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Abstract

We present a new mathematical model, in the form of a system of ordinary dif-
ferential equations (ODEs), governing the growth of cancer at the level of the cell
population combined with treatment by the immune system or chemotherapy. This
model describes the kinetic relationships between different states and cell types. Be-
sides, it will be about presenting a mathematical analyse. The principal objective of
this work is to study the recurrence, coexistence, and elimination of cells cancerous,
under the assumption of a heterogeneous tumor. Also, we aim to study the influence
of cancer stem cells on its dynamics and characterize the subsequent impact on the
availability of factors that help tumor growth and resistance to treatment.

Keywords Global dynamic of the full system, Competition model, Tumor-Immune dy-
namic, Stability analysis, Differentiation, Immune system, Chemotherapy.

1 Introduction

The cancer stem cell hypothesis is a recent development in cancer dynamics. Tumor is
considered as an organ initiated and maintained by a population of tumor cells called
cancer stem cells (CSCs). These CSCs share similar biologic properties to normal adult
stem cells [Tan et al., 2006]. CSCs are a specialized type of cancer cell that are believed
to be responsible for populating tumors, by dividing and producing a large number of
cells required for tumor living [Lau et al., 2017]. With the consideration of a hetero-
geneous cancer, CSCs have a very small population in comparison to normal cancer
cells because of their specialized function [López-Lázaro, 2018]. Also CSCs maintain the
cellular hierarchy and store the genetic material throughout tumor life. Furthermore,
CSCs involvement in developing the vascular network without an endothelial pattern
[Shen et al., 2008]. This process is termed Vasculogenic Mimicry, which is independent of
angiogenesis and is composed of tumor cells and a basement membrane [Fan et al., 2013].
Blood plasma and red blood cells are able to flow in. Vasculogenic Mimicry allows CSCs
to express the endothelial phenotype and play a similar functional role to endothelial cells
in forming blood vessel-like structures [Li and Li, 2015, Li and Li, 2014].
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In this work, we propose a new mathematical model in form of a system of Ordinary
Differential Equations (ODE). The ODE system describes the evolution of tumor cells
and its interaction with immune cells, and with present or absence of cancer treatment.
Indeed, our model is based on and validated by work of [L. G. de Pillis et al., 2009]. In
what follows, we will outline the main biological assumptions, which governing tumor evo-
lution and based on CSCs hypothesis, as the work of [Molina-Peña and Álvarez, 2012] in
order to construct our deterministic hierarchical model. Recently, considerable attention
has been paid to use ordinary differential equations to model cancer therapy, the work
of [Talkington et al., 2017] have been focused on this issue. Applying this approach, we
will study the mathematical proprieties of the model such as its invariance, dissipativity,
existence, uniqueness and the equilibrium stability. Also , by following the mathematical
approaches of [Abernathy and Burke, 2016, Kogan et al., 2008], we will have mathemati-
cally show and determine the conditions of the treatment to ensure moving a large existing
tumor to an equilibrium with no tumor cells.

2 Ordinary Differential Equations model

This section presents the model which is essentially based on [L. G. de Pillis et al., 2006]
model, but we extend the previous work in order to include the heterogeneous populations
of tumor in modelling its evolution with or without treatment. Beside, it is clear that
for treatment to be effective, we must focus our efforts on eliminating all the type of this
heterogeneous populations.

2.1 Presentation of the model

Model Populations In this model we consider there are interaction between tumor
cells population and immune cells. Tumor cells can be classified into: Stem cells (CSCs),
Progenitor cells (Pi) and Differentiated cells (Di), where i describes the subtype of the
progenitor and the differential cells. Cells’ subtypes depend on its role in tumor evolution
and tumor needs for keeping progressing. CSCs produce progenitor cells by the Trans-
differentiation mechanism [Huang et al., 2015], and they divide into specific type of
progenitor cells for maintaining the cancerous tissue growth. Then, when the Pi cell
reached a certain age, it differentiates into Di cell with the same subtype of its mother
cell by the Differentiation mechanism. The Trans-differentiation results in changing
the CSCs genotypes, while the Differentiation results in changing the Pi phenotype and
produce Di. Therefore, Pi cells possess intermediate properties between CSCs and Di

cells which have a specific function depends on its phenotype (see Figure 1). On the other
hand, immune cells express the immune system response to infected or malignant cells
and its defence against cancer[Figueredo et al., 2013]. The immune cells (I) is defined as
the CD8+T cells, they are a critical subpopulation of T-lymphocytes (small lymphocytes
in the peripheral blood) which can be cytotoxic to tumor cells provided previous sensi-
tization has occurred. We hypothesize that CSCs can spontaneously form blood vessels
or lymphatic vessel in tumor via trans-differentiation into endothelial-like cells. Then, we
can categorize Pi and Di cells into three subtypes:
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• Tumor cells (TC), which are considered the majority of tumor size and they have
limited proliferation ability.

• Blood endothelial cells (BEC). The principal role of DBEC is to create tumor vascular
network by vasculogenesis for supplying tumor with nutrients. Also they induce cancer
metastasis by allowing CSCs to migrate through the vascular network.

• Lymphatic endothelial cells (LEC). DLEC create tumor lymphatic network by lym-
phangiogenesis, thus promote tumor metastasis.

Furthermore, after forming the vascular or lymphatic network of the tumor by itself (due
to existence of DBEC and DLEC cells), CSCs will have the ability to migrate through
these networks, then this cell is referred as migrating cancer stem cell MCSC, which is
the responsible for forming tumors in other sites of the body (Metastasis).

Figure 1: Basic assumption of the model Different types of populations found in solid tumors. In the model we
consider three main types of cancer cells (CSC = Cancer Stem Cell, P = Progenitor cells, and Di= Differentiated cells).
The cellular division events considered in the model are the symmetrical self-renewal of CSC, the trans-differentiation of
CSC into Pi cell and the differentiation of Pi into Di cell. The three subtypes of Pi and Di cells are: TC = Tumor cells,
BEC = Blood endothelial cells and LEC = Lymphatic endothelial cells. We consider also that all subtypes of Pi and Di
cells can undergo natural cell death.

In the following next sections, in order to simplify the mathematical model, we choose to
generalize the hypotheses on all the subtypes of Pi and Di, as they belong to progenitor
and differential cells respectively. Therefore, we consider the tumor cells population are
only the three main categories: the CSCs, the progenitor cells P and the differential cells
D.

Biological Assumption We outline the main biological properties of the model in or-
der to obtain feasible and realistic results. Therefore, we present the first list of biological
assumptions (A1):

1. Tumor is generated from a small number of CSCs, and all tumor
cells grow logistically in the absence of treatment.

2. When the CSC or P population is small, they repopulate themselves,
but as their population grows, they focus on populating the P or D
population respectively.
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3. Immune cells I are part of the immune system and they are recruited
once tumor cells are presented and target them. The response of
immune system depends on the type of cancer cell (CSC, P or D).

