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Abstract

An analytical model of the rails of ballasted railway track subjected to the
dynamic loads are developed to study forced vertical vibration. In this work,
the two rails are modelled as infinite uniform beams posed on a system of
periodical supports with the help of Timoshenko beam theory. Besides, each
support is considered as a beam posed on a visco-elastic foundation. A lin-
ear relation between the sleeper displacement at the crossing-points with two
rails and the two reaction forces is established via the Green’s function in the
frequency domain. In other words, the mechanical behaviour of the support
can be written as a spring with an equivalent stiffness. By replacing this rela-
tion into the periodically supported rail models, the forced vertical vibrations
of two rails are obtained analytically. This analytical model allows calculate
rapidly the rail responses in different load, especially in the non-symmetric
configuration. In addition, the comparison of rail responses calculated by
two beam models are investigated. This work concerns the study of peaks
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resonances of the frequency responses functions which is useful to understand
the excitations of rolling noise.

Keywords: Dynamic structure, Vibrations, Railway track, Euler-Bernoulli
beam, Kelvin-Voigt foundation, periodically supported beam, Green’s
function, dynamic loads
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1. Introduction

Railways are increasingly viewed as a green transport option, sparking
significant interest in their expanded role in freight movement, high-speed
passenger travel, and congestion relief in urban areas via the implementation
of light rail and tramway systems. With advancements in speed and capac-
ity, both intercity and urban rail systems are entering a new phase, poised to
mitigate the environmental impact of growing road transport. However, the
promotion of rail can face setbacks due to the adverse environmental impacts
of track vibration and noise. It should be noted that the vibration character-
istics and sound radiation characteristics show a certain correlation with each
other. Therefore, within the railway community, there’s a rising recognition
of the necessity for vibration reduction methods at the source. It’s essential
to deepen the fundamental understanding of the mechanisms that generate
vibration (and noise). Among the sources of railway noise, this paper focuses
on the forced vertical vibration of the ballasted railway track subjected to
excitation loads representing the irregularities in wheel/rail contacts. [1].

The theoretical models for railway tracks have been developed since the
1970s, initially based on an infinite beam on a continuous foundation [2].
However, these simple models still have limitations due to the absence of a
support system. Consequently, models featuring an infinite beam on discrete
supports, known as periodically supported beam models, were developed.
Hoang et al. calculated the dynamic responses of rails to moving loads us-
ing Floquet’s theorem and Fourier’s transform [3–5], demonstrating a linear
relationship between reaction force and rail displacement in the frequency
domain. This relationship enabled the development of theoretical models for
mono-block sleepers subjected to moving loads [6–9]. The dynamic behaviour
of sleepers has been studied through various methods, including numerical
approaches by Kaewunruen et al. [10] [11], Grassie [12], and experimental
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methods by Park et al. [13] or Janeliukstis [14]. Nordborg’s track mod-
els [15–19] permit the study of the effect of moving loads on vertical rail
vibrations with an analytical approach. However, the validity of these de-
velopments is limited by Euler-Bernoulli’s beam theory [20]. To address
this, Nordborg introduced corrections to the bending stiffness of the models
to validate track responses at pinned-pinned frequency. Rail vibrations are
also studied in cases of random sleeper spacing by Heckl [21]. Vertical rail
vibration has been investigated by numerous researchers, including Grassie
[22, 23], Knothe [24], Mead [25–28], Yin et al. [29], Kumawat [30] and Tran
et al. [31].

However, the mentioned theoretical models for railway tracks typically
focus on a single beam, whereas the actual track consists of two rails fixed by
a system of periodic supports. This discrepancy poses a challenge addressed
through numerical methods, particularly Finite Element Method (FEM) sim-
ulations [32–37]. Recently, Sadegi [38] employed numerical techniques, con-
sidering the non-linear effects of the foundation, to model railway tracks.
Ruiz et al. [39] investigated ground vibrations induced by railway traffic
using a 3D FEM model. Moreover, studies on ground vibration within the
MOTIV project context have been conducted [40–46]. Advanced numeri-
cal methods have been employed to reduce computation time. Tran et al.
[47–49] explored the influence of non-homogeneous and non-linear founda-
tions on railway sleeper responses by developing a semi-analytical model for
the complete railway track. Claudet et al. [50] and Yang et al. [51] devel-
oped numerical models of the track using the Wave Finite Element Method
(WFEM), which is based on wave propagation and attenuation in periodi-
cally supported rails. While numerical methods offer significant advantages,
such as accuracy, they are limited by computation time.

Therefore, this study focuses on analytically calculating the forced vibra-
tions of the two rails of the track under dynamic loads. Assuming identical
supports, each modeled as a beam on a viscoelastic foundation, a relationship
between the reaction force applied on the sleeper and the displacement is es-
tablished using Green’s function in the frequency domain. In other words,
each support is also treated as a spring with an equivalent stiffness depend-
ing on the mechanical parameters of the sleeper, foundation, and rail pad.
Additionally, each rail is modeled as an infinite beam with constant section
following the Timoshenko beam model. By incorporating these results into
the model, the forced vibration of the two rails is analytically obtained using
Floquet’s theorem (condition of track periodicity) in the frequency domain.
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The calculation details are provided in Section 2. Section 3 presents numer-
ical examples comparing the dynamic responses of the rails obtained by two
beam theories. Finally, concluding remarks are drawn in Section 4.

2. Theory

Let us consider the representation of the ballasted railway track in 3D as
shown in Fig 1. In this figure, the track contains two rails which are placed
on a system of periodic supports with an inter-support distance of l. Two
dynamic loads, Q1 and Q2, are applied to the two rails at positions xr1 and
xr2 , respectively. The solution to the problem is calculated by developing
two following models: a model of a beam posed on a viscoelastic foundation
for the sleeper and a model of a periodically supported beam for the rails.

x

y
z

O

Rail 2
Rail 1

Q1δ(x− xr1)
Q2δ(x− xr2)

Figure 1: Representation of the ballasted railway track

2.1. Analytical model of railway sleepers

2.1.1. Dynamic equation of an Euler-Bernoulli beam posed on visco-elastic
foundation

The Fig. 2 illustrates the analytical representation of the sleeper in the
(Oyz) plane. The sleeper is modeled as a uniform Euler-Bernoulli beam with
a length of 2L (y ∈ [−L,L]). In practical scenarios, the sleeper is embedded
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within the ballast layer. For the sake of simplifying the research problem
addressed in this paper, we assume the sleeper to be a free-free at each end
of the beam, positioned on a visco-elastic foundation characterized by the
stiffness kb and damping coefficient ζb.

