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f École Polytechnique de Thiès, Thiès, Sénégal

g Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Viet Nam
h Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom

Abstract

Antimicrobial resistance (AMR) is a critical global challenge driven by the evolution of bacterial populations that
reduce the effectiveness of treatments. This study aims to design an optimal antimicrobial deployment strategy
that minimizes both the epidemic size (epidemiological perspective) and the risk of therapeutic failure in the
community (evolutionary perspective), particularly in multi-drug treatment settings. Key factors considered include
compliance with recommended guidelines, infection duration, treatment initiation delay, and the effectiveness of
different drugs. We evaluate the impact of introducing a new antimicrobial, conduct a sensitivity analysis of model
parameters on the basic reproduction number and therapeutic failure probability, and explore outcomes of optimal
treatment strategies. The approach employs a nested model that explicitly integrates within-host and between-host
dynamics. At the within-host scale, the continuous character of AMR is introduced, referred to as quantitative
antimicrobial resistance (qAMR). Most models addressing AMR focus on a limited number of resistant strains, often
overlooking the potential continuum of resistance, especially as it develops through point mutations. The bacterial
dynamics is described by an integro-differential equation, connecting this dynamics to epidemiological parameters
such as individual infectiousness, disease-induced mortality, and treatment recovery rates. At the between-host
scale, infected individuals are categorized into untreated, treated with compliance to treatment, and treated with
non-compliance to treatment. Our results provide insights into AMR dynamics in multi-drug settings, offering a
framework for optimizing treatment strategies that balance infection control and resistance prevention. This study
contributes to a more effective approach for managing AMR at both individual and population levels.

Author summary

Antimicrobial resistance (AMR) is a critical global health challenge caused by bacterial evolution that reduces treat-
ment effectiveness. This study develops strategies to optimize antimicrobial use in multi-drug scenarios, balancing
infection control (epidemiological perspective) with resistance prevention and treatment efficacy (evolutionary per-
spective). Our mathematical model integrates bacterial resistance dynamics within individual patients (within-host
scale) and community infection spread (between-host scale). Unlike traditional models focused on specific resistant
strains, our approach captures a continuum of resistance from mutations. We analyze compliance with treatment
guidelines, drug timing, infection duration, and effectiveness, evaluating new antimicrobials and identifying optimal
strategies. This framework informs public health policies, improving AMR management.

∗Corresponding author: R. Djidjou-Demasse (ramses.djidjoudemasse@ird.fr)
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1 Introduction

Antimicrobial resistance (AMR) presents one of the critical challenges of modern times [25]. In the context of
resistance driven by point mutations, bacterial resistance to a specific antimicrobial is fundamentally a continuous
trait, referred to as quantitative antimicrobial resistance (qAMR), at least at the population level. This qAMR
is essential for enhancing our understanding of the evolutionary dynamics driving AMR [15]. Most AMR-related
models typically focus on the dynamic interaction between a limited number of parasite strains that distinguish from
each other by the presence or absence of a small number of resistance genes coding for proteins that inactivates the
antibiotic, protects the target or acts as a bypass of the target (e.g., [3, 10, 11, 15, 16, 23, 27, 31, 34–37, 39, 40, 42]).
Such models implicitly assume that resistance is primarily driven by resistance genes, rather than arising through
mutational processes. In contrast, only a few studies have explored qAMR (e.g., [15, 18, 29]). In these models,
bacterial populations are assumed to exhibit phenotypic diversity, characterized by a quantitative descriptor x ∈ R,
which represents the resistance level of different bacterial strains. This trait influences various aspects of the
bacterial life cycle, such as growth and mortality rates, and also impacts the effectiveness of antimicrobial drugs
against the bacterial population. From a theoretical perspective, the properties of the within-host model discussed
here are built upon previous analytical findings in [5, 14].

The targeted outcome of an antimicrobial treatment in the clearance of the bacteria from the host. In case
of treatment failure, the worse case scenario is when within-host bacterial population has become resistant to
treatment (emergence of resistance). Previous analysis ([14]) have shown that intermediate drug concentrations
are at the higher risk to lead to treatment failure with emergence of resistance. In the context of multiple drugs
used within a community, determining the most effective sustainable strategy to both (i) prevent the emergence
of resistant bacterial populations and (ii) control infections within the host population remains a challenge. This
issue has been the focus of numerous theoretical studies in recent years, eg., [3, 7, 16, 19, 34–37, 40, 42]. However,
none of the aforementioned studies address optimal treatment strategies in the context of qAMR. Furthermore,
most of previous modelling work on the topic have considered the epidemiological level only, ignoring the effect of
antimicrobial treatment at the individual level (but see e.g., [3, 29, 38]). Building on recent studies [15, 29], we
explicitly connect the evolutionary dynamics at both the within-host and between-host levels by treating bacterial
resistance as a continuous quantitative trait in a multi-drug setting.

Our goal is to determine the optimal antimicrobial deployment strategy, which involves the allocation of each drug
within the treatment framework to simultaneously control the epidemic size and minimize the risk of therapeutic
failure in the community. This strategy takes into account crucial factors such as the compliance probability of
the host population to recommended guidelines, the time needed for effective infection treatment, the delay before
initiating treatment for infected individuals, the community’s treatment rate, and the relative effectiveness of the
different antimicrobial drugs introduced in the treatment framework. Compliance to recommended guidelines plays
a major role in the development of AMR [2, 6, 24, 26]. Additionally, treatment delays significantly influence patient
outcomes and are a major concern in numerous medical studies, including those on HIV, TB, and cancer [8, 9, 20].

At the within-host level, bacterial population dynamics are modeled with an integro-differential equation, as
proposed in [15], using the time since an individual is infected as a continuous variable. This variable explicitly links
the within- and between-host scales through key parameters such as an individual’s infectiousness, disease-induced
mortality, and the recovery rate of treated individuals. Moreover, infected individuals can be either untreated
(U), treated with compliance to treatment (C), or treated with non-compliance to treatment (N). Here, compliance
(sometimes also called adherence) refers to the extent to which a person correctly follows medical advice, particularly
in taking prescribed medications. We assume that compliant individuals effectively clear the infection, while non-
compliant or untreated individuals do not. This simplification aids model parameterization but overlooks variability
in immune responses, where some infections may clear spontaneously or despite non-compliance. Accounting for
such variability presents significant parameterization challenges.

We begin by introducing the nested within- and between-host mathematical model and its parameters, followed
by a summary of the mathematical analysis of these dynamics. Next, we present the model’s parameterization and
key quantitative variables. We then define the optimal strategy that aims simultaneously to control the epidemic
size and to minimize the risk of therapeutic failure in the community. The results section first examines the
evolutionary and epidemiological dynamics using a single antimicrobial. We then assess the impact of a newly
introduced antimicrobial under various compliance scenarios, perform a global sensitivity analysis of key model
parameters on the basic reproduction number and therapeutic failure probability, and explore the outcomes of an
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optimal antimicrobial deployment strategy. Finally, we discuss our findings and identify perspectives for future
work.

