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ABSTRACT
We investigate if FaaS platforms can handle ultra-low latency work-

loads that run as low as less than 1𝜇𝑠 and show that even for a warm

start, the initialization time takes up to 99, 99% of the total execution

time. This is due to the resume process of warm sandboxes that

takes more time as the number of the sandbox’s allocated virtual

CPUs (vCPUs) increases. We uncover that two operations use up

to 93, 1% of the resume time. The first is the insertion of the paused

sandbox’s vCPUs to a CPU-sorted run queue. The second is the

update of a lock-protected variable, which represents the vCPUs’

load on each CPU. This variable is used for frequency scaling.

We introduce Horse, for hot resume. Horse presents two sim-

ple approaches. The first is parallel precomputed sorted merge

(P2SM), a parallel algorithm that leverages pre-computed data to

have a parallel sorted merge of two sorted lists in O(1). The second
is to coalesce the updates on the lock-protected variable used for

frequency scaling. We implement Horse in Xen and Firecracker,

two mainstream virtualization platforms. Our evaluation with real-

world FaaS traces shows that Horse achieves up to 7, 16× resume

time improvement and reduces sandbox initialization overhead by

up to 142, 84× with no impact on functions.
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1 INTRODUCTION
The quest for ultra-low latency services. Several cloud work-

loads run at very low latency in the order of dozens of 𝜇s [3, 5,

23, 24, 28, 30, 54, 55, 66] with workloads running under 1𝜇s [31].

Examples of such services include NFVs [2, 76, 85], HPC tasks [37,

41, 61, 65], machine learning (ML) inference tasks [14], finance mi-

croservices [63, 83], and distributed in-memory key-value stores

with small objects [24, 32, 33]. We denote such workloads as ultra-

low latency (hereafter denoted as uLL). Dealing with uLL work-

loads has led to many efforts targeting multiple layers of the data

center infrastructure to address such services correctly. Some of

these works propose novel intra-server scheduling and network

stack optimizations that enable uLL workloads to run as soon

as they are triggered [27, 45, 47, 48, 57, 58, 62]. Other research

works explore frequency scaling mechanisms to ensure that both

energy usage and CPU frequencies are optimal for uLL work-

loads [6, 7, 17, 36, 43, 72, 84]. Lastly, some research works ex-

plore server interconnect network congestion and hardware con-

figurations to enable nanosecond scale inter-server communica-

tions [16, 29, 31, 34, 35, 42, 87]. However, no previous work has
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considered what happens if the uLL workload runs in a sandbox

environment such as a (micro-) virtual machine (VM). Concretely, if

we consider that the data center network and the server scheduling

policies are optimal enough to provide a nanosecond scale trigger,

we ask the following question: can a uLL workload meet its low
latency requirements if triggered in a sandbox ? This paper explores
this question, considering that uLL workloads run atop a Function

as a Service (FaaS) platform.

FaaS: Warm starts are not enough. In recent years, FaaS has

become a popular Cloud computing model [22]. With FaaS, tenants

ship functions in a specific format and configure events that will

trigger the function’s execution in a sandbox environment in the

providers’ Cloud. It allows users to focus on their business logic

and leave the resource provisioning alongside management to the

Cloud providers. Several major public and private Cloud have their

FaaS platforms, such as Amazon Lambda [69], Azure Functions [19],

Alibaba Function Compute [18], or Meta XFaaS [67]. A cold start
occurs when a function must wait for a sandbox to be initialized.

Because sandboxes can be microVMs (as within Amazon Lambda

with Firecracker [1]) or containers hosted in virtual machines (as

with Alibaba Function Compute [79]), they typically require a few

milliseconds to boot, which is detrimental for uLL workloads. Sev-

eral research works have proposed solutions to improve cold starts

that leverage snapshots [8, 10, 78], memory deduplication [68],

caching approaches for pipelines [15, 50, 64, 73, 80], and fork ap-

proaches [25, 82, 86]. However, for the best of the latter approaches,

a cold start remains around 1𝑚𝑠 , leading to an overhead of up to

99, 99% for uLL workloads (Section 2).

