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Abstract—Unmanned Aerial Vehicles (UAV) can be exploited to
collect important information about road hazards to be broadcast
to people in the vicinity and steer clear of the event area
through extended reality. UAVs can also offload large aggregate
driving information such as lidar or cameras locally from vehicles
without saturating the cellular network. In this work, an edge
server-based architecture is introduced to provide fast response
to detect potential anomalies. Hence, UAVs are used in tracking
local road hazards by collecting information about these hazards
and offloading this data to an edge server. Reinforcement learning
(RL) is used to automatically deploy the UAV/drone at the
spot where possible anomalies are detected. An ideal model was
derived for the number of drones required. Drone movement is
learned using various deep RL techniques. Experimental results
show a very encouraging autonomic deployment of drones.

Index Terms—autonomous driving, UAV offloading, Road Haz-
ard Detection, Machine Learning, extended Reality.

I. INTRODUCTION

IN the world of Internet of Things (IoT), huge information
is collected from sensors that can be used in myriad

applications [1]. The information collected is in terms of
sensor measurements, images, videos, people behaviour, etc.
This can be used to detect/predict unplanned events which
are called anomalies. An anomaly is a potential event that is
considered a black box unless an information is conducted
about it.

In one hand, the technology of developing unmanned aerial
vehicles (UAV) is increasing with great strides which has
attracted its commercial use. The different hardware and
software equipping the UAVs makes a difference in their
capabilities. Thus, drones with sensors, camera and lidar
can be efficiently exploited to capture information about a
particular event from all sides.

On the other hand, extended reality has many benefits to
get the most out of their virtual reality. It can be used to
provide a more realistic view of any event and helps in
extracting and accessing remote information without barriers
from each issue. This information can be exploited to construct
an extended reality for any event in a safe way without
physical intervention. Hence, help in classifying the event and
know its extent.

Based on the above, we propose an augmented reality
system controller hosted in edges to speed up the responses
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in case of anomalies which will be described later in the
next section. Based on the prediction or the classification of
the data collected from the roads sensors, the controller will
send a UAV to explore the details and extent of the potential
event by sending an autonomous UAV to that location. De-
tecting/predicting anomalies is a step in the process of dealing
with them. The sent UAV will then capture the required data
and offload it to the system controller which will be used
to built an extended reality to the anomaly to take the correct
action towards it and broadcast it to whomever it may concern
to minimize its impact.

The contributions of this work are summarized as follows:
• An edge controller detects/predicts anomalies from infor-

mation collected by IoT devices distributed along roads.
• Use autonomous UAV equipped with (sensors, camera,

lidar) to collect and offload detailed information, photos
and videos about the event.

• Use detailed UAV’s offloaded data to build an extended
reality of the event for taking a better action.

• Edge controller announces interested people who will be
affected by the event to be away from this area.

There are many previous works that have addressed anomaly
detection and suggest different approaches but few considers
response action accordingly.

In the work of [2], the authors proposed the use of hy-
perspectral images in the detection of anomalies. They built
two dictionaries, one for background pixels and one for
possible anomalies. Each collected image is then analyzed
for background, noise, and anomalies layers. Later, they are
compared to built dictionaries to discover if there are possible
anomalies.

[3] is another work that also uses hyperspectral images to
detect anomalies. It is suggested to use Fractional Fourier
Transfer (FrFT) to filter noise and improve detection accuracy.
In addition, they proposed to assign background pixel weights
using spectral and spatial information.

Also, in [4], the authors proposed to detect possible anoma-
lies by extracting the band image from the background which
is enhanced by using an image filter to reduce background
noise and highlight potential anomalies.

In [5], an anomaly detection algorithm is proposed based
on network diffusion that uses transition probability to detect
sequences of anomalies from a system monitoring graph that
captures the routine behaviours of each entity.

The work of [6] proposed a multistep hyperspectral anoma-
lies detection process. First, an anomaly is detected by dif-
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Fig. 1. Augmented reality hazard restitution architecture with UAVs-Assisted Edge.

ferentiating between the event and the background pixels.
Second, this result is compared with the results of spatial
anomalies to get final detection results with better perfor-
mance. Also, they proposed using FrFT for better detection
results.

Moreover, in [7], the authors proposed an edge- or cloud-
centric model to detect and control anomalies in the production
lines of CNC and PLC machines. This is to discover possible
causes of misbehaviour in production lines. Machine learning
(ML) is used as the detector in the collected data.