2 Model overview

We explicitly link the within-host and between-host levels, treating the magnitude of bacterial resistance to a given
antimicrobial as a continuous quantitative trait. Within host, we monitor the progression of infected individuals
over time post-infection as a continuous variable. Between hosts, we account for the heterogeneity of antimicrobial
treatments, distinguishing between infections treated with a specific antimicrobial and untreated infections. The
model proposed is based on the previous framework developed in [15] for the within-host model, and [29] for the
nested model. Refer to Figure 1 for a graphical outline of the model.

2.1 The within-host model

We focus on a bacterial population that exhibits variation in the magnitude of antimicrobial resistance, characterized
by a continuous trait denoted as x ∈ R. This quantitative level of antimicrobial resistance influences multiple
aspects of the bacterial population’s life cycle, including growth and mortality rates. To capture the dynamics
of this bacterial population within a host, we employ an integro-differential equation introduced in [15]. Infected
individuals can be untreated or treated and, in the latter case, either with antimicrobial A or B. The bacterial load of
untreated infections (U) is denoted as bU(τ, x), where τ ∈ (0,+∞) is the time post-infection and x is the resistance
level. We assume that infections treated in compliance with recommended medications result in successful outcomes
(i.e., effectively clearing the infection) and are represented by bacterial loads (bCA(τ, x) or bCB(τ, x)). Similarly, we
assume that infections treated in non-compliance with recommended medications result in unsuccessful outcomes
(i.e., failing to clear the infection) and are represented by bacterial loads bNA(τ, x) or b

N
B(τ, x). With ϑ ∈ {C,N,U}

and ϱ ∈ {A,B}, the within-host model read as∂τ b
ϑ
ϱ (τ, x) =

1(
1 +Bϑ

ϱ (τ)
)κ ∫

R
J(x− y)p(y)bϑϱ (τ, y)dy − ξϑϱ (x)b

ϑ
ϱ (τ, x),

bϑϱ (0, ·) = bϑϱ0(·),
(2.1)

where Bϑ
ϱ (τ) =

∫
R bϑϱ (τ, x)dx is the total bacteria load, and κ is a positive parameter that shapes the maintenance

of bacterial population homeostasis. Note that a bacterial population with resistance level y generates offspring
with resistance level x at a per-capita rate of J(x − y)p(y), where p(y) represents the intrinsic growth rate of the
bacteria, and J(x − y) denotes the probability of a bacterial population with resistance level y mutating to level
x during reproduction. Consequently, the total number of bacteria with resistance level x produced by a bacterial

population τ -time post infection can be quantified as
(
1 +

∫
R bϑϱ (τ, x)dx

)−κ ∫
R J(x − y)p(y)bϑϱ (τ, y)dy. The term

ξϑϱ (x) accounts for the clearance of the bacterial population with resistance level x, either by the immune system

(µ) or by the efficiency of antimicrobial pressure (kϑϱ ). Thus, ξU(x) = µ for untreated hosts (ie., no effect of

antimicrobial), ξCϱ (x) = µ + kCϱ (x) for successfully treated hosts, and ξNϱ (x) = µ + kNϱ (x) for treated hosts with

failure. The mutation kernel J ≡ Jε is assumed a Gaussian distribution Jε(x) = 1
ε
√
2π

e−
1
2 (

x
ε )

2

, where ε > 0 is a

small parameter that represents the mutation variance within the phenotypic space during a bacterial division.
The dynamical properties of the within-host model (2.1) have been thoroughly examined in [15]. For instance,

the within-host basic reproduction number N ϑ
ϱ (x) for the bacterial population with resistance level x within an

infected individual is calculated as follows

N ϑ
ϱ (x) =

p(x)

ξϑϱ (x)
, for ϑ ∈ {C,N,U} and ϱ ∈ {A,B}.

Moreover, Model (2.1) allows to follow evolutionary parameters such as the individual average level of resistance,
x̄ϑ
ϱ (τ), τ -time post infection :

x̄ϑ
ϱ (τ) =

∫
R
x
bϑϱ (τ, x)

Bϑ
ϱ (τ)

dx, ϑ ∈ {C,N,U} and ϱ ∈ {A,B}. (2.2)

In [15], the within-host model is shown to converge, within the resistance level space, towards an evolutionary
attractor denoted as x̄∗ϑ

ϱ . This evolutionary attractor characterizes the average level of bacterial resistance at the
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equilibrium within an infected host. Notably, it aligns with the local maximum of the basic reproduction number
N ϑ

ϱ , such that

x̄∗ϑ
ϱ : N ϑ

ϱ (x̄
∗ϑ
ϱ ) = max

x
N ϑ

ϱ . (2.3)

2.2 The between-host model

At the between-hosts scale, the host population is divided into eight states. At any time t, an individual can
be susceptible to infection, denoted as S(t), infected, or recovered. Infected individuals are categorized as either
untreated, denoted as IU(t, τ, x̄U(τ)), or treated with either drug A or B. Treated infections may follow the recom-
mended guidelines, leading to successful outcomes (effectively clearing the infection), denoted as ICA(t, τ, x̄

C
ϱ (τ)) and

ICB (t, τ, x̄
C
ϱ (τ)), or they may fail to follow the recommendations, resulting in unsuccessful outcomes (failing to clear

the infection), denoted as INA (t, τ, x̄N
ϱ (τ)) and INB (t, τ, x̄N

ϱ (τ)). Variables τ and x̄ϑ(τ), with ϑ ∈ C,N,U, respectively
represent the time post-infection and the average resistance level of the infected host. It should be noted that each
infected individual may harbor multiple bacterial strains, labeled as x ∈ R, with varying frequencies and resistance.
Therefore, x̄ϑ(τ) represents the individual’s resistance level quantified by the within-host dynamics (2.2). However,
for simplicity and without loss of generality, we will denote IU(t, τ, x̄U(τ)) as IU(t, τ) and Iϑϱ (t, τ, x̄

ϑ
ϱ (τ)) as I

ϑ
ϱ (t, τ),

for ϑ ∈ {C,N} and ϱ ∈ {A,B}. The force of infection induced by infected individuals at time t is given by

λ(t) =

∫ ∞

0

[βC
A(τ)I

C
A(t, τ) + βC

B(τ)I
C
B (t, τ) + βN

A(τ)I
N
A (t, τ) + βN

B (τ)I
N
B (t, τ) + βU(τ)IU(t, τ)]dτ.

Here, βϑ(τ) is the infectiousness of an individual infected τ time units ago. Such a transmission rate βϑ(τ) is linked
to the within-host dynamics (2.1) at time τ , so is the disease-induced mortality rate αϑ(τ) of infected individuals.