A function benefits from a warm start when an initialized sand-

box is already available to host it. This happens for one of the

following two reasons. The first reason is that FaaS platforms im-

plement a keep-alive strategy, which consists of keeping a sandbox

active for a fixed time after the function that was running ends

its execution [70, 71, 74, 79, 81]. The second reason is that users

can subscribe to an option that ensures to always have a sandbox

ready for their function. This option is proposed by Azure Premium

Functions [11], Amazon Lambda Provisioned Concurrency [39],

or Alibaba Provisioned Mode [49]. This is the fastest option for

workloads that have very low latency requirements. To prevent

useless CPU contention between idle warm sandboxes (waiting for

a function) and running sandboxes (running a function) [51], these

warm sandboxes are paused [9]. Unfortunately, resuming a sandbox

can take up to 1, 1𝜇s, which amounts to up to 61% overhead for uLL

workloads (Section 2). Thus, existing designs for the reactivity of

FaaS platforms induce severe overhead for uLL workloads.

Our approach: Horse. We propose Horse, which stands for hot

resume, a fast path for FaaS platform to meet the stringent require-

ments of uLL workloads by improving the resume process of a

warm sandbox. We analyze the resume process of sandboxes and

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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uncover that up to 93, 1% is passed in two operations, which varies

depending on the number of virtual CPUs (vCPUs) allocated to

the sandbox (Section 3). The first operation is the sorted merge of

each vCPU into a CPU-sorted run queue. The sorting parameter

depends on the virtualization system and the scheduler algorithm

used. The second operation is the update (after each latter sorted

merge) of a global variable, which tracks the load of the resuming

sandbox vCPUs on their corresponding run queue. This variable is

leveraged for DVFS and thread load balancing on cores.

Horse cuts down by up to 69% the time required for the afore-

mentioned operations by introducing two simple mechanisms. The

first mechanism, denoted P2SM for parallel precomputed sorted

merge, is an algorithm designed to perform a sorted merge of sorted

lists. P2SM requires additional data structures, which allows a

sorted merge in O(1) (Section 4.1). We use P2SM to improve the

sorted merge of each vCPU in a sorted run queue. Concretely, in-

stead of performing a sorted merge of each vCPU sequentially, we

merge the vCPU of a paused sandbox in a sorted way and when it

is resumed, we apply P2SM to merge the sandbox sorted vCPUs

list into the target run queue in O(1). Additionally, Horse reserves
a set of run queues for resuming uLL workloads sandboxes where

each task has a maximum time slice of 1𝜇s (Section 4.1.3).

The second mechanism is to coalesce all updates that will be

achieved on a global variable to update it in one operation (Section

4.2). Concretely, instead of updating the DVFS-related global vari-

able for each resumed sandbox vCPU inserted in a run queue, we

perform one update that will represent all the changes that would

have been applied. Horse mechanisms do not rely on specific CPU

operations nor hardware accelerators, meaning that they can be

applied by mainstream servers found in Cloud architectures.

Horse results.We implementHorse in Xen [13] and Firecracker [1],

two mainstream virtualization systems that enable creating and

managing sandboxes such as VMs and microVMs. Firecracker is

also the virtualization system that powers AWS Lambda infras-

tructure. We implement Horse as a fast-path resume that can be

used for resuming sandboxes that need to match uLL workload

requirements. We evaluate our prototypes with micro-benchmarks

and production FaaS traces from Azure serverless Cloud [12], lead-

ing to three key results. Firstly, compared to the existing resume

algorithm, Horse improves warm sandboxes resume time by up to

7, 16× and sandbox initialization overhead for uLL workloads by up

to 142, 84×. Second, the overhead in terms of CPU and memory is

less than 1%. Lastly, when triggering uLL workloads and longer run-

ning workloads, there is a negligible overhead on longer running

workloads that reaches 0.00107% on their 99th latency percentiles.

2 ANALYSIS OF FAAS PLATFORMS
REGARDING ULL WORKLOADS

We consider the data center network stack fast enough to ensure the

nanosecond-scale trigger of functions. Thus, the bottleneck shifts

towards the initialization and readiness of the sandbox used by the

FaaS platform. We perform the following evaluation to assess how

this bottleneck affects uLL workload in FaaS platforms.

Evaluation scenario, platform, and server description.We trig-

ger the execution of a uLL workload and measure the time required

for the uLL workload to start its execution and the uLL workload

execution time. Since we do not consider network communications

overhead, we trigger the uLL workload on the same server node

where it will run. We consider three modes for the FaaS platform

during our evaluation. The first mode, denoted cold, is the scenario
where creating a new sandbox is required before running the uLL

workload. The second, denoted warm, refers to the scenario where

an existing sandbox is reused to run the uLL workload. The last,

denoted restore, refers to the scenario where a snapshot of the target
sandbox is restored instead of creating a sandbox from scratch.

