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Abstract. Counterfactual visual explanations are aimed at identifying
changes in an image that will modify the prediction of a classifier. Unlike
adversarial images, counterfactuals are required to be realistic. For this
reason generative models such as variational autoencoders (VAE) have
been used to restrain the search of counterfactuals on the data manifold.
However such gradient-based approaches remain limited even when they
deal with simple datasets such as MNIST. Conjecturing that these limita-
tions result from a plateau effect which makes the gradient noisy and less
informative, we improve the gradient estimation by training an ensemble of
classifiers directly in the latent space of VAEs. Several experiments show
that the resulting method called Clarity delivers counterfactual images of
high-quality, competitive with the state-of-the-art.

1 Introduction

Deep Neural Networks are powerful predictive tools while in many application
areas, they are also expected to deliver interpretable results that can be well
understood and accepted by human agents. One technique increasing inter-
pretability is based on the generation of counterfactuals [1, 2]: given a classifier
C, an input X and its predicted class y = argmax(C(X)) with C(X) the output
distribution of the classifier, a counterfactual X ′ of X for a target class y′ ̸= y is
an input as close as possible to X but of predicted class y′ = argmax(C(X ′)).
Moreover we add the constraint that X ′ must be a realistic/plausible example
of class y′ according to human perception, which distinguishes a counterfactual
from an adversarial attack. A counterfactual thus expresses the minimal modi-
fications that must be made to X so that it is interpreted by the classifier and
by human beings as belonging to the target class y′ instead of y. While counter-
factuals are often presented in the context of low dimensional tabular data, the
present work falls within the realm of visual counterfactual explanations, where
inputs X are images. Generating realistic counterfactual explanations in a high
dimensional space such as an image space, is challenging. Indeed, a fundamental
issue is that we are trying to produce a realistic image representing a high-level
concept, e.g., a real-world object, by modifying low-level data (pixels).

In this paper we focus on gradient-based methods for generating visual coun-
terfactuals. Under this term, we understand methods such as [2, 3, 4] based on
gradient descent to find the counterfactual image X ′, typically by searching an



image that substantially maximizes the probability P (Y = y′|X ′) of the target
class y′, starting from X. In this context of gradient-based methods, we propose
a new approach based on techniques enabling the design of image counterfac-
tuals of high quality while other gradient-based methods fail to do so, even on
an image classification problem as simple as MNIST. These techniques help to
construct models explainable by design, which is highly desirable in application
where explainability is needed and expected.

2 Method Clarity

Our approach, called Clarity, consists in computing the gradient from an ensem-
ble of classifiers directly trained in the latent space of a VAE. We show that only
the combined contributions of the VAE and of an ensemble model enable a stable
computation of the gradient (i.e., reduce its variance), ensure the convergence
of the gradient descent and finally result in quality visual counterfactuals.

Similarly to [3], we restrict the space in which an explanation can be gener-
ated to the low dimensional latent space Z of a VAE. Let qθ(z|X) be the normal
variational posterior which samples a latent variable z ∈ Z ⊂ Rd from an image
X ∈ X ⊂ Rk, with d ≪ k, thanks to an encoder network parameterized by θ.
Let z 7→ Gψ(z) be the generative function, implemented as a decoder network
parameterized by ψ, that decodes the latent variable z into the image X, i.e.
Gψ(z) ≈ X. Clarity seeks for an optimal latent representation z′ of a counter-
factual, and then uses the decoder to produce the explanation X ′. Moreover,
Clarity relies on an ensemble model such as the one used in [4] to improve the
counterfactual quality. The idea is to implicitly minimize the epistemic uncer-
tainty associated with the produced counterfactual to ensure a high degree of
realism. We denote (Clatentm )Mm=1 the ensemble of classifiers.

Importantly, our method differs from others in that these classifiers Clatentm

are trained from the latent space Z rather than the image space X . This de-
sign improves algorithm convergence but prevents Clarity from being applied
to a classifier whose input space is X . Clarity seeks to minimize the objective
function defined in Equation 1. In order to obtain a deterministic algorithm
(see Algorithm 1), the mean of the variational posterior qθ(z|X) is chosen as the
starting point of the optimization.

LClarity(z′) =
1

M

M∑
m=1

L(Clatentm (z′), y′) + λ dlatent(z, z′). (1)

where L denotes the cross-entropy loss, dlatent is the L1 distance computed in the
latent space Z and z is the encoding of X. The first term of LClarity forces the
counterfactual to be a realistic element of the target class y′ while the second
term penalizes the counterfactual from going too far from the original image
X. The hyperparameter λ balances these two objectives. The counterfactual is
finally obtained by decoding the minimizer z′ of LClarity, i.e., X ′ = Gψ(z′).