Newly infected individuals at time t, quantified by λ(t)S(t), can follow one of three paths: (i) they can become
untreated infections with a probability of (1 − qT), (ii) they can become treated infections in compliance with
recommended medications with a probability of qC qT, or (iii) they can become treated infections in non-compliance
with recommended medications with a probability of (1 − qC)q

T. Here, qT ∈ (0, 1) represents the proportion
of treated infections in the entire host population, while qC ∈ (0, 1) denotes the compliance probability to the
recommended guidelines, which is the likelihood that infected hosts follow the recommended prescription. Among
the proportion of treated infections qT in the whole population, a proportion qTA is treated with drug A, while the
remainder, qTB = 1 − qTA, is treated with drug B. Consequently, for ϱ ∈ {A,B}, the dynamics of newly infected
individuals (i.e., at τ = 0) given by 

ICϱ (t, 0) = qC qT qTϱ λ(t)S(t),

INϱ (t, 0) = (1− qC) q
T qTϱ λ(t)S(t),

IU(t, 0) = (1− qT )λ(t)S(t).

(2.4)

Moreover, individuals receiving compliant treatment can discontinue it at rates ωC,ϱ
U (τ), while those receiving

noncompliant treatment can stop at rates ωN,ϱ
U (τ). Untreated individuals, on the other hand, can begin treatment

at a rate of ωU
T(τ). Importantly, it is expected that compliant individuals do not discontinue treatment, implying

ωC,ϱ
U ≡ 0. Treated individuals recover from the infection at rate γϑ

ϱ (τ). Susceptible individuals are recruited at a
rate of Λ, and the natural mortality rate of the entire population is µh.

By setting IC(t, τ) = (ICA(t, τ), I
C
B (t, τ))

t, IN(t, τ) = (INA (t, τ), INB (t, τ))t and R(t) = (RA(t), RB(t))
t, boundary

conditions (2.4) is coupled with the following SIR system (see (C.1) for the detailed formulation)

Ṡ(t) = Λ− S(t)λ(t)− µhS(t),

(∂t + ∂τ ) I
C(t, τ) = −

(
αC(τ) + γC(τ) + (1− qT)ωC

U(τ) + µh

)
IC(t, τ) + qCq

TeωU
T(τ)I

U(t, τ),

(∂t + ∂τ ) I
N(t, τ) = −

(
αN(τ) + γN(τ) + (1− qT)ωN

U(τ) + µh

)
IN(t, τ) + (1− qC)q

TeωU
T(τ)I

U(t, τ),

(∂t + ∂τ ) I
U(t, τ) = −

(
αU(τ) + γU(τ) + qT ωU

T(τ) + µh

)
IU(t, τ) + et (1− qT) (ωC

U(τ)I
C(t, τ) + ωN

U(τ)I
N(t, τ)),

Ṙ(t) =

∫ ∞

0

(
γC(τ)IC(t, τ) + γN(τ)IN(t, τ)

)
dτ − µhR(t),

(2.5)
with the associated initial conditions

S(0) = S0, R(0) = R0, IU(0, τ) = IU0 (τ), Iϑϱ (0, τ) = Iϑϱ,0(τ),
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and where e = (1, 1) and

αϑ(τ) = diag
(
αϑ
A(τ), α

ϑ
B(τ)

)
, ωϑ

U(τ) = diag
(
ωϑ,A
U (τ), ωϑ,B

U (τ)
)
, γϑ(τ) = diag

(
γϑ
A(τ), γ

ϑ
B(τ)

)
, qT = qTdiag

(
qTA, q

T
B

)
.

3 Summary of the mathematical analysis results for nested within-
and between-host dynamics

For both biological feasibility and technical reasons, the nested model (2.1) and (2.4)-(2.5) is analyzed under natural
assumptions, including the positivity and boundedness of parameters. A centered Gaussian distribution is typically
used for the mutation kernel J , though other mutation kernels that satisfy certain general properties can also be
applied. Refer to Appendix A for further details on the nested model’s assumptions. Furthermore, under these
assumptions, the nested model (2.1) and (2.4)-(2.5) is well-posed and there exists a global bounded positive solution.
Such a result can be addressed using an integrated semigroup approach and Volterra integral formulation (e.g., see
[12, 21, 28, 41]). For details, we refer to [29, Theorem 5.1], where this result is specifically handled.

3.1 The epidemiological basic reproduction number

In the absence of infection, that is IN = IC = IU ≡ 0, System (2.4)-(2.5) has a disease-free equilibrium (DFE) E0 at
which the size of susceptible individuals is given by S0 = Λ/µh. The basic reproduction number, usually denoted
R0, is defined as the number of infections arising from one newly infected individual introduced into a healthy
(disease-free) host population. Using the next-generation operator approach (eg., [13, 22]), we find that (see [29]
for details) the basic reproduction number R0 at the between-host scale (2.4)-(2.5) is given by

R0 =
Λ

µh

∫ ∞

0

⟨β(τ),Π(τ, 0)q⟩dτ. (3.1)

The term χ(τ) = ⟨β(τ),Π(τ, 0)q⟩ quantifies the infectiousness of all infected individuals τ -time post-infection. The
parameter q represents the landscape status of treated infections. The function Π(τ2, τ1), defined for 0 ≤ τ1 ≤
τ2 < ∞, represents the evolutionary operator generated by the linearized system of (2.4)-(2.5) around the DFE. It
describes the transitions between different infection statuses. Refer to Appendix B for more details.

4 Nested model parameterization and quantitative variables

In this section, we briefly describe some useful epidemiological and evolutionary outputs, along with the shape
parameters used for simulating the nested model (2.1) and (2.4)-(2.5). All state variables and parameters are
summarized in Table 1.

At the within-host level, the intrinsic growth rate function of bacterial population p(x) is a decreasing function
of the resistance level x (eg., [17]). The function p is bounded due to physiological constraints, and a strain with no
AMR investment is such that p(−∞) := pm < ∞. We also assume that, to the limit, the resistance to an infinite
concentration of antimicrobial would require full resource and energy allocation to resistance and none to growth,
therefore having p(∞) = 0. Using the intrinsic growth rates p0 and p1 of the reference ’sensitive’ and ’resistant’
strains x0 and x1 respectively, as in [15], we assume that

p(x) = pm

[
1 +

(
pm − p0

p0

)(
p0
p1

· pm − p1
pm − p0

)x]−1

, (4.1)

with 0 < p1 < p0 < pm given in Table 1.
Similarly, the killing rate function kϑϱ (x), of a treated infection ϑ ∈ {C,N} with the antibiotic ϱ ∈ {A,B},

decreases with resistance level x. We define kϱ(·) using two positive parameters: kϑ0,ϱ and kϑ1,ϱ, representing antimi-

crobial activity against reference strains x0 and x1 of the treated infections ϑ. Thus, kϑϱ (x) for a resistance level x
takes the form

kϑϱ (x) = kϑ0,ϱ

(
kϑ1,ϱ
kϑ0,ϱ

)x

. (4.2)
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Figure 1: Graphical outline of the model.
A) (Top panel) The between-host dynamics are shown as a classical SIR-like flow chart (panel A, top). Note that
the infected compartment I is partitioned according to the treatment status (untreated U, or treated T), and, if
treated – either with drug A or drug B –, according to compliance (compliant C or not N). The quantities shown
along branches of the tree correspond to (constant) the proportions that dichotomize the parent set (the opposite
branches having the corresponding probability complementary to 1).
B) (Top panel) The within-(infected) host dynamics recapitulates the forces acting over the distribution of the
bacterial load b according to quantitative resistance x, in a host of infection age τ , under treatment ϱ, with
compliance ϑ, namely bacterial growth p, clearance ξ and mutation J .
See the model overview section in the main text for details and Table 1 for the meaning of the notations.
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Notations

t Time
τ Time since infection
x Resistance level
ϱ Antimicrobial treatment, ϱ ∈ {A,B}
ϑ Infection status: U=untreated, N= treated with failure, C= treated with success.