4. Chemotherapy drug can kill both cancer and immune cells with
different resistance abilities. Knowing that effective
chemotherapy kills cancer cells at much higher rates than kills
immune cells.

5. CSCs have the greatest ability to resist cancer treatment.

Methods In order to establish the model, we follow a classical strategy used in chemical
reaction engineering to describe a system of chemical reactions known as pseudo-chemical
model. Where the cellular events of all cells types are represented as ”chemical reactions”.
Thus, for each cellular event i, a reaction rate ki can be established. CSC can undergo
the symmetric division, where it divides into two CSCs with the rate k1, this process
can expressed as the following reaction (R1):

CSC
k1−→ CSC + CSC (R1)

Otherwise, CSC may trans-differentiate into CSC and P with the rate k2, hence we
define the trans-differentiation process as (R2):

CSC
k2−→ CSC + P (R2)

P may undergo through symmetric division with rate k3. Alternatively, P can differen-
tiates into P and D with rates k4. Also P may die due to natural mortality, then it is
denoted by naturally dead cell (Nd). The last three cellular events can be expressed as:

P
k3−→ P + P (R4)

P
k4−→ P +D (R5)

P
k5−→ Nd (R7)

D can either divide symmetrically with rate k6, or undergo natural death with rate k7.
Thus, we define the cellular events of D cells as the following reactions:

D
k6−→ D +D (R8)

D
k7−→ Nd (R9)

The ODE model describes the kinetic relationships between the different cellular events of
the populations (CSCs, P,D and I cells), as well as the chemotherapy drug concentration,
using a system of ordinary differential equations. In order to simplify the notations in the
ODE system, the populations of cancer stem cells, progenitor cells, differentiated cells,
and immune cells at time t are denoted by Y (t), P (t), D(t) and I(t) respectively, and
M(t) represents a specific chemotherapy drug concentration. The ODE system gives the
rate of change of the particular cell population in terms of growth, death naturally or
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due to chemotherapy, cell-cell kill or cell recruitment. Bringing together all the cellular
event and the interaction terms, yields to the full system 1 of ODEs.

(1) :



dY

dt
=

r1(Y )Y︷ ︸︸ ︷
k1Y (1− Y

KY

)−kMY
(1− e−M)Y − d0Y I

dP

dt
=

H1(Y,P )︷ ︸︸ ︷
k2

Y

KY

P (1− P

KP

)+

r2(P )P︷ ︸︸ ︷
k3P (1−

P

KP

)−k5P − kMP
(1− e−M)P − d1PI

dD

dt
=

H2(P,D)︷ ︸︸ ︷
k4

P

KP

D(1− D

KD

)+

r3(D)D︷ ︸︸ ︷
k6D(1− D

KD

)−k7D − kMD
(1− e−M)D − d2DI

dI

dt
= s+

ρNT

α +NT

I −mI − qNT I − kMI
(1− e−M)I

dM

dt
= −γM + Vd11F (t).

(1.1)

(1.2)

(1.3)

(1.4)

(1.5)

Here the terms r1(Y )Y, r2(P )P and r3(D)D represent the classical logistic growth of
CSC, P and D cells respectively (note that the carrying capacities for CSC, P and D
cells are distinct and they are respectively KY , KP and KD). The term H1(Y, P ) stands
for the P cells produced by the CSCs, while H2(P,D) stands for D cells produced by
P cells [Abernathy and Burke, 2016]. kMY

, kMP
, kMD

and kMI
are the rates of killing

CSCs, P,D and I respectively due to chemotherapy drug, while d0, d1 and d2 represent
the death rates of CSCs, P and D respectively due to immune system response. In the
case of the CD8+T cells, which represent the I cells, they are recruited by interactions
with the total number of tumor cells NT = Y + P + D through a Michaelis–Menten
dynamic [Kuznetsov et al., 1994], generally used to model kinetic interactions between
two cells. Therefore, we use the term ρNT

α+NT
I to represent the I cells kinetics recruited

by tumor cells, where ρ is the maximum I cells recruitment rate by tumor cells, α is
Michaelis–Menten recruitment constant for I cells. The term s describes an immune
treatment or the influx of I cells directly to the tumor site, s is considered constant, and
it is set equal to 0 in the absence of treatment by recruitment of I cells. m stand for I
cells death rate and q is their inactivation rate by tumor cells. Finally γ is the decay rate
of chemotherapy drug and Vd is the given dose of the drug at the treatment interval F .
The chemotherapy fractional cell kill is reflected by the saturation term (1− e−M), which
is almost linear if the drug dose is low while it is plateaus in case of high dose. Indeed,
we choose that term to model killing tumor cells with chemotherapy with certain rate,
knowing that there are other modeling framework which use other function to model the
death due to treatment, such as the work of [Nazari et al., 2018].

2.2 Basic Mathematical Proprieties

In order to ensure the validation of our model, we study the basic mathematical proprieties
of the system (1) and outline its preliminary results. We start by invariance propriety,
dissipativity, existence and uniqueness of the solution and finally the stability of tumor
elimination and recurrence.
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Invariance The invariance propriety guarantees that for non-negative initial popula-
tions, all populations will remain non-negative. We study this system with non-negative
initial data, also we need additional mathematical assumptions besides the assumptions
(A1). Therefore, we formulate the second list of the mathematical assumptions (A2):

1. The classical logistic growth terms r1(Y ), r2(P ) and r3(D), are
almost linear, and they are decreasing on [0, KY ], [0, KP ] and [0, KD]
respectively.

2. The logistic growth terms H1(Y, P ) and H2(P,D) are increasing
functions.

3. All the growth and death rates {k1, .., k7} are positive constants.
Thus, ∀k ∈ {k1, .., k7} and φ > 0 the function fk(φ) = kφ, is an
increasing, continuous and non-negative function, for φ ∈ {Y, P,D}.

4. All the kill rates kM ∈ {kMY
, kMP

, kMD
, kMI

}, due to chemotherapy, are
positive constant. Thus, ∀kM and M > 0, the function fkM (M) =
kM(1 − e−M) is an increasing non-negative function and bounded from
above. Hence, we have lim

M→0
fkM (M) = 0 and lim

M→∞ fkM (M) = kM.
5. The death rates due to Immunotherapy d ∈ {d0, d1, d0} are also positive

constant, therefore ∀d, I and φ > 0, the function fd(I · φ) = dφI is an
increasing non-negative function, where φ ∈ {Y, P,D}.

6. The recruitment of I cells into cancer site is a result of immune
system response to cancer: ρ, α are positive constants, and
∀NT > 0, the function fr(NT )= ρNT

α+NT
, in an increasing non-negative

function and bounded from above. Hence, we have lim
NT→0

fr(NT ) = 0 and
lim

NT→∞
fr(NT ) = ρ.

