinion polarization.

In this paper, we introduce a framework to achieve better
diversity in social networks, by formulating information exposure
diversity as an optimization problem in which local modifications
on the graph, via edge additions, have the objective of maxi-
mizing a target diversity metric from the point of view of an
user in the network. We formalize the notion of information
exposure linking it to well-studied models in the literature, and
provide several algorithms for solving this problem, by leveraging
gradient descent-based approaches and greedy algorithms. We
show experimentally that our algorithms achieve better diversity
measures than state-of-the-art algorithms, on a varied set of real-
world graphs.

Index Terms—graph optimization, diversity and polarization,
social networks, graph data mining

I. INTRODUCTION

Social media is now ubiquitous in our society and has
become the main source of information for an increasing
number of people; in this sense, it holds a major role in the
broadcast of information [1]. At the same time, exposure to
social media effectively influences our opinions either actively
(when we consume media) or even passively (when we browse
content). This means that any content that a user merely
sees (or is exposed to) also influences their beliefs, giving
undue power to the algorithms that recommend content on
online platforms, whose aim is to maximize user engagement
– by only providing content that is similar to the users’
current interests, while actively hiding content that is too
dissimilar. Due to time constraints or even simplicity of use,
user often rely on recommendations only to discover new
interests, opinions or contents; in turn, these recommendation
algorithm do not change the exposure to information of the
user.

All these dynamics, contribute to an environment that nat-
urally facilitates the spread of fake news, as no counter points
are readily available and the shock value maintains user atten-
tion; as well as the formation of echo chambers when users

Fig. 1: Example of diverse recommendations (Football
dataset). Node colors represent communities as computed by
a greedy modularity algorithm. The red square is the target
node and red diamonds are diverse recommendations, i.e.,
from other communities.

tend to aggregate around common interests, or filter bubbles
when recommender systems are over tuned towards similarity-
based recommendations. This is problematic as this can lead
towards segregation of opinions and mass polarization.

Research to measure the full extent of the possible harmful
consequences is ongoing [2]–[5]; such research is important,
especially since society is slowly letting go of traditional news
outlets in favour of news propagated through social media [4],
[6]. Algorithmically, ways to optimize diversity and reduce
polarization and disagreement in social graphs have been
proposed: either based on a global measure of polarization [7]–
[9], optimizing exposure to a variety of opinions [10], or by
assuming that reducing overall distances in the graphs will
increase diversity [11].

Most of these approaches rely on reconfiguring the graph
at a global level, thus assuming that one can make changes
affecting any user in the graph. We believe that local optimiza-
tion, i.e., from the point of view of a single user, may allow
to provide more personalized recommendations, minimize the
global effect in the graph (indeed, other users might not desire
diversity); in a word, increase effectiveness and chance of
adoption. To achieve this, we need to provide complementary
semantics to how to find new content in social networks.
Such semantics can be based on maximizing a measure of
diversity of the content that a given user is exposed to; indeed,



if we consider that opinions are clustered into communities
one way to see diversity is to promote the exposure of users
to content from communities different from their own. An
example is given in Fig. 1: when the node identified by the
red square gets linked to the red diamond nodes — part of
other communities —, it is directly exposed to more, diverse,
sources of information. Intuitively, it also is a way to increase
the entropy of the information exposure from the node’s point
of view.

Contributions: In this paper, we present an approach to
optimizing the diversity of information exposure in the context
of social networks based on a general formulation of exposure
as the distribution of opinions (represented as non necessarily
distinct communities) a given node u is exposed to. This
allows us to: (i) be flexible in the definition of the exposure
function, and we take inspiration from well-studied approaches
such as the polarization of opinions in the graph [7], but
also from classic random-walk and distance-based metrics; (ii)
going beyond polarization, to model diversity of exposure over
more than 2 polarized opinions; and (iii) define diversity not
only as targeting uniform distributions of opinions but any
distribution of opinions – crucially allowing us to incorporate
user interests in the optimization.

We formulate the setting of opinions as representing par-
titions (or communities) in the graph, define the diversity of
exposure as a function of the distribution of opinions, and link
it with entropy-based measures in Section III. We present the
matrix formulation of the problem in Section IV and provide a
gradient descent algorithm, along with two reasonable greedy-
based heuristics. We compare our algorithms to algorithms
in the state-of-the-art on a varied set of real-world graphs,
covering ground-truth and inferred communities along with
non-discrete ones, in Section V.