Model state variables

Within-host scale

bϑ· (τ, x) Bacterial density with resistance level x at time τ , within an individual with infection status ϑ
Between-host scale
S(t) Susceptible individual at time t

Iϑ· (t, τ) Infected individuals at time t, infected since time τ , and with infection status ϑ
R·(t) Recovered individuals at time t

Variable parameters
Parameters Description Value

τs Delay prior to treatment (days) {4; 7; 10}
τr Time required for effective treatment (days) {4; 7; 10}
qC Proportion of individuals with compliance to recommended guidelines {0.2; 0.5; 0.7; 0.95}
reff Relative effectiveness of antimicrobial B compared to A {0.1; 0.5; 0.9}
pT Proportion of treated infections in the entire host population {0.5; 0.75; 0.95}
qTB Proportion of treated infections with antimicrobial B {0.05; 0.1; 0.5; 0.7; 0.95}

Fixed model parameters
Parameters Description (Unit) Values [Source]

Within-host scale
ε Mutation variance within the phenotypic space 0.05 [Assumed]
Jε(x− y) Mutation probability from resistance level x to y G(0, ε, x− y)a

p(x) Intrinsic growth rate of bacterial population with resistance level x defined by (4.1)

kϑ
ϱ (x) Antimicrobial killing rate of bacterial population with resistance level x defined by (4.2)

κ Limitation on bacterial growth factor 1
pm Upper bound of the intrinsic growth rate p 10 [15]
p0 Intrinsic growth rate of the reference sensitive strain 0.95× pm [15]
p1/p0 Reference resistant and sensitive growth rate ratio 0.5 [15]

kϑ
0,A Activity of antimicrobial A on the sensitive reference strain (day−1) {15 ; 3} [15]

kϑ
1,A/k

ϑ
0,A Antimicrobial A efficiency ratio of reference resistant and sensitive strains {0.3 ; 0.01} [15]

kϑ
0,B Activity of antimicrobial B on the sensitive reference strain (day−1) defined by (6.1)

kϑ
1,B/k

ϑ
0,B Antimicrobial B efficiency ratio of reference resistant and sensitive strains defined by (6.1)

N 0
0 (0) The reproduction number of the reference sensitive strain without drug 20 (Assumed)

m0 Size of the initial bacterial population 0.05 [15]
σ2
0 Resistance variance of the initial bacterial population 0.05 [15]

µ Rate of natural clearance of the bacteria population (day−1) 1.81× p0/N 0
0 (0) [15]

Between-host scale

βϑ
ϱ (τ) Transmission rate of infected individuals defined by (4.3)

αϑ
ϱ (τ) Disease-induced mortality rate of infected individuals defined by (4.4)

ωU
T(τ) Rate of treatment initiation for untreated infections defined by (4.6)

ωϑ,ϱ
U (τ) Rate of treatment cessation for treated infections defined by (4.5)

γϑ
ϱ (τ) Recovery rate of treated infections in the state ϑ defined by (4.7)-(4.8)

Λ Demographic inflow of susceptible individuals 5× 104 [29]
µh Natural death rate 5.2675× 10−2 [29]
β0 Upper bound of the transmission rate 1.2× 10−3 [29]
α0 Upper bound of virulence (i.e. infection-induced death rate) 7.5× 10−2 [29]
r0 Half-saturation constant 9× 103

Table 1: Description of the state variables and parameters of the model. a The notations G(0, ε, x) stand for the
normalized density function of the Gaussian distribution with mean 0 and variance ε2.
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At the between-host level, the transmission capabilities βU, and βϑ
ϱ of an infected individuals, either untreated

or treated ϑ ∈ {C,N} with ϱ ∈ {A,B}, are defined using Holling-type II functional responses such that

βU(τ) =
β0B

U(τ)

r0 +BU(τ)
, and βϑ

ϱ (τ) =
β0B

ϑ
ϱ (τ)

r0 +Bϑ
ϱ (τ)

, (4.3)

where τ is the time post-infection, β0 is a scaling constant, and r0 is the half-saturation constant for the total
bacterial load BU(τ) =

∫
R bU(τ, x)dx, Bϑ

ϱ (τ) =
∫
R bϑϱ (τ, x)dx.

Likewise, the disease induced mortality rates of infected individuals αU, and αϑ
ϱ reads as

αU(τ) =
α0B

U(τ)

r0 +BU(τ)
, and αϑ

ϱ (τ) =
α0B

ϑ
ϱ (τ)

r0 +Bϑ
ϱ (τ)

, (4.4)

where α0 is a scaling constant. Scaling constants α0, β0, and r0 are given by Table 1. With the formulations
(4.3) and (4.4), infection’s transmission and virulence increase monotonically with the within-host bacterial load.
However, their increase slows compared to a linear formulation at higher bacterial densities.

Moreover, the treatment ϑ ∈ {C,N} with drug ϱ ∈ {A,B} are stopped the rate ωϑ,ϱ
U (τ), τ -time post infection,

such that

ωϑ,ϱ
U (τ) =

{
0, if Bϑ

ϱ (τ) ≤ B0,
c0, if Bϑ

ϱ (τ) > B0.
(4.5)

Equation (4.5) assumes that a treated individual ceases the treatment as soon as the total bacterial count starts to
increase, eventually reaching the initial bacterial population size, B0, observed before the treatment commenced.

The rate ωU
T(τ), which describes the transition from an untreated to a treated infection τ -time post-infection,

is linked to a parameter τs that represents the delay prior the treatment. Therefore, for a given τs, ω
U
T is such that

ωU
T(τ) =

{
0, if BU(τ) < BU(τs),
c0, if BU(τ) > BU(τs).