7. Increasing the number of tumor cells decreases the activity and the
efficacy of I. The constants s, q and m are non-negative.

All the analysis presented further will be done under the set of assumptions (A2). Then,
The system (1) is equivalent to the following system (2):

(2) :



dY

dt
= r1(Y )Y − fkMY (Y )− fd0(Y · I)

dP

dt
= H1(Y, P ) + r2(P )P − fk5(P )− fkMP (P )− fd1(P · I)

dD

dt
= H2(P,D) + r3(D)D − fk7(D)− fkMD (D)− fd2(D · I)

dI

dt
= s+ fr(NT )I −mI − qNT I − fkMI (I)

dM

dt
= −γM + Vd11F (t).

(2.1)

(2.2)

(2.3)

(2.4)

(2.5)

Theorem 2.1. Under the assumptions (A2), the solutions of the system (1) are non-
negative for non-negative initial data and they are defined for every t ≥ 0. Hence the
system (1) has the invariance propriety.

6



Proof. We need to search the analytic solution of each equation in the system (1). Know-
ing that for each first order linear ODE:

du

dt
= f(t)u+ g(t) t ∈]0, tmax[, u(0) = u0 > 0, (3)

where f and g are continuous functions on ]0, tmax[, then the analytic solution is:

u(t) = e
∫ t
0 f(τ)dτu0 + e

∫ t
0 f(τ)dτ ·

∫ t

0

e
∫ s
0 −f(τ)dτg(s)ds. (4)

According to (3) and (4), the analytic solution of (1.5) is:

M(t) =

{
M0e

−γt − VM
γ
e−γt + VM

γ
≥ 0, if t ∈ F .

M0e
−γt ≥ 0, otherwise,

(5)

where M0 ≥ 0 is the initial value of the chemotherapy drug. For same, we determine the
solution of the equation (1.4) after rearranging it the following form:

dI

dt
=

f0(t)︷ ︸︸ ︷(
ρNT

α +NT

−m− qNT − kMI
(1− e−M)

)
I + s. (6)

for proving the non-negativity of the solution we will use the Property 2.1 mentioned
below to ensure the positivity of the integral. Hence, ∀t ∈]0, tmax[ and with the initial
value of I cell I(0) = I0 > 0, the solution is:

I(t) = eφ0(t)I0 + eφ0(t) ·
∫ t

0

e−φ0(τ)sdτ > 0, with φ0(t) =

∫ t

0

f0(τ)dτ. (7)

For searching the analytic solution of the non-linear equations (1.1,1.2 and 1.3) we use
method of substitution, which can be applied to change a non-non-linear equation to a
linear equation. First, we rearrange the equation 1.1:

dY

dt
=

f1(t)︷ ︸︸ ︷(
k1 − kMY

(1− e−M)− d0I
)
Y − k1

KY

Y 2, (8)

then we multiply 8 by ( 1
Y 2 ) and we obtain:

dY

dt
· 1

Y 2
= f1(t) ·

1

Y
− k1
KY

. (9)

By the substitution method we use the following change of variable and its the derivative:

y = Y −1

dy

dt
= −dY

dt
· Y −2

dy

dt
= −f1(t)y +

k1
KY

,

(10)
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then ∀t ∈]0, tmax[ and with y(0) = y0 > 0:

y(t) = e−φ1(t)y0 +
k1
KY

· e−φ1(t) ·
∫ t

0

eφ1(τ)dτ > 0, with φ1(t) =

∫ t

0

f1(τ)dτ. (11)

According to 10 and with Y (0) = Y0 > 0:

Y (t) =
1

y(t)
, Y (t) =

Y0e
−φ1(t)

1 + Y0
k1
KY

∫ t
0
eφ1(τ)dτ

> 0. (12)

Thus, we use the technique for determining the solution of the non-linear ODEs (1.2) and
(1.3), which are written as following form:

dP

dt
=

f2(t)︷ ︸︸ ︷(
k2Y

KY

+ k3 − k5 − kMP
(1− e−M)− d1I

)
P −

g2(t)︷ ︸︸ ︷(
k2Y

KYKP

+
k3
KP

)
P 2 (13)

dD

dt
=

f3(t)︷ ︸︸ ︷(
k4P

KP

+ k6 − k7 − kMD
(1− e−M)− d2I

)
D −

g3(t)︷ ︸︸ ︷(
k4P

KPKD

+
k6
KD

)
D2. (14)

Therefore, by using the substitution method and with P (0) = P0 > 0, D(0) = D0 > 0
and and ∀t ∈]0, tmax[, the analytic solution of equations (13) and (14) are:

P (t) =
P0e

−φ2(t)

1 + P0

∫ t
0
eφ2(τ)g2(τ)dτ

> 0, with φ2(t) =

∫ t

0

f2(τ)dτ (15)

D(t) =
D0e

−φ3(t)

1 +D0

∫ t
0
eφ3(τ)g3(τ)dτ

> 0, with φ3(t) =

∫ t

0

f3(τ)dτ. (16)

Consequently, with the assumptions (A2) imply that all solutions of the system (1) are
non-negative for non-negative initial data and they are defined for every t ≥ 0. �

Property 2.1. let f be a continuous and positive function on the interval X, then for
all real numbers a and b in X, such as a ≤ b we have:∫ a

b

f(x)dx ≥ 0

Proof. let f a continuous and positive function on X, its integral by definition is an area,
therefore it is positive. �

Dissipativity The system (1) can be treated as an open system model, with a capabil-
ity to continuously impose a revolutionary change or transformation in its populations.
A dissipative system has a dynamical regimen that is in some sense in a reproducible
steady state. This reproducible steady state may be reached by the natural evolution
of the system [Brogliato et al., 2007, Willems, 2007]. Studying the dissipativity of an
open system [Luhmann, 1995] is equivalent to the stability study of a closed system
[Willem, 1972, Forni and Sepulchre, 2013].
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Theorem 2.2. The system (1) is dissipative in [0, KY ]× [0, KP ]× [0, KD]× (R+)2 under
the assumptions (A2).

