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ABSTRACT
This paper addresses the problem of detection of attacks in com-
puter networks. More precisely, we consider attacks on emerging
low-latency services, which typically require a specific traffic man-
agement system. We present a simple yet very efficient hybrid
method that takes advantage of both autoencoders and transformer
models. The original method is compared with the current state-
of-the-art on a large real-life dataset of network traffic to show
the relevance of the proposed approach, especially for low false-
positive rates. A quick ablation analysis shows that the efficiency
of the method relies on the combined use of the two approaches
jointly in our hybrid model.

CCS CONCEPTS
• Theory of computation→ Unsupervised learning and clus-
tering; • Networks→ Network security; Denial-of-service at-
tacks; • Computing methodologies→ Artificial intelligence;
Simulation evaluation; Unsupervised learning; • Computer sys-
tems organization→ Real-time system architecture; • General
and reference → Experimentation; • Applied computing →
Network forensics.
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1 INTRODUCTION
The technological progression of network infrastructures such as
the deployment of fibre-optic links, fifth-generation mobile net-
works (5G), Virtualized Network Functions (VNFs), and network
slicing techniques, to cite a few, have opened an age of significantly
elevated throughput rates and slashed latency periods [1, 10]. These
advancements have given rise to a variety of new applications with
intrinsically low latency demands, such as cloud gaming, cloud
robotics, tele-robotics, and tactile internet services. However, the
development of novel Internet services opens new possible vectors
of attacks and security must be a priority because, without any
doubt, in today’s digital age, the likelihood of an attack increases
along with the potential impact, and low latency services will be-
come a target when deployed. In addition, as often seen in computer
networks, Future Internet will not replace existing services, hence
the birth of a coexistence of regular internet traffic, some with
high-throughput targets, with such emerging latency-sensitive ap-
plications.
The Low Latency, Low Loss, and Scalable Throughput (L4S) ar-
chitecture has been positioned as a prospective solution to meet
these cutting-edge network demands. When tested, the L4S archi-
tecture demonstrated satisfying performance under standard traffic
behaviour [19]. Yet, research lacks insight regarding its capabil-
ity to work under abnormal or non-regulated traffic conditions.
For instance, it has been shown in [4] how rather moderate traffic
bursts can heavily impact L4S performance, thus preventing the
delivery of intended Quality of Experience (QoE). This problem is
even more concerning in the context of cyberattacks; for instance,
it has been shown in [14] how it is possible to compromise cloud
gaming platform services by leveraging so-called booters making
a game become very unfair and ultimately compromising players’
experience.

The present paper addresses the problem of the detection of
attacks that specifically aims at disrupting low-latency services. As
for a vast majority of similar DDoS detection problems, there are
several major intrinsic difficulties. First the attacks on low-latency
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services are rather new; their means are not completely known and
entirely characterized. Second, the traffic of a computer network is,
in general, a complex signal that is difficult to analyse and model.
Last and not least, the detection methodology must be reliable in
the sense that it should be able to detect (1) attack with a limited
delay, as quickly as possible and (2) it should prevent as much as
possible false-alarm rate in order to avoid raising unwanted false
alarms, which would undermine the overall system’s usability.

We propose an original methodology based on an autoadaptive
linear model for analysing network traffic measurements, consid-
ered in this paper as multivariate time series. Our model leverages
the advantages of detection theory using a linear model, which
is well established, and the relevance of unsupervised learning to
build automatically an accurate model representing the multivari-
ate time series under inspection.
In our prior works [16, 17], we have described the impact of a spe-
cific attack so-called “unresponsive ECN” and assessed its practical
efficiency throughout large-scale numerical evaluation and experi-
mentation. Therefore, the detection method proposed in the present
paper is evaluated on a large dataset of real network traffic data
implemented in a realistic testbed with several legitimate clients
and attackers.
We show that the proposed method, despite its simplicity, performs
very well for multidimensional signal processing and detection.