II. RELATED WORK

Our formulation of exposure of information is similar to
[10] where maximizing the exposure to information is also the
objective. The model that is studied is the independent-cascade
model inspired by influence maximization strategies [12].
Originally aimed at political or marketing campaigns, these
approaches can also be extended to the goal of maximizing
information spread [13]–[15]. Our approach is based on a
variety of models, more notably the Friedkin-Johnsen opinion
dynamics model [16], probably the most widely used opinion
dynamics model in the social media research sphere. It uses
an aggregation similar to that of the (personalized) PageRank
algorithm [17] to model the opinion of a node as a function
of its neighbors’ opinions.

Based on the Friedkin-Johnsen model, research has focused
on the effects and mechanisms of filter bubbles, echo chambers
or misinformation spread [3] in social media [1], [5], [18]–
[21]. Subsequently, when these processes are in play, a lot
of research has focused on the subject of polarization [22],
[23], its measurement [24]–[26], and potential algorithms that
can alleviate its effects [27]–[29]. Others have also focused
on minimizing disagreement [7]–[9]. While effective, most of

these approaches only capture online interaction through the
lens of a single dimension of opinions, either ranging from −1
to 1, or 0 to 1. While effective for polarization minimization,
it does not allow for multiple poles of opinions, arguably a
more realistic scenario.

In our model, we consider a multitude of opinions as
represented by communities of a graph. As such, our prob-
lem resembles that of fairness and diversity in recommender
systems: optimizing a range of opinions is akin to presenting
fair or diverse recommendations. Indeed, no viewpoint should
be privileged or censored (with the exception of harmful
discourse). However, there is a difference in how the results
are achieved. Fairness aims at making all candidates equally
viable by removing biases [30]–[32] that may appear in the
recommendation production process [33], [34]. Diversity aims
at producing a wide range of dissimilar recommendations
[35]–[37]. These approaches tend to disregard social dynamics
and can be conflicting with regular user behavior as they are
neither based on any opinion dynamics or cascade model.
Another approach is to maximize serendipity. Even though
definitions of serendipity vary [38], [39], they seem consistent
on two main properties: interest and novelty. Content that is
unknown (so novel if recommended) yet interesting to a user
is considered serendipitous. However, concrete results in this
area are quite sparse. Indeed, there is a difficulty of measuring
serendipity. Current approaches rely on user inputs; these are
quite rare commodities on online platforms as users usually
dislike having to share personal thought on a given post –
consider the number of likes/dislikes and comments compared
to number of views on videos on e.g., YouTube. Moreover,
datasets that provide such information are far and few between
making benchmarks and comparisons difficult.

Many of the previously mentioned algorithms are also based
on a greedy structure which has guarantees when coupled with
sub-modular objectives. In this work, we take inspiration from
[7], [9] which use a matrix representation of the social network
in order to use gradient descent algorithms enabled by the
convex nature of the formulation of their problem or of the
feasible set. Abebe et. al [40] show that interesting results
can also be obtained in a non-convex environment. One strong
advantage of such approach is the absence of needing to iterate
through a candidate set of recommendations, which saves us
the issue of how to conceive it and the overall computational
cost.

III. PRELIMINARIES

We represent the social network as a connected directed
graph G = (V,E), where V is the set of nodes and E ⊆ V ×V
the set of edges, n = |V |, m = |E|. We use the standard
definitions of the adjacency matrix A(G) (with Aij > 0 if
(i, j) ∈ E and 0 otherwise) and the degree matrix D(G) (with
Dii =

∑
j Aij). We denote by Nu the set of neighbor indices

of u in G. When unambiguous, the subscript G is omitted.
To represent the fact that the social network is organized in

communities (possibly having different semantics), we define
the notion of a graph partition P:



Definition 1 (Graph Partition). A graph partition of a graph
G, PG, is a set of subsets of nodes Xi ⊂ V :

PG =

{
Xi | Xi ⊂ V,Xi ̸= ∅,

i⋃
Xi = V

}
. (1)

The set of partitions to which a node u belongs is denoted
as:

PG(u) = {Xi | u ∈ Xi} . (2)

Note that this definition allows for overlapping partitions. In
matrix form, we represent the partitions as a column-stochastic
matrix P of dimension p×n, with the property that

∑
i Pij =

1, ∀j. The column encode the distribution of communities of
opinions an individual node has.

A. Node Exposure

We define next the concept of exposure to information and
give some examples of how it can be measured in a graph.

Definition 2 (Node Exposure). The node exposure function
is a function E : V → Rn, representing the distribution of
exposure of information from all nodes v ∈ V ; moreover, we
require that this is a distribution, i.e., 1⊤ · E(u) = 1, ∀u ∈ V .