−L ys2

R2(t) R1(t)

ys10 L

y

Foundation

Sleeper

Reaction forces

ζbkb

Figure 2: Representation of the dynamical model of the sleepers

Two vertical forces, R1,2(t), are applied to the beam at two positions:
ys1 and ys2 , corresponding to the two crossing-points with rails 1 and 2,
respectively. The dynamic equation of the beam, expressed in terms of the
vertical beam displacement us(y, t) and utilizing the Dirac delta distribution,
is given by:

Bs
∂4us

∂y4
+Ms

∂2us

∂t2
+ kbus + ζb

∂us

∂t
= −R1(t)δ(y − ys1)−R2(t)δ(y − ys2) (1)

where Bs, Ms are the flexural rigidity and linear mass density of sleeper. By
performing the Fourier transform, Eq. (1) is given in the frequency domain
where ûs(y, ω) is the vertical displacement of rail in the frequency domain as
follows:

Ls (ûs) = −R̂1(ω)

Bs

δ(y − ys1)−
R̂2(ω)

Bs

δ(y − ys2) (2)

where the mathematical operator Ls is defined in Eq. (A.3). The vertical
external forces applied on the beam at two positions in the frequency domain
are: R̂1,2(ω). Eq. (2) is a 4th order linear differential equation where the

5



solution can be obtained with the help of Green’s function: Ĝ
ys1,2
s (y, ω). The

definition of the two Green’s functions are detailed in Appendix A.1. Hence,
the sleeper displacement is given by:

ûs(y, ω) = −R̂1(ω)Ĝ
ys1
s (y, ω)− R̂2(ω)Ĝ

ys2
s (y, ω) (3)

Therefore, we can deduce the sleeper displacements at two load positions:{
ûs(ys1 , ω) = −R̂1(ω)Ĝ

ys1
s (ys1 , ω)− R̂2(ω)Ĝ

ys2
s (ys1 , ω)

ûs(ys2 , ω) = −R̂1(ω)Ĝ
ys1
s (ys2 , ω)− R̂2(ω)Ĝ

ys2
s (ys2 , ω)

(4)

It should be noted that in the homogeneous foundation with symmetric con-
figuration of loads: ys1 = −ys2 = ys, so we can deduce the following relation
of the two Green’s functions:{

Ĝ
ys1
s (ys1 , ω) = Ĝ

ys2
s (ys2 , ω) = Ĝys

s (ys, ω)

Ĝ
ys1
s (ys2 , ω) = Ĝ

ys2
s (ys1 , ω) = Ĝys

s (−ys, ω)
(5)

2.1.2. Rail-pads at the crossing-points

Rail-pads are positioned between the rails and sleepers (at crossing-points)
to shield the sleepers from the impact of the rail as the train passes by. This
component may exhibit non-linear mechanical behaviours; however, for the
purposes of this study, we assume that it can be represented as a massless
spring-damper system with specific stiffness krp and damping coefficients ζrp.

Its dynamic stiffness k̂rp(ω) is calculated in the frequency domain as follows:

k̂rp(ω) = krp + iωζrp (6)

Now, we focus on one specific railway sleeper, for example at the reference
support (x = 0), the displacement of sleeper is noted as ûs0(y, ω). Besides,
the displacements of rails 1 and 2 in the frequency domain are ûr1(0, ω) and
ûr2(0, ω), respectively. It should be noted that the rail-pads are considered as
a linear spring in the frequency. Thus, the reaction force and the variation of
length are linked via the dynamic stiffness. Hence, the reaction force applied
on this sleeper are calculated:{

R̂1(ω) = k̂rp [ûr1(0, ω)− ûs0(ys1 , ω)]

R̂2(ω) = k̂rp [ûr2(0, ω)− ûs0(ys2 , ω)]
(7)
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By replacing Eqs. (7) and (5) into Eq. (4), we establish a relation between the
displacement of sleeper and rails at the crossing-points (see (Appendix A.2)):{

ûs0(ys, ω) = G1(ω)ûr1(0, ω) + G2(ω)ûr2(0, ω)

ûs0(−ys, ω) = G2(ω)ûr1(0, ω) + G1(ω)ûr2(0, ω)
(8)

We suppose that the supports are identical, therefore, Eq. (8) is valid not
only for the reference x = 0 but also for any sleeper n at coordinate x = nl,
where l is the distance between two supports and n ∈ Z. In addition, with
the help of the Dirac delta distribution, we have:{

ûsn(ys, ω) = [G1(ω)ûr1(x, ω) + G2(ω)ûr2(x, ω)] δ(x− nl)

ûsn(−ys, ω) = [G2(ω)ûr1(x, ω) + G1(ω)ûr2(x, ω)] δ(x− nl)
(9)

Finally, Eq. (9) leads to the following relation:
ûsn(ys, ω) + ûsn(−ys, ω) = [G1(ω) + G2(ω)] [ûr1(x, ω) + ûr2(x, ω)] δ(x− nl)

= G+(ω)ûr+(x, ω)δ(x− nl)

ûsn(ys, ω)− ûsn(−ys, ω) = [G1(ω)− G2(ω)] [ûr1(x, ω)− ûr2(x, ω)] δ(x− nl)

= G−(ω)ûr−(x, ω)δ(x− nl)

(10)

2.2. Analytical model for the railway track
2.2.1. Model of periodically supported beam subjected to a point-force

Each rail on the track is conceptualized as an infinitely long, uniform
beam situated in the (Oxz) plane. It is supported by a system of periodic
and identical supports, as depicted in Fig. 3.

The mechanical characteristics of the rail align with the principles of
the Timoshenko beam theory. Under the assumption that both rails pos-
sess identical mechanical properties, the dynamic equations governing the
response of the two rails to the normal forces Fr1,2(x, t) (applied to rail 1 and
2, respectively) are articulated in the ensuing system of equations:

Mr
∂2ur1

∂t2
= Kr

(
∂2ur1

∂x2
− ∂ϕr1

∂x

)
+ Fr1

Jr
∂2ϕr1

∂t2
= Br

∂2ϕr1

∂x2
+Kr

(
∂ur1

∂x
− ϕr1

)
Mr

∂2ur2

∂t2
= Kr

(
∂2ur2

∂x2
− ∂ϕr2

∂x

)
+ Fr2

Jr
∂2ϕr2

∂t2
= Br

∂2ϕr2

∂x2
+Kr

(
∂ur2

∂x
− ϕr2

)
(11)
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−L −ys

Q1δ(x− xr1) Q2δ(x− xr2)

ys0 L

y

Rails

Rail-pads

Foundation

Sleeper

ζbkb

krp ζrp

Figure 3: Representation of the dynamic model for the ballasted railway track

where ur1,2(x, t), ϕr1,2(x, t) are the vertical displacement and rotational sec-
tion of the rails 1 and 2 in the time domain, respectively. The coefficients
Br, Mr, Jr and Kr are the flexural rigidity, linear mass density, rotational
inertia and shear rigidity of rail, respectively.