(4.6)

The recovery rate, γC
ϱ , of treated individuals in compliance with recommended medications ϱ ∈ {A,B}, is defined

by introducing the parameter τr that represents the time required for effective recovery ie., the number of days
after which the bacterial load becomes undetectable. We then have

γC
ϱ (τ) =

{
0, if, BC

ϱ (τ) > BC
ϱ (τr),

c0, if, B
C
ϱ (τ) ≤ BC

ϱ (τr),
with ϱ ∈ {A,B}. (4.7)

Finally, both untreated infections and under-dosed treatment (due to non-compliance) are assumed not to recover
from the infections, implying that

γU(τ) ≡ 0, and γN
ϱ (τ) ≡ 0, for ϱ ∈ {A,B}. (4.8)

The value c0 is an arbitrary positive parameter that is not strictly significant. For example, consider f(τ) =
exp

(
−
∫ τ

0
ωU
T(σ)dσ

)
the probability of remaining in the untreated state U τ -time post-infection. Then, the average

delay prior treatment is
∫∞
0

f(τ)dτ = τs+
1

c0
. Here we fix, c0 = 100, such that

∫∞
0

f(τ)dτ ≈ τs. The same reasoning

holds for other rates ω,s and γ,s.
We introduce two quantitative variables to measure the average resistance level in the host population and the

therapeutic failure rate among individuals exposed to antimicrobials. More precisely, the average level of resistance
(η(t)) in the host population at time t is given by :

η(t) = ηTA(t) + ηB(t)
T + ηU(t), (4.9)

with

ηU(t) =

∫ ∞

0

x̄U(τ)
IU(t, τ)

I(t)
dτ,

ηTA(t) =

∫ ∞

0

(
x̄C
A(τ)

ICA(t, τ)

I(t)
+ x̄N

A(τ)
INA (t, τ)

I(t)

)
dτ,

ηTB(t) =

∫ ∞

0

(
x̄C
B(τ)

ICB (t, τ)

I(t)
+ x̄N

B(τ)
INB (t, τ)

I(t)

)
dτ,
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and where I(t) =
∫∞
0

(
ICA(t, τ) + ICB (t, τ) + INA (t, τ) + INB (t, τ) + IU(t, τ)

)
dτ is the total infected population at time

t. Note that ηU(t), ηTA(t), and ηTB(t) represent the average resistance levels induced by untreated infections, treated
infections with drug A, and treated infections with drug B, respectively.

Furthermore, we define therapeutic failures at time t, denoted iN(t), as the proportion of treated infections in
non-compliance with recommended medications among those exposed to the treatment. We then have

iN(t) =
IN(t)

IC(t) + IN(t) +R(t)
,

where IC(t) =
∫∞
0

(
ICA(t, τ) + ICB (t, τ)

)
dτ , IN(t) =

∫∞
0

(
INA (t, τ) + INB (t, τ)

)
dτ , and R(t) = RA(t) +RB(t).

5 Optimal deployment of antimicrobials

Our goal is to evaluate the effectiveness of a specified antimicrobial deployment strategy, represented by the pairing(
qTA = 1− qTB , q

T
B

)
, on the epidemiological basic reproduction number R0, given by (3.1), within a given configura-

tion. Quantities qTA and qTB represent the proportion of treated infections with antimicrobial A and B respectively.
Any configuration is defined by the set of parameters ∆ =

(
qC, τr, τs, q

T, reff
)
, representing the compliance probabil-

ity to recommended guidelines (qC), the time required for an effective treatment (τr), the delay prior to treatment
(τs), the treatment rate qT, and the effectiveness of antimicrobial B compared to A (reff). It is important to note
that antimicrobial B is more effective than A with reff ∈ (0, 1), and both antimicrobial are identical for all the
other aspects. For the set of parameters ∆, we investigate the impact of the deployment strategy, represented by
the proportion q∗TB of antimicrobial B in the treatment landscape, with the remaining proportion (1 − q∗TB ) being
antimicrobial A. Our focus is on both (i) the epidemic size, measured by the basic reproduction number R0, and (ii)
the evolutionary probability of therapeutic failure, measured by iN(∞). Both the epidemic size and the probability
of therapeutic failure are under control as soon as the R0 is less than the unity. Our objective is to identify the
optimal antimicrobial deployment strategy, represented by the minimum proportion q∗TB of antimicrobial B, that
ensures R0 remains below one. Such an objective reads :

q∗TB (∆) = min
{
qTB ∈ (0, 1) : R0

(
qTB ,∆

)
< 1
}
. (5.1)

Note that the optimal deployment strategy q∗TB ≡ q∗TB (∆) depends on the specific configuration defined by the set
of parameters ∆. Furthermore, q∗TB (∆) may not exist for some configurations of ∆.

6 Results

At the within-host scale, the initial bacterial population bϑ0 (x) is assumed to be composed by a bacterial population
with an average resistance level x = 0. Hence, we set bϑ0 (x) = m0 × N (0, σ0, x), where N (0, σ0, x) stands for the
density function of the standard Gaussian distribution at x with mean 0 and variance σ2

0 . This means that the
initial bacterial population mostly comprises the reference sensitive strain x0 = 0.

At the between-host scale, the initial susceptible population is S0 = (1 − Prev)
Λ
µh

, and the initial recovered

population is R0 = 0, where Prev ∈ (0, 1) is the initial prevalence of the infection. Furthermore, the initial
distribution of contagious individuals are IC0 (τ) = 0, IN0 (τ) = 0, and IU0 (τ) = Prev × Λ

µh
× L(τ), for all τ ≥ 0, and

where L(τ) = γ0e
−γ0τ is the exponential distribution with parameter γ0 = 23. This parameter is chosen to ensure

that the probability of being infected for no more than 6 hours is nearly 100%.

6.1 Evolutionary and epidemiological dynamics with one antimicrobial

At the between-host scale, we assume that only antimicrobial A is used initially. Therefore, for successfully treated
hosts with drug A, the antimicrobial effect kCA is such that the evolutionary attractor x̄∗C

A , introduced by (2.3),
satisfies NC

A (x̄∗C
A ) < 1 (Figure 2,A), resulting in the non-persistence of the infection (Figure 2,B,C). For unsuccess-

fully treated infections, x̄∗N
A is such that NN

A (x̄∗N
A ) > 1 (Figure 2,D), leading to the within-host infection persistence

(Figure 2, E, F). In this latter configuration, the antimicrobial A is initially effective for a certain period as illus-
trated by the total bacterial load (Figure 2,F). This initial phase is followed by a rebound in bacterial load, which
completely escapes the drug efficiency by evolving a higher level of resistance than initially (Figure 2, E, F). Finally,
in untreated infections, the absence of drug pressure results in x̄∗U being nearly identical to the average resistance
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Figure 2: Dynamics of the within-host model. Row 1. The basic reproduction number, the dynamics of the bacterial
load and the total bacteria load within a successfully treated host (state C). The effect kCA of antimicrobial A defined
by (4.2) is such that kC0,A = 15 and kC1,A/k

C
0,A = 0.3. Row 2. As in Line 1 but within an unsuccessfully treated

host (state N). The effect of kNA is such that kN0,A = 3 and kN1,A/k
N
0,A = 0.01. Row 3. As in row 1 but within an

untreated host (state U). The effect of kUA is such that kU0,A = 0 and kU1,A/k
U
0,A = 0.
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level of the initial bacterial load (Figure 2, H). As a consequence, NU(x̄∗U) > 1 (Figure 2,G), indicating that the
infection persists without the influence of antimicrobial treatment (Figure 2, I).

Moreover, the model proposed here allows for capturing other quantitative parameters such as: the probability

of remaining in the untreated compartment τ -time post-infection, given by e−
∫ τ
0

ωU
T(s)ds (Figure 3A); the probability

e−
∫ τ
0

ωN,A
U (s)ds, of remaining in the treated compartment τ -time post infection (Figure 3B); and the probability of

remaining in the treated state C τ -time post-infection, given by e−
∫ τ
0

γC
ϱ (s)ds (Figure 3C).