We use Firecracker 𝑣1.3.3 as our FaaS platform; thus, our sandbox

is a microVM. We allocate 1 vCPU and 512 MB memory to the

triggered microVM. We use FaaSnap [8] for the restore mode since

it is one of the latest works that propose rapid snapshotting for

sandboxes in the context of FaaS and targets microVMs. We use

a Cloudlab r650 server [26] that has 2 CPUs Intel Xeon Platinium

8360Y with 36 cores at 2.40 GHz (hyperthreading disabled) running

Ubuntu Server 22.04.2 LTS running a top of the Linux kernel v6.2.9.

Workload description. For each mode, we consider three cate-

gories of uLL workloads related to their execution times. We con-

sider uLL workloads whose execution time is ≤ 20𝜇𝑠 (Category

1), ≤ 1𝜇𝑠 (Category 2), and hundreds of 𝑛𝑠 (Category 3). We chose

these values as they englobe the different uLL workloads consid-

ered in previous related work that tackles low-latency workloads

in datacenters [3, 5, 23, 24, 28, 30, 31, 54, 55, 66]. For Category 1, we

implement a stateless firewall that takes a request header as input

and determines whether the request should go through by query-

ing a static allow list. For Category 2, we implement a NAT that

changes a request header based on pre-registered routing rules. The

two functions (firewall and NAT) are common use cases for NFVs.

For Category 3, given an array composed of 3000 integers, they

retrieve the indexes of all the elements in the array that are larger

than an integer parameter passed during the workload trigger. Such

operations are used during image transformation operations. We

chose Node.JS as our language runtime for implementation since it

is one of the most used languages on FaaS platforms [22].

Results. Table 1 presents for each uLL workload and FaaS platform

scenario, the time required for making a sandbox ready to run the

uLL function and the time the uLL workload takes to finish its

processing. Additionally, Figure 1 presents the time required to get

a sandbox ready as a percentage of the overall pipeline up to the

end of the uLL workload execution. The cold and restore scenarios
take up to 99% just in the sandbox preparation phase. Even for the

warm scenario, getting the sandbox ready takes as low as 6% and

up to 61% of the total execution pipeline.

The lowest latency is achieved by the warm start, which can

be enforced as in public Cloud with their premium options such

as Azure Premium Functions [11], Amazon Lambda Provisioned

Concurrency [39], or Alibaba Provisioned Mode [49]. In the next

section, we decompose the hot start mechanism to understand the

major bottlenecks for uLL workloads.

3 ANALYSIS OF ULL WORKLOADS ON FAAS
PLATFORMS

A warm start corresponds to the scenario when a FaaS platform

reuses an initialized sandbox to host the requested function. To

reduce the keep-alive tax, hot sandboxes are paused. Pausing hot
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Category 1 Category 2 Category 3
Cold Restore Warm Cold Restore Warm Cold Restore Warm

Initialization (𝜇s) 1,5×106 1300 1,1 1,5×106 1300 1,1 1,5×106 1300 1,1
Average Execution (𝜇s) 17 1,5 0,7

Init. Per. (%) 99,99 98,7 6,07 99,99 99,98 42,3 99,99 99,94 61,1
Table 1: Sandbox readiness latency and function execution time for each uLL workload and FaaS platform scenario. Even with the best
scenario, warm, sandbox initialization takes up to 61, 1% of the total trigger process.
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Figure 1: Percentage of time taken by the sandbox initialization
for each scenario: cold, restore, and warm starts for 3 categories
Category 1 (≤ 20𝜇𝑠), Category 2 (≤ 1𝜇𝑠), and Category 3 (100s of 𝑛𝑠).

sandboxes prevents CPU contention between the hot sandboxes

and the running sandboxes (a sandbox running a function) [9, 51].

The consequence of pausing a sandbox is that its virtual CPUs

(vCPUs) are removed from the CPUs run queues. The hot sandbox

is then resumed when a corresponding function can run inside.