By performing the Fourier’s transform, Eq. (11) is given in the frequency
domain: 

Lr(ûr1) =
1

Br

[
1− Br

Kr

(
∂2

∂x2
+

Jr
Br

ω2

)]
F̂r1

Lr(ϕ̂r1) =
1

Br

∂

∂x
F̂r1

Lr(ûr2) =
1

Br

[
1− Br

Kr

(
∂2

∂x2
+

Jr
Br

ω2

)]
F̂r2

Lr(ϕ̂r2) =
1

Br

∂

∂x
F̂r2

(12)

where the mathematical operator Lr is defined in Eq. (B.4). The functions
ûr1,2(x, ω), ϕ̂r1,2(x, ω), and F̂r1,2(x, ω) represent the vertical displacement, ro-
tational section, and normal forces applied on rails 1 and 2 in the frequency
domain, respectively. Eq. (12) describes the dynamic responses of the two
rails in the frequency domain. The total vertical normal forces applied on the
rails F̂r1,2(x, ω) consist of reaction forces from the support system F̂s1,2(x, ω)
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and the loads from the train F̂t1,2(x, ω) which the relations are expressed as
follows (see Eq. (B.5)):{

F̂r1(x, ω) = F̂t1(x, ω)− F̂s1(x, ω)

F̂r2(x, ω) = F̂t2(x, ω)− F̂s2(x, ω)
(13)

As previously stated, the supports are assumed to be identical, and the total
reaction forces at coordinates x = nl are calculated as follows:
F̂s1 =

∞∑
n=−∞

k̂b [ûr1(nl, ω)− ûsn(ys1 , ω)] =
∞∑

n=−∞

k̂b [ûr1(0, ω)− ûsn(ys, ω)] δ(x− nl)

F̂s2 =
∞∑

n=−∞

k̂b [ûr2(nl, ω)− ûsn(ys2 , ω)] =
∞∑

n=−∞

k̂b [ûr2(0, ω)− ûsn(−ys, ω)] δ(x− nl)

(14)

It should be noted that the reaction forces depend on the vertical displace-
ments of rails and supports, as shown in Eq. (14).

2.2.2. Coupling of two models and solution of the problem

Eq. (12) describes the responses dynamics of the two rails and it can be
written in the following system:

Lr(ûr+) = Lr(ûr1 + ûr2) =
1

Br

[
1− Br

Kr

(
∂2

∂x2
+

Jr
Br

ω2

)](
F̂r1 + F̂r2

)
Lr(ϕ̂r+) = Lr(ϕ̂r1 + ϕ̂r2) =

1

Br

∂

∂x

(
F̂r1 + F̂r2

)
Lr(ûr−) = Lr(ûr1 − ûr2) =

1

Br

[
1− Br

Kr

(
∂2

∂x2
+

Jr
Br

ω2

)](
F̂r1 − F̂r2

)
Lr(ϕ̂r−) = Lr(ϕ̂r1 − ϕ̂r2) =

1

Br

∂

∂x

(
F̂r1 − F̂r2

)

(15a)

(15b)
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In other hand, by substituting Eqs. (10) and (14) into Eq. (13), the fol-
lowing results are deduced:
F̂r+ = F̂r1 + F̂r2 =

(
F̂t1 + F̂t2

)
−
(
F̂s1 + F̂s2

)
= F̂t+ −K+

∞∑
n=−∞

ûr+δ(x− nl)

F̂r− = F̂r1 − F̂r2 =
(
F̂t1 − F̂t2

)
−
(
F̂s1 − F̂s2

)
= F̂t− −K−

∞∑
n=−∞

ûr−δ(x− nl)

(16)

where: {
K+(ω) = k̂b(ω) (1− G+(ω))

K−(ω) = k̂b(ω) (1− G−(ω))

Finally, by replacing the previous result into Eq.(12), this system of equations
is expressed as:

Lr(ûr+)−
K+

Br

[
1− Br

Kr

(
∂2

∂x2
+

Jr
Br

ω2

)] ∞∑
n=−∞

ûr+δ(x− nl)

=
1

Br

[
1− Br

Kr

(
∂2

∂x2
+

Jr
Br

ω2

)]
F̂t+

Lr(ϕ̂r+)−
K+

Br

∂

∂x

∞∑
n=−∞

ûr+δ(x− nl) =
1

Br

∂

∂x
F̂t+

Lr(ûr−)−
K−

Br

[
1− Br

Kr

(
∂2

∂x2
+

Jr
Br

ω2

)] ∞∑
n=−∞

ûr−δ(x− nl)

=
1

Br

[
1− Br

Kr

(
∂2

∂x2
+

Jr
Br

ω2

)]
F̂t−

Lr(ϕ̂r−)−
K−

Br

∂

∂x

∞∑
n=−∞

ûr−δ(x− nl) =
1

Br

∂

∂x
F̂t−

(17a)

(17b)

The previously established system of equations shares the same form as that
developed in Eq. (B.7). It is important to note that train loads consist of
two components: static and dynamic loads. However, this paper specifically
concentrates on the responses of rails under dynamic loads F̂t1,2(x, ω), which
are categorized as: {

F̂t1(x, ω) = Q1δ(x− xr1)

F̂t2(x, ω) = Q2δ(x− xr2)
(18)
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where Q1 and Q2 are two constants representing two point forces simulta-
neously exciting the rails. By replacing Eq. (18) into Eq. (17), we observe
that the dynamic responses of the problem are clearly defined, as illustrated
in Appendix B.2.2. Hence, the forced vertical vibrations of the two rails are
deduced easily from the expressions for ûr+(x, ω) and ûr−(x, ω). By replacing
x = nl, the vertical displacement of railway sleepers at the crossing-points
are obtained with the help of Eq. (9) which permits us to calculate the re-
action forces via Eq. (14). The track responses are analytically acquired in
the frequency domain, and the corresponding time domain responses can be
derived using inverse Fourier transforms.