From node exposure, we can naturally extend it to a
partition exposure function, EP : V → Rp, such that

E(u | PG) = E(u) · P.

It is easy to check by the properties of E and PG that E(u |
PG) is also a distribution.

Exposure Functions: There exist various ways of defining
the exposure function E , and we present here some options.
Personalized Random Walk (PPR) This is the classic

PageRank random walk process [17], rooted
at a node u using transition weight matrix
Wu = αD−1A + (1 − α)(1n ⊗ u), where u is
the one-hot vector of u, and ⊗ is the Kronecker
product. The exposure distribution is then the stationary
distribution of this process:

E(u) = W∞
u = (1− α)

(
I − αD−1A

)−1
u,

where u is the one-hot encoding of u.
Friedkin-Johnsen Model (F-J) This is a model of opinion

dynamics in social networks [16], where the opinion of
a node u is an aggregation of opinions of neighbors. It is
equivalent to a PPR on the transpose graph, if we consider
that the initial vector of opinions is u:

E(u) = W∞
u = (1− α)

(
I − αD⊤−1

A⊤
)−1

u.

Note that when α = 0.5 and D = I , this is equivalent to
the stationary distribution found in [7], [9].

Breadth-First (BFS) This is a simple exposure model, where
the exposure of a node u is inversely proportional to the
depth at which each node v is found in the process of a
BFS search.
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(d) link recommendations

Fig. 2: Example social network: partitions, vision, and recom-
mendations.

Example 1. Fig. 2a exemplifies a small social network of
15 nodes. In this example we consider the point of view of
node u = 13. The network is divided into 4 partitions as
shown in Fig. 2b – in this case, generated using the Louvain
modularity algorithm. We exemplify node 13 and the BFS
exposure (cut-off at depth 2 for legibility reasons), shown
in Fig. 2c. The resulting distribution over the 4 partitions
is: E(13 | PG) = {0.125, 0.125, 0, 0.750}. This is because
in the search, the blue partition is reached once (node 3 at
depth 2), the purple partition once (node 0 at depth 2), the
green partition never, and the “home” yellow partition 4 times
(nodes 8, and 12 at depth 1, and 12 and 14 at depth 2).

B. Diversity of Exposure

Given the probability distribution of the exposure func-
tion E we can now define a diversity measure function
σ (E (u | PG)) ∈ R which quantifies — given a node u in
a graph G partitioned according to PG — how diverse u’s
exposure E(u | PG) is.

Intuitively, if we view the partitions in PG as representing
communities of opinion, the aim of diversity of exposure
measure σ is to be as close as possible to a distribution in
which all opinions / partitions are equally represented.

Entropy: A reasonable candidate measure is then Shan-
non’s entropy — which is maximized when the distribution
is equi-probable:

σ (E (u | PG)) := H (E (u | PG)) = −
∑

Xi∈PG

p(Xi) log(p(Xi)).

(3)
Entropy makes intuitive sense because of its aim to mea-

sure the amount of information in a message. Entropy-based
measure have been used before to measure diversity [35] and



fairness [32], [41]. Moreover, [20] showed experimentally that
the entropy can also quantify polarization in a graph.

Cross-entropy: Another way to look at the problem is
that we are aiming to minimize the distribution distance to
a reference desired distribution Q. This can occur when we
would like to minimize the exposure to e.g., toxic partitions
while keeping the other partitions diverse. This can be mea-
sured using the KL divergence between E and Q:

σQ (E (u | PG)) := DKL (Q||E (u | PG)) = (4)

= −
∑

Xi∈PG

q(Xi) log

(
q(Xi)

p(Xi)

)
.

When Q is the equi-probable distribution, Eq. (4) is equiv-
alent to Eq. (3).

Example 2. We return to the example in Fig. 2. The BFS vision
distribution is associated to an entropy value of 0.736. When
one recommends using classic, triadic closure based, recom-
mendation algorithms, node 13’s community becomes denser
(edges 13−14 and 13−11, in red in Figure 2d), resulting in a
more “biased” exposure: E(13 | PG) = {0.1, 0.1, 0, 0.8} and
a smaller entropy value of 0.639. On the other hand, when
recommending by optimizing entropy-based measures (edges
13 − 10 and 13 − 3, in green in Figure 2d) we get a more
balanced vision: E(13 | PG) = {0.145, 0.285, 0.285, 0.285}
and a higher entropy of 1.351. Moreover, we can see that this
is achieved by linking 13’s original community, yellow, with
the green and blue communities.