3.1 Overview of a sandbox resume process
In this section, we unroll a paused sandbox’s resume process be-

fore analyzing each step’s cost. ➀ Firstly, the input parameters

associated with the resume command are parsed and passed to

the virtualization system if the parameters are correctly parsed. ➁

Upon reception of the input parameters, the virtualization system

acquires a lock to prevent a parallel resume of another paused sand-

box. ➂ If the lock is successfully acquired, it then performs sanity

checks are performed, such as checking if the target sandbox is in

the pause state. ➃ Once the sanity checks are successfully passed,

for each vCPU associated with the target sandbox, the virtualization

system finds a run queue to add the vCPU. Each run queue is sorted,

and the attribute considered for the sort depends on the scheduling

policy used. For example, with the credit2 scheduler [60] in Xen,

the run queues will be sorted based on their credit to have the

process with the least remaining credit first in a run queue. Thus,

the virtualization system performs a sorted merge of each vCPU

to the target run queue. ➄ For each vCPU, when added to a run

queue, the virtualization system updates the run queue’s load, a

measure of processing performed by the tasks in that run queue

that the virtualization system governor uses for frequency scaling.

Several algorithms can be used to track the load of run queues, such

as the per-entity load tracking (PELT) introduced in 2011 by Paul

Turner [21, 77] (depending on the governor used) and is used in

Xen and Linux KVM. Independently of the algorithm used, when

placing a paused vCPU in a run queue, the update is always in

the form 𝐿(𝑥) = 𝛼𝑥 + 𝛽 , where 𝑥 is the previous load and 𝛼, 𝛽 are
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Figure 2: Breakdown of the resume process of a sandbox while
varying the number of vCPUs allocated to the sandbox.

constants. ➅ Upon inserting each vCPU into a run queue and the

corresponding run queue load is updated, the virtualization system

releases the lock and changes the state of the sandbox to running.

3.2 Resume cost breakdown
To understand the cost of each operation, we break down the resume

of a paused sandbox to investigate the bottleneck of hot starts for

uLL workloads. To achieve that, we manually trigger the pause and

resume of the sandbox used in Section 2 and record the time taken

by each during the resume process with Firecracker. Additionally,

we vary the number of allocated vCPUs to the sandbox from 1 to

36. With up to 36 vCPUs, we cover and exceed all the configuration

options FaaS Cloud providers provide. We do not vary the number

of memory allocated to the sandbox, as the resume process does

not involve the memory of the sandbox.

Figure 2 presents the breakdown of the resume process of a

sandbox as we vary the number of allocated vCPUs. The first ob-

servation is that two operations amount from 87, 5% to 93, 1% of

the resume process. These two operations correspond to the sorted

merge of each vCPU into a run queue (step ➃) and the load update

of the corresponding run queue (step ➄). Secondly, these operations

contributions increase with the number of the sandbox vCPUs as

the virtualization system iterates over the number of vCPUs of

the target sandbox. We obtain similar observations when using

the Xen virtualization system (we change the XenStore to an in-

memory shared space to reduce userspace costs as proposed by

LightVM [44]). Thus, we must reduce these two operations to make

warm starts suitable for uLL workloads.

4 HORSE: HOT RESUME
Horse, which stands for Hot Resume, aims at providing a fast

path for the warm start resume such that it meets uLL latency

requirements. Horse introduces two techniques that target the

longest steps during a sandbox resume (steps ➃ and ➄ in Section
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Algorithm 1: P2SM merge

Data: 𝐴, 𝐵, 𝑝𝑜𝑠𝐴, 𝑎𝑟𝑟𝑎𝑦𝐵
Result: 𝐵 as the sorted merged linked-list

1 𝑡ℎ𝑟𝑒𝑎𝑑𝑠 ← 𝑇ℎ𝑟𝑒𝑎𝑑𝑠 (𝑙𝑒𝑛 (𝑝𝑜𝑠𝐴), 𝑝𝑜𝑠𝐴.𝑘𝑒𝑦𝑠 ) ; /* Allocate as
many threads as len(𝑝𝑜𝑠𝐴) */

2 for (thread,key) in threads do
3 𝑡𝑚𝑝 ← 𝑎𝑟𝑟𝑎𝑦𝐵 [𝑘𝑒𝑦 ] .𝑛𝑒𝑥𝑡 ;
4 𝑎𝑟𝑟𝑎𝑦𝐵 [𝑘𝑒𝑦 ] .𝑛𝑒𝑥𝑡 ← 𝑝𝑜𝑠𝐴[𝑘𝑒𝑦 ] .𝑙𝑖𝑠𝑡_ℎ𝑒𝑎𝑑 ;
5 𝑝𝑜𝑠𝐴[𝑘𝑒𝑦 ] .𝑙𝑖𝑠𝑡_𝑡𝑎𝑖𝑙 .𝑛𝑒𝑥𝑡 ← 𝑡𝑚𝑝

3.1).Horse introduces P2SM, a O(1) algorithm for a sorted merge

of the resuming sandbox into corresponding run queues and a

coalescing mechanism to update the load on run queues faster than

per run queue. The following sections discuss each technique and

how we implement it in a virtualization system.