The present paper is organized as follows. Section 2 provides
a brief overview of low-latency network architectures currently
being transferred from research labs to the real world. We recall
the possible attack mechanisms on low-latency services and their
impact on the traffic. Section 3 states the problem of dealing with
nuisance parameters and presents the methodology used in the
present work to represent and reject the legitimate traffic. Then
Section 4 presents the autoadaptive linear model used to represent
the multidimensional data that computer traffic networks are. It
especially explains how unsupervised learning is used to adjust
the proposed linear model with the previous observations in order
to represent the traffic metrics accurately. Section 5 presents the
proposed method for the detection of low-latency attacks. Section 6
assesses the proposed methodology on a large real-world dataset
of low-latency attacks and legitimate traffic. Section 7 concludes
the paper and draws possible future works.

2 SUMMARY OF ATTACKS ON LOW-LATENCY
SERVICES

In a nutshell, the L4S architecture rests on three main simple pillars.
On the client endpoint side, L4S leverages accurate Explicit Con-
gestion Notifications (ECN), which provides real-time indicators of
network congestion to alert users such that they shall limit their
traffic before a large congestion occurs. It also implements a novel
congestion control algorithm (CCA), namely Prague, available both
for the Transmission Control Protocol (TCP) and the Quick UDP
Internet Connections (QUIC) protocol, to use as much as possi-
ble link bandwidth while avoiding traffic congestion [20, 25]. On
the network side, L4S uses a Dual-Queue Coupled Active Queue
Management (AQM) system which has the ability to handle queue-
ing priorities, coupled directly with a unique packet classifier that
segregates signals for Low Latency (LL) and regular, legacy flows.

This categorical discrimination is instrumental in a bid to insti-
tute targeted behaviour modification, allowing LL flows not to
disproportionately influence the Classic bandwidth. The central
performance of the dual AQM relies on this coupling mechanism,
which shall find an equilibrium in moderating the classical queue,
for legacy traffic, in order to preserve low-latency features for the
second queue while preventing the low-latency flows’ tendency to
cause a so-called starvation of classic, legacy traffic [1, 11].

In our previous work [17], we demonstrated that traffic that does
not comply with the rules of ECN and TCP Prague protocols can
significantly degrade the effective operation of L4S. Building on this,
the present paper focuses on a specific type of malicious flow: “unre-
sponsive yet ECN-compatible” flows. These flows pretend to adhere
to ECN congestion notifications but fail to adjust their sending rates
accordingly, thereby subverting the intended behaviour. It is worth
noting that a small proportion of unresponsive traffic is inherent
in computer network traffic because of UDP and VoIP communica-
tions, for instance. Fortunately, L4S is designed to accommodate a
limited fraction of such flows, as acknowledged in [27]. However,
as the proportion of unresponsive flows increases, L4S struggles
to maintain both low-latency services and the throughput of reg-
ular flows. Alarmingly, even a tiny fraction of “unresponsive yet
ECN-compatible” flows can rapidly degrade L4S performance and
undermine any low-latency services.

We have also conducted large-scale experimentation in [16] to
characterize the attack mechanism on L4S. Considering the metrics
that a router can easily monitor, we showed that the impact of the
attack is entirely characterized by the following seven measure-
ments:

(1) traffic rate, or number of bytes transmitted per second ;
(2) in-router queueing delay, which is the average time a packer

remains in the cache of the router before being retransmitted
(for both low-latency and regular traffic) ;

(3) the number of packets within both queues, which is the
fraction of the total number of packets in the router’s cache
memory ;

(4) the probability of ECN marking, which is the probability
used by the dual queue system of setting ECN notification ;

(5) probability of a packet drop, a packet is dropped when either
the router drops it preventively or when its queue is fully
occupied ;

(6) the total number of ECN marks written on packets by the
AQM,which can be due to natural queue-building behaviours
within each queue that lead to an increase in the marking
probability ;

