
HAL Id: hal-04895207
https://hal.science/hal-04895207v1

Preprint submitted on 17 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Universal approximations of quasilinear PDEs by finite
distinguishable particle systems

Thierry Paul, Emmanuel Trélat

To cite this version:
Thierry Paul, Emmanuel Trélat. Universal approximations of quasilinear PDEs by finite distinguish-
able particle systems. 2024. �hal-04895207�

https://hal.science/hal-04895207v1
https://hal.archives-ouvertes.fr


Universal approximations of quasilinear PDEs by finite
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Abstract
In this paper, we prove that sufficiently regular solutions of any quasilinear PDE can be

approximated by solutions of systems of N distinguishable particles, to within 1/ ln(N). This
intruiguing result is related to recent developments in graph limit theory.

Contents

1 Introduction 2
1.1 Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Some tools and notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Finite particle approximations of quasilinear evolution systems 6
2.1 Abstract quasilinear evolution systems . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 A general approximation result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Finite particle approximation system . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Application to quasilinear PDEs 15
3.1 A general class of quasilinear PDEs . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Proof of Theorem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Examples 22
4.1 Transport equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2 Burgers equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3 KdV equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5 Further remarks 23

A Appendix: Finite particle approximation of quasilinear integral evolution equa-
tions 24
A.1 Quasilinear integral evolution equation . . . . . . . . . . . . . . . . . . . . . . . . . 24
A.2 Finite particle approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
A.3 Convergence result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

*CNRS Laboratoire Ypatia des Sciences Mathématiques LYSM, Rome, Italy
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1 Introduction

Particle approximations are well known for some classes of PDEs, like fluid equations: for fluid
Euler or Navier-Stokes equations, one often speaks of “fluid particles”, in accordance with the
classical Eulerian or Lagrangian viewpoints.

In this paper we prove that sufficiently regular solutions of any quasilinear evolution equation
can be approximated by solutions of systems of N distinguishable particles, to within 1/ ln ln(N).

To give a flavor of this surprising universal result and to simplify the setting, in this introduction
let us restrict to the linear case. Let n, d ∈ IN∗ and let Ω be an open bounded subset of IRn. We
consider a linear evolution equation

∂ty(t, x) = Ay(t, x) (1)

where y(t, x) ∈ IRd for t > 0 and x ∈ Ω, and where A : D(A) → L2(Ω, IRd) is a linear operator
generating a C0 semigroup and Ω is a domain of IRn. Let [A] be the (distributional) Schwartz
kernel of A, so that (Ag)(x) = ⟨[A](x, ·), f⟩ for every g ∈ C∞

c (Ω, IRd), in the distributional sense.
For instance if [A](x, x′) = δ′x, the distributional derivative of the Dirac measure δx at x, then
A = −∂x.

Now, in a first step, we approximate (for example, by convolution) the distribution [A] with
a family of smooth kernels σε, depending on a parameter ε > 0, such that σε converges in the
distributional sense to [A] as ε → 0. Now, for every ε > 0, we have a bounded operator Aε on
L2(Ω), given by (Aεg)(x) =

∫
Ω
σε(x, x

′)g(x′) dx′ for every g ∈ C∞
c (Ω, IRd), and we consider the

linear evolution equation

∂tyε(t, x) = Aεyε(t, x) =

∫
Ω

σε(x, x
′)yε(t, x

′) dx′, (2)

which is viewed as an approximation of the linear evolution equation (1). Taking yε(0, ·) = y(0, ·), as
one can expect, under general assumptions we have, on a compact interval, ∥yε(t)−y(t)∥L2 ⩽ Cεeωt

for some C > 0 and ω ∈ IR not depending on the solutions – or, some similar estimate in ε; in any
case, something small as ε is small.

In a second step, we approximate the integral evolution equation (2) by a family of finite particle
systems, indexed by N , defined by

ξ̇Nε,i(t) =
1

N

N∑
j=1

σε(x
N
i , x

N
j ) ξNε,j(t). (3)

This can be done simply by approximating the integral in (2) with a Riemann sum, performed on a
partition Ω = ∪N

i=1Ω
N
i of the domain Ω. Standard estimates allow one to measure the discrepancy

between solutions of (2) and finite particle solutions of (3).
Applying the triangular inequality, we obtain an estimate of the form∥∥∥∥y(t, ·)− N∑

i=1

ξNε,i(t) 1ΩN
i
(·)
∥∥∥∥
L2(Ω,IRd)

⩽ C

(
ε+

eC/ε

N

)
on a compact interval. Finally, choosing ε ∼ 1

ln lnN , we get the estimate∥∥∥∥y(t, ·)− N∑
i=1

ξNε,i(t) 1ΩN
i
(·)
∥∥∥∥
L2(Ω,IRd)

⩽
C

lnN
(4)

2



(or maybe, a positive power of the right-hand side) on a compact interval. This shows that, under
few assumptions and in whole generality, any linear PDE can be approximated by an explicit family
of finite particle systems, to within 1/ ln(N).

This surprising result has actually emerged as a byproduct of our article [29], in which we have
revisited and extended various ways to pass to the limit in finite systems of (possibly distinguish-
able, deterministic) particles as the number of particles tends to infinity. In particular, we have
shown that the continuum / graph limit equation, which is derived as above from the particle
system by the Riemann sum theorem, can always be identified with the Euler equation derived by
hydrodynamic considerations from the Vlasov equation that is itself obtained by mean field limit.
This actually deep fact has led us to introduce a set of x ∈ Ω standing for “labels” of the particles,
making them distinguishable. Then the idea outlined above emerged, because in the PDE setting,
Ω can naturally be the domain of an unbounded operator and the label x ∈ Ω is the spatial variable
of the PDE.

In this study, an inspiring model has been the linear Hegselmann–Krause first-order consensus
system (see [20])

ξ̇Ni (t) =
1

N

N∑
j=1

σN
ij

(
ξNj (t)− ξNi (t)

)
, i ∈ {1, . . . , N}, (5)

which models propagation of opinions. In (5), the coefficient σN
ij stands for the interaction of

the agent i with the agent j. The N × N matrix consisting of those coefficients, not necessarily
symmetric, is naturally associated to a graph. This interpretation has certainly motivated the
terminology of “graph limit” (coined in [28], used to describe how to pass to the continuum limit
in (5) and get the evolution equation ∂ty(t, x) =

∫
Ω
σ(x, x′)(y(t, x′)− y(t, x)) dx′, whenever a limit

function σ (called “graphon”) does exist. Dropping the term ξNi (t) at the right-hand side of (5),
one can see that (5) coincides with (3) and provides a good and inspiring model to approach any
linear evolution equation.

To our knowledge, an early existing article in which a related (though different) idea can be
found is [27], in which the authors provide a deterministic particle approximation for heat equations
and porous media equations. See also [9, 12, 16, 17, 10]

1.1 Setting

Multi-agent collective models have regained an increasing interest over the last years, due in par-
ticular to their connection with mean field and graph limit equations. At the microscopic scale,
such models consist of considering particles or agents evolving according to the dynamics

ξ̇i(t) =
1

N

N∑
j=1

GN
ij (t, ξi(t), ξj(t)), i ∈ {1, . . . , N}, (6)

for some (large) number of agents N ∈ IN∗ where, for every i ∈ {1, . . . , N}, ξi(t) ∈ IRd (for
some d ∈ IN∗) stands for various parameters describing the behavior of the ith agent and GN

ij :

IR× IRd × IRd → IRd is a mapping modeling the interaction between the ith and jth agents.
This paper deals somehow with the path inverse to the mean field limit one: given a general

partial differential equation (PDE), is is possible to construct explicitly an agent system of the
form (6) such that the corresponding graph limit equation coincides with the given PDE we started
with? Surprisingly, this happens to be true in a very general setting and this is a consequence of
the analysis done in the paper.

The question of whether some classes of PDEs are a “natural” limit of particle systems is
classical in fluid mechanics and certainly dates back to Euler: it is classical that the Euler fluid
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equation can be seen, at least formally, as the limit of evolving “particles of fluids”. This has been
formalized in the famous article [1] where Arnol’d interpreted the Euler equation as a geodesic
equation in the space of diffeomorphisms, leading to a number of subsequent studies; we refer
to [3] (see also the references therein) for a survey on how to “cook up” appropriate groups of
diffeomorphisms (and thus, of particle systems) to generate classes of fluid PDEs, like Euler,
Camassa-Holm, etc. We also refer to [19] for a recent survey on microscopic, mesoscopic and
macroscopic scales for fluid dynamics.

But it is much less classical to show that other, more general PDEs can as well be obtained
by passing to the limit in some particle systems. For transport equations, the topic has been
extensively studied in [12, 13, 14]. Recently, thanks to the concept of graph limit elaborated in
[28], it has been possible to show that heat-like equations can as well be obtained as limits of
particle systems (see also [2, 5, 7, 16]). In [17], the authors provide a rigorous derivation from the
kinetic Cucker-Smale model to the macroscopic pressureless Euler system by hydrodynamic limit,
using entropy methods and deriving error estimates.

Actually, during the Leçons Jacques-Louis Lions given in our laboratory in the fall 2021 by
Dejan Slepcev, we were intrigued by his way of deriving heat-like equations from unusual particle
systems, by taking not only the limit as the number N of agents tends to +∞, but also another
parameter ε tends to 0, at some precise scaling (see [16]). The role of ε is to smoothen the dynamics.
His striking exposition has been for us a great source of inspiration and has motivated the last
part of the present article.

In this last part, we provide for a large range of quasilinear PDEs a natural and constructive way
for associating an agent system to them. Shortly, as a particular case of our analysis, considering
a general PDE

∂ty(t, x) =
∑
|α|⩽p

aα(t, x, y(t, x))∂
α
x y(t, x) = A(t, x, y(t, x))y(t, x), (7)

we show that (7) is the graph limit of (for example) the particle system (6) with

Gij(t, ξ, ξ
′) = Gε(t, i, j, ξ, ξ

′) = ξ′
∑
|α|⩽p

aα(t, x, ξ)∂
α
x′
e−

(x−x′)2
2ε

(πε)
1
2

in the limit N ≫ ε−1 → +∞, with some appropriate scalings. We establish convergence estimates
in Wasserstein distance in general, and in L2 norm under an additional (but general) semigroup
assumption.

Finally, as announced, as a surprising byproduct built on the previous developments, we show
in Section 3 that general quasilinear PDEs can be obtained by passing to the limit in explicit
particle systems, thanks to two asymptotic parameters.

1.2 Some tools and notations

Let (Ω,dΩ) be a complete metric space, endowed with a probability measure ν ∈ P(Ω).

Tagged partitions, and Riemann sum theorem. We say that (AN , xN )N∈IN∗ is a family of
tagged partitions of Ω associated with ν if AN = (ΩN

1 , . . . ,Ω
N
N ) is a N -tuple of disjoint subsets

ΩN
i ⊂ Ω such that

Ω =

N⋃
i=1

ΩN
i with ν(ΩN

i ) =
1

N
and diamΩ(Ω

N
i ) ⩽

CΩ

Nγ
∀i ∈ {1, . . . , N}, (8)
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for some CΩ > 0 and γ > 0 not depending on N , and xN = (xN1 , . . . , x
N
N ) is a N -tuple of points

xNi ∈ ΩN
i . Here, diamΩ(Ω

N
i ) is the supremum of all dΩ(x, x

′) over all possible x, x′ ∈ ΩN
i .

Families of tagged partitions always exist when Ω is a compact n-dimensional smooth manifold
having a boundary or not and ν is a Lebesgue measure on Ω, with γ = 1/n. For instance, when
Ω = [0, 1], we take ΩN

i = [aNi , a
N
i+1) for some subdivision 0 = aN1 < aN2 < · · · < aNN+1 = 1

satisfying (8); when dν(x) = dx, a natural choice is aNi = i−1
N , and xNi = aNi or

aN
i +aN

i+1

2 , for every
i ∈ {1, . . . , N} (and then CΩ = 1 and r = 1 in this case). When Ω is a compact domain of IRn,
a family of tagged partitions is obtained by considering a family of meshes, as classically done in
numerical analysis, with γ = 1/n.