3. Numerical examples

3.1. Comparison of the model

Firstly, comparing the rail responses obtained from the developed model
with those calculated in existing research allows us to confirm the validity
of the results. The track parameters are chosen as shown in Table 1. As
mentioned earlier, Hamet [20] developed a model of periodically supported
rail using Timoshenko theory. However, his development is applicable only
to one rail posed on a concrete mono-block. Therefore, the responses of the
presented model are calculated in a symmetric configuration, where two unit
dynamic loads are applied to the two rails at the same position xr1 = xr2 =
x0 = l/2. Additionally, it should be noted that Hamet [20] calculated the
dynamic stiffness of the foundation k̂b and of the railpad k̂rp as follows:{

k̂b = kb + iηb

k̂rp = krp + iηrp

where ηb and ηrp are loss factors of foundation and rail pad, respectively.
Fig. 4 presents a comparison of the evolution of Green’s function in the

frequency domain at two positions: at the reference support x = 0 and at
the middle of the period x = l/2. In this figure, the two continuous lines
correspond respectively to Hamet’s model (blue line) and our model (red
line). The two dashed-lines show the resonant frequency (green) and pinned-
pinned frequency (black) of the track by using Timoshenko beam theory fTM

pp .

The resonant frequency (green dashed-line) is obtained: 233.92 Hz with
the chosen parameters. This phenomenon can be observed for an infinite
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(a) At x = 0 (b) At x = l/2

Figure 4: Comparison of the evolution of the Green’s function in the frequency domain at
different positions

beam posed on Winkler foundation and is well explained by Kurze [52].
The frequency where the rail resonance occurs is called the pinned-pinned
frequency. In this vibrating mode, the primary motion occurs within the rail
itself, with the two supports being regarded as rigid. The first pinned-pinned
frequency fpp aligns with the wavelength of the rail bending waves, which is
twice the distance between sleepers. The analytical solution of fpp for two
beam theories is given as follows:

� For Euler-Bernoulli’s beam theory:

fEB
pp =

π

2l2

√
Br

Mr

(19)

� For Timoshenko beam theory:

fTM
pp =

√√√√√ Nr

8l2Mr

1 + Kr

Nr

+
l2Kr

π2Br

−

√(
1 +

Kr

Nr

+
l2Kr

π2Br

)2

− 4
Kr

Nr



= fEB
pp

√√√√√ l2Nr

2π2Br

1 + Kr

Nr

+
l2Kr

π2Br

−

√(
1 +

Kr

Nr

+
l2Kr

π2Br

)2

− 4
Kr

Nr


(20)

where Nr = ErSr represents the axial rigidity of the rail.

For the chosen parameters as shown in 3rd column of Tab. 1, we have: fTM
pp =

1063.98 Hz and fEB
pp = 1386.27 Hz.
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Parameters Notation
Value

Unit
Hamet [20] Present study

Flexural rigidity of the rail Br 6.4 6.3 MNm2

Linear mass density of the rail Mr 60 59.98 kgm−1

Rotational inertia of the rail Jr 0.256 0.234 kgm
Shear rigidity of the rail Kr 231 269.15 MN
Axial rigidity of the rail Nr 1500 1614.95 MN
Flexural rigidity of the support Bs − 8.13 MNm2

Linear mass density of the support Ms − 145.92 kgm−1

Mass of support ms 162 − kg
Length of the support 2L − 2.41 m
Inter-support distance l 0.6 0.6 m
Track gauge − − 1.435 m
Stiffness of the rail pad krp 300 192 MNm−1

Damping coefficient of the rail pad ζrp − 1.97 MNsm−1

Loss factor of the rail pad ηrp 30 − MNm−1

Stiffness of the foundation kb 75 440 MNm−1

Damping coefficient of the foundation ζb 55 58.8 kNsm−1

Loss factor of the foundation ηb 30 − MNm−1

Table 1: Track parameters

Fig. 4 illustrates the similarity of results calculated by the two models at
high-band frequencies (from 600 Hz). However, it should be noted that the
responses differ at low frequencies (from 0 Hz to 500 Hz). This discrepancy
can be attributed to the difference in support types. Modeling the support
as a beam can induce free vibrations (beam resonances), a phenomenon that
does not occur in the case of a mass. Moreover, the sleepers and rail vibrating
in phase and out of phase are not obviously the same with two configurations.
Nonetheless, both models yield the same resonant frequency and pin-pin
resonance fTM

pp .
Fig. 5 shows the comparison of Green’s function calculated two beam

models as function of position x at two frequencies: at f = 750 Hz - Fig. 5a
and at at pinned-pinned frequency fTM

pp which is calculated analytically as
earlier, f = 1064 Hz - Fig. 5b. The blue and red lines are the rail deflection
calculated by Hamet and presented model, respectively. The comparison vi-
sually demonstrates similar results, with a small difference observed at the
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load position, which can be explained by the difference in support type.
Overall, the comparison confirms the validity of the presented model. Ad-
ditionally, given that railway track sleepers are typically in the form of a
concrete beam, the difference between the two models at low-band frequen-
cies could yield significant insights and further enrich this research work.

(a) f = 750 Hz (b) f = 1064 Hz

Figure 5: Comparison of the evolution of the Green’s function as function of x at different
frequencies

3.2. Influence of beam model choice on the track responses

In the previous Section, the dynamic loads applied on the two rails are
considered as symmetric (at the same position x = l/2). Therefore, the re-
sponses of two rails are obtained obviously symmetric. However, the loads
can be applied at two different positions (here, it should be noted that this re-
search paper is limited in the case of two loads applied at the same moment).
Hence, we present from now the track responses obtained with dis-symmetric
configuration of loads positions: Q1 = 1 at xr1 = 0 and Q2 = 1 at xr2 = l/2.
Moreover, the influence of beam model choice is drawn with the help of
Tab. B.2. The notations (□)EB and (□)TM stand for the Euler-Bernoulli and
Timoshenko beam theory, respectively. The subscripts (□)ur+

and (□)ur−
de-

note the results obtained by Eqs. (17a) and (17b), respectively. The param-
eters chosen are shown in Tab. 1. It should be noted that the pinned-pinned
frequencies are slightly changed: fEB

pp = 1386.27 Hz and fTM
pp = 1057.89 Hz.

The two values are presented in Fig. 6 by black continuous and dashed-line.

3.2.1. Track propagation constants

The four propagation coefficients γp,d±(ω) of the supported rail are illus-
trated as a function of the frequency as shown in Fig. 6. The continuous-line
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and dashed-line are the results of Euler-Bernoulli and Timoshenko beam,
respectively. The attenuation of the propagation coefficient is calculated via
the Track Decay Rate (TDR), where the formula is given by [53]:

TDR
(
γp,d±(ω)

)
= −20

l
log10

(
e−ℜ(γp,d± (ω))

)
= − 20

ln(10)

ℜ
(
γp,d±(ω)

)
l

where ℜ
(
γp,d±(ω)

)
is the real part of the propagation constants and the inter-

support distance l. By convention, the real parts are positive corresponding
to the propagating wave direction to the left side.

