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Abstract. This study investigates the dynamic responses of cracked beams placed on a
visco-elastic foundation and subjected to moving loads. Utilizing the Euler–Bernoulli
beam model, the behavior of the beams is characterized, accounting for multiple open
cracks on one side with varying depths. Through the application of Fourier transform
techniques and Green’s function, the dynamic response of the beam is analytically deter-
mined in the frequency domain. Furthermore, an analytical model for railway sleepers
is developed by integrating them with a periodically supported beam model. This inte-
grated model enables efficient computation of the dynamic behavior of damaged sleepers,
where cracks are present at specific locations. Additionally, a calculation model utilizing
the finite element method is established and compared with the analytical model. The
parametric study shows the influence of crack properties on the dynamic beam responses.

Keywords: cracked beam, railway sleeper, visco-elastic foundation, Euler–Bernoulli beam.

1. INTRODUCTION

Soil-structure interaction, as seen in pipelines, footings, piles, and railways, often
employs simplified one-dimensional (1D) beam models due to their straightforward ge-
ometry. The ground is frequently modeled by using Winkler [1], Pasternak [2], Vlasov [3],
or Kerr [4] foundations. This study adopts the Kelvin–Voigt model to simulate the inter-
action between a beam and its foundation in both static and dynamic settings. Unlike
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the simpler Winkler model, the Kelvin–Voigt model introduces a damping term, mak-
ing it more suitable for capturing the dynamic behavior of the beam-foundation system.
Euler–Bernoulli beam theory is typically employed to describe vertical displacements re-
sulting from transversely distributed forces.

The dynamic response of a beam on an elastic foundation can be studied through
analytical, numerical, or semi-analytical methods. The Euler–Bernoulli and Timoshenko
beam theories are commonly used in these analyses. Past research has extensively ex-
amined the vibration of beams supported on Kelvin–Voigt foundations, including works
on the stabilization and eigenfrequency effects. Recent studies have also focused on the
impact of localized damping and size-dependent foundation properties. Zhang et al. [5]
focus on the spectrum of the Euler–Bernoulli beam equation with Kelvin–Voigt damp-
ing. Later, a logarithmic stabilization of the Euler–Bernoulli transmission plate equation
with locally distributed Kelvin–Voigt damping is presented by Hassine et al. [6]. Re-
cently, a nonlinear vibration of a fractional Kelvin–Voigt visco-elastic beam on a nonlin-
ear elastic foundation is presented by Javadi et al. [7]. The responses of the beam-soil
system are also developed by using the theory of the Timoshenko beam. Vibration of
a non-local Kelvin–Voigt visco-elastic damped Timoshenko beam is developed by Lei et
al. [8]. The effect of local Kelvin–Voigt damping of eigenfrequencies of twisted Timo-
shenko beams is investigated by Chen et al. [9–12] in several scientific works. Recent
works focus on the influence of the size-dependent foundation on the beam responses.
Zhang et al. [13, 14] studied the buckling and free vibration of functionally graded (FG)
sandwich Timoshenko beams resting on a non-local visco-elastic foundation.

In particular, based on a beam-soil model, numerous works have been developed in
the railway engineering domain. [15] studied the vibration of solids and structures under
a moving load. Nguyen and Duhamel [16, 17] presented a finite element procedure for
nonlinear structures in moving coordinates. The dynamics of beams on non-uniform
nonlinear foundations subjected to moving loads are calculated by [18]. The dynamic
model of railway sleepers on a Kelvin–Voigt foundation is developed by Tran et al. [19–
25].

Besides the studies of an undamaged beam which includes all those mentioned
above, it should be noted that the presence of cracks in buried or ground-supported
structures is not infrequent [26, 27]. The flexibility of the system increases when the
cracks appear locally. The responses of damaged structures are obviously changed and
consequently, the system eventually fails. Therefore, the dynamic behavior of the dam-
aged beam-soil system is a subject of undeniable technological interest. In the existing
works, the cracked beam is commonly considered as a set of segments connected by
massless rotational springs which are located at the crack positions. This approach has
been investigated in numerous researches [28, 29]. The stiffness of a rotational spring is
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determined as a function of crack length with the help of Linear Elastic Fracture Mechan-
ics theory (see also Lemaitre [30]). By using this model, Khiem et al. [31] worked on a
simplified method to calculate the natural frequency of a multiply-cracked beam. Later,
Lele et al. [32] modeled a transverse vibration of a short beam for crack detection and
modeled the crack extension by using FEM. Viola et al. [33] developed a method to de-
tect the crack location by using the cracked beam element method. A continuous model
for the transverse vibration of cracked Timoshenko beams is presented by Carneiro [34].
Hearndon [35] described a non-destructive damage detection method using an effective
modulus approach. A vibration of a cracked beam on an elastic foundation is analyzed
by Batihan [36]. By introducing rotational and longitudinal springs which result in the
slope and transverse displacement discontinuities at the cracked cross-sections, Darban
et al. [37] calculated the free transverse vibrations of nano-beams. Recently, the natural
frequencies of the vibration of a cracked rectangular Timoshenko beam within an elas-
tic medium have been calculated by Loya et al. [38, 39]. For a system consisting of a
cracked beam and soil subjected to moving loads, Pham et al. [40] calculated the dy-
namic response of a cracked multi-span continuous beam subjected to a moving multi-
axle vehicle load. Yan et al. [41] calculated the dynamic behavior of edge-cracked shear
deformable FG beams on an elastic foundation under a moving load. Several methods
have been developed in recent years to model cracks in structures and materials. Rezaiee
et al. [42] used a numerical method to develop a force-based rectangular cracked element,
while Zheng et al. [43] employed a phase field fracture method to model a hyper-elastic
material and hydro-gel using the ABAQUS software.