The concept of tagged partition is used in Riemann (and more generally, Henstock-Kurzweil)
integration theory. We refer to [18] for (much more) general results. A real-valued function f on
Ω, of compact support, is said to be ν-Riemann integrable if it is bounded, ν-measurable, and if,
for any family (AN , xN )N∈IN∗ of tagged partitions, we have

N∑
i=1

∫
ΩN

i

|f(x)− f(xNi )| dν(x) = o(1) (9)

and thus ∫
Ω

f dν =
1

N

N∑
i=1

f(xNi ) + o(1) (10)

as N → +∞. A function f of essential compact support on Ω is ν-Riemann integrable if and
only if f is bounded and continuous ν-almost everywhere on Ω. Given any Lipschitz continuous
function f on Ω, of Lipschitz constant Lip(f), we have∣∣∣∣∣

∫
Ω

f dν − 1

N

N∑
i=1

f(xNi )

∣∣∣∣∣ ⩽ CΩ Lip(f)

Nγ
(11)

for any N ∈ IN∗ (see, e.g., [29, Appendix A.4.1] for this very standard and elementary result).

Functional spaces. Let d ∈ IN∗. We denote by ∥ ∥IRd the Euclidean norm on IRd.
We denote by Lip(Ω, IRd) the space of functions f : Ω → IRd that are Lipschitz continuous on

Ω, of Lipschitz constant

Lip(f) = sup
x,x′∈Ω
x̸=x′

∥f(x)− g(x′)∥
dΩ(x, x′)

.

For any k ∈ [1,+∞], we denote by Lk
ν(Ω, IR

d), or simply by Lk(Ω, IRd), the usual Lebesgue
space. For k < +∞, it consists of measurable functions f : Ω → IRd such that ∥f∥Lk =(∫

Ω
∥f(x)∥k

IRd dν(x)
)1/k

< +∞. For k = +∞, it consists of ν-essentially bounded measurable

functions f : Ω → IRd, endowed with the essential supremum norm ∥ ∥L∞ . Given any p ∈ IN,
we denote by W p,k

ν (Ω, IRd), or simply W p,k(Ω, IRd), the Sobolev space of functions f : Ω → IRd

whose partial (distributional) derivatives up to order p are identified with functions of Lk(Ω, IRd),
endowed with the norm

∥f∥Wp,k = max
|α|⩽p

∥Dαg∥Lk .

For k = 2, we denote Hp(Ω, IRd) =W p,2(Ω, IRd).
Assume that Ω is a smooth finite-dimensional manifold. For any k ∈ [1,+∞], we denote by

C k(Ω, IRd) (resp., C∞
c (Ω, IRd)) the set of functions f : Ω → IRd of class C k (resp., moreover, of

compact support).
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2 Finite particle approximations of quasilinear evolution sys-
tems

Let Ω be a complete metric space, endowed with the distance dΩ and with a probability measure
ν ∈ P(Ω), assumed to have the property of having a family (AN , xN )N∈IN∗ of tagged partitions
associated with ν, satisfying (8).

Let d ∈ IN∗ and let X = F(Ω, IRd) be a Banach space of functions on Ω, taking their values in
IRd. Typical examples are Sobolev spaces, like X = L2(Ω, IRd) or more generally X = Hs(Ω, IRd)
for some s ∈ IR, the space of continuous functions X = C 0(Ω, IRd) or of functions of class Cp, the
space of analytic functions, Hölder spaces, etc.

Let T > 0. We consider the quasilinear evolution equation

ẏ(t) = A[t, y(t)] y(t) + f [t, y(t)] (12)

for t ∈ [0, T ], with some initial condition y(0) = y0 ∈ X, where A[t, z] is a linear operator on X, of
domain D(A[t, z]), and f [t, z] ∈ X, for all (t, z) ∈ [0, T ]×X.

Assuming that t 7→ y(t) ∈ X is a solution of (12), since y(t), as an element of the functional
space X = F(Ω, IRd), is a function on Ω, in the sequel we denote indifferently y(t)(x) = y(t, x) for
all t ⩾ 0 and x ∈ Ω.

Our objective is to prove that, under appropriate assumptions, sufficiently regular solutions
t 7→ y(t) of (12) can be approximated by the solutions of a family of finite particle systems
evolving in Ω.

Note that we use brackets to denote A[t, y(t)] and f [t, y(t)] in (12), in order to underline
their possible nonlocal dependence with respect to x ∈ Ω: A[t, y(t)] and f [t, y(t)] do not nec-
essarily depend only on y(t, x), the value at x of the function y(t) ∈ X (for instance, a term
like (

∫
Ω
y(t, x′)2 dx′)y(t, x), or like

∫
Ω
ρ(x − x′)y(t, x′) dx′ y(t, x)3 as it is the case in some Vlasov

equations).

The section is structured as follows.
In Section 2.1, we recall the general setting introduced by Kato to ensure existence and unique-

ness of solutions for abstract quasilinear evolution equations.
In order to derive families of finite particles systems approximating the quasilinear evolution

equation (12), our strategy will be in two steps:
1. Given a family of bounded linear operators Aε[t, z] approximating A[t, z], derive a convergence

estimates of solutions yε of the ε-approximation evolution equation a given solution y of (12).
This is done in Section 2.2.

2. In Section 2.3, for any ε fixed, derive a family of finite particle systems, indexed by N ∈ IN∗,
whose solutions converge as N → +∞ to solutions of the ε-approximation evolution equation.
This convergence will follows from Theorem 3 in Appendix A.3. Of course, we will have to
be careful enough to keep track of constants regarding the dependence with respect to ε and
N .

In Section 2.4, we state the main result, establishing convergence of solutions of the finite particle
system to a given solution of (12). Estimates of convergence are obtained by the triangular
inequality. They depend on ε and N , but as already alluded the estimates blow up when ε → 0
with N being fixed and thus the limits must be taken at some appropriate scaling.

In what follows, as a general notation, given any Banach space E, we denote by ∥ ∥E its norm
and by L(E) the Banach space of all bounded linear operators on E. Given another Banach space
F , the notation L(E,F ) stands for the Banach space of all bounded linear operators from E to F .
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2.1 Abstract quasilinear evolution systems

In this section, as well as in the next Section 2.2, we do not need that X be a space of functions:
X can be any arbitrary Banach space.

Existence and uniqueness of a solution of (12) are classical and are ensured by proving that
the following mapping Φ is contractive and thus has a fixed point (see [25, 26] or [30, Section 6.4,
Theorem 4.6]): given an appropriate function t 7→ z(t) ∈ X, y(·) = Φ(z(·)) is defined as the unique
solution of ẏ(t) = A[t, z(t)] y(t) + f [t, z(t)] such that y(0) = y0. This is done under the following
classical assumptions, taken from [26, 31] (in fact, slightly more general assumptions are done in
[26]). The following setting and results are due to Kato.

Functional space assumptions.

(H1) There exists a Banach subspace Z of X, dense in X and continuously embedded in X, i.e.,
there exists C1 > 0 such that ∥z∥X ⩽ C1∥z∥Z for every z ∈ Z.

(H2) There exists an operator S ∈ L(Z,X) such that ∥z∥Z = ∥z∥X + ∥Sz∥X (graph norm);
equivalently, S is a closed operator on X of domain D(S) = Z.

Let y0 ∈ Z. In what follows, given any r > 0, we denote by BZ(y
0, r) = {z ∈ Z | ∥z−y0∥Z ⩽ r}

the closed ball in Z of center y0 and radius r, and by clX(BZ(y
0, r)) its closure in X. Note that

clX(BZ(y
0, r)) = BZ(y

0, r) if X and Z are reflexive.

Assumptions on the operator. There exists r > 0 such that, for all t ∈ [0, T ] and z ∈ BZ(y
0, r):

(H3) (Semigroup and stability) The operator A[t, z] generates a C0 semigroup (esA[t,z])s⩾0 on X,
and there exist M ⩾ 1 and ω ∈ IR such that, for every k ∈ IN∗, for all s1, . . . , sk ⩾ 0 and all
0 ⩽ t1 ⩽ · · · ⩽ tk ⩽ T , one has ∥es1A(t1,z) · · · eskA(tk,z)∥L(X) ⩽Me(s1+···+sk)ω.1

(H4) Z ⊂ D(A[t, z]), A[t, z] ∈ L(Z,X) depends continuously on t, and there exists C4 ⩾ 0 such
that ∥A[t, z1]−A[t, z2]∥L(Z,X) ⩽ C4∥z1 − z2∥X for all t ∈ [0, T ] and z1, z2 ∈ BZ(y

0, r).

(H5) (Intertwining condition) SA[t, z] = A[t, z]S+B[t, z]S withB ∈ C 0([0, T ]×clX(BZ(y
0, r)), L(X)),

and there exists C5 ⩾ 0 such that ∥B[t, z]∥L(X) ⩽ C5 for all (t, z) ∈ [0, T ]× clX(BZ(y
0, r)).

Assumptions on f . Finally, we assume that:

(H6) f ∈ C 0([0, T ] × BZ(y
0, r), Z) and there exists C6 ⩾ 0 such that ∥f [t, z]∥Z ⩽ C6 for all

t ∈ [0, T ] and z ∈ BZ(y
0, r).

(H7) There exists C7 ⩾ 0 such that ∥f [t, z1] − f [t, z2]∥X ⩽ C7∥z1 − z2∥X for all t ∈ [0, T ] and
z1, z2 ∈ BZ(y

0, r).

Evolution system. As proved in [26, 31] (see also [30, Section 6.4]), under Assumptions (H1)
to (H5), for every z(·) ∈ C 0([0, T ], X) such that z(t) ∈ BZ(y

0, r) for every t ∈ [0, T ], there exists
an evolution system (Uz(t, s))0⩽s⩽t⩽T on X, i.e., a family of operators Uz(t, s) ∈ L(X) depending
continuously on (t, s) and satisfying, for all 0 ⩽ s ⩽ r ⩽ t ⩽ T :

(E1) Uz(t, s) = Uz(t, τ)Uz(τ, s) and Uz(s, s) = idX .

(E2) Uz(t, s)Z ⊂ Z;

(E3) ∥Uz(t, s)∥L(X) ⩽ Meω(t−s) and ∥Uz(t, s)∥L(Z) ⩽ Meω(t−s) (where the value of ω has been
increased if necessary);

(E4) ∂tUz(t, s) = A[t, z(t)]Uz(t, s) and ∂sUz(t, s) = −Uz(t, s)A[s, z(s)] on Z (the derivatives exist
in L(Z,X)).

Proposition 1. Let y0 ∈ Z. Under Assumptions (H1) to (H7), there exists a unique solution
y(·) ∈ C 0([0, T ′], Z) ∩ C 1([0, T ′], X) of (12) such that y(0) = y0, for some T ′ ∈ (0, T ]. Moreover,

1Note that the latter stability estimate holds true (with M = 1) if (esA[t,z])s⩾0 is a semigroup of contractions.
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for every t ∈ [0, T ′] one has y(t) ∈ BZ(y
0, r) and

y(t) = Uy(t, 0)y
0 +

∫ t

0

Uy(t, s)f [s, y(s)] ds. (13)

Note that, in contrast to the usual Duhamel formula in the classical linear case, the formula
(13) is implicit in general because of the dependence with respect to y, see Remark 2 further.

Remark 1. It follows from the proof given hereafter that the time T ′ only depends on y0 and
on the spaces and various constants given through Assumptions (H1) to (H7): given some Banach
spaces X and Z satisfying (H1) and (H2), some y0 ∈ Z, some r > 0, M ⩾ 1, ω ∈ IR and some
nonnegative constants C4, C5, C6, C7, the time T ′ is uniform with respect to all operators A and
functions f satisfying (H3) to (H7). We insist on the fact that T ′ depends on the Banach spaces X
and Z: if Assumptions (H1) to (H7) are satisfied for other Banach spaces X and Z, then the time
T ′ may be different; denoting by T ′

X,Z this time, we can note that, if X1 (resp., Z1) is continuously
embedded in X2 (resp., Z2), i.e., X1 ↪→ X2 and Z1 ↪→ Z2, and if Assumptions (H1) to (H7) are
satisfied for the two pairs of Banach spaces (X1, Z1) and (X2, Z2), then T

′
X1,Z1

⩽ T ′
X2,Z2

.

It also follows from the proof that, taking T ′ smaller if necessary, for every ỹ0 ∈ BZ(y
0, r/2),

there exists a unique solution y(·) ∈ C 0([0, T ′], Z)∩C 1([0, T ′], X) of (12) such that y(0) = ỹ0, and
taking its values in BZ(y

0, r) (similar statements can be found, e.g., in [21]).

Proof. The arguments can be found in [26, 31] (see also [25, 30] for a less general result but simpler
proof), although not exactly in this form. We give a proof for completeness.

For every r > 0, for every T ′ ∈ (0, T ], let ST ′ be the closed convex subset of all z(·) ∈
C 0([0, T ′], Z) such that z(0) = y0 and z(t) ∈ BZ(y

0, r) for every t ∈ [0, T ′]. Note that, by (H1),
C 0([0, T ′], Z) ⊂ C 0([0, T ′], X). Given any z(·) ∈ ST ′ , we consider the Cauchy problem

ẏ(t) = A[t, z(t)] y(t) + f [t, z(t)], y(0) = y0 ∈ Z. (14)

Using (E4) and (14), we obtain d
ds (Uz(t, s)y(s)) = Uz(t, s)f [s, y(s)], that we then integrate on [0, t].