IV. PROBLEM AND ALGORITHMS

The studied problem can then be stated as follows:

Problem 1 (Single-Node Exposure Diversity Maximization).
Given a graph G = (V,E), a node u ∈ V , a partition PG,
an exposure function E(u) maximize the diversity measure
σ (E (u | PG)) for a fixed number k of edge additions to the
graph starting at u.

We know that both entropy and KL divergence are maxi-
mized at the equi-probable or the Q distributions, respectively.
Assuming that we have a set of feasible graphs G (defined
later), the optimization problem can be stated as the mini-
mization of the distance between the exposure distribution and
these distributions:

argmin
G∈G

||d||2 = ||EG (u | P)− q||2 = ||EG (u) · P · u− q||2,
(5)

where EG denotes the exposure function computed on the
graph G, u the one-hot encoding of u, and q is the desired
target distribution.

Note that the formulation in Eq. 5 is similar to the formula-
tion for minimizing polarization in a Friedkin-Johnsen model
as the distance between the vector of opinions and the average
opinion in the graph, as in [8], [9], [26]. We claim that our
formulation is more general, as minimizing the distance to the
average opinion risks decreasing polarization but increasing
extreme opinions, e.g.,when the average opinion is extreme

(note that this can also occur when the average opinion is
0-centered a posteriori, as claimed in [8]).

Properties of the objective function: The objective is
non-monotone. This means that the greedy algorithm is not
guaranteed to find the optimal solution; indeed, as we will
show in the experimental results, there comes a point of
diminishing returns when adding edges to the graph actually
decreases the diversity of exposure.

Moreover, the objective is not always convex. On the one
hand, for the PPR and F-J functions, the objective is convex,
as it has the same form as the polarization minimization in
[7]. On the other hand, for the BFS function – and when
expressing the exposure function as a sum of powers of the
adjacency matrix – one can see that, from depth d = 3 on, the
objective is not convex due to at least the term A3.

A. Convex Set of Feasible Graphs

For all exposure functions, we can apply gradient descent
methods. Consider the following set of graphs:

Gu(A) = {G′ |A′
ij > 0,∀(i, j) ∈ E(G), (6)

A′
ij = 0,∀(i, j) ̸∈ E(G), i ̸= u,∑
j

A′
ij = 1,∀i ∈ V (G)},

i.e., all graphs that have their edge weights normalized, and
for which D = I . Moreover, we allow only graphs that change
only in row u (adding new links from u to other nodes). It
is straightforward to show that this set is convex: a linear
combination of row-stochastic matrices is also row-stochastic;
it is also the set defined in [7], [9], restricted to u:

Proposition 1. The set of feasible graphs Gu(A) is convex.

By Eq. 5 and 6 we can adapt gradient descent algorithms
for Problem 1. For this, we have to define the gradient of the
objective function, and the projection step.

Gradient Step: The derivative of the objective depends
on ∂E

∂A in the following way:

Proposition 2. Assuming that E is a derivable function of the
adjacency matrix A, the gradient of the objective function is
given by:

∂O
∂A

= 2d
(
u⊤ ⊗ P

) ∂E
∂A

. (7)

Proof Sketch. Follows from writing O in algebraic form, O =
d⊤d and then using the product rule of matrix calculus.

This general form allows us to “plug-in” any exposure
function and its derivative (or simply provide a numerical
approximation thereof). For PPR and F-J exposure:

Proposition 3. The gradient of the objective function for the
PPR and F-J exposure functions is given by:

∂E
∂A

= −α(1− α)(W−⊤
∞ ⊗W−1

∞ ),

where W∞ = I −αA for PPR, and W∞ = I −αA⊤ for F-J.



Proof Sketch. We use the facts that:

dW∞ = −αdA,

dE = −(1− α)(W−1
∞ dW∞W−1

∞ )

= (1− α)(W−⊤
∞ ⊗W−1

∞ )dW∞.

The final formula follows.

We can express the BFS exposure function as a sum of
powers of A, limited to a depth of 3 for practical reasons:

E(BFS) =

3∑
i=1

Ai = A(I −A3)(I −A)−1.

Proposition 4. The gradient of the objective function for the
BFS exposure function at depth 3 is given by:

∂E
∂A

= I + (I ⊗A+AT ⊗ I)+

+ (AT 2 ⊗ I +AT ⊗A+ I ⊗A2).