This study focuses on calculating the dynamic responses of a cracked beam on a
Kelvin–Voigt foundation subjected to moving loads using an Euler–Bernoulli beam model.
Open cracks on one side of the beam are modeled as rotational springs, with stiffness de-
pendent on crack depth. Analysis is performed in the frequency domain using Green’s
function. A Finite Element Method (FEM) model, developed with Cast3M software, in-
cludes a structural system of rails, sleepers, an elastic foundation, and connecting springs.
Dynamic computations are conducted using FEM and compared with analytical solu-
tions. Additionally, a dynamic model of railway sleepers integrating periodically sup-
ported beam and cracked beam models is presented. Numerical and analytical results
are discussed in Section 3, followed by concluding remarks in Section 4.

2. THEORY

2.1. Dynamic model for the railway sleeper

On this track, the Euler–Bernoulli beam model is used to illustrate the dynamic be-
haviors of the sleepers. The sleeper with a total length of 2L with (−L ≤ x ≤ L) is placed
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on a viscoelastic foundation modeled by a Kelvin–Voigt foundation as shown in Fig. 1
and subjected to the two moving loads and on rails 1 and 2, respectively.

Fig. 1. Analytical model representation for the railway sleeper

It should be noted that Pj and Qj are the wheel loads acting on the rails while R1 and
R2 are the reaction forces from the supports acting back on the rails. These two forces are
different because the wheel loads act on the rails and are distributed to the supports. In
the time domain, the dynamic vertical displacement of the beam is written as follows:

Bs
∂4ws

∂x4 + Ms
∂2ws

∂t2 + k f ws + ζ f
∂ws

∂t
= F(x, t), (1)

where k f is stiffness, ζ f is damping coefficient, Bs = Es Is is flexural rigidity, Ms = ρsSs is
mass per length unit.

Two reaction forces R1(t) and R2(t) apply on a sleeper from the rail through a rail
pad that is considered to act as dampers and springs. The sleeper is subjected to a total
force at two rail positions ±a which can be written using Dirac’s delta distribution as
follows:

F(x, t) = −R1(t)δ(x − a)− R2(t)δ(x + a), (2)

where the total force in the frequency domain can be expressed as follows:

F̂(x, ω) = −R̂1(ω)δ(x − a)− R̂2(ω)δ(x + a).
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Through the utilization of Fourier’s transform and the inclusion of Eq. (2), Eq. (1)
can be expressed in the frequency domain as follows:

∂4ŵs(x, ω)

∂x4 − Msω
2 − kb

Bs
ŵs(x, ω) = − R̂1(ω)

Bs
δ(x − a)− R̂2(ω)

Bs
δ(x + a), (3)

where ŵs(x, ω) is the displacement of the beam in the frequency domain and the stiffness
dynamic of the foundation kb is defined as: kb = k f + jωζ f .

Eq. (3) outlines the beam responses. To solve this equation, we will employ Green’s
function, determined as follows:

∂4G(x, ω; a)
∂x4 − λ4

s G(x, ω; a) = δ(x − a).

The dynamic equation of the railway sleeper subjected to the two moving loads is
obtained where the solutions are presented in Appendix A. Moreover, it can be consid-
ered that the n open cracks on one side of the beam appear in the interval between the
two rails (−a < xcj < a). Therefore, two Green’s functions G(x, ω;±a) are calculated
using Eq. (A.4) which is explained in Appendix A.

2.2. Dynamic model for the rail

The railway route depicted in Fig. 2 can be segmented into two distinct models:
one for the rail, depicted as a regularly supported beam, and the other for the sleeper,
illustrated as a beam positioned on a visco-elastic foundation. Combining these two
models results in dynamic track responses.

Fig. 2. Ballasted railway track

In this model, the rails are conceptualized as infinite beams positioned on the pe-
riodic supports and exposed to K moving loads Qj characterized by the speed ν and
distance Dj from the first wheel as shown in Fig. 3.
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Fig. 3. Periodically supported beam under the influence of moving loads

Let Rn(t) represent the reaction forces of the supports on the rail and wr(y, t) the
displacement of the rail in the time domain. The dynamic behavior of the rail is described
using the Euler–Bernoulli beam model as follows:

Br
∂4wr

∂y4 + Mr
∂2wr

∂t2 +
∞

∑
n=−∞

Rn(t)δ(y − nl) =
K

∑
j=1

Qjδ(y + Dj − vt),

where Br = Er Ir is the flexural rigidity; Mr = ρrSr is the mass per length unit and l is
the distance between two supports. In the steady-state condition, it is considered that the
responses of the supports are the same function with a time delay, for moving from one

support to the next one (Floquet’s theorem): Rn(t) = R
(

t − nl
v

)
. Therefore, using the

Fourier transform of the last equation two times and then the inverse Fourier transform,
the relationship between the reaction force and the displacement of the support in the
frequency domain can be written as follows:

R̂(ω) = K(ω)ŵr(0, ω) +Q(ω), (4)

where the two functions K(ω) and Q(ω) are defined as follows:

K(ω) = 4λrBr

 sin lχr

cos lχr − cos
ωl
ν

− sinh lχr

cosh lχr − cos
ωl
ν


−1

,

Q(ω) =
K(ω)

νBr

((ω

ν

)4
− χ4

r

) K

∑
j=1

Qje
−j

ωDj

ν ,
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where χr =
4

√
Mrω2

Br
. Each support can be considered as a spring in the frequency do-

main with the stiffness K. This relationship depends only on the rail and moving load
parameters, hence it holds for all types of foundations.