Using (H6) and (E2), we conclude that (14) has a unique solution y(·) ∈ C 0([0, T ′], X), taking its
values in Z, given by

y(t) = Uz(t, 0)y
0 +

∫ t

0

Uz(t, s)f [s, z(s)] ds (15)

for every t ∈ [0, T ′], and we set ΦT ′(z(·)) = y(·). This defines a map ΦT ′ on ST ′ .
Let us prove that, actually, y(·) ∈ C 0([0, T ′], Z)∩C 1([0, T ′], X). Using (H2), it suffices to prove

that Sy(·) ∈ C 0([0, T ′], X). We begin by noting that, using (H5) and (E4), we have SUz(t, s) =

Uz(t, s)S+
∫ t

s
Uz(t, τ)B[τ, z(τ)]SUz(τ, s) dτ on Z (actually, this formula implies that Uz(t, s) ∈ L(Z)

depends continuously on (t, s)). Then, using (15), we have

Sy(t) = Uz(t, 0)Sy
0 +

∫ t

0

Uz(t, s)Sf [s, z(s)] ds+

∫ t

0

Uz(t, τ)B[τ, z(τ)]SUz(τ, s)y
0 dτ

+

∫ t

0

∫ t

s

Uz(t, τ)B[τ, z(τ)]SUz(τ, s)f [s, z(s)] dτ ds (16)

for every t ∈ [0, T ′], and each of these four terms is an element of C 0([0, T ′], X) thanks to the
various assumptions. The claim follows. In passing, note that, using the Fubini theorem in the
fourth term at the right-hand side of (16), the sum of the third and fourth terms is then equal to∫ t

0
Uz(t, τ)B[τ, z(τ)]Sy(τ) dτ , and thus we get Sy(·) = ΨT ′(z(·), Sy(·)) where

ψT ′(z(·), x(·))(t) = Uz(t, 0)Sy
0 +

∫ t

0

Uz(t, s)Sf [s, z(s)] ds+

∫ t

0

Uz(t, τ)B[τ, z(τ)]x(τ) dτ. (17)
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This remark will be useful at the end of the proof.
Since y(·) = ΦT ′(z(·)) ∈ C 0([0, T ′], Z), it follows that ΦT ′ maps ST ′ to ST ′ if T ′ is small enough.
Let us prove that ΦT ′ is a contraction in C 0([0, T ′], X) if T ′ is small enough. Since Uz1(t, s)−

Uz2(t, s) = −
∫ t

s
d
dr (Uz1(t, τ)Uz2(τ, s)) dτ =

∫ t

s
Uz1(t, τ)(A[τ, z1(τ)] − A[τ, z2(τ)])Uz2(τ, s) dτ , we

infer from (H4), (E3) and (E4) that

∥(Uz1(t, s)− Uz2(t, s))∥L(Z,X) ⩽ C4M
2T ′e|ω|T ′

∥z1(·)− z2(·)∥C 0([0,T ′],X) (18)

for all 0 ⩽ s ⩽ t ⩽ T ′ ⩽ T and all z1(·), z2(·) ∈ ST ′ . Applying (15) to y1(·) = ΦT ′(z1(·)) and
y2(·) = ΦT ′(z2(·)), we infer from (H6), (H7), (E3) and (18) that

∥ΦT ′(z1(·))− ΦT ′(z2(·))∥C 0([0,T ′],X) ⩽ T ′C∥z1(·)− z2(·)∥C 0([0,T ′],X).

for all T ′ ∈ (0, T ] and z1(·), z2(·) ∈ ST ′ , with C =Me|ω|T (C7+MC4+MTC4C6). The contraction
property follows by choosing T ′ small enough.

In particular, ΦT ′ is continuous in C 0([0, T ′], X) norm. Hence, denoting by ST ′ the closure of
ST ′ in C 0([0, T ′], X), ΦT ′ maps the closed convex set ST ′ to itself and is a contraction, therefore
it has a fixed point y(·) ∈ ST ′ (in particular, y(·) ∈ C 0([0, T ′], X)).

It remains to prove that, actually, y(·) ∈ ST ′ (notably, y(·) ∈ C 0([0, T ′], Z)). Note that
ST ′ = ST ′ when X and Z are reflexive, so the following argument (developed in [26]) is only
required in the absence of reflexivity. Defining y0(·) ∈ C 0([0, T ′], X) by y0(t) = y0 for any t,
the fixed point y(·) is obtained as the limit in C 0([0, T ′], X) of the sequence (yk(·))k∈IN of ST ′

defined by iteration yk+1(·) = ΦT ′(yk(·)). Using the map ΨT ′ defined by (17), we therefore have
Syk(·) = ΨT ′(yk−1(·), Syk(·)) for every k ∈ IN∗. It follows from (H5) and (18) that ΨT ′ maps
continuously ST ′ ×E to E, where E is a closed ball of C 0([0, T ′], X), of center 0 and of sufficiently
large radius, and moreover ΨT ′ is contracting with respect to x(·) if T ′ is chosen small enough. Let
us prove that (Syk(·))k∈IN is a Cauchy sequence in C 0([0, T ′], X): this is then enough to conclude
because it implies that (yk(·))k∈IN is a Cauchy sequence in C 0([0, T ′], Z), hence it converges and
the limit must be y(·). Let w(·) ∈ E be such that w(·) = ΨT ′(y(·), w(·)) (it exists by the Banach
fixed-point theorem). By the triangular inequality, we have

∥Syk(·)− w(·)∥C 0([0,T ′],X) ⩽ ∥ΨT ′(yk−1(·), Syk(·))−ΨT ′(yk−1(·), w(·))∥C 0([0,T ′],X)

+ ∥ΨT ′(yk−1(·), w(·))−ΨT ′(y(·), w(·))∥C 0([0,T ′],X).

The first term at the right-hand side is less than C∥Syk(·) − w(·)∥C 0([0,T ′],X) for some C > 0
because ΨT ′ is contracting, and the second term converges to 0 as k → +∞ by continuity of ΨT ′ .
It follows that Syk(·) converges to w(·), which finishes the proof.

Remark 2. When A[t, y] = A does not depend on (t, y) and generates a C0 semigroup (etA)t⩾0,
we are in the very classical framework of semigroup theory (see [15, 30]). Assumptions (H1) to
(H5) are satisfied with Z = D(A), S = A, B = 0, and we have U(t, s) = e(t−s)A.

When A[t, y] = A(t) does not depend on y, but depends on t, we are in the framework of linear
evolution equations, treated for example in [30, Chapter 5].

In these two cases where the operator does not depend on y, the Duhamel formula (13) is
explicit, because Uy(t, s) does not depend on y.

We speak of a quasilinear evolution equation when A[t, y] depends on y. Then, Uy(t, s) depends
on y(·) and the Duhamel formula (13) is implicit with respect to y.

The quasilinear theory for evolution systems has been considered and developed by many au-
thors. Here, we have followed the presentation and assumptions done in [25, 26, 31] (see also
[30, Section 6.4]). The framework covers, among many others, the following equations: Burgers,
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Korteweg-de Vries, hyperbolic systems of quasilinear partial differential equations of the first or-
der, Euler and Navier Stokes (incompressible) in IR3, coupled Maxwell-Dirac, quasilinear waves,
magnetohydrodynamics (including compressible fluids).

An even more general theory exists, initiated by Kato in [24] with the notion of nonlinear
semigroup, developed in the 70s with the famous Crandall-Liggett generation theorem (see [11])
or within maximal monotone operators (see [8]). We refer to the unpublished book manuscript [4]
and to the textbook [23] for a complete theory. For example, nonlinear semigroup theory covers
the porous medium equation ∂ty = △φ(u) and Hamilton-Jacobi equations, which are not covered
by the quasilinear evolution equations theory.

Our choice of staying anyway in the quasilinear framework is motivated by its simplicity, by
the fact that it already covers most of usual PDEs, and more technically, by the fact that the
(implicit) Duhamel formula (13) will be instrumental in deriving our main result, Theorem 1, in
Section 2.4.

2.2 A general approximation result

We assume that, for all (t, z) ∈ [0, T ]×BZ(y
0, r):

(H8) There exists a family of linear operators Aε[t, z] on X, indexed by ε ∈ (0, 1], satisfying
Assumptions (H3) to (H5) (with A replaced by Aε) uniformly with respect to ε.

(H9) There exists a Banach subspace Ẑ of Z, dense in Z and continuously embedded in Z, i.e.,
there exists CẐ > 0 such that ∥z∥Z ⩽ CẐ∥z∥Ẑ for every z ∈ Ẑ, and there exist CA > 0 and
a continuous function χA : [0, 1] → [0,+∞), satisfying χA(0) = 0, such that

∥Aε[t, z]−A[t, z]∥L(Ẑ,X) ⩽ CAχA(ε) ∀t ∈ [0, T ] ∀z ∈ BZ(y
0, r) ∀ε ∈ (0, 1].

We do not assume, for the moment, that Aε[t, z] is bounded, but in the next subsection we
will focus on bounded approximations. An example of bounded approximation operator Aε[t, z]
satisfying Assumption (H8), not explicit but fully general, is given by the Yosida approximant

Aε[t, z] = Jε[t, z]A[t, z] where Jε[t, z] = (id− εA[t, z])
−1
,

which indeed satisfies, notably, the uniform stability estimate (see [15, 30]). Assumption (H9)
refers to convergence estimates, which are often proved by explicit approximation constructions
(see also [22] for finite-dimensional approximations with error estimates), as we will do hereafter.
For instance when X = L2(Ω, IRd), the Banach space Ẑ may be a subspace of functions of X
having a certain number of bounded derivatives.

All in all, assuming (H3) for Aε[t, z], uniformly with respect to ε, is the most stringent hy-
pothesis. It is however classical in the Trotter-Kato theorem. It is usually established in practice
by means of dissipativity properties, and this is also what we will do in the explicit construction
hereafter.

Finally, we also assume that:

(H10) There exists a family of functions fε : [0, T ] × X → X, indexed by ε ∈ (0, 1], satisfying
Assumptions (H6) and (H7) (with f replaced by fε) uniformly with respect to ε.

(H11) There exist Cf > 0 and a continuous function χf : [0, 1] → [0,+∞), satisfying χf (0) = 0,
such that

∥fε[t, z]− f [t, z]∥X ⩽ Cfχf (ε) ∀t ∈ [0, T ] ∀z ∈ BZ(y
0, r) ∀ε ∈ (0, 1].
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For every ε ∈ (0, 1], we consider the quasilinear evolution equation

ẏε(t) = Aε[t, yε(t)] yε(t) + fε[t, yε(t)] (19)

Proposition 2. Under (H1) to (H10):

� For every ε ∈ (0, 1], there exists a unique solution yε(·) ∈ C 0([0, T ′], Z) ∩ C 1([0, T ′], X) of
(19) such that yε(0) = y0, where T ′ ∈ (0, T ] is the same as for the solution y(·) considered
in Section 2.1 and does not depend on ε.

� If y ∈ L∞([0, T ′], Ẑ) then

∥yε(t)− y(t)∥X ⩽M(CA∥y∥L∞([0,T ′],Ẑ)χA(ε) + Cfχf (ε))

∫ t

0

e(ω+M(C4r+C7))s ds

⩽ Cst(χA(ε) + Cfχf (ε))

(20)

for all t ∈ [0, T ′] and ε ∈ (0, 1].

Of course, when Ẑ = Z, the assumption that y ∈ L∞([0, T ′], Ẑ) is satisfied and we have
∥y∥L∞([0,T ′],Ẑ) ⩽ r.

Proposition 2 is similar to [25, Theorem 7] and [26, Theorem III], where the above convergence
result is proved for Ẑ = Z without convergence estimate. Proposition 2 can thus be seen as a
slight improvement, as we quantify the convergence. This is also why we have added the freedom
of a space Ẑ ⊂ Z, anticipating that stronger convergence estimates can be obtained if the solution
shares more regularity properties.

Note that Assumptions (H9) and (H11) are not required in the first item of Proposition 2.
Finally, recalling Remark 1, we underline that the time T ′ depends, in particular, on the spaces

X and Z.