Proof. Let W = (Y, P,D, I,M). To obtain dissipativity we would like to have ∇W.F ≤
A − δW, where F denotes the right-hand side of equations in system (1), A and δ
are positive constants. Note, that r1(Y )Y is zero at Y = 0 and at Y = KY , thus
we have r1(Y )Y ≤ KY k1 − k1Y on the interval [0, KY ]. For same, r2(P )P ≤ KPk3 −
k3P on the interval [0, KP ], and r2(D)D ≤ KDk6 − k6D on the interval [0, KD]. Also,
the process of trans-differentiation and differentiation are estimated by the following
inequalities respectively: H1(Y, P ) ≤ k2KP−k2P andH2(P,D) ≤ k4KD−k4D. Moreover,
we estimate (1− e−M) ≤ 1 and fr(NT ) ≤ ρ. Hence:

∇W.F = k1Y (1− Y

KY

)Y − kMY
(1− e−M)Y − d0Y I

+ k2
Y

KY

P (1− P

KP

) + k3P (1−
P

KP

)− k5P − kMP
(1− e−M)P − d1PI

+ k4
P

KP

D(1− D

KD

) + k6D(1− D

KD

)− k7D − kMD
(1− e−M)D − d2DI

+ s+
ρNT

α +NT

I −mI − qNT I − kMI
(1− e−M)I

− γM + Vd11F (t),

then, according to above estimations and the assumptions (A2):

∇W.F 6 k1KY − (k1 + kMY
)Y − d0Y I

(k2 + k3)KP − (k2 + k3 + k5 + kMP
)P − d1PI

(k4 + k6)KD − (k4 + k6 + k7 + kMD
)D − d2DI

+ s+ ρImax − (m+ qNT + kMI
)I

− γM + Vd.

∇W.F 6 k1KY + (k2 + k3)KP + (k4 + k6)KD + s+ Vd − a1Y − a2P − a3D − a4I − γM.

Hence we obtain:
∇W.F 6 A− δW,

where A = k1KY + (k2 + k3)KP + (k4 + k6)KD + s + Vd and δ = min{a1, a2, a3, a4, γ},
where we use the following new constants to simplify the notation:

a1 = k1 + kMY
, a2 = k2 + k3 + k5 + kMP

,

a3 = k4 + k6 + k7 + kMD
, a4 = m− ρ.

�

The dissipativity guarantees all populations remain bounded [Kogan et al., 2008].
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Existence and Uniqueness We prove the existence and the uniqueness using Cauchy-
Lipschitz theorem mentioned in [Driver, 1977] in relation to our problem. First, we define
the right hand side of the system (1) by:

f(~ψ) =


k1Y (1− Y

KY
)− kMY

(1− e−M)Y − d0IY
k2

Y
KY
P (1− P

KP
) + k3P (1− P

KP
)− k5P − kMP

(1− e−M)P − d1IP
k4

P
KP
D(1− D

KD
) + k6D(1− D

KD
)− k7D − kMD

(1− e−M)D − d2ID
s+ ρNT

α+NT
I −mI − qINT − kMI

(1− e−M)I

−γM + Vd11F (t)

 ,

where ~ψ = (Y, P,D, I,M)T . Consequently, we can reconsider the system (1) in the form:

~ψ′(t) = F (t, Y (t), P (t), D(t), I(t),M(t)), (17)

where F : [0, tmax] × [0, KY ] × [0, KP ] × [0, KD] × (R+)2 → R5 for tmax > 0. Hence,
for each (t, Y (t), P (t), D(t), I(t),M(t)) ∈ [0, tmax] × [0, KY ] × [0, KP ] × [0, KD] × (R+)2,
F (t, Y, P,D, I,M) is well defined in R5. Now we will use a lemma to obtain a local
Lipschitz condition for F .

Lemma 2.1. If f(~ψ) has continuous first partial derivatives with respect to all but its
first argument, then f(~ψ) is locally Lipschitz.

Proof. We analyse the first partials of the right hand side of our system. The Jacobian
of f(~ψ) with respect to ~ψ is:



k1 −
2k1
KY

Y − kMY (1− e−M )− d0I 0 0 d0Y −kMY e−MY

k3
P
KY

(1− P
KP

) c1 − kMP (1− e−M )− d1I 0 d1P −kMP e−MP

0 k4
D
KP

(1− D
KD

) c2 − kMD (1− e−M )− d2I d2D −kMD e−MD

ραI

(α+NT )2
ραI

(α+NT )2
ραI

(α+NT )2
β1 − β2 −kMI e

−M I

0 0 0 0 −γ


, (18)

where c1 = k3− 2k3
KP
P+ k2Y

KY
− 2k2Y

KYKP
P−k5, c2 = k6− 2k6

KD
D+ k4P

KP
− 2k4P

KPKD
D−k7, β1 = ρNT

α+NT

and β2 = m + qNT + kMI
(1 − e−M). All the partials in this matrix are continuous on

[0, K]× (R+)4. Thus f(~ψ) is locally Lipschitz on [0, K]× (R+)4 → R5. �

Moreover, since the function f is locally Lipschitz on [0, tmax]×[0, KY ]×[0, KP ]×[0, KD]×
(R+)2 → R5, then the functional F mapping [0, tmax] × [0, KY ] × [0, KP ] × [0, KD] ×
(R+)2 → R5 is locally Lipschitz. It remains to use the following theorem mentioned in
[Collins et al., 2010] for obtaining the uniqueness of the solution.

Theorem 2.3. Let F (t, Y, P,D, I,M) : [0, tmax]×[0, KY ]×[0, KP ]×[0, KD]×(R+)2 → R5

be continuous and be locally Lipschitz. If

||F (t, ψ)|| ≤ N1(t) +N2(t)||ψ|| (19)

on [0, tmax]× [0, KY ]× [0, KP ]× [0, KD]× (R+)2, where N1(t) and N2(t) are continuous,
positive functions on [0, tmax], ψ = (Y, P,D, I,M)T and || · || is the Euclidean norm in
(R+)5 , then the unique solution exists for all t ∈ [0, tmax].
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Proof. F (t, Y, P,D, I,M) has already been shown to be locally Lipschitz in Lemma (2.1).
As the right hand side of our differential equation system (1) being continuous, then
F (t, Y, P,D, I,M) is a composition of continuous functions and hence is continuous on
[0, tmax]. Lastly, we show ||F (t, ψ)|| ≤ N1(t) +N2(t)||ψ|| on the prerequisite domain. We
consider supersolutions of Y (t), P (t), D(t), I(t) as Ymax, Pmax, Dmax and Imax respectively.
We find from the differential equation (1.5), by determining its analytic solution, then its
solution is bounded by:

M(t) =

{
M0e

−γt − VM
γ
e−γt + VM

γ
, if t ∈ F .

M0e
−γt, otherwise.

(20)

M(t) ≤

{
M0 +

VM
γ

=Mmax, , if t ∈ F .
M0, otherwise.

(21)

where M0 > 0 is the positive initial value of M , then the constant Mmax > 0. Conse-
quently, a set of supersolutions becomes:


Ymax
Pmax
Dmax
Imax


′

=


k1 + kMY e−Mmax 0 0 0

k2 k3 + kMP e−Mmax 0 0
0 k4 k6 + kMD e−Mmax 0
0 0 0 ρ+ kMI e

−Mmax



Ymax
Pmax
Dmax
Imax

+


0
0
0
s

 ,

note that we use the inequality ρNT
α+NT

≤ ρ, as result of lim
NT→∞

fr(NT ) = ρ mentioned above
in assumptions (A2). Hence we obtain ||F (t, ψ)|| ≤ N1(t) +N2(t)||ψ||, where:

N2 =


k1 + kMY

e−Mmax 0 0 0
k2 k3 + kMP

e−Mmax 0 0
0 k4 k6 + kMD

e−Mmax 0
0 0 0 ρ+ kMI

e−Mmax

 and N1 =


0
0
0
s

 .