2.3. Coupling of the two models and solution

The beam displacement can be computed using the Green’s function as follows:

ŵs(x, ω) = −R̂(ω)G(x, ω; a). (5)

Therefore, the displacement of the railway sleeper subjected to the two reaction forces
can be defined as follows:{

ŵs(a, ω) = −R̂1(ω)G(a, ω; a)− R̂2(ω)G(a, ω;−a),

ŵs(−a, ω) = −R̂1(ω)G(−a, ω; a)− R̂2(ω)G(−a, ω;−a).
(6)

In this model, the rail-pad can be considered as a spring-damper system. In the
frequency domain, the reaction force can be calculated via the rail-pad as follows:{

R̂1(ω) = kp(ω)(ŵ1(ω)− ŵs(a, ω)),

R̂2(ω) = kp(ω)(ŵ2(ω)− ŵs(−a, ω)),

where ŵ1(ω) and ŵ2(ω) are the displacements of rails 1 and 2 at the crossing points with
the reference sleeper (y = 0 and x = ±a), kp = krp + jωζrp is the dynamic stiffness of the
rail pad. By substituting the last result into Eq. (4), the relationship between the reaction
force put on the sleeper and the sleeper displacement is given as follows:

R̂1(ω) =
kpK

kp +K ŵs(a, ω) +
kp

kp +KQ1,

R̂2(ω) =
kpK

kp +K ŵs(−a, ω) +
kp

kp +KQ2.
(7)

Then, by substituting Eq. (7) into Eq. (6), the reaction forces applied on the beam can
be found as follows: {

R̂1(ω) = Ψ1(ω)Q1 + Γ1(ω)Q2,

R̂2(ω) = Ψ2(ω)Q1 + Γ2(ω)Q2,
(8)

where the four functions are defined as follows:
Ψ1 =

Bs [G(−a, ω;−a) + γ(ω)]

Φ(ω)
−H(ω),

Ψ2 =
Bs [G(a, ω; a) + γ(ω)]

Φ(γ)
−H(ω),


Γ1 =

−BsG(a, ω; a)
Φ(ω)

−H(ω),

Γ2 =
−BsG(−a, ω;−a)

Φ(ω)
−H(ω),
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where 
Φ(ω) = K ([γ(ω) + G(a, ω; a)] [γ(ω) + G(−a, ω;−a)]) ,

γ(ω) = Bs
kp +K

kpK
,

H(ω) = G(a, ω; a)G(−a, ω; a).

Eq. (8) provides analytical expressions for the reaction forces exerted on the beam. It
should be remarked that in the symmetrical configuration, the problem can be simplified
with the help of the following results:{

Ψ1(ω) = Ψ2(ω),

Γ1(ω) = Γ2(ω).

Eq. (8) shows the proportional relation of the reaction force in the function of two loads.
By substituting this equation into Eq. (5), the total displacements of the cracked railway
sleeper under moving loads can be computed. Notably, the reaction force is analytically
calculated and is contingent on the track parameters. Furthermore, the reaction force
exhibits a linear relationship with the moving loads.

3. NUMERIC EXAMPLE

The numerical examples of the presented model will be calculated using the param-
eters in Table 1. The parameters of the rail and the sleeper correspond to the rail UIC 60
and sleeper M450 which SATEBA produces, respectively. The other parameters are usual
values found in published works by Hoang et al. [44], Tran et al. [20], Azoh et al. [45].
While the moving loads applied to the two rails are theoretically equal due to the sym-
metry of the problem, the distribution of loads from a single axle to the two rails is not
equal as the train moves. Consequently, in this paper, the sleeper responses are calcu-
lated considering a non-symmetric load distribution: P1 = 0.9Q1 and Q1 = 100 kN. The
train speed is v = 150 km/h which corresponds to the operating speeds of typical French
intercity trains such as Corail.

3.1. Validation of the model

To validate the proposed dynamic model, the results for an undamaged sleeper were
compared with existing analytical models, particularly the model developed by Tran et
al. [20]. Noting that this work developed the analytical model with a pre-stressed sleeper,
so the effect of pre-stressed in the sleeper will not be considered in the comparison. The
track parameters are shown in Table 1. The depth of the crack is: kα = 0. A finite element
method (FEM) model was also developed using Cast3M software to provide numerical
results for comparison [46].
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Table 1. Parameters of the railway track

Content Unit Notation Value

Flexural rigidity of rail MNm2 Br 6.3
Linear mass density of rail kgm−1 Mr 59.98
Stiffness of rail pad MNm−1 krp 192
Damping coefficient of rail pad MNsm−1 ζrp 1.97
Inter-sleeper distance m l 0.6
Flexural rigidity of sleeper MNm2 Bs 8.13
Linear mass density of sleeper kgm−1 Ms 145.92
Sleeper length m 2L 2.41
Linear stiffness coefficient of foundation MNm−2 k f 182.57
Linear damping coefficient of foundation MNsm−2 ζ f 24.4
Track gauge m 2a 1.435

Figs. 4 and 5 present the comparison of the sleeper’s displacement when the axle
crosses it at a reference time t = 0. The red and yellow lines indicate the deformation
calculated by the proposed model and by Tran et al. [20], respectively. The blue crosses
represent the FEM results, while the black line shows the initial shape of the sleeper. The
two dashed lines depict the positions of the two rails: rail 1 and rail 2 are colored green
and purple, respectively.