(a) Propagating wave for Eqs. (17a) (b) Propagating wave for Eqs. (17b)

(c) Near-field wave for Eqs. (17a) (d) Near-field wave for Eqs. (17b)

Figure 6: Comparison of propagation constants via Eqs. (17) with two beam models

The two propagating waves γp±(ω) is characterized by a weak attenuation
(see Figs. 6a and 6b) meanwhile the near-field waves have a strong attenua-
tion (see Figs. 6c and 6d). The propagation constants calculated by two beam
models have almost the same trajectory. The difference appears around the
pinned-pinned frequency because of beam theory. These coefficients depend
heavily on the stiffness of the support and the track parameters as shown
in Appendix B.

3.2.2. Track receptance

The evolution in the frequency domain of the receptance calculated by
two beam theories is shown in Fig. 7. In this figure, the track responses cal-
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culated by Euler-Bernoulli and Timoshenko beam are presented by the blue
and red continuous-lines, respectively. The dashed-lines denote the pinned-
pinned frequencies. The first resonant frequency is the same for the two
beam model corresponding to the 1st mode shape of free vibration of the
sleeper which is around 195 Hz. In the interval f ∈ [0, 700] Hz, the trajec-
tory of the two models is quite similar. The difference occurs around the
pin-pin resonance which depends strongly on the beam theory. From 1750
Hz, the evolutions of Green’s functions obtained by the wo beam theories
are quite similar. Particularly, the Timoshenko model exhibits significant
resonance at the pinned-pinned frequency fpp regardless of the beam’s posi-
tion (see Figs. 7c, 7d), whereas the Euler-Bernoulli model shows only distinct
resonance at the midpoint, x = l/2 , of the beam (see Figs. 7a, 7b).

(a) Ĝur+
(x, ω) at the support position x = 0 (b) Ĝur−

(x, ω) at the support position x = 0

(c) Ĝur+
(x, ω) at the middle of period x = l/2 (d) Ĝur−

(x, ω) at middle of period x = l/2

Figure 7: Comparison of Green’s function of the ballasted railway track calculated via
Eqs. (17) in the function of frequency with two beam models at different positions

The evolutions of the receptance as a function of the position x are il-
lustrated in low frequency, f = 175 Hz (Figs. 8a, 8b) and in high frequency,
f = 1750 Hz (Figs. 8c, 8d). The responses calculated by Timoshenko beam
theory attenuate more rapidly than the ones obtained with Euler-Bernoulli
beam theory. This phenomenon can be observed clearly at high frequency
range. But, around the position x = 0 (load position), the ĜTM

ur±
(x, ω) has
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the higher values than ĜEB
ur±

(x, ω). For more details, the illustrations in 3D

as shown in Appendix C.1 provide the global vision of the evolution of the
track Green’s function.

(a) Ĝur+
(x, ω) at f = 175 Hz (b) Ĝur−

(x, ω) at f = 175 Hz

(c) Ĝur+
(x, ω) at f = 1750 Hz (d) Ĝur−

(x, ω) at f = 1750 Hz

Figure 8: Comparison of Green’s function of the ballasted railway track calculated via
Eqs. (17) in the function of x with two beam models at different frequencies

3.2.3. Forced vertical vibrations of the rails

In this Section, the same parameters as earlier are used to calculate the
forced vibration of rails at two positions: x = 0 (Figs. 9a, 9b) and x = l/2
(Figs. 9c, 9d). In these figures, the blue and red lines correspond to the
frequency response functions (FRFs) of the rails calculated by the Euler-
Bernoulli and Timoshenko beam theory, respectively. The pinned-pinned
frequency, which is the same as earlier fEB

pp = 1386.27 Hz and fTM
pp = 1057.89

Hz, is exhibited by the dashed-line with the same convention of colours.
The most significant peak of FRFs of two rails appear at the pin-pin

resonance: fEB
pp and fTM

pp . It should be noticed that this value dominates
the other peaks on the FRFs. This phenomenon demonstrates that the rails
vibrate strongly at this frequency. Especially with the ones calculated by
Timoshenko, this resonance occurs at all positions of the rails. For the
FRFs calculated by Euler-Bernoulli theory, we have a minor resonance at
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(a) ûr1 (x, ω) at the support position x = 0 (b) ûr2 (x, ω) at the support position x = 0

(c) ûr1 (x, ω) at the middle of period x = l/2 (d) ûr2 (x, ω) at the middle of period x = l/2

Figure 9: Forced vibrations of two rails under the dynamic loads in the function of fre-
quency domain with two beam models at different positions

the pinned-pinned frequency at the support (see Figs. 9a, 9b). The reso-
nance at the pinned-pinned frequency occurs at the middle of the period
x = l/2 (see Figs. 9c, 9d).

In the low-frequency range (f < 750 Hz), both beam theories exhibit
similar responses, characterized by significant peaks: the rail and sleeper os-
cillate in phase (around 100 Hz), with additional resonances of the sleeper
and foundation occurring at around 200 Hz and 480 Hz, respectively. No-
tably, at x = 0, the frequency at which the rail and sleeper oscillate out
of phase differs between the two beam theories: approximately 725 Hz for
the Timoshenko model and 670 Hz for the Euler-Bernoulli model. Beyond
f = 750 Hz, significant differences in the Frequency Response Functions
(FRFs) between the two beam theories emerge due to the pin-pin resonance.
It’s important to highlight that the resonance peak of the FRFs of the rails at
the pinned-pinned frequency, calculated by the Timoshenko beam model, is
notably higher than that of the Euler-Bernoulli beam theory. Moving to the
high-frequency range (f > 1750 Hz), both theories yield similar responses
in the frequency domain. The FRFs exhibit minimal significant peaks due
to strong attenuation, as discussed in the track receptance/Green’s function
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section.
The evolution of the forced vertical rails vibration in the function of x

are shown with different frequencies: f = 200 Hz (see Figs. 10a, 10b) and
f = 1250 Hz (see Figs. 10c, 10d). At low frequency, the propagation of the
rail vibrations is the same with the two beam theories, as discussed earlier
(for example: f = 200 Hz). At f = 1250 Hz, just after the pinned-pinned fre-
quency, the Timoshenko beam theory demonstrates visually a strong attenu-
ation, even at the load positions. Moreover, following the track direction, the
Euler-Bernoulli theory shows slow decay. This phenomenon is also discussed
in the track receptance Section. For more details, Appendix C.2 illustrates
the evolutions of the forced vertical vibration of two rails in two variables:
frequency and position. The resonance peak of the FRFs of the rails at the
pinned-pinned frequency calculated by the Timoshenko beam model is much
higher than for the Euler-Bernoulli beam theory. The differences of the rail
responses obtained by two beam theories are also shown clearly in Appendix
C.2.