Since N1 and N2 are both positive and continuous functions under the assumption that
the constants are positive, then by application of Cauchy Lipschitz theorem, we have the
uniqueness of a existing solution on [0, tmax]. �

2.3 Stability and bifurcation analysis

In order to study the equilibria of our model and their stability, we now consider the
system (2) in the absence of chemotherapy treatment. Then, we eliminate the equation
(2.5) and the system is given by:

(22) :



dY

dt
= r1(Y )Y − fd0(Y · I)

dP

dt
= H1(Y, P ) + r2(P )P − fk5(P )− fd1(P · I)

dD

dt
= H2(P,D) + r3(D)D − fk7(D)− fd2(D · I)

dI

dt
= s+ fr(NT )I −mI − qNT I

(22.1)

(22.2)

(22.3)

(22.4)

(22.5)

11



All the constant parameters for this system are from Tables 1 and 2 and they are chosen
to allow for reasonable simulation outcomes and feasible model solutions with respect to
assumptions (A1). Normally in the absence of treatment, the fraction of CSCs population
is lower than 1% of the total number of tumor cells NT [Yanamoto et al., 2011], therefore
we set CSCs/NT < 0.01. Also, it is well known that total number of D cells constitute
the majority of tumor cells [Clarke and Fuller, 2006]. Accordingly, we set as constraints
the fraction of total number of P and D cells P/NT ≈ 0.3 and D/NT ≈ 0.7. In Figure 2,
we verify that the chosen parameters (mentioned on Appendix A)fit the model.

Figure 2: Cells fractions, for each cell population (D/NT ; red line), (P/NT ; blue line), and (CSC/NT ; green line).
After 250 time unit (days), all constraints are satisfied; namely, CSC/NT < 0.001, P/NT ≈ 0.3 and D/NT ≈ 0.7. Note
that with weak immune system response, the proliferation of cencer cells decrease the total number of I cells (I/NT ; pink
dashed line). All the used parameters are listed in Tables 1 and 2, except d = 1 × 10−9, and the initial populations are
Y0 = 4, P0 = 1, D0 = 1, I = 10, M0 = 0.

2.3.1 Steady states and their stability

Stability of the equilibria are determined by linearizing the system about the calculated
values, and by determining the stability of the linearized system. In the physiologi-
cal point of view, the stability of equilibria is important. If the system is in equilib-
rium, but the equilibrium point is unstable, a small perturbation from equilibrium will
cause the system to move away from that point and evolve toward the stable equilibrium
[L. G. de Pillis et al., 2006]. In the following subsections we present an analyse of the
steady states stability. We focus on the possible dynamic of elimination of tumor cells,
recurrence and coexistence where all type of cancer cells are persisted. For studying its
stability, we linearize the system (22) to get the following Jacobian matrix Jc(E) on the
point E = (Y, P,D, I):
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Jc(E) =



k1 − 2k1
KY
Y − d0I 0 0 d0Y

k3
P
KY

(1− P
KP

) c1 − d1I 0 d1P

0 k4
D
KP

(1− D
KD

) c2 − d2I d2D

ραI
(α+NT )2

ραI
(α+NT )2

ραI
(α+NT )2

β1 − β2


. (23)

Recall that c1 = k3− 2k3
KP
P + k2Y

KY
− 2k2Y

KYKP
P −k5, c2 = k6− 2k6

KD
D+ k4P

KP
− 2k4P

KPKD
D−k7, β1 =

ρNT
α+NT

and β2 = m + qNT . The stability of the steady states depending on the model
parameters.

Elimination-tumor steady state The equilibria are determined by finding the simul-
taneous solutions of system (22). At the elimination-tumor steady state we consider that
there is no any type of cancer cells Y = P = D = 0. The elimination-tumor equilibrium
for all four state variables is given by the point E0 = (0, 0, 0, s

m
). To check stability. We

substitute the equilibrium point E0 in Jc(E), we obtain:

Jc(E0)



k1 − d0 sm 0 0 0

0 k3 − k5 − d1 sm 0 0

0 0 k6 − k7 − d2 sm 0

ρs
αm

ρs
αm

ρs
αm

−m


. (24)

Jc(E0) is a lower triangular matrix, then the diagonal of a triangular matrix is its set of
eigenvalues. Hence, the eigenvalues are:

λ1 = k1 − d0
s

m
, λ2 = k3 − k5 − d1

s

m
,

λ3 = k6 − k7 − d2
s

m
, λ4 = −m.

Note that the elimination-tumor equilibrium is stable if and only if all the four previous
eigenvalues are negative. Consequently, for obtaining the stability we must have:

λ1 = k1 − d0
s

m
< 0 ⇔ k1 < d0

s

m
(C1)

λ2 = k3 − k5 − d1
s

m
< 0 ⇔ k3 < k5 + d1

s

m
(C2)

λ3 = k6 − k7 − d2
s

m
< 0 ⇔ k6 < k7 + d2

s

m
, (C3)

Since λ4 = −m is always negative constant. Subsequently, we substitute the parameter
values from Tables 1 and 2 in Jc(E0) to determine the values of its eigenvalues. Then,
we obtain the set the of eigenvalues [−0.02, 0.14, 0.09, 0.07], which are non all negative,
then the elimination-tumor equilibrium is unstable. The conditions (C1, C2 and C3)
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imply that the stability of elimination-tumor steady state can be accessible and that’s
depends on proliferation and cell death rates. In other words, it is necessary to have a
symmetrical-renewal division rate (k1) of CSCs less than the rate of loss due to treatment
by immune system. As well for P cells, it must have its rate of symmetrical division (k3)
less than its rate of death naturally or by treatment. Likewise, the production rate of D
cells as result of its proliferation (k6), must be less than its death rate.

Therefore, we study the stability near the bifurcations values: k1 = 0.00016, k3 = 0.0003
and k6 = 0.001, where the constant values are taken from Tables 1 and 2. Thus, the
elimination-tumor equilibrium is stable if the three conditions: k1 < 0.00016, k3 <
0.0003 and k6 < 0.001 are satisfied. By consequences, before the bifurcations values,
k1 = 0.00016, k3 = 0.0003 and k6 = 0.001 the elimination-tumor equilibrium is stable.
This sensitivity to the bifurcations values (shown in Figure 3) implies that this equilibrium
loses its stability with some changes in its bifurcations values. Generally, instability means
that small changes in the bifurcations (considered as input) will produce large changes
in the size of the tumor (considered as output).