Fig. 4. Comparison of the rail deflections calculated by the models in the time domain, at the
reference time t = 0: black continuous line: initial shape, golden continuous line: cracked beam,

red continuous line: perfect beam, blue crosses: FEM model

The asymmetrical movement loads result in a non-symmetrical distortion of the
sleeper. Notably, the proposed and current models exhibit good agreement, with a max-
imum discrepancy of less than 5% between the analytical and FEM models. In Fig. 4,
the dotted purple line marks the position with maximum discrepancy of 4% of the FEM
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Fig. 5. Comparison of the rail strains calculated by the models in the time domain, at the refer-
ence time t = 0: black continuous line: initial shape, golden continuous line: cracked beam, red

continuous line: perfect beam, blue crosses: FEM model

model (blue line) and analytical model (yellow line), in which two displacement values
are written as 0.125 mm and 0.130 mm, respectively. This confirms the accuracy of both
the proposed model and the FEM approach in predicting the sleeper’s dynamic behavior
under moving loads.

It should be noted that when hc = 0, no discontinuity occurs. Hence, from a physical
point of view: ∆θ = 0. On the other hand, mathematically, this phenomenon results in
the following outcome: kc → ∞ (see Eq. (6)). Consequently, Ch = 0. Clearly, this specific
scenario is adequately addressed by the model featuring a rotational spring, indicating
that the beam remains undamaged when hc = 0.

3.2. Case study: sleeper with 2 cracks

The occurrence of multiple cracks on sleeper structures is a common phenomenon
and can be attributed to several factors. Firstly, uneven stress distribution on the surface
of the sleeper can lead to the appearance of multiple cracks. Different areas of the sur-
face may experience varying stress levels, resulting in the formation of multiple cracks.
Secondly, cracks can interact with each other. When one crack forms, it can alter the sur-
rounding structure and facilitate the formation of additional cracks, leading to a network
of cracks. Thirdly, environmental and weather factors can cause the expansion and ap-
pearance of more cracks. This often occurs in outdoor structures, like railway sleepers,
that are exposed to changing weather and environmental conditions. Lastly, the material
characteristics play a crucial role. Different materials have varying capacities to with-
stand stress and environmental impacts. A lack of understanding in material design and
usage can result in multiple cracks due to shortcomings in the design and construction
process.



Dynamical behavior of damaged railway sleeper subjected to moving loads: Parametric study of crack properties 11

3.2.1. Two symmetrical cracks across the center of the sleeper

In reality, it is almost impossible for two cracks to be perfectly symmetrical across the
center of the sleeper. However, to thoroughly understand the issue being investigated,
this section will present a few special cases. These examples will illustrate the impact of
crack characteristics (such as position and depth) on displacement and reaction forces at
various points on the sleeper.

In the case of two cracks at the positions xc1 = −0.25 m, xc2 = 0.25 m and xc1 = −1/3
m, xc2 = 1/3 m, the sleeper nearly splits into two separate sections when one of the
two cracks has a high ratio h̄ and the other crack has a low ratio h̄. Additionally, the
sleeper practically splits into three separate sections when both cracks have high ratios h̄

Fig. 6. Influence of crack depth on sleeper displacement at various positions and depths:
xc1 = −1/4 m, xc2 = 1/4 m

Fig. 7. Influence of crack depth on sleeper displacement at various positions and depths:
xc1 = −1/3 m, xc2 = 1/3 m
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(Figs. 6 and 7). However, when two cracks occur at the same location xc1 = −0.295 m,
xc2 = 0.295 m, the displacement of the sleeper is hardly affected by the depth of the crack
(Fig. 8).

Fig. 8. Influence of crack depth on sleeper displacement at various positions and depths:
xc1 = −0.295 m, xc2 = 0.295 m

The dynamic response of the track in the time domain is obtained numerically through
the inverse Fourier transform. Assuming the wheel passes over the support at the refer-
ence time t = 0, Figs. 6–8 depict the deformed shape of the sleeper at this instant.

In the case of two cracks at the positions xc1 = −0.25 m, xc2 = 0.25 m, when increas-
ing the depth of crack 1 and decreasing the depth of crack 2, the reaction force at the left
rail increases (when h̄c1 reduces to zero, the problem returns to a single crack scenario).
Conversely, when decreasing the depth of crack 1 and increasing the depth of crack 2, the
reaction force at the left rail gradually decreases.

In the case of two cracks at the positions xc1 = −1/3 m, xc2 = 1/3 m, when increasing
the depth of crack 1 and decreasing the depth of crack 2, the reaction force at the left
rail increases (when h̄c2 reduces to zero, the problem returns to a single crack scenario).
Conversely, when decreasing the depth of crack 1 and increasing the depth of crack 2, the
reaction force at the left rail gradually decreases.

Due to the symmetric nature of this problem, a similar phenomenon will occur at the
right rail. (Figs. 9–12).

In the case of two cracks at the positions xc1 = −0.295 m, xc2 = 0.295 m, similarly to
the displacement, the discrepancy in reaction forces is also very small. At this position,
the depth of the two cracks has little influence on the reaction forces at the two rails of the
sleeper (as it is not located at the wave trough or wave node). However, in the long run,
damage at this location also affects itself and adjacent sleepers, reducing their lifespan.
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Fig. 9. The influence of the depth of the two cracks on the reaction force at the right rails:
(a), (b) xc1 = −1/4 m, xc2 = 1/4 m

Fig. 10. The influence of the depth of the two cracks on the reaction force at the left rails:
(a), (b) xc1 = −1/4 m, xc2 = 1/4 m, (c), (d) xc1 = −1/3 m, xc2 = 1/3 m

Fig. 11. The influence of the depth of the two cracks on the reaction force at the right rails:
xc1 = −1/3 m, xc2 = 1/3 m
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Fig. 12. The influence of the depth of the two cracks on the reaction force at the left rails:
xc1 = −1/3 m, xc2 = 1/3 m

3.2.2. Two cracks in reality

Fig. 13 illustrates a scenario where two cracks appear on the sleeper in reality. In
this research section, we examine the real-life case of crack occurrences as depicted in the
figure, with two cracks located at two positions (xc1 = −0.21 m) and (xc2 = 0.17 m). The
position x = 0 is considered as the center of the sleeper. The loads applied on the support
are Q1 = Q2 = 100 kN at the positions of the two rails.