Proof. The existence and uniqueness on the whole interval [0, T ′] comes from Proposition 1 and Re-
mark 1. Given any ε ∈ (0, 1], writing that d

dt (yε(t)−y(t)) = Aε[t, yε(t)] (yε(t)−y(t))+(Aε[t, yε(t)]−
A[t, y(t)]) y(t)+fε[t, yε(t)]−f [t, y(t)] and integrating, we infer from the Duhamel formula (13) that,
for every t ∈ [0, T ],

yε(t)− y(t) =

∫ t

0

Uyε(t, s)
((
Aε[s, yε(s)]−Aε[s, y(s)]

)
y(s)

+
(
Aε[s, y(s)]−A[s, y(s)]

)
y(s) + fε[t, yε(t)]− f [t, y(t)]

)
ds.

Noting that yε(s), y(s) ∈ BZ(y
0, r) by Proposition 1, using the (uniform) stability estimates (E3)

for Uyε
, the (uniform) Lipschitz properties (H4) for Aε and (H7) for fε, the convergence estimates

(H9) and (H11), and the assumption that y ∈ L∞([0, T ′], Ẑ), it follows that

∥yε(t)−y(t)∥X ⩽M

∫ t

0

eω(t−s)
(
(C4r+C7)∥yε(s)−y(s)∥X +CA∥y∥L∞([0,T ′],Ẑ)χA(ε)+Cfχf (ε)

)
ds

and therefore, by the Gronwall lemma applied to e−ωt∥yε(t)− y(t)∥X , we obtain finally (20).
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2.3 Finite particle approximation system

In order to design a finite particle approximation system, we do a last assumption. Recall that,
at the beginning of Section 2, we have assumed that the Banach space X = F(Ω, IRd) is a space
of functions on Ω. This is now important, and in what follows we are going to use the Banach
space L∞(Ω, IRd), sometimes denoted L∞ for short. Recall that (Ω,dΩ) is a complete metric space,
endowed with a probability measure ν ∈ P(Ω), and having a family of tagged partitions.

In what follows, the set IRd×d of square real-valued matrices of size d is equipped with the
matrix norm ∥ ∥IRd×d induced by the Euclidean norm ∥ ∥IRd on IRd.

Keeping the same r as in the previous assumptions, now we moreover assume that:

(H12) For every ε ∈ (0, 1], for all (t, z) ∈ [0, T ] × BL∞(y0, r), the operator Aε[t, z] is well defined
and bounded on L∞(Ω, IRd), i.e., Aε[t, z] ∈ L(L∞), and can be written as

Aε[t, z] y(x) =

∫
Ω

σε[t, z](x, x
′) y(x′) dν(x′) ∀y ∈ L∞(Ω, IRd) ∀x ∈ Ω

where the kernel σε[t, z](x, x
′) ∈ IRd×d depends continuously on (t, z, x, x′) ∈ [0, T ]×BL∞(y0, r)×

Ω×Ω, is bounded and Lipschitz continuous with respect to (z, x, x′), uniformly with respect
to t, i.e.,

∥σε[t, z](x, x′))∥IRd×d ⩽ ∥σε∥∞,
∥σε[t, z1](x1, x′1)− σε[t, z2](x2, x

′
2)∥IRd×d ⩽ Lip(σε) (∥z1 − z2∥L∞ + dΩ(x1, x2) + dΩ(x

′
1, x

′
2)) ,

for all t ∈ [0, T ], z1, z2 ∈ BL∞(y0, r) and x, x′, x1, x2, x
′
1, x

′
2 ∈ Ω.

(H13) fε[t, z](x) depends continuously on (t, z, x) ∈ [0, T ]×BL∞(y0, r)×Ω, is bounded and Lipschitz
continuous with respect to (z, x), uniformly with respect to t, i.e.,

∥fε[t, z](x)∥IRd ⩽ ∥fε∥∞,
∥fε[t, z1](x1)− fε[t, z2](x2)∥IRd ⩽ Lip(fε) (∥z1 − z2∥L∞ + dΩ(x1, x2)) ,

for all t ∈ [0, T ], z1, z2 ∈ BL∞(y0, r) and x, x1, x2, x
′
1, x

′
2 ∈ Ω.

Assumption (H12) is related to the regularity of the Schwartz kernel of Aε[t, z]. For instance
if A[t, z] is a differential operator then (H12) is satisfied by iterating the Yosida approximation,
taking Aε[t, z] = Jj

εA[t, z] for j large enough. Of course, if A[t, z] is unbounded then ∥σε∥∞ → +∞
and Lip(σε) → +∞ as ε→ 0.

Now, given any ε ∈ (0, 1], let us introduce the particle approximation of (19). We use the family
(AN , xN )N∈IN∗ of tagged partitions of Ω associated with ν, satisfying (8), with AN = (ΩN

1 , . . . ,Ω
N
N )

and xN = (xN1 , . . . , x
N
N ). Given any N ∈ IN∗, we consider the finite particle system

ξ̇Nε,i(t) =
1

N

N∑
j=1

σε[t, y
N
ε (t)](xNi , x

N
j ) ξNε,j(t) + fε[t, y

N
ε (t)](xNi ) ∀i ∈ {1, . . . , N} (21)

where yNε (t) ∈ L∞(Ω, IRd) is the piecewise function on Ω defined by

yNε (t, x) =

N∑
i=1

ξNε,i(t) 1ΩN
i
(x) (22)

where 1ΩN
i

is the characteristic function of ΩN
i , defined by 1ΩN

i
(x) = 1 if x ∈ ΩN

i and 0 otherwise.

As said for y at the beginning of Section 2, we denote indifferently yNε (t)(x) = yNε (t, x). In
particular, we have yNε (t, xNi ) = ξNε,i(t) for every i ∈ {1, . . . , N}.
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Proposition 3. Assume that y0 ∈ C 0(Ω, IRd). For all ε ∈ (0, 1] and N ∈ IN∗, there exists a
unique solution t 7→ ΞN

ε (t) = (ξNε,1(t), . . . , ξ
N
ε,N (t)) of (21) such that ξNi (0) = y0(xNi ) for every

i ∈ {1, . . . , N}, which is well defined on [0, T ′] if N is large enough.

Proof. We are in the framework of Appendix A. Indeed, thanks to (H12) and (H13), for any fixed
ε, the approximation evolution equation (19) is a quasilinear integral evolution equation of the
form (33) in Appendix A.1, and the finite particle system (21) is of the form (34) in Appendix A.2.

There is however an important issue to be addressed. As already underline, the time T ′ in
Propositions 1 and 2 depends, in particular, on the Banach spaces in which the equations are
settled. We have first applied these propositions in the Banach spaces X and Z, and obtained a
time T ′ of existence, that we denote by T ′

X,Z as in Remark 1, for the solution y of (12) and for
the solution yε of (19), and T ′

X,Z does not depend on ε. Second, following Appendix A, for any ε
fixed, we apply Proposition 1 to the approximation evolution equation (19) in the Banach space
L∞(Ω, IRd) (i.e., with X = Z = L∞); we thus obtain another time of existence, denoted T ′

L∞,L∞ .

Then, Proposition 3 follows from Proposition 4 in Appendix A.2, the nontrivial fact being the
well-posedness on the whole time interval [0, T ′] if N is large enough. Note that, in the classical
semigroup case where A[t, z] = A, the finite particle system (21) is linear and solutions are defined
on IR.

The particle system (21) is expected to provide a finite particle approximation of the quasilinear
evolution equation (12), in the sense that solutions y of (12) are expected to be limits of yNε as
N → +∞ and ε → 0. However, since the particle system (21) does not have any (classical) limit
as ε→ 0, in order to derive convergence estimates we will have to let N tend to +∞ and ε to 0 at
some appropriate scale. We therefore have to track the constants carefully in all estimates. This
is what is done in Theorem 3 in Appendix A.3.

2.4 Main result

We work under Assumptions (H1) to (H12), so that the results of Propositions 1, 2 and 3 are
available.

Theorem 1. Let y0 ∈ Z ∩ Lip(Ω, IRd), and let y(·) ∈ C 0([0, T ′], Z) ∩ C 1([0, T ′], X) be the unique
solution of (12) such that y(0) = y0 (see Proposition 1). We assume that y ∈ L∞([0, T ′], Ẑ).

For any ε ∈ (0, 1] and any N ∈ IN∗ large enough, let t 7→ ΞN
ε (t) = (ξNε,1(t), . . . , ξ

N
ε,N (t)) be

the unique solution of (21) on [0, T ′] such that ξNε,i(0) = y0(xNi ) for every i ∈ {1, . . . , N} (see

Proposition 3), and let yNε be defined by (22). We set

aε1 = CΩ Lip(y0) +
CΩ

aε3

(
2Lip(σε)(r + ∥y0∥L∞) + Lip(fε) + ∥σε∥∞ Lip(y0)

)
,

aε2 =
∥σε∥∞
aε3

(Lip(σε)r + Lip(f)) , aε3 = Lip(σε)(r + ∥y0∥L∞) + ∥σε∥∞ + Lip(fε).

(i) If there exists a continuous and dense embedding L∞(Ω, IRd) ↪→ X, i.e., if there exists C∞ > 0
such that ∥z∥X ⩽ C∞∥z∥L∞ for any z ∈ L∞(Ω, IRd), then

∥yNε (t)− y(t)∥X ⩽M(CA∥y∥L∞([0,T ′],Ẑ)χA(ε) + Cfχf (ε))

∫ t

0

e(ω+M(C4r+C7))s ds

+
C∞

Nγ
(aε1 + aε2t)e

aε
3t (23)

for all t ∈ [0, T ′], ε ∈ (0, 1] and N ∈ IN∗ large enough.
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(ii) If there exists a continuous and dense embedding X ↪→ L∞(Ω, IRd), i.e., if there exists C∞ > 0
such that ∥z∥L∞ ⩽ C∞∥z∥X for any z ∈ X, then

∥yNε (t)− y(t)∥L∞ ⩽ C∞M(CA∥y∥L∞([0,T ′],Ẑ)χA(ε) + Cfχf (ε))

∫ t

0

e(ω+M(C4r+C7))s ds

+
1

Nγ
(aε1 + aε2t)e

aε
3t (24)

for all t ∈ [0, T ′], ε ∈ (0, 1] and N ∈ IN∗ large enough.

Proof. The proof, which is easy, is done in three steps.
As a first step, we apply Proposition 2, which establishes that yε converges to y, with the

convergence estimate (20).
As a second step, given any fixed ε ∈ (0, 1], we apply Theorem 3 of Appendix A.3 to prove that

yNε converges to yε, with the convergence estimate

∥yε(t, x)− yNε (t, x)∥IRd ⩽
1

Nγ
(aε1 + aε2t)e

aε
3t (25)

for all (t, x) ∈ [0, T ′]× Ω and N ∈ IN∗ large enough.
As a third step, we conclude by the triangular inequality, as follows. In case (i), we have

∥yNε (t) − yε(t, ·)∥X ⩽ C∞∥yNε (t) − yε(t)∥L∞ . Using the triangular inequality, we infer (23) from
(20) and (25). The argument is similar in case (ii).

Remark 3 (Comments on Theorem 1.). To illustrate and understand the convergence estimates
(23) and (24), let us assume that χA(ε) + χf (ε) ∼ ε and that ∥σε∥∞ + Lip(σε) ∼ 1

εk
for some

k ∈ IN∗ (this will be the case in the explicit construction hereafter), as ε → 0. Then, ignoring
constants, the right-hand side of (23) or (24) is of the order of

ε+
1

Nγ

e1/ε
k

εk
.

In order to pass to the limit as N → +∞ and ε → 0, it is appropriate to choose parameters such
that this term tends to 0. An optimization argument shows that the best choice for ε in function
of N is εN ∼ 1/(lnN)1/k as N → +∞, and in this case the estimate (23), applied, typically, with
X = L2(Ω, IRd) gives

∥yNεN (t)− y(t)∥L2 ⩽
Cst

(lnN)1/k
.

The above general estimate can certainly be improved under additional assumptions, for example,
taking into account the physical context like energy conservation properties. Indeed, the estimate
(25), yielded by Theorem 3 of Appendix A.3, is obtained under general assumptions.

Remark 4. As a consequence of the first item of Theorem 3 of Appendix A.3, we could relax in
Theorem 1 the assumption that y0 ∈ Lip(Ω, IRd) to y0 ∈ C 0(Ω, IRd), but in this case we would get
weaker estimates (23) and (24): the term 1

Nγ is replaced by a o(1) as N → +∞, and we cannot
do the diagonal convergence argument of Remark 3. This is why tracking convergence estimates
is crucial in our analysis.
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3 Application to quasilinear PDEs

3.1 A general class of quasilinear PDEs

Let us first define a domain Ω, equipped with a metric dΩ and with a probability measure ν,
for setting a PDE on it, in view, then, of considering particles evolving in Ω, approximating the
solutions of this evolution equation. Let n ∈ IN∗. In the sequel we assume either that:

(O1) Ω is the compact closure of a bounded open subset of IRn with a Lipschitz boundary, dΩ is the
induced Euclidean distance, ν is the Lebesgue measure on Ω and (without loss of generality)
the Lebesgue volume of Ω is equal to 1;

or that:

(O2) Ω is a smooth compact Riemannian manifold of dimension n (without boundary), dΩ is its
Riemannian distance, and ν is the canonical Riemannian probability measure.