Figure 3: Probabilities of remaining in a compartment τ -time post-infection. (A) Probability of remaining in the
untreated state U τ -time post-infection. Time τs corresponds to the delay prior the treatment. (B) Probability of
remaining in the treated state N τ -time post-infection. (C) Probability of remaining in the treated state C τ -time
post-infection. Time τr corresponds to the time required for effective treatment.

The associated epidemiological dynamics when only antimicrobial A is used are illustrated by Figure 4. When
the compliance probability to recommended guidelines is qC = 50% (Figure 4, line 2), increasing the treatment rate
qT within the infected population from 50% to 95% slightly improves epidemiological control by reducing the R0

from 3.1 to 1.6 (Figure 4D-F). However, this improvement at the epidemiological scale leads to a slight increase
in the evolutionary probability of therapeutic failure iNA within the host population (Figure 4D-F), as well as an
increase in the average resistance level η∗A of the host population (Figure 4A-C). A similar configuration occurs
when the compliance probability to recommended guidelines is qC = 75% (Figure 4G-I). Although this compliance
probability is not sufficient to fully control the infection within the host population, increasing the treatment rate
qT within the infected population from 50% to 95% substantially improves epidemiological control (Figure 4G-I).
Furthermore, the evolutionary probability of therapeutic failure iNA is substantially lower compared to the case
qC = 50% (Figure 4, G-I and D-F). Finally, when the compliance probability is sufficiently strong, high treatment
rates can definitely control the outbreak within a relatively short period (Figure 4, L).

6.2 Evolutionary and epidemiological dynamics with two antimicrobials

We assume that after a period of mono-usage of antimicrobial A until an endemic equilibrium is reached (Figure
4), a proportion qTB of treated infections is replaced by a new antimicrobial B at time t = 0. Furthermore, at this
endemic equilibrium, the infected host population has acquired an average resistance level denoted as η∗A and defined
by (4.9). The antimicrobial B is such that the basic reproduction number NN

B (η∗A) of the bacterial population with
resistance level η∗A is

NN
B (η∗A) = (1− reff)NN

A (η∗A),

where the parameter reff ∈ (0, 1) measures the relative effectiveness of antimicrobial B compared to A. Overall, since
the antimicrobial A activity on the sensitive reference strain kϑ0,A and the ratio of efficiency between the reference

resistant and sensitive strains, kϑ1,A/k
ϑ
0,A, are known (Table 1), constants kϑ0,B and kϑ1,B of the killing rate kϑB of

antimicrobial B are such that, for ϑ ∈ {N,C} :

kϑ1,B
kϑ0,B

=
kϑ1,A
kϑ0,A

, and kϑ0,B =

kϑ0,A + µ reff

(
kϑ
1,A

kϑ
0,A

)−η∗
A

1− reff
. (6.1)

We illustrate the impact of the newly deployed antimicrobial B on the evolutionary and epidemiological dynamics
under various scenarios concerning host population compliance to recommended guidelines (qC). We assume that
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Figure 4: Dynamics of the nested model when only antimicrobial A is used. Line 1. The basic reproduction number
within an unsuccessfully treated host (state N). η∗A is the average resistance level within the host population after a
period of mono-usage of antimicrobial A with respect to the treatment rate qT. D-F. The between-host dynamics
with respect to the treatment rates when the compliance qC = 0.5. G-I. same as for D-F, but with qC = 0.75. J-L.
same as for D-F, but with qC = 0.95. The other parameter values are default in Table 1, τs = 4 and τr = 3 days.
The dashed blue curve represents the proportion of therapeutic failures in the population at time t.
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the relative effectiveness of antimicrobial B compared to A is such that reff = 0.85. In the first scenario, 50% of
the host population has a compliance to recommended guidelines (Figure 5). For a low treatment rate qT in the
host population (Figure 5, column 1), the introduction of antimicrobial B negatively impacts both the epidemic
size (as measured by the basic reproduction number R0) and the evolutionary probability of therapeutic failure
(as measured by iN(∞)). Indeed, increasing the proportion of infections treated with antimicrobial B leads to an
increase in the value of the basic reproduction number R0 when both A and B are used (denoted as RAB

0 ) compared
to its value when only A is used (denoted as RA

0 ), as shown in Figure 5D,E,F. This configuration is consistent for
iN(∞), with the values iNAB(∞) always being greater than iNA(∞). Similar conclusions hold for intermediate values
of the the treatment rate qT in the host population (Figure 5, column 2). By contrast, for sufficiently high values
of the treatment rate qT (Figure 5, column 3), introducing antimicrobial B reduces the values of R0. Specifically,
RAB

0 decreases from 1.6 to 0.96 when the proportion qTB of infections treated with antimicrobial B increases from
0.1 to 0.95 (Figure 5F,I,L). However, although the epidemic size is controlled by increasing the proportion qTB , the
presence of antimicrobial B still favors an increase in the evolutionary probability of therapeutic failure iN(∞).

In the second scenario, 70% of the host population compliant to the recommended guidelines (Figure S1). For
a low treatment rates qT, the configuration is quite similar to that in Figure (5, column 1), with the introduction
of antimicrobial B negatively impacting the evolutionary and epidemiological dynamics (Figure S1, column 1).
Intermediate values of the treatment rate qT have a slight positive effect on the epidemiological dynamics, resulting
in a slight increase in the susceptible population (Figure S1, column 2). In contrast to Figure 5, sufficiently high
values of the treatment rate qT (Figure S1, column 3) allow for effective epidemic control. Indeed, in such a
configuration, when only a small proportion qTB of infections are treated with antimicrobial B, the epidemic is
controlled in the relatively short term, even if little effect is observed on the probability of therapeutic failure
iN (Figure S1F). However, increasing the proportion qTB effectively controls both the epidemic size (measured by
R0) and the evolutionary probability of therapeutic failure (measured by iN), leading to a fully susceptible host
population within a relatively short period (Figure S1I and L).

6.3 Global sensitivity analysis

We study the sensitivity of the epidemiological basic reproduction number, R0, and the evolutionary probability
of therapeutic failure, iNAB, to six parameters: the compliance probability to recommended guidelines (qC), the
time required for effective treatment (τr), the delay before treatment (τs), the treatment rate qT, the proportion
of treated infection with antimicrobial B (qTB), and the effectiveness of antimicrobial B compared to A (reff).
The range of variation for these parameters is provided in Table 1. Sensitivity indices are estimated by fitting an
ANOVA (Analysis of Variance) linear model, including third-order interactions, to the data generated by simulation.
This ANOVA linear model fits well, explaining at least 97% of the variance. For the R0, the sensitivity analysis
reveals that qT, qC, and τs are the most influential parameters significantly affecting the epidemiological R0. These
parameters account for 29%, 27%, and 24% of the variance, respectively (Figure S2A). These parameters are followed
by reff , which explains 5% of the variance. Finally, the importance of qTB and τr is quite negligible (Figure S2A).
For iNAB, q

T is the key parameter, explaining 66% of the variance (Figure S2B). It is followed by reff and qTB , which
explain 7% and 6% of the variance, respectively. The importance of qT, τs, and τr is marginal (Figure S2B).

