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Abstract—Trajectory prediction has been identified as a chal-
lenging critical task for achieving full autonomy of the connected
and autonomous vehicles (CAVs). Despite the advancement of
communication technologies, only few studies include the connec-
tivity and data exchange aspects. Thus, we introduce a novel Edge-
Assisted clustering architecture that takes advantage of recent
deep learning models and the evolution of edge technologies to
achieve better forecasting. First, the historical positions of the
target vehicles are fed into the base models of all CAVs in the
scene, resulting in multiple generated predictions. Then, each
prediction is transmitted to an edge server where trajectories
clustering is performed using DBSCAN algorithm to obtain
multiple partitions with similar trajectories. The largest cluster
is averaged then broadcast back to all CAVs in the scene. Our
proposed method surpasses state-of-the-art results on the real
world trajectory prediction nuScenes vehicles dataset, obtaining
better predictions up to 21%. We also demonstrate the robustness
of our method against single-agent system failures, succeeding
to get very satisfactory results due to our ability to detect
outliers. System practicality is studied under the current 5G/6G
capabilities.

Index Terms—Autonomous driving, Trajectory prediction, Con-
nected and autonomous vehicles (CAVs), Edge architecture, Clus-
tering

I. INTRODUCTION

Connected and autonomous vehicles (CAVs), are becoming
increasingly prevalent, with the ambition of achieving full
autonomy and given the complexity of such a mission, recent
researches adopt an approach that involves breaking down the
task into different main stages: scene perception, trajectory
prediction and motion planning, as mentioned in [1], while
scene perception and planning primarily focus on gathering
scene information and selecting feasible routes respectively,
the objective of trajectory prediction is to forecast the future
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positions of all the entities in the scene in order for the
connected autonomous vehicle to plan safely in a dynamic
environment. With the development of communication tech-
nologies, vehicles are able to share information with one
another and the surrounding infrastructures, therefore including
the connectivity perspective results in more reliable trajectory
prediction as in [2] [3]. Accordingly we introduce our edge-
assisted trajectory prediction, as illustrated in Fig.1, that uses
clustering for the purpose of improving the motion prediction
capabilities of CAVs. The following is a summary of the main
contributions of this work:

• We present a new edge based architecture for trajectory
prediction and confirm its viability for practical applica-
tions.

• We achieve state-of-the-art (SOTA) results on the real-
world nuScenes vehicles dataset [4].

• We demonstrate the reliability of our method against
anomalies.

To present our results in a clear and organized manner, the
rest of the paper is structured as follows:

• In section II we review the related work.
• In section III we describe the functioning of each step of

our method.
• In section IV we unveil the edge assistance architecture

and the estimated traffic flow.
• Finally, in Section V we conclude and outline prospects

for future research.

II. RELATED WORK

In this section, we review the recent work employed for
trajectory prediction followed by a highlighting of relevant
methods used for clustering trajectories.



Fig. 1: illustration of our edge based trajectory prediction
architecture, the CAVs predicts future trajectory of the target
agent(red vehicle), predictions are sent to the edge server to
preform the clustering, the final output is sent back to all CAVs
in the scene

Trajectory prediction

Classical methods employed physical models, such as in
[5], where they use a constant velocity model for motion
prediction in a collision warning system. Another approach, as
adopted in [6], uses a model that assumes a constant turn rate
and acceleration. While those methods offer the advantage of
computing trajectories quickly, their rigid assumptions have a
detrimental impact on their predictive accuracy. In [7] Kalman
filters are employed for a collision-free trajectories prediction
and in [2] the authors proposed to use V2V communications
[8] along side with Kalman filters to predict trajectories of
connected cars allowing the ego car to forecast future motions
of vehicles.
Recently with the advancement of machine and deep learn-
ing methods, a plethora of works have proposed models to
predict trajectories. In [9] recurrent networks, more precisely,
Long Short Term Memory (LSTM) based approach is used
for predicting the motion of surrounding vehicles to the ego
autonomous car where each agent’s LSTM learns its state
and predicts his future motion and in [10] they are applied
to predict future maneuvers in an encoder-decoder network.
The authors of [11] implemented visual attention and in [12]
a graph attention network is used in order for the model to
only attend for the most important information in the input.
In [13] a spatially-aware graph neural network is introduced
where interactions between agents are modeled, in the work
of [14] they introduce a Conditional Variational Autoencoder
(CVAE) generative model to generate future trajectories for the
agents in the scene, in [15] vehicles are modeled as a clique
to jointly predict multiple trajectories, a comprehensive study
can be found in [16].