Figure 3: Simulations illustrating system behavior for two values of parameter k1. The bifurcation point is k1 = 0.00016.
Before the bifurcation value k1 = 0.0001, the elimination-tumor steady state equilibrium is stable (solid line), with setting
k3 = k4 at thier bifruction values for ensuring the stability. Conversely after the bifurcation, at k1 = 0.0005 the tumor
grows to its carrying capacity number. In this last case, tumor cells grow to the recurrence-tumor equilibrium (dashed
line), that implies the instability of elimination-tumor equilibrium after the bifurcation value. All parameters besides k1
are from Tables 1 and 2 and the initial populations are Y0 = 4, P0 = 1, D0 = 1, I = 10 for the both two cases.

In other word, The conditions (C1, C2 and C3) imply that for s large enough the last
eigenvalues λ1, λ2 and λ3 are also be negative.

Corollary 2.1. Let s be large enough, such that

s < max{k1m
d0

,
(k3 − k5)m

d1
,
(k6 − k7)m

d2
}

. Then the elimination-tumor steady state (E0) is locally asymptotically stable.

Corollary 2.1 gives a necessary condition for the treatment to be efficient in tumour
elimination. Consequently, if we inject a tumor at its advanced stage with s large enough,
tumor size will decay into 0 like it shown in Figure (4).
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Figure 4: Simulations illustrating system behavior for two immune system tretment injection value. Before the bifur-
cation value s = 14, the elimination-tumor equilibrium before the bifurcation value is instable, then the pre-existing tumor
grows to its carrying capacity number (dashed black line). Conversely after the bifurcation, at s = 2·7 the elimination-
tumor steady state equilibrium is stable (solid blue line) and it is decay into 0. All parameters beside s are from Tables 1
and 2 and the initial populations are Y0 = 5 · 104, P0 = 2 · 105, D0 = 5 · 105, I = 10 for the both two cases.

Recurrence-tumor steady state Here, the P and D populations are eradicated, but
the CSC population persists. So that, we set the P = D = 0 and see the consequences
for the CSC population steady state. Let YE ≥ 0, PE = 0, DE = 0 and IE = s

−ρ
α+YE

+m+qYE

be the equilibrium points, then we obtain:

dY

dt
= r1(YE)YE − d0YEIE = 0, (25)

as YE is a steady state then YE = 0 or r1(YE) = d0YEIE. For further analysis, we denote
the two following functions:

f(s) = s and g(Y ) =
1

−ρ
α+Y

+m+ qY
. (26)

Hence, the equation (25) becomes:

r1(YE) = d0f(s)g(YE), (27)

Then we define:

Ls(Y ) = r1(Y )− d0f(s)g(Y ). (28)

where f(s) is increasing in s and r1(YE) and g(YE) are both decreasing in (YE). And
with the chosen parameters of the model, we have r1(KY ) = 0 and g(KY ) > 0. Then
Ls(KY ) < 0 for any s > 0.
We also know that Ls(0) = k1 − d0f(s)

α
mα−ρ . Since f(s) is an increasing function, its

inverse exists and we can define smin = k1(mα−ρ)
d0α

. Notice that, for s = smin, Ls(0) = 0.
For s < smin, Ls(0) > 0, and Ls(KY ) < 0. Therefore, for s < smin, Ls(Y ) = 0 has at
least one solution YE ∈ [0, KY ] and, in general, since the function must cross the Y -axis
an odd number of times, there are an odd number (n) of solutions, YE1 · · ·YEn .
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We can assume that, for large enough t:

dY

dt
= r1(Y )Y − d0f(s)g(Y ) = Y Ls(Y ). (29)

For s < smin, the equilibrium point (0, 0, 0, IE) is unstable, since any values of Y less
than 0 will yield a negative value for Ls(Y ), and any values of Y between 0 and YE1 will
yield a positive value for Ls(Y ). Thus our first stable equilibrium point is at (YE1 , 0, 0, IE).

In contrast, if s is large enough so that s > smin, the equilibrium point (0, 0, 0, IE) is
locally stable, since for s > smin, Ls(0) < 0. However, it may still exist positive solutions
YE: YE1 · · ·YEn , where n is even. If these solutions are organized in non-decreasing order,
YEi is locally stable for even i and unstable for odd i, since Ls(Y ) > 0 between an odd
and even root and Ls(Y ) < 0 between an even and odd root. Note that if (0, 0, 0, IE) is
the only equilibrium point, it is globally asymptotically stable.

Coexistence-tumor steady state This case is considered as the disease state, where
the existing of all tumor cells (i.e. Y > 0, P > 0 and D > 0). Let (YE, PE, DE, IE) denote
a coexistence-tumor steady state with YE > 0, then we define:

PE =
k2

YE
KY

+ k3 − k5 − d1IE
k2YE
KYKP

+ k3
KP

= PE(IE) (30.1)

DE =
k4

PE
KP

+ k6 − k7 − d2IE
k4PE
KPKD

+ k6
KD

= DE(IE) (30.2)

We wish to show existence of YE, PE, DE > 0 and IE > 0, so, we have to solve the system:

R1(YE) = d0IE (31.1)

s+
ρ(YE + PE(IE) +DE(IE))

α + YE + PE(IE) +DE(IE)
IE −mIE − q(YE + PE(IE) +DE(IE))IE = 0. (31.2)

Let us consider equation 31.2, and with Y > 0 we define the auxiliary function:

AY (I) = s+
ρ(YE + PE(I) +DE(I))

α + YE + PE(I) +DE(I)
I −mI − q(YE + PE(I) +DE(I))I, (32)

we notice that for every Y > 0, AY (0) = s > 0. Then, taking the derivative with respect
to I, we obtain:

A′Y (I) =
ρ(YE + PE(I) +DE(I))

α + YE + PE(I) +DE(I)
+

αρ(P ′E(I) +D′E(I))

(α + YE + PE(I) +DE(I))2

−m− q(YE + PE(I) +DE(I))− q(P ′E(I) +D′E(I))I

(33)

From the model assumptions and parameters, we have A′Y (I) < 0, for a given Y , then
AY (I) is a decreasing function. Hence, as AY (0) > 0, there is one positive I which
satisfied AY (I) = 0, for any given Y .
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Now, we study our stability analysis with consideration of a coexistence steady state. As
above in the recurrence-tumor steady state, we expect IE = f(s) · g(YE, PE, DE), where:

f(s) = s and g(YE, PE, DE) =
1

−ρ
α+YE+PE+DE

+m+ q(YE + PE +DE)
, (34)

and we can re-write our system as the following:

dY

dt
= r1(Y )Y − d0f(s)g(Y, P,D)Y = Y · (L1(Y, P,D)) ≡ Y ·N1(Y, P,D)

dP

dt
= r2(P )P +H1(Y, P )− k5P − d1f(s)g(Y, P,D)P

= P · (L2(Y, P,D)− k5 + k2
Y

KY

(1− P

KP

)) ≡ P ·N2(Y, P,D)

dD

dt
= r3(D)D +H2(P,D)− k7D − d2f(s)g(Y, P,D)P

= D · (L3(Y, P,D)− k7 + k4
P

KP

(1− D

KD

)) ≡ D ·N3(Y, P,D).