Proof Sketch. This follows from developing the E =
∑3

i=1 A
i

as dE = dA+dA2+dA3 and applying the rules of derivatives
of powers of matrices.

Note that we could straightforwardly expand this to higher
powers, but it would require both more involved formulas and
would cost more computation time.

Once we have the matrix-function gradients, we can directly
apply projected gradient descent algorithms, alternating gradi-
ent descent and projection in the feasible set (i.e., a modified
graph). Algorithm 1 details the steps.

Algorithm 1: DESCENTDIVERSE

Data: graph G, target node u, exposure function E , graph
partition PG, target distribution q, number of edges k,
rate η

1 G(1) ← G, A(1) ← A;
2 for i ∈ {1, . . . , k} do
3 compute Oi = ||EG(i) (u | P)− q||2;
4 gradient: ∆A(i) = ∂Oi

∂A
according to Eq. 7;

5 descent: A′ ← A(i) − η∆A(i);
6 projection: {vi, A′

u} ← PROJECT(u,A′
u);

7 add to graph: G(i+1) ← G(i) + (u, vi), A(i+1) = A,
A

(i+1)
u = A′

u;
8 end
9 return {v1, . . . , vk}

Algorithm 2: PROJECT

Data: target node u, set of neighbor indices Nu, u’s row in
the modified adjacency matrix A′

u

1 get the candidate set of nodes which have positive values:
C(u) = {v | v ̸∈ Nu, A

′
uv > 0};

2 get v = argmaxv∈C(u) A
′
uv;

3 set all other edges to 0: A′
uj = 0, ∀j ̸∈ Nu ∪ {v};

4 re-normalize the edge weights: A′
ui = 1/|Nu ∪ {v}|;

5 return {v,A′
u};

Projected gradient descent algorithms are used in online
convex optimization, and are know to have a regret of O(

√
k)

for η = O(1/
√
k) [42], if the function O is convex. For us,

this is not generally the case, but we show that DESCENTDI-
VERSE is effective in practice.

Projection Step: The projection step ensures that we only
add edges from the candidate node u, and that the edge weights
are normalized, thus keeping the modified graph in the feasible
set Gu. The steps are detailed in Algorithm 2.

Optimizing the Gradient Computation: The gradient
computation is the main bottleneck of Algorithm 1. However,
we can note that the derivative of the objective function
depends on the whole adjacency matrix A but we only care
about the final distribution for node u. The Kronecker product
(u⊤ ⊗ P ) is in fact a (very) sparse matrix, only having P
for the coordinates corresponding to u. Moreover, we can
simplify each Kronecker product by identifying all indices
corresponding to the target node u:

• (u⊤ ⊗ P ) simply becomes P at indices [u, u]
• for PPR and F-J, we only need the square sub-matrix of

size n at [un, un] in the Kronecker product Q−⊤ ⊗Q−1

which becomes Q−⊤
u,uQ

−1, hence the local gradient at u
becomes (abusing notation):

∂E
∂A

[u] = −α(1− α)(I − αA)−T
u,u(I − αA)−1;

• for BFS, the Kronecker products simplify naturally if we
only consider the local gradient at u: (i) I ⊗A becomes
A, (ii) I ⊗ A2 becomes A2, (iii) AT ⊗ I and AT ⊗ A
disappear in the sum because A’s diagonal values are
zeros, and (iv) AT 2 ⊗ I becomes AT 2

u,u, leading to:

∂E
∂A

[u] = I +A+A2 +AT 2

u,u.

In order to avoid computing the inverse, we use the Biconju-
gate gradient stabilized method (BiCGSTAB) to approximate
it. This approximation is given by solving for x:

Wx = P+q+ u, (8)

where W is either I − αA or I − αAT , P+ is the Moore-
Penrose inverse of P , and q the target distribution. The
resulting solution corresponds directly to the exposure of node
u. This change of shape, from matrix n×n to a vector of length
n, entails minimal changes to Algorithm 1, where the projected
gradient descent is performed directly on the node’s exposure.
No changes are need in the the projection step, Algorithm 2.

Computational complexity: For the DESCENTDIVERSE
algorithm, the first computation of the inverse matrix for the
PPR and F-J exposure is unavoidable and has a complexity
of O(n3), but the subsequent updates have a complexity of
O(n2), as we only need to update the row and column of the
target node u. For the BFS exposure function at depth 3, the
initial complexity is also O(n3), but subsequent computations
are O(n2), as we only need to update the row and column
of the target node u and the candidate node c. The overall
complexity is thus O(n3 + kn2).