In the case (O1), Ω is usually called a Lipschitz compact domain of IRn. In the case (O2), for
example Ω may be the sphere or the torus of dimension n. In what follows, in both cases, in spite
of a slight ambiguity in case (O2), to simplify the notations an integral

∫
Ω
f dν will be denoted∫

Ω
f(x) dx; it is thus understood that

∫
Ω
1 dx = 1.

Under (O1) or (O2), there always exist families of tagged partitions associated with ν satisfying
(8) with γ = 1/n.

In local coordinates x on Ω, we denote Dα = ∂α1
1 · · · ∂αn

n where ∂i is the partial derivative with
respect to the ith variable of x (which we do not denote by xi because the notation is already used
for the tagged partitions), where α = (α1, . . . , αn) ∈ INn and we set |α| =

∑n
i=1 αi.

Let p ∈ IN∗ and T > 0 be arbitrary. Throughout the section, we assume that X = L2(Ω, IRd)
and that Z ⊂ Hs(Ω, IRd) for some s ∈ IR large enough, to be chosen. We consider the quasilinear
partial differential system

∂ty(t, x) =
∑
|α|⩽p

aα[t, y(t)](x)D
αy(t, x) + f [t, y(t)](x) (26)

where y(t, x) ∈ IRd, with some prescribed conditions at the boundary of Ω when Ω has a boundary
(they are involved in the definition of the domain of the operator), and with an initial condition
y(0) = y0 ∈ Z. Here, for every α ∈ INk such that |α| ⩽ p, for all (t, z) ∈ [0, T ] × Z, aα[t, z] is a
function on Ω, taking its values in the set IRd×d of real square matrices of size d. The system (26)
is of the form (12) with

A[t, z] =
∑
|α|⩽p

aα[t, z](·)Dα.

We assume that there exists r > 0 such that, for all (t, z) ∈ [0, T ]×BZ(y
0, r):

� The operator A[t, z] on X = L2(Ω, IRd) is defined on a domain D(A[t, z]) ⊂ Hp(Ω, IRd),
dense in L2(Ω, IRd), which may encode some Dirichlet or Neumann like boundary conditions,
maybe of higher order.

� s is large enough so that Z ⊂ D(A[t, z]) (a necessary condition is that s ⩾ p);

� s > d/2, so that Z ↪→ L∞(Ω, IRd) by Sobolev embedding.

� Z is such that (H2) and (H5) are satisfied.
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� For every α ∈ INn such that |α| ⩽ p, aα[t, z](x) ∈ IRd×d depends continuously on (t, z, x) ∈
[0, T ]×BZ(y

0, r)×Ω and is bounded and Lipschitz continuous with respect to (z, x), uniformly
with respect to t, i.e., there exists Ca > 0 such that

∥aα[t, z](x)∥IRd×d ⩽ Ca,

∥aα[t, z1](x1)− aα[t, z2](x2)∥IRd×d ⩽ Ca (∥z1 − z2∥X + dΩ(x1, x2)) ,

for all t ∈ [0, T ], z1, z2 ∈ BZ(y
0, r) and x, x1, x2 ∈ Ω.

� A[t, z]−ω id ism-dissipative, which means that it is dissipative (i.e., ⟨(A[t, z]−ω id)f, f⟩L2 ⩽ 0
for every f ∈ D(A[t, z])) and that Ran((ω+1) id−A[t, z]) = ((ω+1) id−A[t, z])D(A[t, z]) =
L2(Ω, IRd). Equivalently, by the Lumer-Phillips theorem (see [15]), A[t, z]− ω id generates a
C0 semigroup of contractions in X = L2(Ω, IRd). Equivalently, (H3) is satisfied with M = 1.

Under the above assumptions, Assumptions (H1) to (H7) are satisfied.
The Lipschitz property with respect to x in the second requirement and the third requirement

are not necessary to apply Proposition 1 but they will be used in the explicit approximation
procedure, later.

By Proposition 1, there exists a unique solution y(·) ∈ C 0([0, T ′], Z) ∩ C 1([0, T ′], X) of (26)
such that y(0) = y0, for some T ′ ∈ (0, T ]. Moreover, y(t) ∈ BZ(y

0, r) for every t ∈ [0, T ′].
As an application of Theorem 1, our objective is to prove that, under appropriate assumptions,

the solution y(·) can be approximated by the solutions of a family of finite particle systems, for
which we design an explicit construction.

3.2 Main result

Explicit particle approximation. Let η ∈ C∞
c (IRn) be a nonnegative symmetric smooth

real-valued function on IRn, of compact support contained in the unit ball BIRn(0, 1), such that∫
IRn η(x) dx = 1. Here, symmetric means that η(x) = η(−x) for every x ∈ IRn. We set Cη =∫
IRn ∥x∥η(x) dx. For example, we can take

η(x) =

{
c e1/(∥x∥

2−1) if ∥x∥ < 1,
0 otherwise,

where c > 0 is a normalization constant. Given any ε ∈ (0, 1], we denote by ηε ∈ C∞
c (IRn) the

(mollifier) function given by

ηε(x) =
1

εn
η
(x
ε

)
∀x ∈ IRn.

For all (t, z) ∈ [0, T ]× Z, we define σε[t, z](x, x
′) ∈ IRd×d by

σε[t, z](x, x
′) =

∑
|α|⩽p

∫
Ω

ηε(x− x′′)aα[t, z](x
′′)(Dαηε)(x

′′ − x′) dν(x′′) ∀x, x′ ∈ Ω× Ω. (27)

We have σε[t, z] ∈ C∞(Ω × Ω, IRd×d) (it is smooth up to the boundary) and in particular it is
bounded above by ∥σε∥∞ and Lipschitz continuous, uniformly with respect to (t, z) ∈ [0, T ] ×
BZ(y

0, r), with

∥σε∥∞ ⩽
Cσ

εn+p
and Lip(σε) ⩽

Cσ

εn+p+1

for some constant Cσ > 0 depending on η and on the bounds on aα but not depending on ε.
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Let (AN , xN )N∈IN∗ be a family of tagged partitions of Ω associated with ν satisfying (8) with
γ = 1/n, with AN = (ΩN

1 , . . . ,Ω
N
N ) and xN = (xN1 , . . . , x

N
N ). Given any ε ∈ (0, 1] and any N ∈ IN∗,

we consider the finite particle system (21), with σε defined by (27), i.e.,

ξ̇Nε,i(t) =
1

N

N∑
j=1

∑
|α|⩽p

∫
Ω

ηε(x
N
i − x′′)aα[t, y

N
ε (t)](x′′)(Dαηε)(x

′′ − xNj ) dx′′ ξNε,j(t) + f [t, yNε (t)](xNi )

for every i ∈ {1, . . . , N}, where yε(t) =
∑N

i=1 ξ
N
ε,i(t) 1ΩN

i
(see (22). Recall that, by Proposition 3,

if y0 ∈ Lip(Ω, IRd) then the particle system has a unique solution such that ξNε,i(0) = y0(xNi ) for
every i ∈ {1, . . . , N}, well defined on on [0, T ′] for N large enough.

Theorem 2. Assume that y0 ∈ Z ∩ Lip(Ω, IRd) and that y ∈ L∞([0, T ′],W p+1,∞(Ω, IRd)). There
exists C > 0 such that

∥yNε (t)− y(t)∥L2 ⩽ C

(
ε+

1

N1/n

e1/ε
n+p+1

εn+p

)
(28)

for all t ∈ [0, T ′], ε ∈ (0, 1] and N ∈ IN∗ large enough, except in case (O1) when n = 1, in which
case the first term ε in the parenthesis at the right-hand side of (28) must be replaced with

√
ε.

As a consequence, taking ε = εN = 1/(lnN)1/(n+p+1) as N → +∞ (see Remark 3), (28) gives

∥yNεN (t)− y(t)∥L2 ⩽
C

(lnN)1/(n+p+1)

for all t ∈ [0, T ′] and N ∈ IN∗ large enough.

Remark 5. In the above explicit finite particle system, we have let untouched the function f but
we could of course approximate it as well, for example with a convolution.

A second remark is that we have used the functional space X = L2(Ω, IRd), but we can develop
the same strategy for other spaces, like X = C 0(Ω, IRd).

3.3 Proof of Theorem 2

We are going to apply the item (i) of Theorem 1 with the above spaces X and Z, and with
Ẑ =W p+1,∞(Ω, IRd). The only thing we have to ensure is that Assumption (H9) is satisfied, with
χA(ε) = O(

√
ε2 + εn) as ε→ 0. This will be established in Lemma 6 at the end of this section.

Recall that the operator Aε[t, z] is defined by Aε[t, z]y(x) =
∫
Ω
σε[t, z](x, x

′)y(x′) dx′ for every
y ∈ Z and every x ∈ Ω. To establish the required convergence estimate, we are going to express
Aε[t, z] using an unusual convolution that we introduce next. Since all what is developed hereafter
is done for fixed (t, z) ∈ [0, T ] × Z, in the sequel we denote for short Aε = Aε[t, z], σε = σε[t, z]
and aα = aα[t, z].

Definition and properties of a convolution operator. Given any g ∈ L2(Ω, IRd), let us
define and give some properties of the smooth approximation ηε ⋆Ω g ∈ C∞(Ω, IRd) of g for any
ε ∈ (0, 1], defined hereafter.

In the case (O2), i.e., when Ω is a smooth compact Riemannian manifold of dimension n
(without boundary), using a smooth partition of unity over an atlas of Ω, we can always write
g =

∑m
i=1 gi for some m ∈ IN∗ and for some functions gi ∈ Lk(Ω, IRd) whose essential support

is contained in a chart of the atlas. In each chart, ηε ⋆ gi can thus be defined as the standard
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convolution in IRn for every ε > 0 sufficiently small. At the global level, this defines the function
ηε ⋆Ω g ∈ C∞(Ω).

In the case (O1), i.e., when Ω is the compact closure of a bounded open subset of IRn with a
Lipschitz boundary, we have to be careful with the boundary. Given any g ∈ L2(Ω, IRd), for any
ε ∈ (0, 1], we define the function ηε ⋆Ω g : Ω → IRd by

ηε ⋆Ω g(x) =

∫
Ω

ηε(x− x′)g(x′) dx′ ∀x ∈ Ω

but we stress that this is not a usual convolution (the integral is performed on Ω only) and thus
the usual properties of the convolution cannot be used directly. This is why, hereafter, we relate
this unusual convolution with the usual one, by extending functions on Ω to IRn by 0 outside of
Ω. Given any g ∈ L2(Ω, IRd), we denote by g̃ = g 1Ω ∈ L2(Ω, IRd) the extension of g to IRn by 0.
For any ε ∈ (0, 1], we consider the function ηε ⋆ g̃ ∈ C∞

c (IRn, IRd) defined by the usual convolution

(ηε ⋆ g̃)(x) =

∫
IRn

ηε(x− x′)g̃(x′) dx′ =

∫
Ω

ηε(x− x′)g(x′) dx′ ∀x ∈ IRn,

whose support satisfies supp(ηε ⋆ g̃) ⊂ Ω+BIRn(0, ε). We have

ηε ⋆Ω g = (ηε ⋆ g̃)|Ω,

i.e., ηε ⋆Ω g is the restriction of ηε ⋆ g̃ to Ω. Hence ηε ⋆Ω g ∈ C∞(Ω, IRd): it is smooth up to the
boundary of the compact domain Ω. We also have ηε ⋆Ω g = (g̃ ⋆ ηε)|Ω. Finally, as a consequence

of the properties of the usual convolution, we have ηε ⋆Ω g → g in L2(Ω, IRd) as ε→ 0.
More generally, for every α = (α1, . . . , αn) ∈ INn, the functions Dα(ηε ⋆Ω g), Dα(ηε) ⋆Ω g

and ηε ⋆Ω D
αg (provided that Dαg ∈ L2(Ω, IRd) in the latter case) are smooth on Ω and are the

restrictions to Ω of the smooth functions Dα(ηε ⋆ g̃), D
α(ηε) ⋆ g̃ and ηε ⋆ D̃αg on IRn, respectively.