4.1 P2SM: parallel precomputed sorted merge
P2SM is an algorithm that aims at merging a sorted linked list 𝐵

to another linked list 𝐵 in a sorted way by leveraging precomputed

information on the lists to achieve a O(1) time complexity. It targets

step ➃ of the resume process of a sandbox (Section 3.1). P2SM is

a two-fold algorithm with a pre-computation and a merge phase.

4.1.1 Pre-computation phase. Description.Tomerge𝐴 in𝐵,P2SM
requires two additional data structures. The first is an array where

the entry at each index is the address of the element of the linked list

𝐵 at the same position as the index. We denote this array, 𝑎𝑟𝑟𝑎𝑦𝐵.

The second is a hashmap where the key is an integer, and the value

is a linked list. Each key provides the position of the linked list

(a subset of 𝐴) concerning 𝐵. We denote this data structure, 𝑝𝑜𝑠𝐴.

Merging these two data structures can occur when required.

Datastructures update complexity. Updating 𝑎𝑟𝑟𝑎𝑦𝐵 requires

adding or removing an element from the array depending on the

update on 𝐵. The update is performed in O(1) since when an update
is performed on 𝐵, the corresponding entry is 𝑎𝑟𝑟𝑎𝑦𝐵 is added or

removed. Adding an element to 𝐴 will require the computation of

the new element’s relative position regarding 𝐵 and inserting the

information to 𝑝𝑜𝑠𝐴. In theworst case, computing the position takes

O(𝑛) where 𝑛 is the number of elements in 𝐵. Inserting an element

in 𝑝𝑜𝑠𝐴 is done in O(1) since it is either a linked list insertion or

the creation of a one-element linked list. Thus, an insert update of

𝑝𝑜𝑠𝐴 takes O(𝑛). Deleting an element in 𝑝𝑜𝑠𝐴 requires the items

of its corresponding linked list (associated with its key) to delete it.

In the worst case, all elements of 𝐴 will be in one linked list with

the deleted element at the last position leading to a O(𝑚) delete
complexity, where𝑚 is the number of elements in 𝐴.

4.1.2 Merge phase. Description. Algorithm 1 shows the merge

phase of 𝐴 in 𝐵, with the information obtained through the pre-

computation phase. The merge process requires as many threads as

the number of keys of 𝑝𝑜𝑠𝐴. Each thread, 𝑡𝑖,𝑖=1,𝑚 , works with a 𝑝𝑜𝑠𝐴

key value, 𝑘𝑒𝑦𝑡𝑖 which represents an index. Each thread, 𝑡𝑖,𝑖=1,𝑚 ,

performs two steps that affect 𝐵. The first step consists of changing

the next pointer of the element in 𝐵 at position 𝑘𝑒𝑦𝑡𝑖 (obtained from

𝑎𝑟𝑟𝑎𝑦𝐵) such that it points at the head of the linked list referenced

by 𝑘𝑒𝑦𝑡𝑖 in 𝑝𝑜𝑠𝐴. The second step consists of changing the next

pointer of the latter list to point to the previous next pointer of the

element in 𝐵 at position 𝑘𝑒𝑦𝑡𝑖 . Due to the pre-computed elements,

no mutual exclusion is required on 𝐵 between each thread.

Complexity analysis. Each thread performs at most two opera-

tions, consisting of changing the value of the next pointer. Thus,

the merge is performed in a constant time O(1), independently of

the size of linked lists to merge.

4.1.3 Implementing P2SM for sandbox’s resume. We update the

pause and resume path to implement P2SM. To avoid iterating

over the vCPUs of the paused sandbox, we create a data structure,

merge_vcpus that is a sorted merge of all sandbox’s vCPUs sorted

with the same parameter used by the active scheduling algorithm.