The overall complexity of solving the linear equation system
in Eq. 8 using the BiCGSTAB iterative method depends on
the size of the system, the density of the graph and the
convergence rate which depends on the condition number of
I − αA. We used the default and standard tolerance of 10−6

meaning that the residual error is lower than 10−6. Hence,
when using the BiCGSTAB method, the complexity of the
gradient computation depends on the sparsity of the networks
is O(kRm), where R is the number of rounds to convergence.

B. Candidate Set of Edges

Another option, but which has a high computational cost,
is to evaluate the objective over a set of candidate edges C,
which is potentially as large as all nodes v ̸∈ Nu, where Nu

is the set of neighbors of u.
Under this formulation, Problem 1 can be stated as maxi-

mizing over all possible configurations of k edges in C. Our
objective function is not general monotone or sub-modular,
so we rely on heuristics which add one recommendation at a
time. We present here two alternatives to solve this problem:
a “partition boosting” algorithm and a greedy algorithm.

Partition Boosting: This algorithm uses the intuition that,
at any step, the best edge to add is one to the partition that
is “farthest” from the objective q, but only if it is under-
represented1. Stated otherwise, we choose some partition from
the set {X | di < 0,X ∈ PG}. We also assume that the
set of candidates is the union of candidates per partition, i.e.,
C = ∪iC(Xi).

Once the partition is chosen, we add the edge in C(Xi) that
maximizes the objective, and repeat the process until k edges
are added, as detailed in Algorithm 3.

Algorithm 3: PARTITIONBOOSTINGDIVERSE

Data: graph G, target node u, exposure function E , graph
partition PG, target distribution q, number of edges k,
candidates C ⊆ V

1 for i ∈ {1, . . . , k} do
2 Xi = CHOOSEPARTITION(d);
3 vi = argminv∈C(Xi) ||EG+(u,v) (u | PG)− q||2;
4 add edge (u, vi) to G: G← G+ (u, v);
5 end
6 return {v1, . . . , vk}

There are several ways to choose the partition in CHOOSEP-
ARTITION, and we present three alternatives that we have
evaluated experimentally:

1) the most under-represented partition: Xi = argmini di;
2) draw randomly from the under-represented partitions:

Xi ∼ U({X | di < 0});
3) draw from a soft-max distribution: Xi ∼ SoftMax(d).

Greedy Algorithm: The objective function that we have
defined, including the entropy and the KL-divergence, is not
monotone. There is hence no hope of having an approximation
algorithm using the greedy algorithm in general. However, it

1An interesting option would be to also allow removing edges from over-
represented partitions, but this has obvious drawbacks in practice.

remains an interesting heuristic: at each step, we add the edge
that maximizes the marginal gain in the objective function, as
detailed in Algorithm 4.

Algorithm 4: GREEDYDIVERSE

Data: graph G, target node u, exposure function E , graph
partition PG, target distribution q, number of edges k,
candidates C ⊆ V

1 for i ∈ {1, . . . , k} do
2 vi = argminv∈C ||EG+(u,v) (u | PG)− q||2;
3 add edge (u, vi) to G: G← G+ (u, v);
4 end
5 return {v1, . . . , vk}

Optimizing the computation: Instead of computing the
full objective function at each step, we can compute incre-
mentally the changes in the exposure function.

For BFS exposure, instead of computing powers of the
matrix A, we can simply update the matrix A considering
only the node u and the index of the candidate that has
been added in the previous step, c. Once the initial E has
been computed, we can accurately estimate the changes in
the exposure function by taking advantage of the following
intuitions: (i) at hop 2 we have to add the neighbors of u to
c and vice versa, by transitivity, i.e., add the vector Au to the
column Ac and the column A⊤

c to the row Au; and (ii) at hop
3 we have to add the neighbors of the neighbors of u to the
neighbors of c and vice versa.

For PPR and F-J exposure, we can incrementally update
the inverses using the Sherman-Morrison formula.

Computational complexity: For the PARTITIONBOOST-
INGDIVERSE and GREEDYDIVERSE algorithms, the complex-
ity is O(kn2), as we need to compute the objective function
for each candidate node v, by using the optimizations that
have been described above. Moreover, we have to do it for
each of the candidates at each step of the algorithm. However,
the PARTITIONBOOSTINGDIVERSE algorithm only needs to
compute for at most Cmax := maxi |C(Xi)| candidates. Hence
the complexity is O(n3 + kCmaxn

2) for PARTITIONBOOST-
INGDIVERSE and O(n3 + kCn2) for GREEDYDIVERSE.