(7) the number of ECN marks that is due to a step threshold
overflow of the low latency queue ;

It is especially interesting to note that a Principal Component Anal-
ysis shows that some of those metrics are extremely correlated
under normal conditions ; yet it is shown in [16] that when a large
fraction of unresponsive flows occur, the correlation between these
metrics changes significantly and is much less obvious in general.
Therefore, in the present paper, we have decided to keep the very
same set of metrics altogether even though they are not always
linearly independent.
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3 DEALINGWITH NUISANCE PARAMETERS
Generally speaking, the problem we address in the paper is the
detection of a signal (the impact of unresponsive traffic) in the pres-
ence of so-called nuisance parameters. Indeed, legitimate traffic
constitutes a complex “non-anomalous” environment: the legiti-
mate traffic is not constant: it can change depending on the users’
behaviours. The legitimate traffic is generally unknown and it is not
straightforward to model. In the present paper, we adopt a general
statistical model: the legitimate traffic is assumed to be drawn from
the following Gaussian distribution:

x𝑡 ∼ N(𝝁𝑡 , 𝚺𝑡 ), under legitimate traffic, (1)

where N(·) represents the Gaussian, or normal, distribution, x𝑡
represents the metrics at time 𝑡 whose expected value is denoted
𝝁𝑡 and with covariance matrix 𝚺𝑡 .
On the opposite, when an attack on low-latency services is launched,
the traffic is modelled by a sum of the legitimate traffic and the
impact of the attack:

x𝑡 ∼ N(𝝁𝑡 + a𝑡 , 𝚺𝑡 ), under attack. (2)

In other words, it is assumed that the attack impacts the expectation
of the observation and not much the covariance matrix, which
remains almost unchanged. In addition, the anomaly a𝑡 is assumed
constant ; more precisely, the impact of the attack can vary in
intensity but its “footprint” remains the same, hence a𝑡 = 𝜂𝑡a with
a the constant “footprint” and 𝜂 model the “intensity” of the attack.

Usually, the first step when dealing with correlated observations
is to apply the so-called whitening transformation with the matrix
𝚺
−1/2
𝑡 satisfying 𝚺

−1/2
𝑡

⊤
𝚺
−1/2
𝑡 = 𝚺𝑡 . Usually, 𝚺

−1/2
𝑡 is obtained as

the Chelesky decomposition of the covariance matrix 𝚺𝑡 . Indeed, it
is straightforward from (1)–(2) that:

x′𝑡 = 𝚺
−1/2
𝑡

⊤
x′𝑡 ∼ N(𝝁′𝑡 , I), under legitimate traffic, (3)

With 𝝁′𝑡 = 𝚺
−1/2
𝑡

⊤
𝝁𝑡 .

It is obvious from Equations (1)–(3) that the legitimate traffic
𝝁𝑡 represents a nuisance parameter in the sense that it has no
interest for the detection of the signal of interest, namely the attack
footprint a, but it shall be carefully taken into account, as it may
obfuscate the attack it is aimed at detecting.
In the present paper, we adopt a linear model of the legitimate
traffic:

𝝁𝑡 = H𝑡𝜃𝑡 , (4)

where the column of the matrix H𝑡 spans the subspace of the legiti-
mate traffic at time 𝑡 .

The main advantage of the linear model (4) is that it easily allows
removing the nuisance parameters 𝝁𝑡 = H𝑡𝜃𝑡 . Indeed, the rejection
of the nuisance parameter can be carried out by simply projecting
the vector of network traffic measurements x𝑡 onto the orthogonal
complement 𝑅(H𝑡 )⊥ of the legitimate traffic, which is the subspace
spanned by the column matrix H𝑡 . This projection can be defined
by the projector of the Generalized Least-Square (GLS) as follows:

P⊥H𝑡
= I𝑝 − H𝑡

(
H⊤𝑡 𝚺

−1
𝑡 H𝑡

)−1
H⊤𝑡 𝚺

−1
𝑡 . (5)