6.4 Optimal intervention

We now investigate the result of implementing an optimal antimicrobial deployment strategy using the objective
(5.1). An optimal strategy is determined by the proportion q∗TB of antimicrobial B in the treatment landscape, with
the remaining proportion (q∗TA = 1− q∗TB ) being antimicrobial A.

With relatively high values of reff (the effectiveness of antimicrobial B compared to A) and short delay before
treatment τs ( eg., reff = 0.85, and τs = 4), increasing the treatment rate qT of infections within the host population
significantly reduces the likelihood of failing to control the outbreak using antimicrobials A and B (Figure 6).
However, in this scenario, effective epidemic control using antimicrobial drugs A and B is only possible with a
sufficiently high treatment rate within the host population (Figure 6A-C). Moreover, increasing the treatment rate
qT allows for effective epidemic control even when the compliance probability of the host population is relatively
weak (Figure 6C). A similar configuration is observed for relatively long delays before treatment(Figure 6D-F).
Finally, when the effectiveness of antimicrobial B compared to A, reff , is not strong enough, the use of antimicrobial
B is always not recommended, even when the delay before treatment τs is short and the compliance probability qC
is high (Figure S3).
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Figure 5: Dynamics of the nested model when the compliance is (qC = 0.5) and the relative effectiveness is
(reff = 0.85). (A,B,C) Relative effectiveness of treatment B compared to A within an unsuccessfully treated host
(state N). (D)-(L) The between-host dynamics with respect to the treatment rates. Parameter values are default
in Table 1, τs = 4 and τr = 3 days. The dashed blue curve represents the proportion of therapeutic failures in the
population at time t.
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Figure 6: For a given treatment rate qT within the host population, the minimum proportion q∗TB of antimicrobial
B, that ensures R0 to remain below one is determined with respect to the compliance probability qC. The part
on treated infections with antimicrobial A is q∗TA = 1 − q∗TB . Filled area: q∗TB does not exist such that, both
antimicrobials A and B fail to clear the outbreak. Here, reff = 0.85, τs = 4 (line 1) and τs = 7 (line 2), and other
parameter values are default in Table 1.

7 Discussion

The use of a single antimicrobial can be enough to clear the infection within the host population when (i) the com-
pliance probability of the population to recommended guidelines is sufficiently strong, (ii) the treatment capability
of infected individuals by the healthcare system is sufficiently high, and (iii) the time before treatment of infected
individuals is sufficiently short (Figure 7). Indeed, in the configuration where the average delay before treatment
of infections is 4 days (Figure 7A), at least 90% (ie., qT ≥ 0.9) of treated infections by the healthcare system is
required to clear the infection within the host population when the compliance probability is high enough (ie.,
qC ≥ 70%). Furthermore, with relatively long delays before treatment, it becomes quite difficult (in a mono-usage
of antimicrobial setting) to ensure the clearance of the infection within the host population even for high values of
treatment rates and compliance probabilities (Figure 7B,C).

Figure 7: Effect of the compliance probability (qC) and the treatment rate (qT) on the basic reproduction number
(RA

0 ) when only antimicrobial A is used. Here qT varies from 0.1 to 0.95 by step 0.1. From panel A to D we have
τs =4, 7, and 10 days respectively. The other parameter values are default in Table 1 and τr = 3 days.

As pointed out above, efficient control of the outbreak using only antimicrobial A requires a sufficiently high com-
pliance probability qC of the population to recommended guidelines (Figure 7). However, introducing antimicrobial
B into the treatment landscape can achieve effective outbreak control when compliance probability is low.

Consider a scenario with a treatment capability of infected individuals by the healthcare system at 95% (ie.,
qT = 0.95) and an average delay before treatment of about 4 days (ie., τs = 4). In a situation where the compliance
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probability qC = 0.8, using only antimicrobial A is sufficient for effective outbreak control (Figure 8A). However, if
the compliance probability is reduced to qC = 0.6, this approach fails in controlling the outbreak (Figure 8B). For this
moderate compliance value of qC = 0.6, by Figure 6C, introducing at least 65% (ie., q∗TB = 0.65) of antimicrobial B
into the treatment landscape is sufficient to ensure effective outbreak control (Figure 8C). Increasing the proportion
of antimicrobial B to 90% more quickly reduces the probability of therapeutic failure within the host population
(Figure 8C,D).

Our findings not only recalls that compliance is a key component for the sustainable use of antimicrobial agents
but also quantifies it relationships to the other key metrics of bacterial infection control (at both within and between
host levels). These results align with other works in the context of drug resistance, eg., [24, 32]. It is, therefore,
crucial to explicitly design drug properties that enhance community uptake [4]. However, improving compliance to
recommended prescription guidelines is challenging due to its relation to the diversity of external factors, including
individual characteristics, population culture, interactions with healthcare providers, and the healthcare system
itself that shapes it [30].

Figure 8: Dynamics of the nested model. (A-B) Only antimicrobial A is used and the compliance is qC = 0.8 for
panel A, and 0.6 for panel B. (C-D) Both antimicrobials A and B are used in a proportion qTB = 0.65, qTA = 1− qTB
for panel C, and qTB = 0.9, qTA = 1 − qTB for panel D. The relative effectiveness is (reff = 0.85) and the treatment
rate within the host population qT = 0.95. The other parameter values are default in Table 1 and τr = 3 days.

Caution should be exercised when introducing a new antimicrobial into the healthcare system landscape. The
threat of antimicrobial resistance necessitates the sparing use of new drugs, eg., [1, 33]. Even when the relative
effectiveness of the new antimicrobial compared to the older one is high, and the compliance probability of the host
population is strong, the treatment capability of infected individuals by the healthcare system is a crucial factor
for the positive impact of the new antimicrobial on the outbreak size. For instance, the low healthcare system’s
treatment capability can contribute to increasing the epidemiological basic reproduction number (eg., Figure S1,
line 1). While intermediate treatment capabilities may have a negligible effect on epidemiology, the introduction
of a new antimicrobial can negatively impact long-term evolutionary dynamics by increasing the probability of
therapeutic failure within the host population (eg., Figure S1, line 2). Furthermore, increasing the treatment
capability of the healthcare system lowers the compliance probability threshold to recommended guidelines, below
which any antimicrobial strategy would fail to control the epidemic (eg., Figure 6). This may be explained by the
fact that failure to sustainably control the infection with a newly introduced antimicrobial (intended to supplement
an older antimicrobial under which bacteria are out of control) can lead to the persistence of a bacterial population
with a higher average resistance level than initially (eg., Figure 2, line 2).