Trajectories clustering

During clustering, a collection of items is divided up into
smaller groups using a certain similarity metric [17]. In the
context of trajectory data, many similarity metrics are com-
monly employed. Notable examples include: Euclidean dis-
tance, Hausdorff distance and LCSS distance as presented in
[18], these metrics are used to cluster trajectories according to
the degree of their similarity.

After defining a similarity metric, a clustering method is
applied as shown in Fig. 2. In [19], [20] the authors proposed
a trajectory clustering method based on the DBSCAN and
HDBSCAN algorithms respectively in an unsupervised manner.
Whereas, in [21], the preferred approach of the authors is to use
supervised clustering where vehicles trajectories are clustered
with machine learning methods leveraging the learned vehicle
vectors from the low-dimensional representations.

III. METHOD DESCRIPTION

We aim to predict the future positions Yedge of each agent
within a scene based on their past lateral and longitudinal
positions X along with their acceleration, heading and map
information.

First, the historic positions of the target agent are fed into
CAVs trajectory prediction base models (m1,m2, . . . ,mn) to
predict (Y1, Y2, . . . , Yn). Next, these outcomes are transmitted
to an edge server that calculates the similarity matrix of
all predicted trajectories then clusters them using DBSCAN
algorithm, the cluster with the most trajectories is averaged to
obtain Yedge which is then broadcast to all CAVs in the scene.
Fig.3 illustrates the functioning of our method and algorithm 1
displays the Pseudo-code of our trajectory prediction. Further
elaboration on the calculation of the similarity matrix and
clustering is provided below.

Algorithm 1 Pseudo-code of our trajectory prediction algo-
rithm
Input: Past history of agent X
Output: Predicted future trajectory Yedge

models← list of models
for m ∈ models do
Y ← m.predict(X)
Sendtoserver(Y )
/* Each CAVs model sends it’s predictions to server */

end for
Yall ← (Y1, Y2, . . . , Yn), a set of n predicted trajectories
from models (m1,m2, . . . ,mn)
Sim matrix← CalculateSimilarityMatrix(Yall)
clusters← DBSCAN(Sim matrix, ϵ,min samples)
Yedge ← average(argmax(clusters).values)
/* The cluster with most trajectories is averaged */
Send to all(Yedge)
/* Final prediction is broadcast to all CAVs */



Similarity matrix calculation

The similarity matrix is used as input to our clustering
algorithm. To calculate it, we use the euclidean distance as our
metric where each trajectory is represented by a set of points
with varying length depending on the prediction horizon H.
Concretely, each element of the similarity matrix consists of
the pairwise distance between the trajectories.

Clustering algorithm

Trajectory clustering can be expressed mathematically as
follows:
Let C = {C1, C2, . . . , Cp} be the set of P clusters, given the
set of trajectories Yall = {Y1, Y2, . . . , Yn} the objective is to
find P partitions using similarity metrics, where P is the number
of clusters such that each data point Yj belongs to exactly one
cluster Ci.

Fig. 2: Representation of trajectories clustering where S repre-
sents the similarity metric and C1 is the produced cluster

Several clustering algorithms could be considered. Following
recommendations in [22], our choice went for the DBSCAN
[23]. We wanted a robust and powerful algorithm that does not
need a prior knowledge of the number of clusters whereas in
supervised learning labeled data is needed or the number of
neighbors is predefined as in the KNN algorithm.

DBSCAN is a clustering algorithm that creates clusters of
trajectories given the Similarity matrix as input, the minimum
number of samples of each cluster and a parameter ϵ which
defines the distance where points within it are added to the
cluster. One key advantage of this algorithm is that the number
of neighbors is not defined as hyper-parameter and the algo-
rithm will create the clusters only depending on the distance
between trajectories. We conduct more tests to select the best
hyper-parameters in the experiments section.

IV. EDGE ASSISTANCE ARCHITECTURE

We explain here the designed edge architecture. Since data
prediction concerns all the vehicles in a given confined area, we
assume that each important road exchange location is equipped
with an edge architecture such as the one we propose hereafter.

A. Data flow

Data flow is orchestrated by vehicles transmitting their ego
view of all the surrounding other targets. Each target is located
by its position. The data flow is continuous because predictions

Fig. 3: Our method’s architecture where historical data of the
predicted vehicle are fed into each CAVs model, the outputs are
sent to the edge server to obtain the final predicted trajectory

have to be made as explained before on a regular per second
basis until the ego vehicle leaves the edge area. This leads to
a huge amount of data that can only be tolerated in real time
by 5G/6G capabilities. This justifies also the necessity of a
localized edge service rather than a global centralized system
that could not make the real-time predictions for large vehicular
traffic zones.