Obviously, the second term of matrix P⊥H𝑡
corresponds to the least

square estimation of the nuisance parameter H𝑡𝜃𝑡 under the as-
sumption that the covariance matrix 𝚺𝑡 is proportional to the iden-
tity matrix. Hence, the projector P⊥H𝑡

corresponds to the subtraction
of this estimation of legitimate traffic from the observation.
Alternatively, the rejection of the nuisance parameter can be achieved
with the orthonormal matrix W𝑡 = (𝑤1, . . . ,𝑤𝑝 − 𝑞), where𝑤𝑖 are
the eigenvectors of the projection matrix P⊥H𝑡

corresponding to
eigenvalues 1.
The matrixW verifies the following properties:

WH = 0 , W⊤W = PH⊥ , WW⊤ = I𝑝 − 𝑞. (6)

The rejection of a linear nuisance parameter can be simply carried
out as

W⊤𝑡 x𝑡 . (7)
It immediately follows from Equations (1), (2) and (7) that:

W⊤𝑡 x
′
𝑡 ∼ N(0, I𝑝 − 𝑞), under legitimate traffic, (8)

and:
W⊤𝑡 x

′
𝑡 ∼ N(a⊥, I𝑝 − 𝑞), under attack, (9)

where a⊥ = W⊤𝑡 a represents the impact of the attack on low-latency
services it is aimed at detecting.

4 PROPOSED AUTOADAPTIVE LINEAR
MODEL FOR REPRESENTING NETWORK
TRAFFIC

The model presented in the previous section 3 is very general in
statistical decision theory [12, 13, 26] and has been widely used
in image processing [6–9, 28, 29] and computer network traffic
modelling [2, 3, 18, 22, 23, 31]. However, it is not accurate enough
for the targeted application of detection of attacks on low-latency
services to represent the network traffic used in the present work.
To design a model that is accurate enough to represent the legit-
imate network traffic and, yet, to preserve the simplicity of the
linearity, we propose an original autoadaptive model [5, 24, 30, 31].
The principle of this model is depicted in Figure 1. First the mea-
surements are gathered and the set of 𝐿 last measurements X𝑡 =

x𝑡−𝐿+1, x𝑡−𝐿+2, . . . , x𝑡 are analysed jointly. These samples are mod-
elled altogether using a linear parametric model:

X𝑡 ∼ N(H𝑡𝜃𝑡 , 𝚺𝑡 ), under legitimate traffic, (10)

The 𝑀 = 𝑘𝐿 previous samples are used to (1) estimate the co-
variance matrix 𝚺𝑡 and to build the linear model H𝑡 adaptively.
To this end we perform a principal component analysis (PCA) on
the 𝑘 windows of size 𝐿 using the 𝑀 = 𝑘𝐿 previous observations
𝑥𝑡−2𝐿−𝑀+1, . . . , 𝑥𝑡−2𝐿,. Let us denote p1, . . . , p𝐿 the principal com-
ponents sorted by the associated eigenvalues. The linear model is
built with the 𝑛 principal components H𝑡 = (p1, . . . , p𝑛).
Note in our case, we tested several configurations, and we kept the
one that gave the best results: 𝐿 = 8 for a total of 𝑝 = 64 metrics
analysed jointly with a number of components 𝑛 = 3.
Also, note that, as depicted in Figure 1 some between the “detection
window” x𝑡−𝐿+1, . . . , x𝑡 and the “parameters estimation window”
𝑥𝑡−2𝐿−𝑀+1, . . . , 𝑥𝑡−2𝐿, are not used. Indeed, the idea of the pro-
posed autoadaptive linear model we proposed is to carry out the
estimation and the rejection with observations under legitimate
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Network traffic measurements:
Multidimensional time series