(35)

We define smin = min{smin,Y , smin,P , smin,D}, where smin,Y =
k1(

−ρ
α+KP+KD

)+m+q(KP+KD)

d0α
,

smin,P = k3(mα−ρ)
d1α

and smin,D = k6(mα−ρ)
d2α

.

Proposition 2.1. For s < smin system (35) has a locally stable coexistence steady state
if and only if rate of trans-differentiation k3 and differentiation k4 is small enough; k3 ≈
k4 ≈ 0.

Proof. For showing the existence of such a steady state, Without loss of generality,
we suppose that smin = smin,Y . Then for values of s < smin, N1(0, P,D) > 0 and
N1(KY , P,D) < 0, for all values of P ∈ [0, KP ] and D ∈ [0, KD]. Therefore, for
s < smin, L1(YE, P,D) = 0 has at least one solution YE ∈ [0, KY ], for all P ∈ [0, KP ]
and D ∈ [0, KD]. In general, since the function must cross the Y -axis an odd number of
times, there are an odd number (n) of solutions, YE1 · · ·YEn , such that N1(YEi , P,D) = 0.

Likewise, by our choice of smin, N2(Y, 0, D) > 0 andN2(Y,KP , D) < 0 if and only if k2 ≈ 0
, for all values of Y ∈ [0, KY ] and D ∈ [0, KD]. Thus, for s < smin, L2(Y, PE, D) = 0 has
at least one solution PE ∈ [0, KP ], for all Y ∈ [0, KY ] and D ∈ [0, KD]. In general, since
the function must cross the P -axis an odd number of times, there are an odd number
(m) of solutions, PE1 · · ·PEm , such that N2(Y, PEj , D) = 0.

A parallel argument works to show that for s < smin, L3(Y, P,DE) = 0 has at least one
solution DE ∈ [0, KD], as N3(Y, P, 0) > 0 and N3(Y, P,KD) < 0 if and only if k4 ≈ 0
for all Y ∈ [0, KY ] and P ∈ [0, KP ]. And there exist an odd number of solutions p,
DE1 · · ·DEp , such that N2(Y, PEκ , D) = 0.

Then, we can deduce the existence of an equilibrium point (YE, PE, DE) in [0, KY ] ×
[0, KP ]×[0, KD] for the system (35). Moreover, notice that while (0, 0, 0) is an equilibrium
point of the system (35), it is unstable since N1(Y, P,D) > 0 for 0 ≤ Y < YE, P ∈ [0, KP ]
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and D ∈ [0, KD], also N2(Y, P,D) > 0 for 0 ≤ P < PE, Y ∈ [0, KY ] and D ∈ [0, KD],
and N3(Y, P,D) > 0 for 0 ≤ D < DE, Y ∈ [0, KY ] and P ∈ [0, KP ], In fact, if we denote
Y0 = P0 = D0 = 0, the equilibrium points (YEi , PEi , DEκ) are locally unstable when i or
j or κ is even and locally stable when i and j and κ are odd.

�

We now show that, by increasing the treatment term s, we will achieve a globally asymp-
totically stable cure steady state. We conclude our analysis by noting that:

dY

dt
= Y · (L1(Y, P,D))

dP

dt
= P · (L2(Y, P,D)− k5 + k2

Y

KYKP

(KP − P ))

≤ P · (L2(Y, P,D) + k2KP )

dD

dt
= D · (L3(Y, P,D)− k7 + k4

P

KPKD

(KD −D))

≤ D · (L3(Y, P,D) + k4KD),

(36)

for all (Y, P,D) ∈ [0, KY ] × [0, KP ] × [0, KD]. Hence, for s ≥ smin let us consider the
system:

dY

dt
= Y · (L1(Y, P,D))

dP

dt
= P · (L2(Y, P,D) + k2KP )

dP

dt
= D · (L3(Y, P,D) + k4KD)

(37)

Let sY be the maximum of r1(Y )
d0f(smin,Y )g(Y,KP ,KD)

, and we choose sthr,Y such that f(sthr,Y ) =

f(smin,Y )sY . Similarly, let sP , sD be the maximum of r2(P )+k2KP
d1f(smin,P )g(KY ,P,KD)

, r3(D)+k4KD
d2f(smin,D)g(KY ,KP ,D)

respectively, and we choose sthr,P such that f(sthr,P ) = f(smin,P )sP and sthr,D such that
f(sthr,D) = f(smin,D)sD. Let scure = max{sthr,Y , sthr,P , sthr,D}.

Proposition 2.2. For s > scure, (0, 0, 0) is a globally asymptotically stable equilibrium
point of system (37).

Proof. For s > sthr,P ,

L2(Y, P,D) + k2KP < r2(P )− f(sthr,P )g(Y, P,D) + k2KP

= r2(P )− sPf(smin,P )g(Y, P,D) + k2KP

= r2(P ) + k2KP −
g(Y, P,D)

g(KY , P,KD)
(r2(P ) + k2KP )

= r2(P ) + k2KP (1−
g(Y, P,D)

g(KY , P,KD)
) ≤ 0,

(38)

since g is decreasing for 0 ≤ P < KP . Then L2(Y, P,D) + k2KP < 0 for all (Y, P,D) ∈
[0, KY ] × [0, KP ] × [0, KD]. Similarly For s > sthr,Y and for s > sthr,D; L1(Y, P,D) < 0
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and L3(Y, P,D) + k4KD < 0 respectively, for all (Y, P,D) ∈ [0, KY ] × [0, KP ] × [0, KD].
Therefore, (0, 0, 0) is the only equilibrium point for system (37) and (0, 0, 0) is globally
asymptotically stable. �

Now, we will determine the coexistence-tumor equilibrium numerically and check its
stability for the model parameters. We set simultaneously the equations of system (22)
equal to zero in order to find the equilibria. Therefore, setting (22.1, 22.2, 22.3) and
(22.4) to zero respectively yield to:

IE1 =
k1 − k1

KY
Y

d0
(39.1)

PE =
k2

Y
KY

+ k3 − k5 − d1IE
k2Y

KYKP
+ k3

KP

(39.2)

DE =
k4

P
KP

+ k6 − k7 − d2IE
k4P

KPKD
+ k6

KD

(39.3)