We assume that treated individuals who comply with recommended medication effectively clear the infection,
while non-compliant or untreated individuals fail to do so. However, this represents a potential limitation, as
variability in individual immune responses may lead to cases where infected individuals clear the infection without
receiving the drug or despite non-compliance with the treatment. The primary reason for this assumption is related
to the parameterization purposes of the proposed model. While the model can readily incorporate variability
in individual immune responses, parameterizing individual states resulting from such variability (e.g., individuals
clearing the infection without receiving the drug or despite non-compliance with the treatment) presents a significant
challenge.
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A Assumptions on the nested model (2.1) and (2.4)-(2.5)

Assumption A.1 (within-host model (2.1)) 1. Functions k, ξϑϱ , and p are always positive on R, with ϑ ∈
{C,N, U} and ϱ ∈ {A,B}. Furthermore, p is a bounded function on R, µ > 0 and κ > 0. Finally, the function
p
ξϑϱ

is continuous on R and satisfies p
ξϑϱ

> 0 and lim
|x|→∞

p
ξϑϱ
(x) = 0.

2. The mutation kernel J is bounded and integrable on R+, positive almost everywhere, and satisfies
∫
R+ J(x)dx >

0, J(−x) = J(x), for all x.

3. The mutation kernel J decays rather rapidly towards infinity in the sense that J(x) = O
(

1
|x|∞

)
as |x| → ∞.

In other words, lim
|x|→∞

|x|nJ(x) = 0, for all n ∈ N.

Assumption A.2 (between-host model (2.4)-(2.5)) 1. Recruitment rate Λ and natural death rate µh are
positive constants.

2. The treatment rates qT, qTA and qTB are positive constants.

3. The rates ωC,ϱ
U , ωN,ϱ

U , ωU
T belongs to L∞(R+), with respective essential upper bounds ωC,ϱ

U , ωN,ϱ
U , ωU

T and

positive essential lower bounds ωC,ϱ
U , ωN,ϱ

U , ωU
T, with ϱ ∈ {A,B}.

4. Parameters βU, αU, βϑ
ϱ , α

ϑ
ϱ and γϑ

ϱ (ϱ ∈ {A,B}, ϑ ∈ {C,N}) belongs to L∞(R+).

5. The transmission rates βU(·), βC
ϱ (·), βN

ϱ (·),s (ϱ ∈ {A,B}) are Lipschitz continuous almost everywhere on R+.

B The evolutionary operator Π

The function Π(τ2, τ1), defined for 0 ≤ τ1 ≤ τ2 < ∞, represents the evolutionary system generated by the linear
operator A, which describes the transitions between different infection statuses. It means that Π is generated from
the following evolutionary system

(∂t + ∂τ ) I(t, τ) = A(τ)I(t, τ), (B.1)

where

q =

 qCq
Te

(1− qC)q
Te

1− qT

 ,

A(τ) =

 −ΦC(τ) O2 qCq
Te ωU

T(τ)

O2 −ΦN(τ) (1− qC)q
Te ωU

T(τ)
et(1− qT)ωC

U(τ) et(1− qT)ωN
U(τ) −ΦU(τ)

 ,

with ΦC(τ) = αC(τ) + γC(τ) + (1− qT)ωC
U(τ) + µh, Φ

N(τ) = αN(τ) + γN(τ) + (1− qT)ωN
U(τ) + µh, and ΦU(τ) =

αU(τ) + qTωU
T(τ) + µh.

If, for example, the linear operator A is diagonal, we have

I(t, τ) =

{
e
∫ τ
0

A(η)dηI(t− τ, 0) = Π(τ, 0)I(t− τ, 0); t > τ

e
∫ τ
τ−t

A(η)dηI(0, τ − t) = Π(τ, τ − t)I(0, τ − t); t < τ.

In such a configuration we explicitly have Π(τ2, τ1) = e
∫ τ2
τ1

A(η)dη
. However, obtaining an explicit expression for Π

may not always be straightforward or possible in general. A naive approach would be to solve problem (B.1) as
above, but it is well known that such an exponent formula does not give a solution to the problem at hand.
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C Detailed formulation of System (2.4) and (2.5)

Ṡ(t) = Λ− S(t)λ(t)− µhS(t),

(∂t + ∂τ ) I
C
A(t, τ) = −

(
αC
A(τ) + γC

A(τ) + (1− qTqTA)ω
C,A
U (τ) + µh

)
ICA(t, τ) + qCq

TqTA ωU
T(τ)I

U(t, τ),

(∂t + ∂τ ) I
C
B (t, τ) = −

(
αC
B(τ) + γC

B (τ) + (1− qTqTB)ω
C,B
U (τ) + µh

)
ICB (t, τ) + qCq

TqTB ωU
T(τ)I

U(t, τ),

(∂t + ∂τ ) I
N
A (t, τ) = −

(
αN
A(τ) + γN

A(τ) + (1− qTqTA)ω
N,A
U (τ) + µh

)
INA (t, τ) + (1− qC)q

TqTA ωU
T(τ)I

U(t, τ),

(∂t + ∂τ ) I
N
B (t, τ) = −

(
αN
B(τ) + γN

B (τ) + (1− qTqTB)ω
N,B
U (τ) + µh

)
INB (t, τ) + (1− qC)q

TqTB ωU
T(τ)I

U(t, τ),

(∂t + ∂τ ) I
U(t, τ) = −

(
αU(τ) + qT ωU

T(τ) + µh

)
IU(t, τ) + (1− qTqTA)

(
ωC,A
U (τ)ICA(t, τ) + ωN,A

U (τ)INA (t, τ)
)

+(1− qTqTB)
(
ωC,B
U (τ)ICB (t, τ) + ωN,B

U (τ)INB (t, τ)
)
,

ṘA(t) =

∫ ∞

0

(
γC
A(τ)I

C
A(t, τ) + γN

A(τ)I
N
A (t, τ)

)
dτ − µhRA(t),

ṘB(t) =

∫ ∞

0

(
γC
B (τ)I

C
B (t, τ) + γN

B (τ)I
N
B (t, τ)

)
dτ − µhRB(t),

ICA(t, τ = 0) = qCq
TqTA λ(t)S(t), ICB (t, τ = 0) = qCq

TqTB λ(t)S(t),

INA (t, τ = 0) = (1− qC)q
TqTA λ(t)S(t), INB (t, τ = 0) = (1− qC)q

TqTB λ(t)S(t),

IU(t, τ = 0) = (1− qT)λ(t)S(t),

S(0) = S0, RA(0) = RA,0, RB(0) = RB,0, I
U(0, τ) = IU0 (τ), Iϑϱ (0, τ) = Iϑϱ,0(τ), ϑ ∈ {C,N}, ϱ ∈ {A,B}.

(C.1)
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D Supplementary figure

Figure S1: As in Figure 5, but with a compliance probability of qC = 0.7.
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Figure S2: Sensitivity indices for: (A) the epidemiological basic reproduction number R0, and (B) the evolutionary
probability of therapeutic failure iNAB. The factors considered are the compliance probability to recommended
guidelines (qC), the time required for an effective treatment (τr), the delay prior to treatment (τs), the treatment
rate qT, the proportion of treated infection with antimicrobial B (qTB), and the effectiveness of antimicrobial B
compared to A (reff). Main indices show the effect of each factor alone, while total indices show the effect of
interactions with other factors.
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Figure S3: As in Figure 6, but with reff = 0.7 and τs = 4.
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