In particular, the function A(ηε ⋆Ω g) is the restriction to Ω of A(ηε ⋆ g̃).
With these definitions, in both cases (O1) and (O2), for every α = (α1, . . . , αn) ∈ INn we have

Dα(ηε ⋆Ω g) = (Dαηε) ⋆Ω g = ηε ⋆Ω D
αg for every g ∈ L2(Ω, IRd) (such that Dαg ∈ L2(Ω, IRd) for

the last equality) and Dα(ηε ⋆Ω g) → Dαg in L2(Ω, IRd) as ε→ 0 if Dαg ∈ L2(Ω, IRd).
Note that the IRd×d-valued function σε defined by (27) is also given by

σε(x, x
′) =

(
ηε ⋆Ω

∑
|α|⩽p

aα(·)(Dαηε)(· − x′)
)
(x) ∀x, x′ ∈ Ω.

Expressing Aε with the convolution operator ηε⋆Ω.

Lemma 1. Given any ε ∈ (0, 1] and any g ∈ L2(Ω, IRd), we have2

Aεg = ηε ⋆Ω A(ηε ⋆Ω g) =
(
ηε ⋆

(
A(ηε ⋆ g̃)1Ω

))
|Ω
.

Proof. For x ∈ Ω fixed, we have, using that Dαηε ⋆Ω g = Dα(ηε ⋆Ω g),

(Aεg)(x) =

∫
Ω

σε(x, x
′)g(x′) dx′ =

(
ηε ⋆Ω

∑
|α|⩽p

aαD
αηε ⋆Ω g

)
(x) =

(
ηε ⋆Ω A(ηε ⋆Ω g)

)
(x),

thus giving the lemma.

2The function A(ηε ⋆Ω g) is the restriction of A(ηε ⋆ g̃) to Ω and, denoting by gε = A(ηε ⋆ g̃)1Ω the extension of
the function A(ηε ⋆Ω g) to IRn by 0, the function ηε ⋆Ω A(ηε ⋆Ω g) is the restriction to Ω of the function ηε ⋆ gε.
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Uniform stability property. Thanks to Lemma 1, we can now establish that (H3) is satisfied
with M = 1 (contraction semigroup) uniformly, with respect to ε ∈ (0, 1].

Lemma 2. For all g, h ∈ L2(Ω, IRd), we have ⟨ηε ⋆Ω g, h⟩L2 = ⟨g, ηε ⋆Ω h⟩L2 .

Proof. Using that ηε ⋆Ω g = (ηε ⋆ g̃)|Ω and that h̃ = 0 on IRn \ Ω, we have ⟨ηε ⋆Ω g, h⟩L2 =

⟨ηε ⋆ g̃, h̃⟩L2(IRn,IRd). Now, using the fact that ηε is symmetric, i.e., that ηε(x) = ηε(−x) for

any x ∈ IRn, ensuring that the usual convolution by ηε is symmetric in L2(IRn, IRd), we have
⟨ηε ⋆ g̃, h̃⟩L2(IRn,IRd) = ⟨g̃, ηε ⋆ h̃⟩L2(IRn,IRd). But the latter term is equal to ⟨g, ηε ⋆Ω h⟩L2 because
g̃ = 0 on IRn \ Ω. The lemma follows.

Lemma 3. Like the operator A−ω id, the operator Aε−ω id is m-dissipative on L2(Ω, IRd), for any
ε ∈ (0, 1]. As a consequence, (H3) is satisfied (with M = 1), uniformly with respect to ε ∈ (0, 1].

Proof. Given any g ∈ C∞(Ω, IRd), applying Lemma 2 to g = (A− ω id)(ηε ⋆Ω g), we have

⟨(Aε − ω id)g, g⟩L2 = ⟨ηε ⋆Ω (A− ω id)(ηε ⋆Ω g), g⟩L2 = ⟨(A− ω id)(ηε ⋆Ω g), ηε ⋆Ω g⟩L2 ⩽ 0

because A − ω id is dissipative. Since Aε is bounded on L2(Ω, IRd), we have D(Aε) = L2(Ω, IRd),
and thus its adjoint A∗

ε is bounded and D(A∗
ε) = L2(Ω, IRd). Then, obviously, A∗

ε − ω id is also
dissipative. The conclusion now follows from the Lumer-Phillips theorem (see [15, Chapter II,
Corollary 3.17] or [30, Chapter 1, Theorem 4.3]).

Remark 6. Lemma 3 is the key step where we use the particular form Aεg = ηε ⋆Ω A(ηε ⋆Ω g),
in order to ensure dissipativity. The dissipativity property is not satisfied if we choose Aεg =
A(ηε ⋆Ω g). Note that, as already mentioned, (H3) is always satisfied (with M = 1) when choosing

the Yosida approximant Aε = (id− εA)
−1
A. The interest of the above construction is that it is

fully explicit.

A first convergence property of Aε.

Lemma 4. Given any g ∈ C∞(Ω, IRd), we have Aεg → Ag in L2(Ω, IRd) as ε→ 0.

Proof. By the triangular inequality, using the expression of Aε given by Lemma 1,

∥Aεg −Ag∥L2 ⩽ ∥ηε ⋆Ω (A(ηε ⋆Ω g)−Ag)∥L2 + ∥ηε ⋆Ω Ag −Ag∥L2 .

The second term at the right-hand side of that inequality converges to 0 as ε → 0, because Ag ∈
L2(Ω). To handle the first term, we use the Young inequality ∥F⋆G∥Lr(IRn) ⩽ Bp,q∥F∥Lp(IRn)∥G∥Lq(IRn)

with F = ηε, G = r̃ε where rε = A(ηε ⋆Ω g)−Ag, and with r = 2, p = 1 and q = 2, obtaining

∥ηε ⋆Ω rε∥L2 = ∥(ηε ⋆ r̃ε)|Ω∥L2(IRn,IRd) ⩽ ∥ηε ⋆ r̃ε∥L2(IRn) ⩽ B1,2∥ηε∥L1(Ω)∥r̃ε∥L2(IRn,IRd) = B1,2∥rε∥L2

because ∥ηε∥L1(Ω) = 1, and we conclude that Aεg → Ag in L2(Ω) by noticing that rε → 0 in

L2(Ω, IRd) because

A(ηε ⋆Ω g) =
∑
|α|⩽p

aαD
α(ηε ⋆Ω g) =

∑
|α|⩽p

aα ηε ⋆Ω D
αg −→

∑
|α|⩽p

aαD
αg = Ag

in L2(Ω, IRd) as ε→ 0.
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In terms of Schwartz kernels, the kernel of Aε is obtained by convoluting to the left and “to
the right” (in some sense) the Schwartz kernel of A with ηε, and that, for every x ∈ Ω fixed,
the IRd×d-valued function x′ 7→ σε(x, x

′) converges in the distributional sense to the IRd×d-valued

distribution
∑

|α|⩽p(−1)|α|aαδ
(α)
x as ε → 0 (where δ

(α)
x is a distributional derivative of the Dirac

δx at x), which is the Schwartz kernel of A.
The convergence property stated in Lemma 4 is not enough to get (H9): we need to refine the

analysis in order to get convergence estimates. We start by refining our analysis of the unusual
convolution operator introduced previously.

Convergence estimates for the convolution operator ηε⋆Ω. We introduce the following
notation: in the case (O1), for any ε ∈ (0, 1] we define the compact subset Ωε of the interior of Ω
by

Ωε = {x ∈ Ω | dΩ(x, ∂Ω) ⩾ ε}.

There exists a constant C∂Ω > 0 such that

ν(Ω \ Ωε) ⩽ C∂Ω ε
n ∀ε ∈ (0, 1].

In the case (O2) we simply set Ωε = Ω and C∂Ω = 0.
We will also need to use extension operators in the case (O1): according to [33, Chap. VI, Sec.

3, Theorem 5] (see also [34, Chap. 12]), there exist CE > 0 and a linear continuous operator E
mapping functions on Ω to functions defined on the whole IRn, such that the restriction of Eg to
Ω coincides with g and ∥Eg∥W j,k(IRn) ⩽ CE∥g∥W j,k(Ω) for every g ∈ W j,k(Ω) and for every j ∈ IN
and every k ∈ [1,+∞] (Stein extension). In the case (O2), accordingly, we set CE = 1. Note that
this is not the extension by zero.

Lemma 5. Given any ε ∈ (0, 1], we have

∥ηε ⋆Ω g − g∥L∞ ⩽ 2∥g∥L∞ ∀g ∈ L∞(Ω, IRd),

|ηε ⋆Ω g(x)− g(x)| ⩽ CECηε∥g∥W 1,∞ ∀x ∈ Ωε ∀g ∈W 1,∞(Ω, IRd).

Proof. The first inequality is obviously obtained by using that ∥ηε ⋆ g̃∥L∞(IRn) ⩽ ∥g̃∥L∞(IRn,IRd)

because ∥ηε∥L1(IRn,IRd) = 1.

Let x ∈ Ωε be arbitrary. Since supp(ηε) ⊂ BIRn(0, ε) and thus supp(ηε(x−·)) ⊂ BIRn(x, ε) ⊂ Ω,
we have

∫
Ω
ηε(x− x′) dx′ =

∫
IRn ηε(x− x′) dx′ = 1, hence g(x) =

∫
Ω
ηε(x− x′)g(x) dx′ and

|ηε ⋆ g(x)− g(x)| ⩽
∫
Ω

ηε(x− x′)|g(x′)− g(x)| dx′ ⩽
∫
IRn

ηε(x− x′)|Eg(x′)− Eg(x)| dx′

where Eg is the Stein extension of g (actually the latter inequality is even an equality because
ηε(x− x′) = 0 for any x′ ∈ IRn \ Ω, since x ∈ Ωε). It follows from the mean value theorem that

|Eg(x′)− Eg(x)| ⩽ ∥Eg∥W 1,∞(IRn,IRd)∥x− x′∥ ⩽ CE∥g∥W 1,∞∥x− x′∥.

Hence

|ηε ⋆ g(x)− g(x)| ⩽ CE∥g∥W 1,∞

∫
IRn

1

εn
η

(
x− x′

ε

)
∥x− x′∥ dx′ = CECηε∥g∥W 1,∞

by using the change of variable x′ = x− εs.
Note that, in the above argument, we have used a W 1,∞ extension of g (and not the extension

by 0, which is not in W 1,∞(IRn, IRd)) in order to use the mean value theorem, because, in the case
(O1), Ω may not be convex.
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Convergence properties of Aε. We are now in a position to establish (H9). Recall that, by
assumption, max|α|⩽p ∥aα∥W 1,∞ ⩽ Ca.

Lemma 6. Given any ε ∈ (0, 1], we have

∥(Aε −A)g∥L∞ ⩽ 4np+1Ca∥g∥Wp,∞ ∀g ∈W p,∞(Ω, IRd), (29)

|(Aε −A)g(x)| ⩽ 3np+1CECηCaε∥g∥Wp+1,∞ ∀x ∈ Ωε ∀g ∈W p+1,∞(Ω, IRd). (30)

As a consequence,

∥(Aε −A)g∥L2 ⩽ 3np+1Ca

√
C2

EC
2
ηε

2 + 4C∂Ωεn∥g∥Wp+1,∞ ∀g ∈W p+1,∞(Ω, IRd), (31)

and therefore (H9) is satisfied with CA = 2np+1Ca and χA(ε) =
√
C2

EC
2
ηε

2 + 4C∂Ωεn.

Note that, in the case (O2), we have C∂Ω = 0 and then the above estimate is in ε. Actually,
in both cases (O1) and (O2) the estimate is in ε as ε → 0 except in the case (O1) when moreover
n = 1, in which case the estimate is in

√
ε.

Proof. For any α ∈ INk such that |α| ⩽ p, noting that Dα(ηε ⋆Ω g − g) = ηε ⋆Ω D
αg − Dαg, we

infer from Lemma 5 applied to Dαg that

∥Dα(ηε ⋆Ω g − g)∥L∞ ⩽ 2∥f∥Wp,∞

|Dα(ηε ⋆Ω g − g)(x)| = |ηε ⋆Ω (Dαg)(x)−Dαg(x)| ⩽ CECηε∥g∥W |α|+1,∞ ∀x ∈ Ωε

and thus, using that A =
∑

|α|⩽p aαD
α and that ∥aα∥L∞(Ω) ⩽ Ca, and since the number of α ∈ INn

such that |α| ⩽ p is 1 + n+ · · ·+ np = np+1−1
n−1 ⩽ np+1, we obtain

∥A(ηε ⋆Ω g − g)∥L∞(Ω) ⩽ 2np+1Ca∥g∥Wp,∞

|A(ηε ⋆Ω g − g)(x)| ⩽ np+1CECηCaε∥g∥Wp+1,∞ ∀x ∈ Ωε.