Previous literature only provides anomalies detection mod-
els without proposing a procedure to respond to these detected
events. The work of [8] proposes a model for detecting anoma-
lous time series of operational network traffic by collecting
tensor streams. These tensors are aggregated and at discrete
time and use an unsupervised learning model for detection.
In addition, the authors suggested providing an intelligent
procedure based on the anomalies detected.

II. SYSTEM ARCHITECTURE

Road hazards, such as fire, vehicle failure, strike, road
equipment failure, and Vulnerable Road Users (VRUs), etc,
have already posed a significant threat to traffic efficiency, life
security and property security. With the development of edge
servers and UAVs, they are seen as a promising way to classify
and predict road hazards. Therefore, this study aims to present
an edge-based architecture and the use of UAVs for collecting
and offloading data to assist edge server computing. Figure 7
presents the UAVs-assisted edge-based architecture.

A. Solution Components

Our solution is designed around an edge server. The main
architecture components include a group of different sensor
types, automated drones and a set of servers installed at the
network edge. Databases managing road data characteristics
(Openstreet Maps), static sensor information (type, position...)
and dynamic sensor data (videos, Lidar, anomalies,...) are
regularly updated. The system controller polls the databases
and predicts/classifies the possible anomaly. Finally, a broad-
cast server announces the detected information (from dynamic
database) about the road hazard. We describe hereafter each
module of the system architecture.

We assume that basic road sensors communicate with the
edge through legacy cellular networks. When drones are sent
to the road hazard, they communicate with the edge using
high speed Wifi or cellular networks (this depends on the
amount of data sent from the drone to the edge). The broadcast
of potential anomalies to people of interest is done through
classical online navigation applications. Some information is
announced on electronic road panels.

B. Building and Pre-training Models.

Road hazards consist of several categories as they affect traf-
fic efficiency differently. Moreover, due to the boom in vehicle
usage and rapid development of intelligent transportation sys-
tems, vast amounts of traffic data are available, which makes
road hazard classification and prediction possible. Based on
the powerful computing of edge servers, a Road Hazards
Classification Model (RHCM) and a Road Hazards Prediction
Model (RHPM) are designed. Firstly, the RHCM can classify
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road hazards based on input data collected from the road
sensors such as collected images/videos, vehicle speed, and
road conditions. Secondly, the RHPM can predict road hazards
to broadcast warnings to interested people affected by the
event. However, both models need to be pre-trained before
being deployed, which requires extensive local historical road
data and manual labelling of them.

C. Deploying RHCM and RHPM.

Many sensors existed in modern urban roads, for example,
video streams or image data can be obtained from camera
sensors, speed data can be obtained from speed detection sen-
sors, road information data can be obtained from laser remote
sensing sensors, etc. The RHCM can classify whether a hazard
has occurred and what kind of hazard has occurred, such as
fire, vehicle failure, etc. The RHPM can predict the probability
of a road hazard occurring in the future time. Unlike pre-
training, the data input to both models after deployment is
in real-time. In addition, both models can be optimised while
working. To observe the performance of the RHCM, metrics
such as accuracy, precision and recall[9][10] can be adopted.
Regarding the RHPM it can be estimated using Mean Absolute
Error (MAE), Root Mean Square Error (RMSE) and goodness
of fit (R2). [11].

D. UAVs Assistance

Although many metrics exist to assess the performance of
both models, a UAVs-assisted approach is still required to
increase the models’ credibility and robustness. There are
two conditions for triggering UAVs to track road hazards:
1) the RHCM classifies the current scenario as a hazard
scenario; 2) the RHDM predicts that the probability of an
accident is greater than the Threshold(a custom parameter), i.e.
Pacc > Threshold. Either of the two conditions will trigger
the edge server to command the UAVs to identify road hazards.

Reinforcement Learning (RL) as a feedback learning
method has been widely used in robotics and UAVs, therefore
this study takes RL to control UAVs to track local road
hazards. Once the UAVs arrive at the destination, they will
collect e.g. bird-view map, 3-D spatial data, etc. and upload
them to the edge server. After the edge server has received the
data, RHCM and RHPM will optimise their output and finally
verify whether there are road hazards or future road hazards.

E. Broadcasting to Local Users

When the models have identified local road hazards, the
edge server will broadcast road hazard warnings to the local
users, including hazard information, future collision time and
so on, to advise the users to choose another road, thus
optimising traffic efficiency, avoid secondary road hazards and
safeguard personal safety.