V. EXPERIMENTS

A. Experimental Setup

Implementation: We implemented our experiments in
Python using the NetworkX package for graph ma-
nipulation and the computational packages numpy and
scipy.sparse. The GREEDYDIVERSE and PARTITION-
BOOSTINGDIVERSE algorithms support multiprocessing for
faster running time.2.

Datasets: We evaluate our approach on several real graph
datasets, described in Table I.

The MovieLens dataset is built from the Movielens100k
dataset, in which we consider only movies. Each movie has a

2https://github.com/Jonathan-COLIN/Optimizing-Diverse-Information-
Exposure-in-Social-Graphs

https://github.com/Jonathan-COLIN/Optimizing-Diverse-Information-Exposure-in-Social-Graphs
https://github.com/Jonathan-COLIN/Optimizing-Diverse-Information-Exposure-in-Social-Graphs


TABLE I: Dataset details. For the dataset marked with †, the
communities represent the number of node features, and for
datasets marked ‡ the number of communities found by the
Louvain algorithm.

Dataset Nodes Edges Existing #Comm.

Polbooks 105 441 ✓ 3
Football [43] 115 613 ✓ 12

MovieLens [44] 1,680 264,718 ✗ 19†

Reddit [45] 34,671 123,570 ✗ 54‡

Facebook [46] 63,392 816,886 ✗ 74‡

Amazon [47] 334,863 925,872 ✗ 230‡

distribution over 19 movie genres. We assign an edge between
two movies if they share more than two thirds of their movie
genres. After this linking process, each node’s genre vector is
updated as the average of all genres of its neighbors. Using
these vectors we can then build the partition matrix P , where
each row corresponds to a genre and each column to the genre
vector of a node. This allows us to exemplify the functioning
of our algorithms on non-discrete partition.

The Football and Polbooks datasets have ground-truth com-
munities, respectively the football conferences and the political
alignment of the books. Additionally, for all datasets without
ground truth we can infer a partition using a community
detection algorithm, we used Louvain’s algorithm for greedy
modularity [48]. For all other datasets, we use the Louvain
community detection algorithm to infer the partitions.

a) Target node selection: The optimization process de-
pends greatly on the initial situation of the target node. Indeed,
high degree nodes have very different exposures compared to
very low degree nodes. As such, in the following, target nodes
are selected according to their degree. We batch nodes into
three groups of high, medium and low degree and select an
equal amount of nodes among these three groups.

b) Generating Non-Uniform Target Distributions: The
target distribution q is the main factor in how the exposure
is optimized. Indeed, a standard uniform distribution would
lead to an equal representation of each partition and a unit
vector used as a distribution would lead to only promoting a
single partition. To show the power of non-uniform target dis-
tributions, we can adapt q to take user interests into account.
We assume that for all users, their initial exposure before
the optimization process represents their own interest. From
the initial exposure distribution, we scale this distribution
by adding the uniform distribution and a normal distribution
centered at u’s partition. This allows us to promote the
partitions that are closer to the user’s initial interest and reduce
the probability of partitions that are further away. We do this
for all datasets.

Targeting non-uniform partitions rather than uniform parti-
tions allows us to present recommendation that are less “ex-
treme” in their diversity, and which would allow the user to be
gently nudged towards a more diverse exposure. Furthermore,
if a given partition is recognized as harmful, we can improve
the target distribution by setting the corresponding value to a

very small value.
c) Baselines: We compare our approach to the following

baseline algorithms: random assignment of edges (RANDOM),
triadic closure (recommending based on common neighbors,
TRIADICCLOSURE), polarization and disagreement minimiza-
tion algorithms in the state-of-the-art, and a global and local
diameter minimization algorithm. We compare the baselines
with the GREEDY, PARTITIONBOOSTING and DESCENT al-
gorithms.

We used the Polarization and Disagreement minimization
algorithm presented in [8], in particular their simpleGreedy
method. Given a candidate set of edges, it iteratively select
the most promising one with regards to a standard measure of
Polarization and Disagreement. Following their implementa-
tion we initialize our opinions uniformly between −1 and 1.
Since this is a global algorithm, operating on the entire graph,
we constrain the candidate set to only include edges starting
from the parameter node u. Additionally, we also compare
our approach to a graph diameter minimization algorithm
as presented in [11]. Their global method identifies center
nodes of the graph and connects them together, we adapted
it to always include the target node in the set of center
nodes. Their local method solves a decision problem using
linear programming in order to identify nodes to add. We
identify these algorithms by GLOBALDIAMETERREDUCTION
and SINGLESOURCEDIAMETERREDUCTION respectively.