Besides, we infer from Lemma 5 applied to A(ηε ⋆Ω g), using that ∥aα∥W 1,∞ ⩽ Ca, that

∥ηε ⋆Ω A(ηε ⋆Ω g)−A(ηε ⋆Ω g)∥L∞ ⩽ 2∥A(ηε ⋆Ω g)∥L∞

⩽ 2np+1Ca∥ηε ⋆Ω g∥Wp,∞ ⩽ 2np+1Ca∥g∥Wp,∞

and

|ηε ⋆Ω A(ηε ⋆Ω g)(x)−A(ηε ⋆Ω g)(x)| ⩽ CECηε∥A(ηε ⋆Ω g)∥W 1,∞

⩽ 2np+1CECηCaε∥ηε ⋆Ω g∥Wp+1,∞ ⩽ 2np+1CECηCaε∥g∥Wp+1,∞ ∀x ∈ Ωε

where we have used that ∥ηε⋆h∥L∞(IRn) ⩽ ∥h∥L∞(IRn) for any h ∈ L∞(IRn) (recall that ∥ηε∥L1(IRn) =
1). Finally, by the triangular inequality, we have

|(Aε −A)g(x)| ⩽ |ηε ⋆Ω A(ηε ⋆Ω g)(x)−A(ηε ⋆Ω g)(x)|+ |A(ηε ⋆Ω g − g)(x)|

and the estimates (29) and (30) follow.
To establish (31), we write

∥(Aε −A)g∥2L2 =

∫
Ωε

|(Aε −A)g(x)|2 dx+

∫
Ω\Ωε

|(Aε −A)g(x)|2 dx.
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Using (30), the first term is estimated by∫
Ωε

|(Aε −A)g(x)|2 dx ⩽ 9n2(p+1)C2
EC

2
ηC

2
aε

2∥g∥2Wp+1,∞ ,

and using (29), the second term is estimated by∫
Ω\Ωε

|(Aε −A)g(x)|2 dx ⩽ ∥(Aε −A)g∥2L∞ν(Ω \ Ωε) ⩽ 36n2(p+1)C2
a∥g∥2Wp,∞C∂Ω ε

n,

and the conclusion follows.

4 Examples

In this section we state the expression of the particle systems approximating a few emblematic
quasilinear PDEs.

4.1 Transport equations

At a pedagogical level let us consider the most simple transport equation

∂ty(t, x) + ∂xy(t, x) = 0

The approximating particle systems reads

ξ̇Nε,i(t) =
1

N

N∑
j=1

η∗2ε (xNi − xNj )ξNε,j(t)

for every i ∈ {1, . . . , N}, where

η∗2(x) =

∫
Ω

ηε(x− x′′)Dηε(x
′′)dx′′.

Already on this example one sees the difference between the method of approximation developed
in the present article with a simple discretization one: in our case all the values of xNj are involved

in the equation satisfied by ξNε,i(t), unlike the nearest neighbour’s ones for a simple discretization.

Note however that the limit ε→ 0 selects the values xNj ∼ xNi .

4.2 Burgers equation

The Burgers equation reads
∂ty(t, x) + y(t, x)∂xy(t, x) = 0

The associated particle systems is then

ξ̇Nε,i(t) =
1

N

N∑
j,k=1

ηΩk
ε (xNi , x

N
j )ξNε,k(t)ξ

N
ε,j(t)

for every i ∈ {1, . . . , N}, where

ηΩk
ε (xNi , x

N
j ) =

∫
Ωk

ηε(x
N
i − x′′)Dηε(x

′′ − xNj )dx′′.
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4.3 KdV equation

The Korteweg–De Vries equation reads

∂ty(t, x) + ∂3xy(t, x) + 6y(t, x)∂xy(t, x) = 0

Therefore the system of particle approximating KdV is

ξ̇Nε,i(t) = 6
1

N

N∑
j=1

D2η∗2ε (xNi − xNj )ξNε,j(t) +
1

N

N∑
j,k=1

ηΩk
ε (xNi , x

N
j )ξNε,k(t)ξ

N
ε,j(t)

for every i ∈ {1, . . . , N}, where again

η∗2(x) =

∫
Ω

ηε(x− x′′)Dηε(x
′′)dx′′

and

ηΩk
ε (xNi , x

N
j ) =

∫
Ωk

ηε(x
N
i − x′′)Dηε(x

′′ − xNj )dx′′.

5 Further remarks

In this section, we show that the particle approximation result stated in Theorem 1 can be extended
to some cases where the operator does even not generate a semigroup, like the case of the backward
heat equation ∂ty = −△y, and even to some nonlinear cases.

We have seen in Section 3 that the strategy to approximate a given solution y to a quasilinear
PDE goes in two steps: first, find an adequate bounded approximation Aε of A, and yε of y;
second, take the particle approximation yNε of yε. The second step is an automatic consequence of
Theorem 3 and is thus general. The first step has been performed in Sections 2 and 3 by applying
the Duhamel formula, within the semigroup context, which required the instrumental uniform
stability estimate (H12) this is in such a way that, in the first step of the proof of Theorem 1, we
have established the inequality (20), i.e.,

∥yε(t)− y(t)∥X ⩽ Cχ(ε)∥y∥L1([0,T ],Z) ∀t ∈ [0, T ] (32)

for some C > 0. But this first step, requiring the demanding estimate 3, can be dropped if one
is able to design a bounded approximation Aε of A and an approximation yε of y such that the
estimate (32) is satisfied. And indeed this can often be done, without requiring any semigroup
property. Let us give some examples.

Backward heat equation. Consider the backward heat equation ∂ty = −△y and its approxi-
mation ∂tyε = −△εyε where △ε is a bounded approximation of △ as done in the previous sections.
Assuming that y(0) = et△f for some g ∈ L2(Ω, IRd), we have y(t) = e(T−t)△f for every t ∈ [0, T ].
Now, we take yε(0) = et△εf and we have as well yε(t) = e(T−t)△εf for every t ∈ [0, T ]. Then,
obviously, the Duhamel formula gives (32).

Of course, this works because we have considered a very regular initial condition. More gen-
erally, the argument works for operators with constant coefficients, taking Fourier transforms and
considering initial conditions whose Fourier transform has a compact support.

Variational inequalities. There exists a wide existing literature on variational inequalities,
with the objective of establishing the existence of a solution to a nonlinear equation ∂ty = A(y) by
approximating the nonlinear unbounded operator A with a bounded operator Aε. The estimate
(32) can then obtained from energy considerations, or from Galerkin approximation considerations,
etc. Most of known equations having a physical meaning enter in such a framework.
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A Appendix: Finite particle approximation of quasilinear
integral evolution equations

As at the beginning of Section 2, let (Ω,dΩ) be a complete metric space, endowed with a probability
measure ν ∈ P(Ω), having a family (AN , xN )N∈IN∗ of tagged partitions associated with ν, satisfying
(8). Hereafter, the set IRd×d of square real-valued matrices of size d is equipped with the matrix
norm ∥ ∥IRd×d induced by the Euclidean norm ∥ ∥IRd on IRd.

A.1 Quasilinear integral evolution equation

Let T > 0. Throughout this appendix, we consider the quasilinear integral evolution equation on
[0, T ]

∂ty(t, x) =

∫
Ω

σ[t, y(t)](x, x′) y(t, x′) dν(x′) + f [t, y(t)](x) (33)

where σ[t, y(t)](x, x′) ∈ IRd×d and y(t)(x) = y(t, x) ∈ IRd. We follow the framework of Section 2
with X = Z = L∞(Ω, IRd) (sometimes denoted in short, in what follows, by L∞): the equation
(33) is of the form (12) with the bounded linear operator A[t, z] defined by

A[t, z] y(x) =

∫
Ω

σ[t, z](x, x′) y(x′) dν(x′).

Let y0 ∈ L∞(Ω, IRd). We assume that there exists r > 0 such that, for all (t, z) ∈ [0, T ]×BL∞(y0, r):

(A1) the kernel σ[t, z](x, x′) ∈ IRd×d depends continuously on (t, z, x, x′) ∈ [0, T ] × BL∞(y0, r) ×
Ω×Ω and is bounded and Lipschitz continuous with respect to z, uniformly with respect to
(t, x, x′), i.e.,

∥σ[t, z](x, x′))∥IRd×d ⩽ ∥σ∥∞,
∥σ[t, z1](x, x′)− σ[t, z2](x, x

′)∥IRd×d ⩽ Lip(σ)∥z1 − z2∥L∞ ,

for all t ∈ [0, T ], z1, z2 ∈ BL∞(y0, r) and x, x′ ∈ Ω.

(A2) f [t, z](x) depends continuously on (t, z, x) ∈ [0, T ] × BL∞(y0, r) × Ω and is bounded and
Lipschitz continuous with respect to z, uniformly with respect to (t, x), i.e.,

∥f [t, z](x)∥IRd ⩽ ∥f∥∞,
∥f [t, z1]− f [t, z2]∥L∞ ⩽ Lip(f)∥z1 − z2∥L∞ ,

for all t ∈ [0, T ], z1, z2 ∈ BL∞(y0, r) and x ∈ Ω.

It is then easy to see that Assumptions (A1) and (A2) imply Assumptions (H1) to (H7) of Section
2 with X = Z = L∞(Ω, IRd), S = id, C4 = Lip(σ), B = 0, C6 = ∥f∥∞, C7 = Lip(f).

By Proposition 1, there exists a unique solution y(·) ∈ C 1([0, T ′], L∞(Ω, IRd)) of (33) such that
y(0) = y0, for some T ′ ∈ (0, T ]. Moreover, we have y(t) ∈ BL∞(y0, r) for every t ∈ [0, T ′]. We
recall and insist on the fact that the time T ′ depends, in particular, on the choice of the space
L∞(Ω, IRd).
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A.2 Finite particle approximation

Following the framework of Section 2.3, we use the family (AN , xN )N∈IN∗ of tagged partitions of
Ω associated with ν, satisfying (8), with AN = (ΩN

1 , . . . ,Ω
N
N ) and xN = (xN1 , . . . , x

N
N ), and we

consider the finite particle system that is naturally associated with (33), given for any N ∈ IN∗ by

ξ̇Ni (t) =
1

N

N∑
j=1

σ[t, yN (t)](xNi , x
N
j ) ξNj (t) + f [t, yN (t)](xNi ) ∀i ∈ {1, . . . , N} (34)

where yN (t) ∈ L∞(Ω, IRd) is the piecewise constant function on Ω defined by

yN (t)(x) = yN (t, x) =

N∑
i=1

ξNi (t) 1ΩN
i
(x) (35)

In particular, we have yN (t, xNi ) = ξNi (t) for every i ∈ {1, . . . , N}. Thanks to (35), the particle
system (34) is equivalent to the evolution equation

∂ty
N (t, x) =

∫
Ω

σN [t, yN (t)](x, x′) yN (t, x′) dν(x′) + fN [t, yN (t)](x) (36)

where σN [t, yN (t)] and fN [t, yN (t)] are also piecewise constant: for any z ∈ L∞(Ω, IRd), we set
σN [t, z](x, x′) = σ[t, z](xNi , x

N
j ) and fN [t, z](x) = f [t, z](xNi ) if x ∈ ΩN

i and x′ ∈ ΩN
j . Solutions

t 7→ (ξN1 (t), . . . , ξNN (t)) ∈ (IRd)N of the particle system (34) are indifferently seen as solutions
t 7→ yN (t) of the quasilinear integral evolution equation (36) and conversely.

Proposition 4. Assume that y0 ∈ C 0(Ω, IRd). For every N ∈ IN∗, there exists a unique solution
t 7→ (ξN1 (t), . . . , ξNN (t)) ∈ (IRd)N of (34) such that ξNi (0) = y0(xNi ) for every i ∈ {1, . . . , N}, well
defined on the time interval [0, T ′′] if N ⩾ N0, for some T ′′ ∈ (0, T ′] and some N0 ∈ IN∗; moreover,
yN (t) ∈ BL∞(y0, r) for every t ∈ [0, T ′′] and every N ⩾ N0.

Proof. The nontrivial statement is the fact that the time interval of definition is uniform with
respect to sufficiently large values of N . This is obtained by applying Proposition 1 and Remark
1 to the evolution equation (36) with X = Z = L∞(Ω, IRd) as in Appendix A.1, but with the
operator AN [t, z] defined by AN [t, z] y(x) =

∫
Ω
σN [t, z](x, x′) y(x′) dν(x′) and with the function

fN [t, z], noting that they satisfy Assumptions (H3) to (H7) uniformly with respect to N . The

initial condition for (36) is yN (0) =
∑N

i=1 y
0(xNi ) 1ΩN

i
. Since y0 is continuous on Ω, the function

yN (0) converges uniformly to y0 (i.e., in L∞ topology) as N → +∞, hence yN (0) ∈ BL∞(y0, r/2)
if N is large enough. This proves the claim.