Inevitably, data security and privacy issues are encountered
during the uploading and broadcasting process.

III. AUTONOMOUS UAV POSITIONING

In this section we propose to design our custom RL envi-
ronment as illustrated in Fig. 8a with the help of CoppeliaSim
simulator [12] that will involve flying a drone equipped with
a visual sensor to track person in the same way road hazard
objects can be tracked by UAVs to gather more data and
information through the different sensors equipped on them,
in this scenario, the UAV’s reward is built in such a way that
it increases when the tracked object is in the middle of the
camera as shown in Fig. 8b. To do this, we utilize the euclidean
distance to be able to minimize the distance between the center
of the camera and the the object, model free RL that takes the
desired actions to achieve our objective with low latency and
a light weight, real time object detection algorithm, the agent
gets a good reward when able to track the object and center
it, we ran our simulation on a Windows 10 machine with a
10th Generation Intel Core i7 CPU, 32 GB of RAM and an
NVIDIA GeForce GTX 1650 Ti.

(a) Custom environment

(b) Objective
Fig. 2. UAV positioning environment

A. Software architecture

In a RL scenario there is an agent as well as an environment.
The agent selects an action and is rewarded by the environment
in addition to transitioning into a new state. This learning
process will continue until the objective or another condition
are fulfilled, In our case the agent is a UAV with the main goal
of tracking the person in our custom environment, the episode
ends if the target is either too far away from the camera or
if there is a collision with another object or obstacle, in the
other hand the agent’s reward increases when the object is
within the camera’s central point, in order to accomplish this
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Fig. 3. Software architecture.

goal we designed the software architecture of Fig. 9 which is
composed of the following main parts:

1) Main module: This module is considered as the core
of the architecture because it contains the necessary functions
for training and comparing the results of our RL algorithms,
it is also responsible of sending commands to the server and
retrieving images and other valuable information about the
objects while in the same time transmitting the raw images
to the object detection module to extract the bounding boxes
coordinates of the selected object and other data for the
training.

2) Object detection module: which involves detecting in-
stances of objects of a specific class in an image and returning
the bounding boxes coordinates that will be used for the
training of our RL algorithms. In order for the drone to track
the person, getting the bounding boxes of the object position
is crucial, so using a light weight real-time Object detection
algorithm is necessary, YOLOv7 is the state of the art of the
object detection models and has proven that it surpasses all
known object detectors in terms of accuracy and time needed
for the detection of objects as shown in [13], therefore it is
the algorithm used in our work.

3) Reinforcement Learning Algorithms: are divided into
two big families Model-based methods that attempts to plan
by utilizing some environmental information, Planning using
a model can boost the algorithm’s sample efficiency and
Model-free methods that focuses primarily on learning from
the environment and require no prior knowledge they can
be applied to any RL problem, our application requires low
latency, so we selected RL algorithms that do not require a
model of the environment to make predictions or decisions,
due to their fast selection of an action and ability to process
the current state of the environment, RL algorithms are able to
make decisions in real-time. Model-free algorithms that were
used in our work are: value based methods that picks the best
action to do in the present state, policy based methods where
a stochastic policy function that links state to action is directly
learned and finally the actor critic methods a combination of
the two cited before, the algorithms used in our work are
presented as fellow:

• Proximal Policy Optimization (PPO) is a policy gradient
method that can be used for environments with either
discrete or continuous action spaces, it uses an advantage
function A(s,a) to determine its policy The advantage
function basically tells the algorithm how much better
was the action that he took based on the expectation of
what would happen then what really happened.

• Deep Q-Learning (DQN) where state-value function is
estimated in a Q-Learning structure with a neural network
that utilizes a Loss function instead of an equation, in
addition to the Predicted Q Value and a Target Q Value.

• Advantage Actor Critic (A2C) combines two types of
RL algorithms, Policy Based and Value Based, together.
Policy Based agents directly learn a policy (a probability
distribution of actions) mapping input states to output
actions, Value Based algorithms learn to select actions
based on the predicted value of the input state or action,
A2C only uses a single neural network to estimate both
the value function for the current policy and the optimal
policy this also enables the algorithm to have a low
latency.

4) Coppeliasim server module: The Coppeliasim server
contains the main functionalities of the different objects(flying,
walking, etc.) and also all the functions allowing it to receive
remote commands and sending valuable information about the
environment like images or positions.