Fig. 13. The sleeper cracked (above) and close-up of the two cracks (below).

Figs. 14–16 illustrate the influence of the depth of the two cracks on the displacement
of the sleeper in various scenarios. The sleeper practically splits into 2 or 3 separate
sections as we alter the depth of the two cracks.
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Fig. 14. The effect of the depth of the two cracks on the displacement of the sleeper with symmet-
rical loads and dis-symmetrical of crack positions: xc1 = −0.21 m and xc2 = 0.17 m

Fig. 15. The effect of the depth of the two cracks on the displacement of the sleeper with symmet-
rical loads and dis-symmetrical of crack positions: xc1 = −0.21 m and xc2 = 0.17 m

Fig. 16. The effect of the depth of the two cracks on the displacement of the sleeper with symmet-
rical loads and dis-symmetrical of crack positions: xc1 = −0.21 m and xc2 = 0.17 m
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Table 2 and Fig. 17 show the displacement value of the sleeper at the left rail position
based on the ratio h̄1 and h̄2. When increasing the depth of crack 1 and decreasing the
depth of crack 2, the displacement value at the left rail position decreases (when reducing
the depth of crack 2 to 0, the problem reverts to a single crack scenario). Conversely, when
decreasing the depth of crack 1 and increasing the depth of crack 2, the displacement at
the left rail increases.

Table 2. The displacement value at the left rail depends on the depth of the crack (mm)

h̄1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

h̄2

0.1 0.2469 0.2474 0.2480 0.2490 0.2503 0.2518 0.2537 0.2553 0.2566
0.2 0.2469 0.2473 0.2480 0.2489 0.2502 0.2517 0.2536 0.2553 0.2566
0.3 0.2468 0.2471 0.2479 0.2488 0.2502 0.2515 0.2535 0.2552 0.2565
0.4 0.2467 0.2471 0.2477 0.2486 0.2498 0.2513 0.2533 0.2550 0.2564
0.5 0.2466 0.2470 0.2475 0.2484 0.2495 0.2510 0.2530 0.2548 0.2562
0.6 0.2465 0.2469 0.2474 0.2481 0.2492 0.2507 0.2527 0.2546 0.2560
0.7 0.2464 0.2467 0.2472 0.2480 0.2489 0.2504 0.2524 0.2542 0.2560
0.8 0.2463 0.2466 0.2471 0.2479 0.2486 0.2502 0.2521 0.2537 0.2557
0.9 0.2457 0.2459 0.2463 0.2470 0.2479 0.2491 0.2511 0.2533 0.2554

Fig. 17. The influence of the depth of the two cracks on the displacement at various positions -
Displacement at the left rail (mm)

At the right rail, the displacement value decreases as the depth of both cracks de-
creases. Additionally, the displacement value increases when the depth of crack 1 in-
creases and the depth of crack 2 decreases. This is clearly illustrated in the data Table 3
and Fig. 18.
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Table 3. The displacement value at the right rail depends on the depth of the crack (mm)

h̄1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

h̄2

0.1 0.2469 0.2470 0.2470 0.2471 0.2473 0.2475 0.2477 0.2479 0.2480
0.2 0.2472 0.2473 0.2473 0.2474 0.2475 0.2476 0.2478 0.2479 0.2480
0.3 0.2477 0.2477 0.2478 0.2478 0.2478 0.2479 0.2480 0.2480 0.2481
0.4 0.2484 0.2484 0.2484 0.2484 0.2483 0.2483 0.2482 0.2482 0.2482
0.5 0.2494 0.2493 0.2493 0.2492 0.2490 0.2489 0.2486 0.2484 0.2483
0.6 0.2505 0.2504 0.2503 0.2501 0.2499 0.2496 0.2492 0.2488 0.2484
0.7 0.2519 0.2518 0.2517 0.2514 0.2511 0.2506 0.2499 0.2493 0.2487
0.8 0.2532 0.2531 0.2529 0.2526 0.2522 0.2516 0.2507 0.2498 0.2490
0.9 0.2542 0.2541 0.2539 0.2536 0.2531 0.2525 0.2515 0.2503 0.2492

Fig. 18. The influence of the depth of the two cracks on the displacement at various positions -
Displacement at the right rail (mm)

At the positions xc1, the displacement value increases as the depth of both cracks
decreases (when the depth of both cracks decreases to 0, the displacement at crack 1
reaches its maximum value). When increasing the depth of crack 1 and decreasing the
depth of crack 2, the displacement value at position xc1 decreases (when reducing the
depth of crack 2 to 0, the problem reverts to a single crack scenario). This is clearly
illustrated in the data Table 4 and Fig. 19.