IE2 =
s

βE − βE
, (39.4)

where Y > 0 βE = ρ·(Y+PE+DE)
α+NT

, βE = m + q · (Y + PE + DE) and IE1 , IE2 , PE, DE are
the recurrence-tumor equilibrium for the variables I, P and D. In this case, the value
of the equilibrium Y 6= 0 is determined numerically. Indeed, we vary the value of Y in
the range [0, KY ] and we determine the values of the DE cells each time. As we can see
from the formulas (39.1, 39.2, 39.3 and 39.4), we calculate the value of IE1 in function of
Y , then the value of PE finally DE in function of Y, PE and IE1 . With the same way we
determine the second values of DE but by using the values IE2 . Therefore, we define the
two following function:

DE1(Y ) = DE ◦ PE ◦ IE1(Y ) (40)
DE2(Y ) = DE ◦ PE ◦ IE2(Y ). (41)

Hence, we search the positive equilibrium of Y by plotting the nullclines presented in the
following Figure 5:

Figure 5: The nullclines intersections of the equationa (40) and (41). The nullclines intersect in 3 points. There is the
elimination-tumor equilibrium A. In addition, the nullclines intersect in two points B and C, however there is only one
non-zero positive equilibrium C. The estimated parameter set are taken from Tables 1 and 2.
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As a consequence, the positive coexistence-tumor equilibrium points are the intersections
of the graphs (shown in Figure 5). We exclude the equilibrium points with negative
population, so that we eliminate the point B. Then, the unique positive equilibrium
point, which include the number of CSC, P,D and I cells in equilibrium (YE, PE, DE, IE)
respectively, are approximately:

A = (0, 0, 0, 650000)

C = (8 · 106, 2 · 108, 6 · 108, 5 · 106)

where A is the elimination-tumor steady state, B and C is the coexistence-tumor steady
state. Then, we study the stability of the positive equilibrium C by substituting its value
in the Jacobian matrix (23). Following this, The set of the eigenvalues of the point C is :
[−0.3, −0.14, −0.17, −0.2]. It’s clear that with the chosen parameter of the model, the
coexistence-tumor steady state is stable, as all the eigenvalues of the equilibrium C are
non null and negative. At the unstable equilibriums A, a small perturbation takes place
in equilibrium will cause the system moves toward the stable equilibrium C.

Conclusion of stability results We have investigated the behaviour of the model
around equilibrium solutions. An equilibrium is considered stable if the system always
returns to it after small disturbances. The stability of the coexistence-tumor equilibrium
implies that, if treatment is stopped, the system will inevitably return to the coexistence-
tumor state, i.e. the tumor will escape from the immune system treatment unless every
single tumor cell is killed. Thus, in a case such as ours for which the elimination-tumor
equilibrium is unstable, then in order to realistically effect a cure, any treatment must
not only reduce the tumor burden, but it must also change the parameters of the system
itself.
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Appendix A Experimental data

Parameter Estimated value Units Description Reference

k 4.31× 10−1 days−1 Tumor growth rate. [Diefenbach et al., 2001]
K 107 cells Tumor carrying capacity. [Turner et al., 2009]
kdeath 7, 13 · 10−10 cells−1 days−1 Tumor cells natural death rate. [Diefenbach et al., 2001]
kM 9× 10−1 days−1 Fractional tumor cells kill by chemotherapy. [Perry, 2008]
d 1× 10−7 cells−1 days−1 Fractional tumor cells kill by immune cells. [Kuznetsov et al., 1994]
γM 1× 10−1 days−1 Rate of chemotherapy drug decay. [L. G. de Pillis et al., 2006]
Vd 0 mg/L Chemotherapy drug infusion rate. Model-specific parameter
s 1.3× 104 cells days−1 Immune treatment injection rate into the tumor site. [Kuznetsov et al., 1994]
α 2.019× 107 cells Steepness coefficient of I cell recruitment. [Kuznetsov et al., 1994]
ρ 0.1245 days−1 Maximum I cells recruitment rate. [Kuznetsov et al., 1994]
m 2× 10−2 days−1 I cells death rate [Kuznetsov et al., 1994]
q 3.42× 10−10 cells−1 days−1 I cells death rate due to interaction with tumor cells. [Kuznetsov et al., 1994]

Table 1: Parameter values of the model

Parameter Probability of
occurrence (p)

Estimated value Units Description

KY 0.01 K · p ≈ 9 · 106 Cells CSCs carrying capacity.
KP 0.3 K · p ≈ 63 · 107 Cells P cells carrying capacity.
KD 0.7 K · p ≈ 27 · 107 days−1 D cells carrying capacity.
k1

1
3 k · p ≈ 0.143 days−1 CSCs symmetric division rate

k2
2
3 k · p ≈ 0.009 days−1 CSCs trans-differentiation rate

k3
1
4 k · p ≈ 0.1 days−1 P proliferation rate

k4
3
4 k · p ≈ 0.3 days−1 P differentiation rate

k5 0.5 kdeath · p ≈ 3, 5 · 10−10 cells−1 days−1 P natural death rate
k6

1
10 k · p ≈ 0.04 days−1 D proliferation rate

k7 1 kdeath · p ≈ 7, 13 · 10−10 cells−1 days−1 D natural death rate
kMY

1
4 kM · p ≈ 0.225 cells−1 days−1 Fractional CSCs kill by chemotherapy

kMP

1
2 kM · p ≈ 0.45 cells−1 days−1 Fractional P cells kill by chemotherapy

kMD
1 kM · p ≈ 0.9 cells−1 days−1 Fractional D cells kill by chemotherapy

kMI
0.001 kM · p ≈ 0.0009 cells−1 days−1 Fractional I cells kill by chemotherapy

d0
1
4 d · p ≈ 2.5× 10−8 cells−1 days−1 Fractional CSCs kill by I cells.

d1
1
2 d · p ≈ 5× 10−8 cells−1 days−1 Fractional P cells kill by I cells.

d2 1 d · p ≈ 1× 10−7 cells−1 days−1 Fractional D cells kill by I cells.

Table 2: Estimated parameter values of the model

Here in Tables 1 and 2, we list all the parameters used in the model taking into ac-
count the biological assumptions of the model. For that, some parameters are estimated
specifically for this model but they are based on previous model parameters and exper-
imental studies. So that, we estimate the sets of growth rates {k1, k2, k3, k4, k6} from
the parameter k, death rates {k5, k7} from kdeath, knowing that the natural death rate
of tumor cells is increased as cells become more differentiated. {kMY

, kMP
, kMD

, kMI
}

are estimated from kM and finally {d0, d1, d2} from d. These rates can be estimated us-
ing a probability value for the occurrence of each process [Wodarz and Komarova, 2014,
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Rodriguez-Brenes et al., 2011]. According to the biological assumptions of the model
(A1), which based on the model of [Molina-Peña and Álvarez, 2012], we estimate the
previous rate on Table 2. Therefore, with this choice of the parameters we assume real-
istic outcomes shown on Figure 2.
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