Algorithm 1 Clarity

Input: Original image X, output probability pm(y′ | z′) of classifier Clatentm for
target class y′, target probability γ, maximum number of iterations N , encoder
qθ(z|X) = N (µ,Σ) and decoder Gψ(z)
Output: counterfactual image X ′

µ,Σ← qθ(z|X)
z ← µ, z′ ← z, i← 0
while 1

M

∑M
m=1 pm(y′ | z′) ≤ γ and i ≤ N do

S(z′, y′) = ∇z′
(

1
M

M∑
m=1

L(Clatentm (z′), y′) + λ dlatent(z, z′)

)
z′ ← optimizer(z′, S(z′, y′))
i← i+ 1

end
return X ′ = Gψ(z′)

3 Related methods

In 2017, Watcher and al. [2] first propose to generate counterfactuals by min-
imizing the objective function LWatcher(X

′) = L(C(X ′), y′) + λ d(X,X ′). In
this first approach, there is no latent space, and therefore the unique classifier
C is defined directly in the input space X . This first method is well adapted to
tabular data, but fails to converge for high-dimensional data such as images.

In 2019, Joshi and al. [3] propose the REVISE method, which seeks for the
explanation in the latent space of a VAE by optimizing the objective function
LREV ISE(z′) = L(C(Gψ(z′)), y′) + λ d(X,Gψ(z′)). Unlike Clarity, the classifier
C of REVISE is defined in the image space X , allowing REVISE to be applied to
any classifier. However, as shown in the experiments, this choice has a negative
impact on the quality and convergence speed of REVISE. For a fair comparison
with Clarity, an ensemble version, called REVISE-ensemble, is also introduced:
LREV ISE−e(z

′) = 1
M

∑M
m=1 L(Cm(Gψ(z′)), y′) + λ d(X,Gψ(z′)).

Finally, in 2021, Schut and al. [4] propose to minimize the epistemic un-
certainty associated to the counterfactual example. The epistemic uncertainty
can be interpreted as a measure of realism and can be estimated thanks to an
ensemble model. Schut and al. show that minimizing an objective function com-
posed of a cross entropy term and of an uncertainty term amounts to minimize
a simpler objective function: LSchut(X ′) = 1

M

∑M
m=1 L(Cm(X ′), y′). The prox-

imity of the counterfactual to the original image doesn’t appear in the objective
function, and is implicitly obtained by sparse updates of X ′.

4 Experiments

In this section, we compare Clarity and the three other methods on two reference
datasets: MNIST (digit prediction) and CelebA (hair color prediction). Due to
space constraints, Clarity is only compared with the best performing method
on CelebA: REVISE-ensemble. For all methods, the best hyperparameter λ is



Table 1: MNIST dataset on the left: Digit counterfactual explanation. From
top to bottom, the explanations are: 3→ 8, 0→ 9, 4→ 7, 8→ 0, 2→ 1, 9→ 5.
CelebA dataset on the right: Hair color counterfactual explanation. From top to
bottom, the explanations are: Brown → Black, Black → Grey, Blond → Black,
Brown → Blond, Black → Grey, Black → Blond.

Original
image

Watcher Schut REVISE-
ensemble

Clarity Original
image

REVISE-
ensemble

Clarity

chosen by visual inspection. The target probability P (Y = y′|X ′) is set to 0.99.
The dimension of the latent space is 16 for MNIST and 512 for CelebA. Other
parameters depend on the dataset. For each method, we train CNN classifiers
with adversarial training to improve the quality of the counterfactuals.

In column 2 of Table 1, we observe that Watcher’s method is not well suited
to image data as it fails to produce examples belonging to the target class. For
Schut’s method (column 3), counterfactuals are still very noisy. As observed in
the original paper [4], this algorithm does not converge for every pair of starting
and target classes. Schut’s method is best suited to deal with tabular data.