At the position (xc2), similar to the position (xc1), the displacement value increases
as the depth of both cracks decreases (when the depth of both cracks decreases to 0,
the displacement at crack 2 reaches its maximum value). When increasing the depth
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Table 4. The displacement value at position xc1 depends on the depth of the crack (mm)

h̄1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

h̄2

0.1 0.2245 0.2241 0.2235 0.2227 0.2216 0.2203 0.2187 0.2173 0.2163
0.2 0.2225 0.2222 0.2218 0.2211 0.2203 0.2193 0.2180 0.2169 0.2161
0.3 0.2193 0.2192 0.2189 0.2186 0.2181 0.2176 0.2169 0.2162 0.2158
0.4 0.2149 0.2149 0.2149 0.2149 0.2150 0.2151 0.2151 0.2152 0.2153
0.5 0.2090 0.2093 0.2096 0.2101 0.2108 0.2116 0.2127 0.2137 0.2146
0.6 0.2018 0.2022 0.2029 0.2039 0.2052 0.2070 0.2094 0.2116 0.2136
0.7 0.1929 0.1935 0.1945 0.1959 0.1979 0.2007 0.2046 0.2085 0.2120
0.8 0.1849 0.1856 0.1868 0.1885 0.1910 0.1945 0.1997 0.2051 0.2103
0.9 0.1786 0.1794 0.1806 0.1825 0.1852 0.1892 0.1952 0.2019 0.2085

Fig. 19. The influence of the depth of the two cracks on the displacement at various positions -
Displacement at the crack xc1 (mm)

of crack 2 and decreasing the depth of crack 1, the displacement value at position (xc2)
decreases (when reducing the depth of crack 1 to 0, the problem reverts to a single crack
scenario). This is clearly demonstrated in the data Table 5 and Fig. 20.

Table 5. The displacement value at position xc2 depends on the depth of the crack (mm)

h̄1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

h̄2
0.1 0.2212 0.2184 0.2141 0.2080 0.2002 0.1906 0.1788 0.1685 0.1605
0.2 0.2209 0.2182 0.2139 0.2080 0.2003 0.1908 0.1790 0.1687 0.1606
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h̄1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

h̄2

0.3 0.2204 0.2178 0.2137 0.2080 0.2005 0.1911 0.1795 0.1690 0.1608
0.4 0.2197 0.2173 0.2135 0.2080 0.2008 0.1916 0.1801 0.1695 0.1610
0.5 0.2189 0.2167 0.2131 0.2080 0.2011 0.1923 0.1809 0.1702 0.1614
0.6 0.2178 0.2159 0.2126 0.2080 0.2016 0.1933 0.1821 0.1712 0.1620
0.7 0.2165 0.2148 0.2121 0.2080 0.2023 0.1946 0.1837 0.1727 0.1629
0.8 0.2153 0.2139 0.2115 0.2080 0.2029 0.1958 0.1854 0.1743 0.1640
0.9 0.2144 0.2132 0.2111 0.2080 0.2034 0.1969 0.1870 0.1759 0.1650

Fig. 20. The influence of the depth of the two cracks on the displacement at various positions -
Displacement at the crack xc2 (mm)

Table 6. The reaction force value at the right rail depends on the depth of the crack (kN)

h̄1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

h̄2

0.1 50.8472 50.8454 50.8426 50.8376 50.8336 50.8274 50.8198 50.8131 50.8079
0.2 50.8355 50.8342 50.8322 50.8294 50.8257 50.8211 50.8155 50.8106 50.8067
0.3 50.8167 50.8162 50.8154 50.8142 50.8127 50.8108 50.8085 50.8064 50.8047
0.4 50.7905 50.7910 50.7917 50.7928 50.7941 50.7950 50.7981 50.8001 50.8017
0.5 50.7563 50.7579 50.7604 50.7641 50.7690 50.7752 50.7834 50.7910 50.7972
0.6 50.7139 50.7166 50.7210 50.7275 50.7363 50.7480 50.7633 50.7802 50.7908
0.7 50.6619 50.6650 50.6712 50.6804 50.6923 50.7105 50.7347 50.7593 50.7810
0.8 50.6144 50.6187 50.6260 50.6368 50.6523 50.6738 50.7035 50.7347 50.7699
0.9 50.5775 50.5821 50.5898 50.6013 50.6423 50.6787 50.6787 50.7193 50.7588
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At the right rail, the reaction force increases as the depth of both cracks decreases
(when the depth of both cracks decreases to 0, the reaction force at the right rail reaches
its maximum value). When increasing the depth of crack 1 and decreasing the depth of
crack 2, the reaction force at the right rail decreases (when the depth of crack 2 decreases
to 0, the problem reverts to a single crack scenario). This is clearly demonstrated in Table 6
and Fig. 21.

Fig. 21. The influence of the depth of the two cracks on the reaction force at the two rails -
Reaction force at the left rail (kN)

Fig. 22. The influence of the depth of the two cracks on the reaction force at the two rails -
Reaction force at the right rail

At the left rail, increasing the depth of crack 1 and decreasing the depth of crack 2
results in an increase in the reaction force (when the depth of crack 2 decreases to 0, the
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problem reverts to a single crack scenario). Conversely, decreasing the depth of crack 1
and increasing the depth of crack 2 leads to a decrease in the reaction force at the left rail.
Detailed data is presented in Table 6 and Fig. 22.

4. CONCLUSIONS

This study presents an analytical model to evaluate the dynamic behavior of rail-
way sleepers subjected to moving loads, with a focus on the influence of cracks. The
Euler–Bernoulli beam theory was used, and cracks were modeled as rotational springs,
with their stiffness based on crack depth. The dynamical responses were determined us-
ing Green’s function in the frequency domain, and a finite element model was developed
to validate the analytical solutions. The results show that the presence of cracks signifi-
cantly affects the dynamic behavior of the sleeper, reducing its stiffness and altering the
reaction forces at the rails. The numerical parametric study demonstrates the effects of
crack depth and position on the dynamic response of damaged sleepers. The results also
highlight the importance of monitoring and maintaining sleepers to prevent structural
failures due to crack propagation. Future research could explore the impact of imperfec-
tions in the rail-wheel contact and investigate alternative foundation models to further
improve the accuracy of the dynamic analysis.
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[38] J. A. Loya, L. Rubio, and J. Fernández-Sáez. Natural frequencies for bending vibrations
of Timoshenko cracked beams. Journal of Sound and Vibration, 290, (2006), pp. 640–653.
https://doi.org/10.1016/j.jsv.2005.04.005.