Parameters estimation window

Covariance matrix 𝚺𝑡 estimation
PCA for construction of H𝑡

Nuisance rejection:
z = W⊥𝚺−1/2𝑡

⊤
x

Detection
window

Reference
attack

Matched subspace
detector: a⊤z

Figure 1: Illustration of the architecture of the proposedmodel. The network trafficmeasurements, represented as amultivariate
time series, are firstly input into the autoencoder, whose goal is to learn the underlying model and representation of legitimate
traffic. Then the residuals are considered by subtracting the output of this autoencoder and the result is fed to a multi-headed
self-attention module before classification.

traffic, in other words, that are free from the impact of a potential
attack on low-latency services. A certain detection delay may be
needed to ensure that the attack is detected; hence the need for a
certain distance between the parameter estimation window and the
observation used for the detection.
With this idea of using samples without the impact of a poten-
tial attack, the last originality of the proposed autoadaptive linear
model is to fix the parameter estimation window when an attack is
detected. While the two windows are “sliding” with the observation
under legitimate traffic, we keep on using the same samples for
parameter estimation as long as an attack is detected under the
“detection window” to ensure that the estimation is, as much as
possible, free from the impact of a potential attack.
Last but not least, note that we assume that noise corrupting the
metrics is not correlated in time; hence the statistical independence
between 𝑥𝑡−1 and 𝑥𝑡 . This allows us to reduce the estimation of the
covariance matrix 𝚺𝑡 by the covariance between metrics.

5 METHODOLOGY FOR DETECTION OF
ATTACKS ON LOW-LATENCY SERVICES

Using the original autoadaptive model described in section 4 we can
eventually describe the observed metrics of the computer networks
as: {

underH0 : X𝑡 ∼ N(H𝑡𝜃𝑡 , 𝚺𝑡 ),
underH1 : X𝑡 ∼ N(H𝑡𝜃𝑡 + a, 𝚺𝑡 ).

(11)

As explained in Section 3 after whitening transformation and re-
jection of the legitimate traffic H𝑡𝜃𝑡 the statistical detection prob-
lem(11) can be rewritten, under the principle of invariance, see [15][Chap.

4], as: {
underH0 : W⊤𝑡 X𝑡 ∼ N(0, I),
underH1 : W⊤𝑡 X𝑡 ∼ N(a⊥, 0) .

(12)

where a⊥ = W⊤𝑡 a represents the impact of the attack on low-latency
services it is aimed at detecting.

The statistical detection problem (12) is a test between two sim-
ple hypotheses. According to the Neyman-Pearson Lemma [15,
Theorem 3.2.1], the optimal, most powerful test is the likelihood
ratio test. Because the statistical detection problem (12) can be re-
duced to detecting a known signal a⊥ in Gaussian noise, we can
calculate the log-likelihood ratio between the two hypotheses (12)
for an observation X𝑡 as:

Λ(X𝑡 ) = log
(2
√
𝜋𝜎)−(𝑝−𝑞) exp

(
−(2𝜎2)−1∥W⊤𝑡 X𝑡 −W⊤𝑡 a∥2

)
(2
√
𝜋𝜎)−(𝑝−𝑞) exp

(
−(2𝜎2)−1∥W⊤𝑡 X𝑡 ∥2

)
(13)

= −∥W⊤𝑡 X𝑡 −W⊤𝑡 a∥2 + ∥W⊤𝑡 X𝑡 ∥2 (14)

where ∥x∥22 = x⊤x is the Euclidean norm, 𝑝 = 64 is the dimension
of X𝑡 and 𝑛 = 3 is the number of principal components used to
design the matrix H𝑡 .
Obviously, the log-likelihood ratio established in the Equation (14)
depends on the observation X𝑡 only through the term:

Λ★(X𝑡 ) =
(
W⊤𝑡 X𝑡

)⊤W⊤𝑡 a = X⊤𝑡 W𝑡W⊤𝑡 a = X⊤𝑡 P
⊥
Ha, (15)

which correspond to the well-knownmatched subspace detectors [?
] after rejection of the non-anomalous background viaW⊤𝑡 .