For the MNIST dataset, REVISE-ensemble’s counterfactuals are generally
better and less noisy thanks to the regularization induced by the latent space
(Table 1, column 4). The explanation even preserves handwriting features such
as the thickness of the line. But there are still some cases where the counter-
factual examples are unrealistic (8 → 0), are ambiguous (0 → 9) or do not
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Fig. 1: REVISE’s classifier in blue has the same architecture as Clarity’s encoder.

belong to the target class (3→ 8). It should be noticed that REVISE-ensemble
only marginally improves the realism of counterfactuals compared to REVISE.
(experiments with REVISE are not presented in this paper due to space con-
straints). This phenomenon is a consequence of the plateau effect described in
Section 5. For MNIST, Clarity proposes counterfactuals of higher quality with-
out degrading classifier performance: 98% accuracy on the test set for Clarity’s
classifier, 99% for a classifier trained in the image space.

For the CelebA dataset, the goal of the explanations is to change the hair
color without modifying anything else. On Table 1, we can see that REVISE-
ensemble distorts faces more often than Clarity (change gender, add makeup).
Clarity is more conservative, so the counterfactual is closer to the original image.

5 Discussion

In this section we justify Clarity’s rationale. Figure 1 emphasizes the differences
in the architectures of REVISE and Clarity: REVISE uses a classifier in which
both blue and red parts are trained for the classification task, whereas only the
red part after the encoder is trained in Clarity. Ultimately, the architectures of
REVISE’s classifier and Clarity’s ”Encoder + Classifier” are identical. Clarity’s
architecture offers two advantages over REVISE: Firstly Clarity is an order of
magnitude faster than REVISE. Indeed, at each iteration of the optimizer, the
decoder (green) and the classifier (blue and red) are evaluated for REVISE, while
Clarity only evaluates the classifier (red).

Secondly, Clarity’s gradient is less noisy and more informative, which al-
lows a better convergence. This can be explained by considering for instance
a binary classification problem, and X(t) an example evolving regularly be-
tween classes 0 and 1 with respect to t ∈ [0, 1]. For a classifier trained in
the image space (Watcher’s and Schut’s cases), the target probability function
t 7→ P (Y = 1 |X(t)) is very steep in the low density zone (inter-class transi-
tion: grey zone in Figure 2a). This steep variation results in the appearance
of a plateau corresponding to probabilities close to 1. In this zone, the algo-
rithm stops prematurely, preventing it from converging properly. For the cases
of REVISE and REVISE-ensemble, even if the classifier is viewed from the la-
tent space (C is composed with Gψ), the plateau effect is still present in the
compressed inter-class transition zone of the latent space. Therefore the same
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Fig. 2: Probability of the target class Y = 1 for three different classifiers. The
x-axis represents either the image space or latent space. Blue and orange circles
represent classes 0 and 1. The grey zone represents the area between classes
with out-of-distribution images. This zone is compressed in the latent space.

convergence problem appears (Figure 2b). For Clarity, on the other hand, the
target probability function shows smoother variations, as classifiers are trained
in the latent space (Figure 2c). As a result, Clarity demonstrates better conver-
gence properties (less local minima), and benefits even more from the ensemble
model it is based on (lower gradient variance).

6 Conclusion

In this paper we propose a method based on generative models and ensembles of
classifiers, that improves the quality of counterfactual visual explanations. This
method contributes to make models more interpretable by design, and capable
of generating realistic and unambiguous counterfactual images with minimal
changes. Moreover, such counterfactual images are an order of magnitude faster
to compute. At a more fundamental level, we give insights why applying a
gradient-based method to a classifier trained in the latent space of a VAE is more
likely to produce counterfactual images of high quality compared to a classifier
trained in the image space. We think that the Clarity approach proposes new
and effective directions in the search of counterfactual explanations.

References

[1] Riccardo Guidotti. Counterfactual explanations and how to find them: literature review
and benchmarking. Data Mining and Knowledge Discovery, 2022.

[2] S. Watcher, B. D. Mittelstadt, and C. Russell. Counterfactual explanations without open-
ing the black box: Automated decisions and the gdpr. Harvard Journal of Law & Tech-
nology, 31:2018, 2017.

[3] S. Joshi, O. Koyejo, W. Vijitbenjaronk, B. Kim, and J. Ghosh. Towards realistic individual
recourse and actionable explanations in black-box decision making systems. 2019.

[4] L. Schut, O. Key, R. McGrath, L. Costabello, B. Sacaleanu, M. Corcoran, and Y. Gal.
Generating interpretable counterfactual explanations by implicit minimisation of epistemic
and aleatoric uncertainties. In AISTATS 2021, April 13-15, 2021, Virtual Event, volume
130 of Proceedings of Machine Learning Research, pages 1756–1764. PMLR.


	Introduction
	Method Clarity
	Related methods
	Experiments
	Discussion
	Conclusion