[39] J. A. Loya, J. Aranda-Ruiz, and R. Zaera. Natural frequencies of vibration in cracked Tim-
oshenko beams within an elastic medium. Theoretical and Applied Fracture Mechanics, 118,
(2022). https://doi.org/10.1016/j.tafmec.2022.103257.

[40] T.-S. Pham, T. Hoang, D. Duhamel, G. Forêt, F. Schmidt, F.-B. Cartiaux, and V. Le Corvec. Dy-
namic response of a cracked multi-span continuous beam subjected to a moving multi-axle
vehicle load. In International Conference on Structural Health Monitoring of Intelligent Infrastruc-
ture, (2021).

[41] T. Yan, S. Kitipornchai, J. Yang, and X. Q. He. Dynamic behaviour of edge-cracked shear
deformable functionally graded beams on an elastic foundation under a moving load. Com-
posite Structures, 93, (2011), pp. 2992–3001. https://doi.org/10.1016/j.compstruct.2011.05.003.

[42] M. Rezaiee-Pajand and N. Gharaei-Moghaddam. A force-based rectangu-
lar cracked element. International Journal of Applied Mechanics, 13, (2021).
https://doi.org/10.1142/s1758825121500472.

[43] S. Zheng, R. Huang, R. Lin, and Z. Liu. A phase field solution for modelling hyperelas-
tic material and hydrogel fracture in ABAQUS. Engineering Fracture Mechanics, 276, (2022).
https://doi.org/10.1016/j.engfracmech.2022.108894.

[44] T. Hoang, D. Duhamel, G. Foret, H. Yin, P. Joyez, and R. Caby. Calculation of force distri-
bution for a periodically supported beam subjected to moving loads. Journal of Sound and
Vibration, 388, (2017), pp. 327–338. https://doi.org/10.1016/j.jsv.2016.10.031.

[45] T. S. Azoh, W. Nzie, B. Djeumako, and B. S. Fotsing. Modeling of train track vibrations for
maintenance perspectives: Application. European Scientific Journal, 10, (21), (2014), pp. 260–
275.

[46] E. L. Fichoux. Presentation et utilisation de Cast3M. Support of CEA, (2011).
[47] J. Fernandez-Saez, L. Rubio, and C. Navarro. Approximate calculation of the fundamental

frequency for bending vibrations of cracked beams. Journal of Sound and Vibration, 225, (1999),
pp. 345–352. https://doi.org/10.1006/jsvi.1999.2251.

[48] T. G. Chondros and A. D. Dimarogonas. Vibration of a cracked cantilever beam. Journal of
Vibration and Acoustics, 120, (1998), pp. 742–746. https://doi.org/10.1115/1.2893892.

[49] X. Zhao, Y. R. Zhao, X. Z. Gao, X. Y. Li, and Y. H. Li. Greens functions for the forced vibrations
of cracked Euler-Bernoulli beams. Mechanical Systems and Signal Processing, 68–69, (2016),
pp. 155–175. https://doi.org/10.1016/j.ymssp.2015.06.023.

https://doi.org/10.1016/j.tafmec.2008.04.002
https://doi.org/10.1142/s0219455415500066
https://doi.org/10.1016/j.ijengsci.2022.103703
https://doi.org/10.1016/j.jsv.2005.04.005
https://doi.org/10.1016/j.tafmec.2022.103257
https://doi.org/10.1016/j.compstruct.2011.05.003
https://doi.org/10.1142/s1758825121500472
https://doi.org/10.1016/j.engfracmech.2022.108894
https://doi.org/10.1016/j.jsv.2016.10.031
https://doi.org/10.1006/jsvi.1999.2251
https://doi.org/10.1115/1.2893892
https://doi.org/10.1016/j.ymssp.2015.06.023


Dynamical behavior of damaged railway sleeper subjected to moving loads: Parametric study of crack properties 25

APPENDIX A. CRACKED BEAM ON A VISCO-ELASTIC FOUNDATION
SUBJECTED TO MOVING LOADS

The focus is on a dynamic model of the cracked beam posed on a visco-elastic foun-
dation, as illustrated in Fig. A.1. Within this framework, the dynamic behaviors of the
beam are described using the Euler–Bernoulli beam model. The beam has length L
(0 ≤ x ≤ L) and is posed on the Kelvin–Voigt foundation which is characterized by
stiffness k f and damping coefficient ζ f . In the time domain, the dynamic vertical dis-
placement wt(x, t) of the beam can be defined by Eq. (1) in Section 2. The moving load
applied at the coordinate x = a can be written as follows:

F(x, t) = −R(t)δ(x − a). (A.1)

Through the utilization of Fourier’s transform and the inclusion of Eq. (A.1), Eq. (1) can
be expressed in the frequency domain as follows:

∂4ŵs(x, ω)

∂x4 − ω2Ms − ks

Bs
ŵs(x, ω) = − R̂(ω)

Bs
δ(x − a), (A.2)

where ŵs(x, ω) is the displacement of the beam in the frequency domain and the stiffness
dynamic of the foundation kb is defined as kb = k f + jωζ f .