B. RL Results

We created our custom RL environment with the objective
of tracking an object (a person in this case) thus the agent
gets a good reward when this object is in the center of the
camera, to compare the different model-free RL algorithms
the main metric used is the mean episode reward which is the
average reward that the RL model receives over the course of
an episode, a higher mean episode reward indicates that the RL
model is performing well, earning a high reward and has been
able to successfully track the person and keep it in the center
of the camera for a significant portion of the episode. The
second metric is the Episode length mean, a bigger Episode
length mean is a sign that the model is learning and making
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progress because an episode ends if either the person is too
far from the camera or a collision occurs. A2C outperformed
the other algorithms in terms of episode reward mean and
Episode length mean for 10000 time steps as shown in Fig.
10 and took 1hour11minutes20seconds to do it, PPO also
gives good results but in our case comes with the withdraw
of taking 1hour33minutes14seconds to train which is the
longest time compared to others, DQN got the worst episode
reward mean but took only 1hour1minutes23seconds which
is the least time to train and it could be a considerable
solution in case of technical limitations, PPO outperformed
DQN because an optimal policy might be easier to represent
than a value function, as it only needs to learn what action
to take, while a value function has to further express how
good an action is, A2C combines both value and policy based
approaches for better results.

Algorithm Training time for 10k timesteps

DQN 1hour1minutes23seconds
PPO 1hour33minutes14seconds
A2C 1hour11minutes20seconds

Fig. 4. RL algorithms results

C. UAV Results

UAV are controlled with an optimized integer linear pro-
gramming algorithm. The algorithm is responsible for calcu-

lating the needed drones, the actions that each drone should
do (send to location, return, backhaul information, charge
drone). In this subsection, we present the results of the UAV
number needed for each type of the collected data for the
potential anomaly. We consider the UAV has the capability to
be equipped by different types of sensors as lidar, camera for
video streaming and capturing photos, and IoT sensors.

As explained, in the RHCM architecture, the sent drones
will send the collected information from the remote location
to the edge server. The data is analyzed, re-organized and
prepared for consumption in the neighborhood.

We also assume that the UAVs are not equipped with the
same sensors types. So we choose suitable UAVs accord-
ing to the type of anomaly detected during the classifica-
tion/prediction of the collected road data. Therefore, each UAV
will offload a different data type based on its equipped sensors
and thus will need a different bandwidth (BW). Figure 11
shows the range of data volume collected for each sensor
type used. X-axis is the sensor type, Y-axis is the bitrate
(Mb/S) and the color of each line corresponds to a drone
with a different sensor type. For the collected Lidar data, its
accuracy changes according to the number of collected points,
frames, and distance resolution, so the size of the captured data
changes as shown in the figure. Also, the size of the captured
video data changes according to the used camera resolution
and codec. The same concept applies to the volume of data
collected for the images and Iot sensors indicated in the figure.
Given that the drone is equipped with this set of sensors, so
the dump data size is the sum of each sensor’s data and its
accuracy.

According to the proposed work, the anomaly information
will be announced to people in the vicinity of the event area to
warn them to mitigate the anomaly area using the electronic
road panels around the anomaly location. Moreover, it can
be published with online navigation software such as many
applications advertise real-time traffic status. This information
could be the lidar images collected by the drone that will
be displayed on a head-up display as shown in Fig. 12. In
addition, with the proposed virtual reality, the transmitted data
stream will be updated accordingly.

Fig. 5. Drones Traffic Types.

IV. CONCLUSION

An architecture to enable extended reality dealing with
road hazards is presented. The architecture is based on early
detection of road anomalies using machine learning. UAVs
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Fig. 6. Head up Display receiving the edge processed information in the
hazard location

are trained with different reinforcement learning algorithms to
locate the anomaly and offloading the gathered information
to the edge server. A simple prototype using commercial
drones is trained and used to validate the concept. Then, an
optimal integer linear programming algorithm calculates the
necessary number of drones, and manages the drone through
their journey to and back from the hazard location. Information
is processed in the edge server and broadcast to vehicles in
the hazard position.
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Fig. 7. Augmented reality hazard restitution architecture with UAVs-Assisted Edge.
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(a) Custom environment

(b) Objective
Fig. 8. UAV positioning environment
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Fig. 9. Software architecture.
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Algorithm Training time for 10k timesteps

DQN 1hour1minutes23seconds
PPO 1hour33minutes14seconds
A2C 1hour11minutes20seconds

Fig. 10. RL algorithms results
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Fig. 11. Drones Traffic Types.
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Fig. 12. Head up Display receiving the edge processed information in the
hazard location