When the sandbox resumes, we can apply P2SM to perform a

sorted merge between merge_vcpus and a run queue. However, the

current resume process selects a run queue for each vCPU. Thus,

applying P2SM would mean maintaining the two data structures

(𝑎𝑟𝑟𝑎𝑦𝐵 and 𝑝𝑜𝑠𝐴 - Section 4.1.1) required by P2SM for all run

queues, which would be computationally expensive.

To cope with this problem, we reserve one run queue for run-

ning the uLL sandboxes. We denote this run queue ull_runqueue.
Consequently, for each paused sandbox, we continuously update

the data structures necessary for P2SM related to the sandbox

merge_vcpus and ull_runqueue. The updates are performed each

time ull_runqueue is updated. Thus, when a paused sandbox is

resumed, we apply P2SM with ull_runqueue and the paused

sandbox merge_vcpus. Each task on the ull_runqueue has a max-

imum timeslice of 1𝜇s. Since this run queue is reserved for running

uLL sandboxes, 1𝜇𝑠 provides every workload with enough CPU

time to terminate its execution as soon as possible.

In the case of a high frequency of uLL workload triggers, we can

increase the number of ull_runqueue. In this case, the target run

queue for an uLL sandbox is chosen when pausing the sandbox.

The choice of the associated run queue considers the number of

paused sandboxes already associated with each ull_runqueue to
perform load balancing.

Merge threads are given the highest priority to preempt any task

on the run queuewhere it is scheduled. Sincemerge threads perform

a single operation, they terminate rapidly; thus, their impact on

potential preempted tasks is minimal.

4.2 Coaelscing load updates
To reduce step ➄ of the resume process (Section 3), we propose

a simple mechanism that aims at reducing the processing time of

this step. With P2SM, all the vCPUs of the resuming sandbox are

placed on one run queue (Section 4.1.3). Consequently, the current

resume process will iterate over each vCPU and update the load of

the same run queue. The key idea with our coalescing approach is

to find an analytic function that applies changes to the load that

reflects the changes normally performed.

4.2.1 Design. Let’s consider a function 𝑓 that updates a value 𝑥

with the formula: 𝑓 (𝑥) = 𝛼𝑥 + 𝛽 . Applying 𝑓 , 𝑛 times (𝑛 ≥ 1) times

results correspond to: 𝛼𝑛𝑥 + 𝛽∑𝑛−1
𝑖=0 𝛼𝑖 . Furthermore, 𝛽

∑𝑘
𝑖=0 𝛼

𝑖
is

a well known geometric series whose value is 𝛽
(1−𝛼𝑘 )
(1−𝛼 ) , which sim-

plifies the computation of Equation 1. Thus, instead of applying the

function 𝑓 (𝑥) 𝑛 times, we coalesce and compute 𝛼nx + 𝛽 (1−𝛼
n−1 )

(1−𝛼 ) .
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4.2.2 Implementing load update coalesce for sandbox resume. We

modify the sandbox pause and resume path to implement the load

update coalesce. When a sandbox is paused, using its number of

vCPUs, we compute 𝛼n and 𝛽
(1−𝛼n−1 )
(1−𝛼 ) and save these two values as

an attribute of the sandbox. When the sandbox is resumed, for the

target run queue load update, instead of iterating over the sandbox

vCPUs and updating the run queue load, we apply the coalesce

formula and use the precomputed parameters for the formula to

speed the new load computation.

5 EVALUATIONS
Prototype implementation details. We implement a prototype

of Horse within the Firecracker 𝑣1.3.3 (by modifying the Linux

KVM pause/resume) and Xen hypervisor 4.17. Our changes amount

to 76 and 11 LOCs to implement P2SM and load coalescing in

Firecracker, respectively. With Xen, our changes amount to 72 and

12 LOcs for P2SM and load coalescing, respectively. Most changes

for P2SM concern the additional data structures definitions and

their update when the ull_runqueue is updated (Section 4.1.3).

Evaluation goal. We evaluate our Horse prototypes to answer

the following questions: (𝑄1) What is the contribution of each

solution brought by Horse on the resume time of a sandbox? (𝑄2)

What is the impact of Horse techniques regarding the resume

of a sandbox? (𝑄3) What is the overhead of using Horse on a

virtualization system? (𝑄4) What is the impact of Horse regarding

uLLworkloads on FaaS platforms? (𝑄5)What is the impact of Horse

when colocating uLL workloads and longer-running functions?