Fig. A.1. Modeling a cracked beam situated on a Kelvin–Voigt foundation
under the influence of moving loads

Eq. (A.2) describes the beam responses. To solve this equation, we will employ
Green’s function, determined as follows:

∂4G(x, ω, a)
∂x4 − λ4

s G(x, ω, a) = δ(x − a), (A.3)
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where λs =
4

√
ω2Ms − ks

Bs
. Given that the amplitude of the reaction force depends solely

on the angular velocity, Eq. (A.3) represents a partially normalized form of Eq. (A.2). The
general solution of this fourth-order linear differential equation is provided by:

G(x, ω, a) =

{
A1 cos λsx + A2 sin λsx + A3 cosh λsx + A4 sinh λsx, ∀x ∈ [0, a]

B1 cos λsx + B2 sin λsx + B3 cosh λsx + B4 sinh λsx, ∀x ∈ [a, L]
(A.4)

In Eq. (A.4), the 8 constants A1,2,3,4 and B1,2,3,4 are determined to meet the following
conditions:

- Condition of a free-free beam at both ends of the beam can be written as follows:
∂2G(0, ω, a)

∂x2 =
∂2G(L, ω, a)

∂x2 = 0,

∂3G(0, ω, a)
∂x3 =

∂3G(L, ω, a)
∂x3 = 0.

- Continuity of displacement, slope and moment at x = a can be displayed as follows:
G(a+, ω, a)− G(a−, ω, a) = 0,
∂G(a+, ω, a)

∂x
− ∂G(a−, ω, a)

∂x
= 0,

∂2G(a+, ω, a)
∂x2 − ∂2G(a−, ω, a)

∂x2 = 0.

- Shear force discontinuity of magnitude one at x = a can be shown as follows:

∂3G(a+, ω, a)
∂x3 − ∂3G(a−, ω, a)

∂x3 =
1
Bs

.

In this study, considering that n open cracks are on a single side of the beam, each
with depth hj (j = [1, n]), it can be learned that at the n positions xe situated in the interval
x ∈ [0, a]. As a result of these cracks, discontinuities are introduced into the beam.

Consequently, the beam is now segmented into n + 1 separate segments, each with a
length Lj. The separated beams are linked by massless rotational springs with sectional
flexibility. In this model, the effect of bending deflection is assumed to be negligible. The
discontinuity in the slope of the beam deflection can be found as follows:

∆θ =
M
ke

,

where M is the bending moment at the cracked cross-section and kc is the stiffness of the
rotational spring defined as follows:

ke =
B

hCi
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where h is the height of the beam and Ci is the non-dimensional constant evaluated by
using different methods (starting from the strain energy density in fracture mechanics
[47]) or developing the fracture mechanics model to evaluate using a lumped flexibility
approach [48]. Usually, this constant can be found as a function of h̄ means the ratio
between the depth of the crack and the height of the beam for different cross-sectional
forms. For the rectangular cross section, [49] suggested a relationship between the non-
dimensional constant for two cases of h̄ as follows:

- With h̄ ∈ [0, 0.6]:

C(h̄) = 6π(1 − ν2)h̄2(0.6272 − 1.04533h̄ + 4.5948h̄2 − 9.9736h̄3

+20.2948h̄4 − 33.0351h̄5 + 47.1063h̄6 − 40.7555h̄7 + 19.678h̄8),
(A.5)

where ν is Poisson’s ratio.

- With h̄ ∈ [0, 0.6]:

C(h̄) = 2
(

h̄
1 − h̄

)2

(5.93 − 19.69h̄ + 37.14h̄2 − 35.84h̄3 + 13.12h̄4). (A.6)

Note that achieving a ratio between the depth of the crack and the height of the
beam (h̄) up to 0.9 is not realistic. However, the beam studied in this paper is assumed
to be made of reinforced concrete. Therefore, even if cracking occurs in a ratio of 0.9,
the steel component remains connected to the beam. Furthermore, the analysis provides
a formulation to calculate the stiffness of the massless rotational springs, as shown in
Eqs. (A.5) and (A.6).

When the beam experiences an external force, there is a discontinuity in the slope of
the deflection at the crack position. As a result, Green’s function is not smooth, and we
need to separate it at each crack position as follows:

G(x, ω, a) =



A1eλx + B1e−λx + A2ejλx + A4e−jλx, ∀x ∈ [0, xc]

· · ·
Cjeλx + Cje−λx + Cjeiλx + Cje−λx, ∀x ∈ [xc, xc+1]

· · ·
Cneλx + Cne−λx + Cneiλx + Cne−λx, ∀x ∈ [xc, a]
B1eλx + B2e−λx + B1eiλx + B2e−λx, ∀x ∈ [a, L]

At the crack position j, the condition of the beam can be presented as follows:

- Continuity of displacement, moment and shear force at x = xcj :



28 Thuy-Duong Le, Le-Hung Tran
G(x+cj

, ω; a)− G(x−cj
, ω; a) = 0,

∂2G(x+cj
, ω; a)

∂x2 −
∂2G(x−cj

, ω; a)

∂x2 = 0,

∂3G(x+cj
, ω; a)

∂x3 −
∂3G(x−cj

, ω; a)

∂x3 = 0.

- Discontinuity of slope at x = xcj can be found as follows:

∂G(x+cj
, ω; a)

∂x
−

∂G(x−cj
, ω; a)

∂x
=

Es Is

ke

∂2G(x+cj
, ω; a)

∂x2 .

There are four equations associated with each crack, depending on both the position
and depth of the crack. Consequently, there are 4n equations for n cracks. In addition,
there are eight equations tied to the boundary conditions and the moving loads. Finally,
the 4(n + 2) unknowns can be determined analytically or numerically using the 4(n + 2)
boundary conditions of the problem.

Hence, leveraging the information on the moving loads R(x, t), the dynamic re-
sponses of the beam on the scholastic foundation in the frequency domain are delineated
in Eq. (5). These responses are subsequently converted back into the time domain us-
ing the inverse Fourier transform. In the following section, this result will be used to
construct a dynamic model of a railway sleeper.
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