• The edge broadcasts its position and pertinent information
based on any protocol (it can be through D2D protocols
or through vehicular DSRC systems).

• A point to point simple protocol is sufficient for the up-
stream data (from vehicle to edge). The vehicles segment
their scene and send the data vectors of observed past
5 seconds. Vehicles with advanced capabilities can send
their own predictions of the observed targets in the ego
scene. Other vehicles with less sophisticated features can
just send the observed trajectories of neighboring vehicles
or even a frame by frame observation of the front and side
views, the server will leverage this information with the
help of its built-in models to generate new predictions if
required.

• The scene is cut into several sectors (areas) according to
the topographical and road regulations information.

• The edge gathers at least three predictions per scene sector.
If it receives less than three, it uses its own camera of the
scene and the data received from the non-sophisticated
vehicles to make predictions and complete the rule of three
different information.

• The clustering and prediction algorithm explained above
are then used to calculate the next three seconds of car
traffic flow.

• As real-time and safety are the key issues in such algo-
rithms, results are broadcast to all the concerned agents
in the scene.

• The results are then utilized by the CAVs to complete their
autonomous maneuvers. Table I presents an estimated time



Fig. 4: Transmission, treatment
and broadcast edge timeline

and throughput results depending on the number of agents
in a sector.

Cloud Timeline: Our architecture provides a safe cluster-
ing prediction. The Fig. 4 shows as an example four vehicles
that are connected to the cloud server when they approach
the traffic zone. Some vehicles have high AI capabilities and
can hence make their own predictions for the neighboring
agents. Some other vehicles just send their ego view of the
scene but do not make any prediction of future agent positions.
Lastly, a subset of vehicles might have erroneous calculations
for various reasons, yet they still transmit their predictions to
the cloud server. As shown in the Fig. 4, the transmission
delays from vehicle to the cloud server vary. This is due to
the difference in amount of data sent (arrays of predictions
per agent or real-time video), and also due to the difference
in network interface speed that can vary from a vehicle to
another (we give estimates of these limits in Table I). The cloud
server receives all the information from different vehicles and
eventually from its own fixed sensors on the scene. It executes
all the procedures described in the previous section. Correct
results are structured, grouped and sent back in a broadcast to
the scene. Driving applications can also be updated through a
web access. Each vehicle then receives data and filters its own
pertinent information.

The timeline of all this procedure is very short as we need to
repeat it continuously with present cars and new cars arriving
to the scene. As an example, if we predict 3 future seconds
based on passed 4 seconds. We have to skip the last second
of events and all the process needs to be accomplished in one
second. Table I explains the lower and higher bounds that each
vehicle can send per second and every second to make the
system feasible in the real life. Any delayed information is
simply neglected by the server. The server sends back data in
few nanoseconds. But as the receivers have different receiving
speeds, it has to adapt to the slower reception rate. This is why
we have different values in the downstream delay time. All this
process has to be repeated in a pipeline manner.

TABLE I: Estimated traffic/delay at edge premises according
to vehicle capabilities

Nb vehicles upstream low upstream high downstream
5 vehicles 10MB/vehicle 50MBytes/v. 10 nanosec

10 vehicles 4MB/vehicle 20MBytes/v. 50 nanosec
100 vehicles 300KB/vehicle 1.8MBytes/v. 150 nanosec

V. EXPERIMENTS

In this experiments section we chose to employ 3 different
base models, all are variations of Trajectron++ due to its proven
superior predictions and the availability of its source code, the
first version is the basic model that doesn’t include dynamic
integration, the second version includes the latter to produce
more realistic and Dynamically-Feasible trajectories and finally
the variant that also includes map information instead of only
using tracked trajectories which the official best Trajectron++
model that is used to compare against other models. It is
important to point out that all these base models have inferior
results than our method. For the clustering algorithm the
minimum number of samples to create a cluster is set to 1
and more tests are done to find the best ϵ.

A. Dataset

To accurately evaluate our method we used the nuScenes
dataset which consists of around 105 vehicles and more than
1000 driving scenes, each one containing 20 seconds. The
scenarios are annotated using human experts. To compare with
the nuScenes Vehicles Motion Prediction SOTA models the
same dataset composition for evaluation is used as in [14] and
[15].

B. Metrics

To evaluate the performance of our trajectory prediction
method, we employ the commonly used ADE and FDE metrics.

• Average displacement error (ADE): represents the average
L2 distance in meters where the trajectories are evaluated
over the entire prediction horizon is calculated as in [16]
with the following:

ADE =
1

NA ×H

NA∑
i=1

H∑
t=1

∣∣∣Ŷt[i]− Yt[i]
∣∣∣ (1)

Where NA is the number of agents in the scene, H is the
prediction horizon and Ŷ , Y are respectively the predicted
and the ground truth trajectories over H .