Testbed and experimental procedure. To answer the aforemen-

tioned questions, we run several experiments on a Cloud lab server

with 2 CPUs Intel Xeon Platinium 8360Y with 36 cores at 2.40 GHz

(144 threads with hyperthreading). The server possesses 128 GB

memory, 240 GB of SSD storage, and a 10 GB network ethernet card.

Unless otherwise specified, we run each experiment 10×, which is

enough for us to achieve 95% confidence interval ≤ 3% for each

experiment. Due to similar observations and space constraints, we

only report the results for the Firecracker virtualization system.

5.1 P2SM for sandbox resumes
This section aims to answer (𝑄1) and (𝑄2).
Experimental procedure. In a server, we trigger the resume of a

previously paused sandbox. The sandbox runs an Ubuntu server

𝑣22.04.2 atop of the Linux kernel 𝑣6.2.9. For each run, we vary the

number of allocated vCPUs from 1 to 36 and measure the time

necessary for the VM to be resumed. We consider the VM to be

resumed when the virtualization system exits from the resume

call. We run this experiment in four different setups: vanil (the
vanilla setup), ppsm (the P2SM solution), coal (the load update

coalescing), and Horse (P2SM and the load update coalescing).

Results. Figure 3 reports the results of the resume times for the

four different setups. Compared to vanil: coal improves the resume

time from 16% to 20%, ppsm improves the resume time from 55%

to 69%. Thus, Horse improves the resume time by up to 85%, thus

up to 7, 16×. Additionally, the resume time does not vary with the

number of vCPUs of the resuming sandbox and achieves a constant

O(1) resume time ≈ 150𝑛𝑠 .
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Figure 3: Resume time of a sandbox with the vanilla approach,
P2SM, load update coalescing, and Horse (P2SM + coalescing).
Compared to vanilla, load update coalescing improves the resume
time by up to 20%, P2SM improves the resume time by up to 70%.

5.2 Overhead of Horse
The goal of this section is to answer (𝑄3). Horse’s overhead occurs
when uLL sandboxes are paused due to the update of the P2SM
related data structures when the ull_runqueue changes and when
resuming uLL sandboxes. We perform the following experiment.

Experimental procedure. On a server running 10 1-vCPU sand-

boxes (each running a CPU-intensive applicationwith sysbench [38]),

we successively create 10 sandboxes, pause them for 5 seconds, and

then trigger their resume. These newly created sandboxes host uLL

workloads that start 5 seconds after the sandbox initialization. Each

sandbox is allocated 512MB of memory, and the host frequency

governor is set to performance mode (all cores run at the highest

frequency). We repeat the experiment while increasing the allo-

cated vCPUs for the created sandboxes from 1 to 36. We aim to

evaluate the overhead of Horse during uLL workloads sandboxes

pause and resume compared to the vanilla approach. We use one

ull_runqueue for all the uLL workloads in this experiment. For

each run, we record the CPU and memory usage each 500ms. We

perform the experiments on the Xen and Firecracker.

Results.Regardingmemory usage, when uLL sandboxes are paused,

the global memory usage increases by up to 528 KB with Horse.

This is the memory footprint of the data structures used by P2SM
for all the 10 paused uLL sandboxes. The low footprint can also

be explained by the fact that P2SM data structures mostly ref-

erence other data structures. Concretely, in our setup, compared

to the memory used on the server by all the running sandboxes,

≈ 5 GB, the memory overhead of Horse is about 0.11%. Even with

several ull_runqueue, the overhead remains the same since each

uLL sandbox is tied to one ull_runqueue when paused.

Regarding CPU usage, we make three main observations. Firstly,

we observe a slight increase in CPU usage when pausing uLL sand-

boxes of up to 0.3%. This increase is due to the different computa-

tions performed for each paused uLL sandbox to speed the resumes,

mainly regarding coalescing. Secondly, there is no significant in-

crease in CPU usage due to updating the data structures necessary

for P2SM independently of the size of uLL sandboxes. Lastly, re-

suming the uLL sandboxes with Horse incurs up to 2, 7% increase

regarding the CPU usage. Despite the parallel algorithm of P2SM,

each thread performs a light operation, which induces a very light

overall increase in CPU usage. Furthermore, since the resumed
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Figure 4: Sandox initialization percentage in the trigger process of
3 uLL workloads for four scenarios. Horse outclasses warm by up
to 8, 95×, restore by up to 142, 7×, and cold by up to 142, 84×.

sandboxes are uLL sandboxes, the workload rapidly ends even after

resuming, which explains the lack of major CPU usage increase.