(a) ûr1 (x, ω) at f = 200 Hz (b) ûr2 (x, ω) at f = 200 Hz

(c) ûr1 (x, ω) at f = 1250 Hz (d) ûr2 (x, ω) at f = 1250 Hz

Figure 10: Forced vibrations of two rails under the dynamic loads in the function of x
with two beam models at different frequencies
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4. Conclusion

This research presents an analytical model for analyzing the dynamic be-
havior of ballasted railway tracks, considering the interaction of the two rails.
Each rail is represented as an infinite and uniform beam supported period-
ically. Additionally, identical sleepers are modeled as beams resting on a
viscoelastic foundation. In the frequency domain, the track support is char-
acterized as a spring with equivalent stiffness dependent on the mechanical
properties of the beam, foundation, and rail-pad interface.

Utilizing the Floquet theorem to account for track periodicity, dynamic
responses of the two rails are obtained analytically in the frequency domain
using both Euler-Bernoulli and Timoshenko beam theories, with the help of
Green’s function. Key findings from this study include:

� In order to validate the developed work, we compare the FRFs of two
rails with the existing literature where the supports are modelled as a
simple mass. The similarity of the track responses are obtained, almost
at the high frequency range, where the pinned-pinned frequency fpp,
which is the same for two models, is included. A little difference occurs
at the low frequency range because of the apparition of the peaks of
beam resonance (sleeper and foundation), meanwhile these values do
not find in case of mass (simple support). However, the comparison
allows us to validate the developed model.

� Investigation into the differences between Euler-Bernoulli and Timo-
shenko beam theories for the rails, revealing similar coefficients of track
propagation in the low-frequency range. Discrepancies emerge around
750 Hz, nearing the pin-pin resonance of the Timoshenko beam theory,
which is approximately 25 % lower than that of the Euler-Bernoulli
theory. Corrections to the Euler-Bernoulli model are deemed necessary
to align propagation coefficients between the two theories, particularly
concerning bending wavelength, as previously noted by Nordborg.

� Comparison of forced vertical vibrations of the rails obtained from both
models, indicating generally similar responses. However, at high fre-
quencies, the Timoshenko model exhibits significant FRF attenuation
along the rails, whereas the Euler-Bernoulli model shows slower decay.
Additionally, the Timoshenko model predicts stronger rail vibrations,
dominating other peaks on the FRFs.
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These findings highlight the distinctions in FRFs of rails obtained from the
two beam models. Moreover, the analytical model developed here enables
rapid calculation of dynamic track responses under asymmetric load config-
urations, offering insights into the dynamic behaviour of railway tracks and
rolling noise. Future research could explore the representation of dynamic
loads to account for irregularities in wheel/rail contact, further enhancing
our understanding of railway track dynamics.

Appendix A. Mathematical formulations for the beam posed on
continuous foundation model

Appendix A.1. Green’s function for the beam posed on a continuous foun-
dation model

The equation of motion for the sleeper which has length 2L posed on
a Kelvin-Voigt foundation subjected to a reaction force at position y = y0
(y0 ∈ [−L,L]) is written as:

Bs
∂4us

∂y4
+Ms

∂2us

∂t2
+ kbus + ζb

∂us

∂t
= −R(t)δ(y − y0) (A.1)

where us(y, t) is the sleeper displacement in the time domain. The coefficients
Bs, Ms are the flexural rigidity and linear mass density of sleeper, respec-
tively. kb and ζb represent the stiffness and damping coefficient of foundation,
respectively. The reaction force is considered as a function in the time do-
main R(t). By performing the Fourier’s transform, the equation of motion
of the sleeper is expressed in the frequency domain as follows:

Ls (ûs) = −R̂(ω)

Bs

δ(y − y0) (A.2)

where the mathematical operator Ls is defined as:

Ls =

[
∂4

∂y4
− λ4

s

]
(A.3)

and λ4
s =

Msω
2 − k̂b
Bs

, dynamic stiffness of foundation: k̂b = kb + iωζb and ω

is the angular velocity. Eq. (A.2) describes the 4th order linear differential
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equation for which the analytical solution is given with the help of the Green’s
function Ĝy0

s (y, ω) as follows:

Ĝy0
s (y, ω) =

{
Ms1 cosλsy +Ms2 sinλsy +Ms3 coshλsy +Ms4 sinhλsy for − L ≤ y ≤ y0

Ns1 cosλsy +Ns2 sinλsy +Ns3 coshλsy +Ns4 sinhλsy for y0 ≤ y ≤ L
(A.4)

The 8 unknowns Msi(ω), Nsi(ω) with i ∈ [1, 4] in Eq. (A.4) are determined
to satisfy the following boundary conditions for a free-free beam subjected
to a point load at position y = y0:

∂2Ĝy0
s (−L, ω)

∂y2
= 0

∂3Ĝy0
s (−L, ω)

∂y3
= 0

∂2Ĝy0
s (L, ω)

∂y2
= 0

∂3Ĝy0
s (L, ω)

∂y3
= 0

and



Ĝy0
s (y, ω)

∣∣∣y+0
y−0

= 0

∂Ĝy0
s (y, ω)

∂y

∣∣∣y+0
y−0

= 0

∂2Ĝy0
s (y, ω)

∂y2

∣∣∣y+0
y−0

= 0

∂3Ĝy0
s (y, ω)

∂y3

∣∣∣y+0
y−0

=
1

Bs

(A.5)

The beam displacement is finally obtained in the frequency domain:

ûs(y, ω) = −R̂(ω)Ĝy0
s (y, ω) (A.6)

Appendix A.2. Mathematical transformation

Under the condition of symmetric configuration ys1 = −ys2 = ys, the
displacement of the reference sleeper (x = 0) at the crossing-points can be
written by replacing Eq. (5) into Eq. (4):{

ûs0(ys, ω) = −R̂1(ω)Ĝ
ys
s (ys, ω)− R̂2(ω)Ĝ

ys
s (−ys, ω)

ûs0(−ys, ω) = −R̂1(ω)Ĝ
ys
s (−ys, ω)− R̂2(ω)Ĝ

ys
s (ys, ω)

(A.7)

On the other hand, the two reaction forces are also described as a function of
the dynamic stiffness of the rail pad as shown in Eq. (7). So, we can deduce:{