In practice the covariance matrix 𝚺
−1/2
𝑡

⊤
and the linear model

H𝑡 are estimated from the previous observations, as explained in
the section 4.
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Similarly, since the network traffic is widely varying the decision
statistics Λ★(X𝑡 ) do not always have a zero mean under legitimate
traffic. Therefore, the “parameter estimation window” is used to
estimate the mean of the decision statistic Λ★0 which is subtracted
from the LR calculated over the detection window:

Λ★(X𝑡 ) = X⊤𝑡 P
⊥
Ha − Λ

★
0 . (16)

The statistical test is finally defined formally by:

𝛿 (X𝑡 ) =
{
H0 if Λ★(X𝑡 ) = X⊤𝑡 P

⊥
Ha − Λ

★
0 < 𝜏

H1 if Λ★(X𝑡 ) = X⊤𝑡 P
⊥
Ha − Λ

★
0 ≥ 𝜏

(17)

where 𝜏 is the decision threshold.
The detection methodology is summarized in algorithm 1 which

clearly explains the role of the estimation window, the detection
window and how the statistical test (14)–(16) is calculated using
real network traffic metrics.

Algorithm 1 Low-lantency attack detection using the autoadaptive
model
Require: 𝐿 ⊲ Detection window size
Require: 𝑀 = 𝑘𝐿 ⊲ Estimation window size
Require: X𝑡 = (𝑥𝑡−𝐿+1, . . . , 𝑥𝑡 ) ⊲ Detection window
Require: X0 = (𝑥𝑛−𝑀+1, . . . , 𝑥𝑛) = (X1, . . . ,X𝑘 ) ⊲ Estimation
window
Using the estimation window X0 :
H𝑡 ← 𝑃𝐶𝐴(X1, . . . ,X𝑘 )
𝚺𝑡 ← 𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 (X0)
P⊥H𝑡
← I𝑝 − H𝑡

(
H⊤𝑡 𝚺

−1
𝑡 H𝑡

)−1
H⊤𝑡 𝚺

−1
𝑡

Λ★0 ← 𝑀𝑒𝑎𝑛(X⊥1 P
⊥
H𝑡
a, . . . ,X⊥

𝑘
P⊥H𝑡

a)
Using the detection window X𝑡 :
Λ★(X𝑡 ) ← X⊥𝑡 P

⊥
H𝑡
a − Λ★0

if Λ★(X𝑡 ) ≤ 𝜏 then
𝑛 = 𝑡 −𝑀 − 𝐿 ⊲ The estimation window is moved to the

previous metrics
else if Λ★(X𝑡 ) > 𝜏 then

X0 ← X0 ⊲ Under attack X0 remains unchanged
end if

6 NUMERICAL EXPERIMENTATION AND
RESULTS

6.1 Experimental setup
We built a testbed, shown in Figure 2, with virtual machines for
clients and servers, and a bare-metal switch that uses P4 language1
to implement L4S AQM, routing, and forwarding functions. This al-
lows us to monitor flows at a packet-level granularity using In-band
Network Telemetry (INT). The router runs the P4 implementation
of DualPI2, as specified by the IETF. Users can choose what data
to collect, and the INT system sends reports to a collector. More
details on the testbed can be found in this article [21].

Our testbed; depicted in the Figure 2, has several legitimate
clients and servers, some using low-latency services and classic
flows. We measure everything from the central L4S-capable router.
1P4.org

Figure 2: Illustration of our experimental testbed ; note that
the number of legitimate users can vary as well as the traffic
and the available achievable transmission rate of the router.

We vary the number of legitimate clients and the attacker/regular
ratio from 1:1 to 1:10. We also vary the attack power from the mini-
mal attack power, behaving like a legitimate flow by reducing its
rate according to the Prague requirements, to the maximum attack
power, by not reducing, at all, its rate regardless of the number of
ECN signals. This means we can create a range of attack scenarios,
from weak attacks with one attack flow hidden in ten legitimate
flows, to strong attacks where several attackers compete with one
legitimate flow for bandwidth. This setting lets us test different
attack types, from subtle to obvious, and see how they affect the
network."