5.3 Horse on uLL workloads
The goal of this section is to answer (𝑄4).
Experimental procedure.We trigger the execution of a uLL work-

load atop the Firecracker and Xen virtualization system. For the

uLL workloads, we consider the three categories of uLL workloads

similar to Section 2. For each uLL workload, We consider three FaaS

trigger strategies: cold, restore, warm, and Horse. For each run, we

collect the sandbox initialization and the workload execution time.

Results. Figure 4 reports the sandbox initialization percentage for

the trigger of the 3 uLL workloads for all the FaaS scenarios for

Firecracker. We observe that Horse achieves the lowest sandbox

initialization percentage for all uLL workloads. Horse outclasses

warm by up to 8, 95×, restore by up to 142, 7×, and cold by up to

142, 84×. Concretely, with Horse, the sandbox initialization per-

centage varies between 0, 77% and 17, 64%. These results show that

Horse improves FaaS capability to accept uLL workloads.

5.4 Horse on longer running functions
The goal of this section is to answer (𝑄5). Several studies reveal that
a non-negligible fraction of serverless functions has an execution

time longer than 1𝑠 [71, 79]. Consequently, we must measure the

impact of Horse when uLL workloads are colocated with these

longer-running functions and determine if the latter can be nega-

tively affected by Horse. We perform the following experiment.

Experimental procedure.We trigger a function with arrival times

derived from a 30s chunk of the Azure Cloud serverless real-world

traces [12]. The function is the thumbnail generator from the SEBS

benchmark suite [20], which generates thumbnails from images

stored on an Amazon S3 bucket. The sandboxes are allocated 1GB

of memory and 2 vCPUs. In parallel, for each 1s, we trigger 10

uLL workloads by resuming previously paused sandboxes. Our

experiment is designed to prevent measurement noise from CPU

contention due to resource scarcity so that both the uLL workloads

and the thumbnail function instances theoretically have enough

available cores. We repeat the experiment by varying the number of

vCPUs of the uLLworkloads sandboxes from 1 to 36 and record each

thumbnail function latency during the experiment to compute the

mean, 95th, and 99th percentile latencies. We run the experiment

with the vanilla setting and Horse on Firecracker.

Results. Independently of the size of uLL sandboxes resumed, we

observe no difference between the mean and 95th percentile laten-

cies between vanilla andHorse. This is the consequence of isolating

uLL sandboxes on a run queue different from the other functions,

thus preventing contention between both function categories. How-

ever, regarding the 99th percentiles, Horse incurs an overhead of

up to 0, 00107% (uLL sandbox vCPUs = 36), which is ≈ 30𝜇s. This is

the extreme case where a thread used for resuming a uLL sandbox

with P2SM preempts a longer-running function. However, the

overhead is not significant since P2SM is fast enough.

6 RELATEDWORK
Several research works try to improve initialization times for sand-

boxes in FaaS. These works either leverage snapshots to later per-

form optimized restore operations [8, 10, 78], memory deduplica-

tion to reduce the memory footprint of sandboxes to initialize [68],

caching approaches to speed critical components loading into main

memory [15, 50, 56, 64, 73] and fork based approaches [25, 82, 86].

Other research works propose an optimized message bus between

functions to speed execution functions’ execution [4, 46]. Horse

does not target long-running functions but instead uLL.

Horse isolates uLL workloads on runqueues where longer run-

ning functions are excluded. This reduces the overhead of imple-

mentingP2SM and optimizes the load update coalescing approach.

Other researchworks use similar strategies for scheduling, DVFS for

latency-sensitive and throughput-oriented workloads [52, 59, 75]

and even on NUMA [40, 53]. The most recent, Demeter [75], divides

cores into hot, warm, and idle. Hot cores run at peak frequency and

are meant for latency-sensitive workloads, while warm cores are

for throughput-oriented.

7 CONCLUSION
We present Horse, a fast resume path for paused sandboxes that

host uLL workloads. Horse introduces two mechanisms: P2SM
and load update coalescing that aim to speed the paused sandbox

vCPUs’ merge operation to a run queue and update the load variable

used for DVFS. Our evaluation shows that Horse improves warm

sandboxes resume time by up to 7, 16× and sandbox initialization

overhead reduction for uLL workloads by up to 142, 84×.
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