All experiments choose 30 target nodes, equally distributed
among high-degree, medium-degree and low-degree nodes in
their respective graph. We set α = 0.05 and η = 0.1.

B. Results

Ground-truth communities: We start by presenting the
results of the graphs for which we have ground-truth com-
munities, Polbooks and Football, for both uniform and pref-
erential target distributions, seen in Figure 3. Generally, we
notice that DESCENTDIVERSE manages to achieve its ob-
jective faster than other approaches. Moreover, as expected,
TRIADICCLOSURE is among the least effective approaches.
Interestingly, RANDOM is quite competitive (and always bet-
ter than TRADICCLOSURE), which can be attributed to the
relatively small sizes of the graphs. In a number of cases, the
PARTITIONBOOSTINGDIVERSE does not manage to optimize
past a certain point; indeed, once it can no longer find a
partition to boost (it looks only for under-represented ones),
it is liable to get “stuck” for the rest of the run. On the other
hand, the diameter reduction approaches of [11], especially
SINGLEDIAMETERREDUCTION, are very competitive, even
for preferential distributions.

One interesting, and potentially important, finding can be
seen in the results on the BFS exposure function. One can
notice that there exists a point in the process where adding new
edges becomes counter-productive. This makes intuitive sense,
seeing that the objectives are non-monotonous. Moreover, it
means that one cannot indiscriminately add edges to maximize
diversity, but that there is an optimal number of edges, which
will depend on the graph and the node itself.
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Fig. 3: Objective vs. number of edge additions, ground truth communities.

Inferred communities: Where no ground truth is avail-
able, we generated partitions using a community detection
algorithm. The results comparing RANDOM and TRIADIC-
CLOSURE to DESCENTDIVERSE are shown in Fig. 4. The
results are similar to those on graph having ground truth com-
munities, with DESCENTDIVERSE being the most effective at
the end of the recommendation process (even if, in some cases,
it is not the best at the start). Interestingly, recommending in
the “classic” approach, TRIADICCLOSURE, is almost always
worse than RANDOM. This makes some intuitive sense as
recommending based on common neighbors would get the
user “stuck” in the same community, whereas recommending
random links at least gives a chance of escaping their current
community and thus increasing the diversity of exposure.

Non-discrete communities: Our formulation also allows
for optimizing in cases where partition are non-discrete or
overlapping. As detailed above, we adapted the Movielens
dataset so that each movie is defined by a distribution over
its movie genres, and optimize for uniform or preferential
exposure. The results are shown in Figure 5. Again, the
DESCENTDIVERSE algorithm is the most effective, and TRI-
ADICCLOSE the least effective, in line with the other results.

Running time: The running time of the algorithms,
in seconds per iteration, is shown in Fig. 6. Our algo-
rithms (DESCENTDIVERSE, PARTITIONBOOSTINGDIVERSE,

GREEDYDIVERSE) have similar running times. The SP-
GREEDY algorithm is the slowest, but note that we have
implemented the exact algorithm in [8], SimpleGreedy, not
the fastest, approximate, FastGreedy. The diameter reduc-
tion algorithms are fast, and provide a reasonable perfor-
mance/efficiency trade-off, but only for small graphs. For
graphs of a few thousand nodes on, the baselines timed-
out but our optimized algorithm is still capable of running
on million-node graphs. One interesting results is the peak
observed around 105 nodes: this is because the dataset used
there (not presented here but available in the supplementary
material online) is a denser graph, so BiCGSTAB requires
more iterations to converge.

VI. CONCLUSIONS AND FUTURE WORK

We presented in this paper a formulation of diversity
optimization when keeping into account a node’s exposure
to information, expressed as a distribution over partitions of
opinions in the graph. Our formulation allows to express the
problem of local edge additions as an optimization problem,
over objectives derived from entropy-based measures. We
presented several algorithms to solve the problem, and showed
that they outperform state-of-the-art algorithms in terms of
diversity measures, and that they are scalable to large graphs.
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Fig. 4: Objective vs. number of edge additions, inferred communities, uniform target partition.
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Fig. 5: Objective vs. number of edge additions, MovieLens, non-discrete communities.

The fact that our formulation of the objective function is
non-monotone opens up the interesting problem of finding
the optimal number of edges to add to maximize diversity.
Moreover, one should account for the fact that some nodes
might not belong to any opinion partition; it is not immediately
apparent what is the best semantics to take into account such
nodes.
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