We conducted about 200 experiments, each lasting 90 seconds.
The experiment starts with 30 seconds of normal traffic, followed
by 30 seconds of attack traffic, and ends with 30 seconds of normal
traffic again. This design allows us to capture the attack’s early
stages when its effects are not yet fully visible, making it harder to
detect. The return to normal traffic also helps us study the aftermath
of an attack, including the time it takes for the router to recover.
We collected traffic data during these transition periods, which
can be slightly different. We note that this experimental approach
generated a lot more normal traffic data than attack data. Some
experiments had no attack at all, serving as a reference point. Our
large-scale experiment resulted in a total of 714, 967 samples of
attack traffic and 3, 901, 982 samples of normal traffic. This means
that about 15% of the samples were under attack, while about 85%
were normal traffic, as reported in our previous work [21].

6.2 Experimental Detection Results
The very first interesting results concern the relevance of the pro-
posed methodology. We especially want to highlight the impor-
tance of the two windows procedure where the first window is
used for parameter estimation and the second window is the one
over which the detection is carried out. To this end the Figure 3
contrasts the detection results for one single experimentation. Note
that the results focus on a small period before and after the attack
starts. The red curve shows the detection statistics Λ★ as given in
the Equation (15) when not subtracting the mean Log-LR 𝜆★0 over
the estimation window. Clearly, the impact of the attack is easily
detectable. Note, however, the non-zero mean before the kick-off
of the attack. The average value of the Log-LR changes for every
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Figure 3: Comparison of the proposed method with ablated
versions ; the green curve shows the log-LR Λ𝑠0𝑡𝑎𝑟 computed
using the proposed methodology ; in red, the methodology is
always applied using the last observation for the estimation
window even under detection of the attack ; in blue, the
proposed methodology is used without subtracting the mean
value of the log-LR a⊤0 estimated over the estimation window.

experimentation, which makes it very difficult to set a threshold 𝜏
above which it is assumed that an attack is happening. Indeed, for
some experimentation, the mean of the Log-LR Λ★ is large before
the attack, creating many false positives. On the opposite, for some
other experiments, the mean of the log-LR is very small and the
impact of the attack to small preventing the detection of the attack.
The blue curve shows the values of the log-LR Λ★ when the es-
timation window keeps moving even when an attack is detected.
Obviously, the attack is clearly detected but its impact fades away
very quickly because the estimationwindows start containing obser-
vations after the attack star. Therefore the adaptive model quickly
takes into account the new observations and the impact of the at-
tack is slowly incorporated into the linear model H𝑡 . One can note
that is such a case if the attack is not detected as soon as it starts, it
is very unlikely to detect it after a small delay.
The green curve shows the value of the proposed overall methodol-
ogy for calculating the log-LR Λ★ taking into account the average
value of the decision statistics over the estimation window and the
keeping the same estimation window when an attack is detected.
Obviously, the proposed methodology, using the estimation win-
dows to compute the log-LR 𝜆★0 as in Eq. (16) and as described in
Algorithm 1, is very relevant to obtain a standard decision statistic
that is almost always centered around zero under legitimate traf-
fic only and preserves the detection possibility even after a few
seconds of the attack kick-off.