Remark 7. In Proposition 4, we have assumed that y0 is continuous in order to ensure that, for N
large enough, yN (0) is sufficiently close to y0 in L∞. An alternative, if one does not want to make
this additional assumption, is to strengthen Assumptions (A1) and (A2) (and thus, Assumptions
(H3) to (H7)) by assuming that they are satisfied for every r > 0 (while we have assumed that
they are satisfied for one given r). Indeed, then, given any y0 ∈ L∞(Ω, IRd), one chooses r > 0
sufficiently large so that yN (0) ∈ BL∞(y0, r/2): we obtain Proposition 4 as well, with solutions
defined on [0, T ′′] for every N ∈ IN∗ (not only for N large enough).

In (H3) to (H7), we have assumed that “there exists r > 0”, to follow the classical references
[25, 26, 30]. But given that, in this appendix, we take X = Z = L∞(Ω, IRd), in practice for most
examples the assumptions are also satisfied for every r > 0.
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A.3 Convergence result

Theorem 3. In the framework of Proposition 4:

(i) For every t ∈ [0, T ′′], we have y(t, ·) ∈ C 0(Ω, IRd) and

lim
N→+∞

yN (t, x) = y(t, x) (37)

uniformly with respect to (t, x) ∈ [0, T ′′]× Ω. In particular,

lim
N→+∞

ξNi (t) = y(t, xNi ) ∀i ∈ {1, . . . , N}.

(ii) We assume moreover that y0 is Lipschitz continuous on Ω, with a Lipschitz constant Lip(y0),
and that, additionally to (A1) and (A2), the functions σ[t, z] and f [t, z] are also Lipschitz
continuous, i.e., we assume that

∥σ[t, z1](x1, x′1)− σ[t, z2](x2, x
′
2)∥IRd×d ⩽ Lip(σ) (∥z1 − z2∥L∞ + dΩ(x1, x2) + dΩ(x

′
1, x

′
2)) ,

∥f [t, z1](x1)− f [t, z2](x2)∥IRd ⩽ Lip(f) (∥z1 − z2∥L∞ + dΩ(x1, x2)) ,

for all t ∈ [0, T ], z1, z2 ∈ BL∞(y0, r) and x1, x2, x
′
1, x

′
2 ∈ Ω. Then, for every t ∈ [0, T ′′], the

function y(t, ·) is Lipschitz continuous on Ω, and

∥y(t, x)− yN (t, x)∥IRd ⩽
1

Nγ
(a1 + a2t)e

a3t ⩽
Cst

Nγ
(38)

for all (t, x) ∈ [0, T ′′]× Ω and N ⩾ N0, with

a1 = CΩ Lip(y0) +
CΩ

a3

(
2Lip(σ)(r + ∥y0∥L∞) + Lip(f) + ∥σ∥∞ Lip(y0)

)
,

a2 =
∥σ∥∞
a3

(Lip(σ)r + Lip(f)) , a3 = Lip(σ)(r + ∥y0∥L∞) + ∥σ∥∞ + Lip(f).

In particular,

∥y(t, xNi )− ξNi (t)∥IRd ⩽
Cst

Nγ
.

(iii) In addition to (ii), we assume that y(·) is well defined on the whole interval [0, T ] (recall
that T ′′ ⩽ T ′ ⩽ T ) and that y(t) ∈ BL∞(y0, r/2) for every t ∈ [0, T ]. Then, there exists
N1 ⩾ N0 such that, for every N ⩾ N1, y

N (·) is well defined on the whole interval [0, T ] and
yN (t) ∈ BL∞(y0, r/4) for every t ∈ [0, T ]. Moreover, the estimate (38) is valid on [0, T ].

Items (i) and (ii) of Theorem 3 are reminiscent of the graph limit convergence result stated in
[29, Theorem 2.2].

Proof. We start by proving (ii). Hence, we assume that σ and f are Lipschitz continuous with
respect to z and x.

Lemma 7. We have y(t) ∈ Lip(Ω, IRd) for every t ∈ [0, T ′], and Lip(y(t)) = Lip(y0)+ t(Lip(σ)r+
Lip(f)).

Proof of Lemma 7. Since y(t) ∈ BL∞(y0, r), σ[t, y(t)] and f [t, y(t)] are Lipschitz continuous with
respect to x and thus, using (33), we have

∥∂ty(t, x)− ∂ty(t, x
′)∥IRd ⩽

∫
Ω

∥σ[t, y(t)](x, x′′)− σ[t, y(t)](x′, x′′)∥IRd×d∥y(t, x′′)∥IRd dν(x′′)

+ ∥f [t, y(t)](x)− f [t, y(t)](x′)∥IRd

⩽ (Lip(σ)r + Lip(f))dΩ(x, x
′)
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and by integration we infer that ∥y(t, x)−y(t, x′)∥IRd ⩽ ∥y0(x)−y0(x′)∥IRd+t(Lip(σ)r+Lip(f))dΩ(x, x
′).

The result follows.

Let us establish (38). We set rN (t)(x) = rN (t, x) = y(t, x) − yN (t, x), for all t ∈ [0, T ′] and
x ∈ Ω. By definition, given any i ∈ {1, . . . , N} and any x ∈ ΩN

i , we have

∂tr
N (t, x) =

∫
Ω

σ[t, y(t)](x, x′)y(t, x′) dν(x′)−
∫
Ω

σ[t, y(t)](xNi , x
′)y(t, x′) dν(x′) (39)

+

∫
Ω

σ[t, y(t)](xNi , x
′)y(t, x′) dν(x′)− 1

N

N∑
i=1

σ[t, y(t)](xNi , x
N
j )y(t, xNj ) (40)

+f [t, y(t)](x)− f [t, y(t)](xNi ) (41)

+
1

N

N∑
i=1

(
σ[t, y(t)](xNi , x

N
j )− σ[t, yN (t)](xNi , x

N
j )
)
y(t, xNj ) (42)

+
1

N

N∑
i=1

σ[t, yN (t)](xNi , x
N
j )
(
y(t, xNj )− yN (t, xNj )

)
(43)

+f [t, y(t)](xNi )− f [t, yN (t)](xNi ) (44)

Let us estimate the various terms (39) to (41) in IRd norm. Since y(t) ∈ BL∞(y0, r) (and thus,
∥y(t, ·)∥L∞ ⩽ r + ∥y0∥L∞):

� Using the Lipschitz property of σ[t, y(t)] assumed in (ii), the norm of the term (39) is bounded
by Lip(σ)(r + ∥y0∥L∞)dΩ(x, x

N
i ), which is less than Lip(σ)(r + ∥y0∥L∞)CΩ

Nγ by using (8).

� σ[t, y(t)] is bounded by ∥σ∥∞ and is Lipschitz continuous by the assumption done in (ii);
besides, y(t) is bounded by r+∥y0∥L∞ and is Lip(y(t))-Lipschitz continuous on Ω by Lemma
7. Therefore, the function x′ 7→ σ[t, y(t)](x, x′)y(t, x′) is Lipschitz continuous on Ω, uniformly
with respect to x ∈ Ω, of Lipschitz constant Lσy(t) = Lip(σ)(r + ∥y0∥L∞) + ∥σ∥∞ Lip(y(t)).
Now, using the estimate (11) (Riemann sum theorem), it follows that the norm of (40) is

bounded by
Lσy(t)CΩ

Nγ .

� Using the Lipschitz property of f [t, y(t)] assumed in (ii), the norm of (41) is bounded by
Lip(f)dΩ(x, x

N
i ) ⩽ Lip(f)CΩ

Nγ (by using (8)).

Since y(t) ∈ BL∞(y0, r) and yN (t) ∈ BL∞(y0, r) for N ⩾ N0 by Proposition 4 (and thus,
∥y(t, ·)∥L∞ ⩽ r + ∥y0∥L∞ and ∥yN (t, ·)∥L∞ ⩽ r + ∥y0∥L∞):

� Using (A1), we have ∥σ[t, y(t)](xNi , xNj )−σ[t, yN (t)](xNi , x
N
j )∥IRd×d ⩽ Lip(σ)∥y(t)−yN (t)∥L∞ ,

and thus the norm of (42) is bounded by Lip(σ)(r + ∥y0∥L∞)∥y(t)− yN (t)∥L∞ .

� σ[t, yN (t)](xNi , x
N
j ) ⩽ ∥σ∥∞, hence the norm of (43) is bounded by ∥σ∥∞∥y(t)− yN (t)∥L∞ .

� Using (A2), the norm of (44) is bounded by Lip(f)∥y(t)− yN (t)∥L∞ .

Therefore, we obtain

∥ṙN (t)∥L∞ ⩽ a∥rN (t)∥L∞ +
b(t)

Nγ

for every t ∈ [0, T ′] and every N ⩾ N0, with a = Lip(σ)(r + ∥y0∥L∞) + ∥σ∥∞ + Lip(f) and
b(t) = 2CΩ Lip(σ)(r+ ∥y0∥L∞) +CΩ Lip(f) +CΩ∥σ∥∞ Lip(y(t)). Integrating, and noting that b is
nondecreasing, we get

∥rN (t)∥L∞ ⩽ eat∥rN (0)∥L∞ +
b(t)

aNγ
(eat − 1)
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and we conclude by noting that, for every x ∈ Ω, there exists i ∈ {1, . . . , N} such that x ∈
ΩN

i and then, since yN (0) =
∑N

i=1 y
0(xNi ) 1ΩN

i
, we have ∥rN (t, 0)∥IRd = ∥y0(x) − y0(xNi )∥IRd ⩽

Lip(y0)dΩ(x, x
N
i ) ⩽ Lip(y0)CΩ

Nγ . We have proved (38).

Let us now prove (i). Starting as in the proof of Lemma 7, we infer from the continuity of
σ[t, y(t)] and of f [t, y(t)] that, for any ε > 0, if x and x′ are sufficiently close then ∥∂ty(t, x) −
∂ty(t, x

′)∥IRd ⩽ ε(r+1) and therefore ∥y(t, x)− y(t, x′)∥IRd ⩽ ∥y0(x)− y0(x′)∥IRd + ε(r+1)t. As a
consequence, y(t) is continuous on Ω. To establish (37), we estimate again the various terms above
but instead of using Lipschitz properties which yield estimates, we just use continuity properties
to get that (39) converges to 0, and we use (10) (Riemann sum theorem) to get that (40) converges
to 0. The term (41) converges to 0 by continuity of f [t, y(t)]. The estimates for (42), (43) and (44)
are unchanged. We obtain ∥ṙN (t)∥L∞ ⩽ a∥rN (t)∥L∞ + o(1) as N → +∞, and the result follows,
using that ∥rN (0)∥L∞ → 0.

Let us finally establish (iii). We follow the proof of (ii). First, using the additional assumption
that y(t) ∈ BL∞(y0, r) for every t ∈ [0, T ], Lemma 7 is now valid on the whole interval [0, T ].
We now write ∂tr

N (t, x) as the sum of the terms (39) to (44). The estimates of (39), (40) and
(41) are unchanged and are valid on [0, T ], since only y(t) is involved. Getting the estimates of
(42), (43) and (44) for any N ⩾ N0 requires an additional argument because we do not know yet
that yN (t) ∈ BL∞(y0, r) for every t ∈ [0, T ]. Given any fixed N ⩾ N0, let TN ∈ [T ′, T ] be the
maximal time such that yN (t) ∈ BL∞(y0, r) for every t ∈ [0, TN ]. Then, the estimates of (42),
(43) and (44) are valid on the interval [0, TN ], and then the estimate (38) is obtained as previously,
on the time interval [0, TN ]. Since TN ⩽ T , we thus have ∥y(t) − yN (t)∥L∞ ⩽ 1

Nγ (a1 + a2T )e
a3T

for every t ∈ [0, TN ]. Choosing N1 ∈ IN∗ large enough so that 1
Nγ

1
(a1 + a2T )e

a3T ⩽ r
4 , using that

y(t) ∈ BL∞(y0, r/2) and using the triangular inequality, we infer that yN (t) ∈ BL∞(y0, 3r4 ) for
every t ∈ [0, TN ]. This argument shows that TN = T , and finishes the proof of (iii).
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non linéaires, C. R. Acad. Sci. Paris Sér. I Math. 332 (2001), no. 4, 369–376.

[28] G.S. Medvedev, The nonlinear heat equation on dense graphs and graph limits SIAM J. Math.
Anal. 46 (2014), no. 4, 2743–2766.
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