• Final displacement error (FDE): represents the final L2
distance in meters where the trajectories are evaluated over
the final predicted position T, it is calculated as follows:

FDE =
1

NA

NA∑
i=1

∣∣∣ŶT [i]− YT [i]
∣∣∣ (2)



Our experiments were conducted using a server equipped
with an NVIDIA Quadro RTX 4000 GPU, Intel(R) Xeon(R)
Gold CPU, 755GiB of Ram and Ubuntu 22.04.2 LTS system.

C. Results

In the following we compare our method to the SOTA
trajectory predictions models.

We present the results of our experiments in Table II and
III which display, the results of FDE and ADE, respectively.
Our method gives best performance in comparison with SOTA
models.

TABLE II: FDE results (the lower the better) show that our
method achieves SOTA performance.

Method @1s @2s @3s @4s
S-LSTM [9] 0.47 − 1.61 −

CSP [10] 0.46 − 1.50 −
CAR-Net [11] 0.38 − 1.35 −
spAGNN [13] 0.35 − 1.23 −

Trajectron++ [14] 0.07 0.45 1.14 2.20
SCEPT(bestof 3) [15] 0.40 0.80 1.36 2.14

Ours 0.08 0.43 1.08 2.03

TABLE III: ADE results (the lower the better) show that our
method achieves SOTA performance.

Method @1s @2s @3s @4s
Trajectron++ 0.07 0.19 0.45 0.82

Ours 0.08 0.19 0.43 0.77

Longer prediction horizons: To confirm the hypothesis that
our method gives significantly better improvement for longer
prediction horizons, we render the results with comparison
to the best model in Fig. 5 and Fig. 6 then calculate the
improvement percentage, results confirms that when prediction
time is longer our method improves the predicted trajectories
further in comparison to single models.

Epsilon value selection: One key hyper-parameter of our
clustering algorithm is epsilon. It determines the size of the
neighborhood for the clustering. To ascertain the most suitable
value for epsilon, we carried out several experiments and
documented the outcomes in Table IV where it shows that the
best performance is obtained when epsilon=10.

TABLE IV: FDE results with different epsilon values.

Epsilon @1s @2s @3s @4s
eps=0.1 0.07 0.44 1.12 2.15
eps=1 0.08 0.44 1.09 2.10

eps=10 0.08 0.43 1.08 2.03
eps=100 0.08 0.43 1.08 2.04

Fig. 5: FDE for longer prediction
horizon

Fig. 6: ADE results

Failure robustness: To efficiently study the robustness of our
system to anomalies, we describe in the following a scenario
where a system failure occurs to one of the agents causing it’s
predictions to be utterly erroneous, as shown in Fig. 7, this
is done by using an inadequately trained prediction model that
produces bad predictions. Moreover to the ADE/FDE errors and
to get a better understanding of the final prediction accuracy,
we additionally add the miss rate metric which expresses if
the trajectory hit the final destination point in a rayon of d
meters, a prediction is considered as a miss if it’s further than
the threshold d, in our experiments we set d = 2.
In Table V we can see that our method gives good results
even with the presence of failures due to its ability to cluster
trajectories and detect outliers.

VI. CONCLUSION AND FUTURE WORK

A crucial aspect for achieving full autonomy is integrating
connectivity and data exchange into trajectory prediction which
remains relatively unexplored. To fill this gap, we designed,
implemented and Carried out evaluations of a novel edge based
trajectory prediction architecture for connected autonomous



TABLE V: FDE/MR/ADE results shows that our method achieves good performance even with a failure model.

Time @1s @2s @3s @4s
Metrics FDE MR ADE FDE MR ADE FDE MR ADE FDE MR ADE
Failure 3.53 14% 2.62 7.04 16% 7.04 10.62 17% 6.16 14.31 18% 7.94
Our 0.09 0% 0.08 0.44 1% 0.44 1.12 10% 0.44 2.15 13% 0.80

Fig. 7: Illustration of the failure agent robustness scenario.
Good final prediction output is obtained even with an abnormal
agent

vehicles. Our method is capable of achieving state-of-the-art
results while robustly dealing with anomalies.

To demonstrate the viability of our architecture, we estimated
the data traffic under the current 5G/6G capabilities.

Investigating more advanced clustering methods Suggests a
potential optimization of clusters formation ultimately leading
to enhance the results. Furthermore, due to the fundamental
Impact on Cluster Formation exploring a wider range of sim-
ilarity metrics holds a promising potential prospect for future
research .
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