The most important results about the detection performance of
the proposed original methodology are presented in Figure 4. This
figure presents the detection performance, using three different
window sizes, as ROC (Receiver Operating Characteristics) curves.
These curves present the detection accuracy, measured as the true
positive rate, also referred to as the power function, the test sensi-
tivity or the recall, as a function of the false alarm rate. Note that for
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Figure 4: ROC Curves of the proposed detector methodology
applied with different window sizes.

readability, the Figure 4 uses a semi-logarithmic scale for the false
alarm rate ; this allows better emphasizing the very high detection
power achieved for a false alarm rate as small as 0.03 which would
be clearly not very visible using a linear scale.
Interestingly, the Figure 4 shows that for a vast majority of the cases
the attack on low-latency services can be detected. It also shows
that there are small, but not negligible, fraction of cases in which
detection is not significantly better as random guessing. This seems
to point out that about 3% of network traffic observations under
attack are similar to those without attack ; this often occurs at the
end of the attack and is in part explainable by issues regarding
the labelisation of the data, as sometimes the attack does not stop
exactly after 30 seconds.

To show the limit of the proposed methodology, the Figure 5
shows the false alarm rate as a function of the detection threshold 𝜏 .
Note that, interestingly, Figure 5 shows, in cyan, a comparison with
the theoretical false alarm rate one would obtain if the observation
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Figure 5: ROC Curves of the proposed simple model with
ablation versions. Note that the 𝑥-axis representing the false
positive rate is plotted using a logarithmic scale.
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Figure 6: ROC Curves of the proposed simple model with
ablation versions. Note that the 𝑥-axis representing the false
positive rate is plotted using a logarithmic scale.

follows exactly the Gaussian distribution model presented in the
Equation (11)–(12). This result clearly emphasizes the limit of the
proposed methodology, as the theoretical false alarm rate differs
significantly from observations for a false alarm rate smaller than
10%. This shows that the assumed statistical linear model is not
accurate enough to allow warranting a false alarm rate setting the
decision threshold 𝜏 according to the theoretical model. This is due
to, in part, to the fact that the observation does not always follow
Gaussian distribution and, in part, to the limit of the estimated
autoadaptive linear model H𝑡 to represent the behaviour of the
network traffic metrics.

The last interesting results we wanted to show concern the de-
tection delay. Even though the present paper does not propose
a specific sequential detection method, such as the well-known
CUSUM (cumulative sum), it is interesting to measure, for a given
detection threshold 𝜏 , the average time before a false alarm is raised
and the average delay for detecting the beginning of the attack on
low-latency services.
To this end, the Figure 6 shows the result on the detection delay as
follows: the average time to false alarm is plotted as a function of
the average detection delay. Note that the delays, here, are repre-
sented in terms of the number of samples. Ideally, one wishes to
minimize the detection delay while having a very large average
time to false alarm. Therefore, best results are obtained on the top
left corner. Figure 6 shows that the detection delay is relatively
small as compared to the average time to false alarm. Similarly,
this figure shows that the best results are obtained for a window
size of about 8 measurements of the metrics ; a smaller window
reduces the detection delay but increases the number of false alarm
hence the lower average time to false alarm while, on the opposite,
a higher window size delays the detection of the attack.
Note, however, that with the experimentation conducted for this
paper is it difficult to measure the average time to false alarm higher
than 30 seconds, while in real life conditions such an average pe-
riod between false alarms is far too small. Also, note that better

results would have been obtained using a proper sequential detec-
tion method, which is not the scope of the present paper.

7 CONCLUSION AND FUTUREWORKS
The present paper addresses the problem of the detection of attacks
on low-latency services in computer networks. This problem is
difficult because the legitimate traffic is very complex to model ac-
curately in a general manner. To cope with this issue, we proposed
a simple yet efficient autoadaptive linear model for representing
the legitimate traffic rather accurately. Using this linear model of
the network traffic metrics, we proposed a detection methodology
using two sliding windows, the first being used for estimating the
parameters of the autoadaptive model and the second is the one
over which the presence of the attack is detected.
Over a large set of real-life experimentation, we show that the pro-
posed original methodology, despite its simplicity, achieves rather
very good detection performance. However, we have also shown
the limitations of the proposed approach for guaranteeing a very
false alarm rate. Our next works will focus on using deep learning
models in order to compare the performance with the proposed
approach as well as to design a sequential detection method to
address the problem of the quickest detection under a constraint
on the average time to alarm.
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