ûs0(ys, ω) = G1(ω)ûr1(0, ω) + G2(ω)ûr2(0, ω)

ûs0(−ys, ω) = G2(ω)ûr1(0, ω) + G1(ω)ûr2(0, ω)
(A.8)
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where the expressions of the two functions G1(ω) and G2(ω) are:
G1(ω) =

[
k̂rpĜ

ys
s (ys, ω)

(
k̂rpĜ

ys
s (−ys, ω)− 1

)]
−

[
k̂rpĜ

ys
s (−ys, ω)

]2
[
1− k̂rpĜ

ys
s (ys, ω)

]2
−
[
k̂rpĜ

ys
s (−ys, ω)

]2
G2(ω) =

−k̂rpĜ
ys
s (−ys, ω)[

1− k̂rpĜ
ys
s (ys, ω)

]2
−
[
k̂rpĜ

ys
s (−ys, ω)

]2
(A.9)

Appendix B. Mathematical formulations for the periodically sup-
ported beam model

Appendix B.1. Free vibration of a periodically supported Timoshenko beam

The representation of the periodically supported beam for the rail is
shown in Fig. B.11. The rail is considered as an infinite beam. The dy-
namic load applied on the rail at position x = x0. We suppose that the
supports are identical and each one is modelled as an spring in the frequency
domain with the dynamic stiffness K(ω).

Qδ(x− x0)

−l 0

K(ω) K(ω) K(ω) K(ω)

−∞ +∞

x0 l 2l

x

Figure B.11: Periodically supported rail model
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Appendix B.1.1. Equation motion of the Timoshenko beam

The equation of motion for the rail is formulated under the influence of
the external normal force Fr(y, t), expressed in terms of the rail’s vertical dis-
placement ur(x, t) and rail rotation ϕr(x, t), utilizing the Timoshenko beam
theory: 

Mr
∂2ur

∂t2
= Kr

(
∂2ur

∂x2
− ∂ϕr

∂x

)
+ Fr

Jr
∂2ϕr

∂t2
= Br

∂2ϕr

∂x2
+Kr

(
∂ur

∂x
− ϕr

) (B.1)

where: Br, mr, Kr, and Jr represent the flexural rigidity, linear mass den-
sity of the rail, shear rigidity of the rail, and rotational inertia of the rail,
respectively. Upon applying Fourier’s transform to Eq. (B.1), we derive the
following outcomes:

Kr
∂ϕ̂r

∂x
= Kr

∂2ûr

∂x2
+Mrω

2ûr + F̂r

Kr
∂ûr

∂x
=

(
Kr − Jrω

2
)
ϕ̂r −Br

∂2ϕ̂r

∂x2

(B.2)

Or we can rewrite:
Lr(ûr) =

1

Br

[
1− Br

Kr

(
∂2

∂x2
+

Jr
Br

ω2

)]
F̂r

Lr(ϕ̂r) =
1

Br

∂

∂x
F̂r

(B.3)

where the mathematical operator Lr is defined as:

Lr =

[
∂4

∂x4
+

(
Jr
Br

+
Mr

Kr

)
ω2 ∂2

∂x2
+

MrJr
KrBr

ω4 − Mr

Br

ω2

]
(B.4)

In the context of a periodically supported rail under dynamic loads, it should
be noted that the total force exerted on the beam, denoted as Fr(x, t), com-
prises two components: the summation of reaction forces from the supports,
represented as Fs(x, t), and the force applied by the train, denoted as Ft(x, t).
Hence, the relationship is expressed as follows:{

Fr(x, t) = Ft(x, t)− Fs(x, t) in the time domain

F̂r(x, ω) = F̂t(x, ω)− F̂s(x, ω) in the frequency domain
(B.5)
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The rail/sleeper system is conceptualized as an infinite beam situated on
a system of periodic supports with a spacing of l. Additionally, we make
the assumption that the supports are identical, and the mechanical response
of each support can be described as a linear relationship between the reac-
tion force R̂(ω) and the displacement ûr(x, ω) through a frequency-domain
stiffness K(ω). In other words:

F̂s(x, ω) =
∞∑

n=−∞

R̂n(ω)δ(x− nl) = K(ω)ûr(x, ω)
∞∑

n=−∞

δ(x− nl) (B.6)

By replacing Eq. (B.6) into Eq. (B.3), the complete problem now becomes:
Lr(ûr) +

K
Br

[
1− Br

Kr

(
∂2

∂x2
+

Jr
Br

ω2

)] ∞∑
n=−∞

ûrδ(x− nl) =
1

Br

[
1− Br

Kr

(
∂2

∂x2
+

Jr
Br

ω2

)]
F̂t

Lr(ϕ̂r) +
K
Br

∂

∂x

∞∑
n=−∞

ûrδ(x− nl) =
1

Br

∂

∂x
F̂t

(B.7)

Appendix B.1.2. Free vibration of the system beam/supports

Equation (B.7) outlines a system of differential equations characterized
by the periodicity of the support spacing l. Applying Floquet’s theorem [54]
in the absence of the train load, F̂t(x, ω) = 0, the homogeneous solutions for
the periodically supported Timoshenko beam are provided by:
ûr(x, ω) = − Kûr(0, ω)

2Br(λ2
p + λ2

d)

[
Cp

λp

sin(λp(l − x)) + e−γl sin(λpx)

cos(λpl)− cosh(γl)
− Cd

λd

sinh(λd(l − x)) + e−γl sinh(λdx)

cosh(λdl)− cosh(γl)

]
ϕ̂r(x, ω) = − Kûr(0, ω)

2Br(λ2
p + λ2

d)

[
cos(λp(l − x))− e−γl cos(λpx)

cos(λpl)− cosh(γl)
− cosh(λd(l − x))− e−γl cosh(λdx)

cosh(λdl)− cosh(γl)

] (B.8)

It is important to emphasize that the solution is valid solely for one period,
where x ∈ [0, l]. The coefficients of Eq. (B.8) are presented in the accompa-
nying Table B.2.

Now, assuming x = 0, Eq. (B.8) transforms into a 2nd order equation
for cosh γ, leading to the derivation of two roots. Consequently, four propa-
gation coefficients, ±γp,d, are obtained, corresponding to eight homogeneous
solutions: four for the displacement ûr(x, ω;±γp,d) and four for the rotational

section ϕ̂r(x, ω;±γp,d). It is important to note that the general solution com-
prises a combination of these four homogeneous solutions, and ℜ(γp,d) ≤ 0
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Coefficient Euler-Bernoulli Timoshenko

λ2
p,d

√
Mrω

2

Br

√
ω4

4

(
Jr
Br

− Mr

Kr

)2

+
Mr

Br

ω2 ± ω2

2

(
Jr
Br

+
Mr

Kr

)
Cp,d 1 1−

Jrω
2 ∓Brλ

2
p,d

Kr

Table B.2: Coefficients for the calculation of beam responses for the two beam theories

indicates waves propagating to the right side by convention. In cases where
the real part of these coefficients is zero, the wave decays, and the frequency
ranges associated with this phenomenon are referred to as stop-bands.

Appendix B.2. Vertical forced vibrations of the periodically supported beam
under a dynamic point-force

Appendix B.2.1. Calculation of the Green’s function

By supposing that the train load F̂t(x, ω) is represented as an unit con-
centration force at position x0: F̂t(x, ω) = δ(x − x0). The solutions of the
periodically supported beam are calculated with the help of the Green’s func-
tions: the first one for the displacement Ĝx0

ur
(x, ω) and the second one for the

rotational section Ĝx0
ϕr
(x, ω):

Ĝx0
ur
(x, ω) =

{
Aγpũr(x, ω; γp) + Aγdũr(x, ω; γd) for x ≤ x0

A−γpũr(x, ω;−γp) + A−γdũr(x, ω;−γd) for x ≥ x0

Ĝx0
ϕr
(x, ω) =

{
Bγpϕ̃r(x, ω; γp) +Bγdϕ̃r(x, ω; γd) for x ≤ x0

B−γpϕ̃r(x, ω;−γp) +B−γdϕ̃r(x, ω;−γd) for x ≥ x0

(B.9)

where:
ũr(x, ω;±γp,d) =

Cp

λp

sin(λp(l − x)) + e±γp,dl sin(±λpx)

cos(λpl)− cosh(±γp,dl)
− Cd

λd

sinh(λd(l − x)) + e±γp,dl sinh(λdx)

cosh(λdl)− cosh(±γp,dl)

ϕ̃r(x, ω;±γp,d) =
cos(λp(l − x))− e±γp,dl cos(λpx)

cos(λpl)− cosh(±γp,dl)
− cosh(λd(l − x))− e±γp,dl cosh(λdx)

cosh(λdl)− cosh(±γp,dl)

(B.10)

Here, it should be noted that Eq. (B.10) is valid only in the interval of one
period of the structure, x ∈ [0, l], as mentioned before. Out of the region,
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the solutions are given as:{
ũr(x+ nl, ω;±γp,d) = ũr(x, ω)e

±nγp,dl for n ∈ Z
ϕ̃r(x+ nl, ω;±γp,d) = ϕ̃r(x, ω)e

±nγp,dl for n ∈ Z
(B.11)

The 8 unknowns A±γp,d(ω) and B±γp,d(ω) are evaluated in order to satisfy
the following boundary conditions at the point-force position x0 as follows:

Ĝx0
ur
(x,ω)|

x+
0

x−
0

= 0

∂Ĝx0
ur
(x, ω)

∂x

∣∣∣x+
0

x−
0

=
−1

Kr

∂2Ĝx0
ur
(x, ω)

∂x2

∣∣∣x+
0

x−
0

= 0

∂3Ĝx0
ur
(x, ω)

∂x3

∣∣∣x+
0

x−
0

=
1

Br

[
1 +

BrMr

K2
r

]
and



Ĝx0
ϕr
(x, ω)|x

+
0

x−
0

= 0

∂Ĝx0
ϕr
(x, ω)

∂x

∣∣∣x+
0

x−
0

= 0

∂2Ĝx0
ϕr
(x, ω)

∂x2

∣∣∣x+
0

x−
0

=
1

Br

∂3Ĝx0
ϕr
(x, ω)

∂x3

∣∣∣x+
0

x−
0

= 0

(B.12)

Appendix B.2.2. Solution of the complete problem

The general load is presented in complex form, consisting of two com-
ponents: static and dynamic loads. The static part typically represents the
mass of the train, while the dynamic part arises from track and wheel defects.
In this study, the dynamic load is treated as a point force at the wheel/rail
contact, formulated as follows:

F̂t(x, ω) = Qδ(x− x0) (B.13)

whereQ is considered as a constant. Finally, the beam responses are obtained
analytically in the frequency domain:

ûr(x, ω) = QĜx0
ur
(x, ω)

ϕ̂r(x, ω) = QĜx0
ϕr
(x, ω)

ε̂xxr(x, zr, ω) = −zrQ
∂Ĝx0

ϕr
(x, ω)

∂x

(B.14)

where: ε̂xxr(x, z, ω) is the beam strain in the frequency domain, zr is the
distance to the neutral axis of the beam. The first derivative of Ĝx0

ϕr
(x, ω)

with regard to x is given in the following analytical form:

∂Ĝx0
ϕr
(x, ω)

∂x
=


Bγp

∂ϕ̃r(x, ω; γp)

∂x
+Bγd

∂ϕ̃r(x, ω; γd)

∂x
for x ≤ x0

B−γp

∂ϕ̃r(x, ω;−γp)

∂x
+B−γd

ϕ̃r(x, ω;−γd)

∂x
for x ≥ x0
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and:

∂ϕ̃r(x, ω;±γp,d)

∂x
= λp

sin(λp(l − x)) + e±γp,dl cos(λpx)

cos(λpl)− cosh(±γp,dl)
+ λd

cosh(λd(l − x)) + e±γp,dl cosh(λdx)

cosh(λdl)− cosh(±γp,dl)

Appendix C. Visualisation of the track responses

Appendix C.1. Green’s functions for the railway track

(a) ĜTM
ur+

(x, ω) (b) ĜEB
ur+

(x, ω)

(c) ĜTM
ur−

(x, ω) (d) ĜEB
ur−

(x, ω)

Figure C.12: Visualisation of Green’s function of the railway ballasted track calculated by
Eqs. (17) with two beam models: (a) ĜTM

ur+
(x, ω), (b) ĜEB

ur+
(x, ω), (c) ĜTM

ur−
(x, ω), and (d)

ĜEB
ur−

(x, ω)
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Appendix C.2. Forced vertical vibration of rails subjected to two unit dy-
namic forces

(a) ûTM
r1

(x, ω) (b) ûEB
r1

(x, ω)

(c) ûTM
r2

(x, ω) (d) ûEB
r2

(x, ω)

Figure C.13: Visualisation of forced vibration of rails under two dynamic unit forces: Q1

at x = 0 and Q2 at x = l/2 with two beam models: (a) ûTM
r1 (x, ω), (b) ûEB

r1 (x, ω), (c)
ûTM
r2 (x, ω), and (d) ûEB

r2 (x, ω)
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