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Paul Appell déclarait en 1925, a propos des Méthodes Nouvelles de la Mécanique
Céleste : "Il est probable que, pendant le prochain demi-siécle, ce livre sera la mine d'ou
des chercheurs plus humbles extrairont leurs matériaux".

Aujourd'hui, prés de cent ans aprés la parution des Méthodes Nouvelles, cette
affirmation est toujours vérifiée. Cependant, I'éclatement de son contenu en différents
domaines (Mécanique Céleste, Systemes Dynamiques, Géométrie Différentielle,...) rend
difficile la lecture de ce texte fondamental. Nombreux sont ceux qui I'ont cité, certains en
ont étudié différents chapitres, mais rare sont ceux qui connaissent l'intégralité de ses
trois volumes.

C'est pourquoi nous avons entrepris, & travers ce groupe de travail qui rassemble
mathématiciens et astronomes, une lecture collective des Méthodes Nouvelles.

A. Chenciner, J. Laskar.




THE METHOD OF DELAUNAY

S.Ferraz-Mello
Universidade de Sao Paulo

1 The method of Delaunay’s theory of the Moon

Delaunay has been the first astronomer to use the Mechanics of Hamilton to obtain the
approximated solutions of the equations of the motion of a celestial body. His theory of
the Moon (see Charlier, 1902) is a pioneer work in many respects. We credit to Delaunay
the introduction of a set of variables — the so-called Delaunay variables L, G, H,£¢,¢g,h -
in which Lagrange’s equations for the variation of the orbital elements under a perturba-
tion are canonical. His theory of the Moon is not a collection of tricks, as almost every
higher-order theory in classical Celestial Mechanics. Generally speaking, having obtained
the variation equations in canonical form, his problem was to find the solutions of the
differential equations defined by the Hamiltonian

F = Fy(z;) +62Ak(z’,~) cos(k | 8), (1)
k

where the canonical variables are (x;,6;) (¢ = 1,...,n). € is a small parameter and the
sum is extended to all vectors & € D C Z". The technique adopted by Delaunay is
methodologically very clear. He defined an operation and performed it, successively, almost
500 times. This operation starts with the choice of one argument (k; | 4) in eqn. 1 and
the consideration of the dynamical system defined by the abridged Hamiltonian

Fy = Fo(z;) + e Ag, (2;) cos(ky | 6). (2)

‘This system is integrable, since the angles 8; are present only through the linear combina-
tion (k1 | #). The main step of one Delaunay’s operation is to obtain a particular solution
of the abridged problem and to use this solution to derive a canonical transformation
leading to the elimination of the term €Ay, (x;) cos(k; | @) from the given Hamiltonian (in
fact the substitution of this term by others with much smaller coefficients).

To obtain the solution of the dynamical system defined by Fy, we introduce the
Jacobian generating function

S(z*,0) = (=" [ 0) + S1(=",0) (3)



and consider the Hamilton-Jacobi equation
as
0;

Fi(5%) = Po(g) + edn, (3o cos(l | ) (@

The functions of (%ﬁ), in the right-hand side of this equation, may be expanded about

25 — g* and there results
28, :

0Fy 0S
Fr(a*) = Fo(e}) + B_x’?a_e,l + oot eAp, (z) cos(hy | 0) + - - )

The non-written terms are of the order O(£2) (since Sy is of order O(e), as shown there-
after).

An approximated particular solution of this Hamilton-Jacobi equation is obtained
by choosing S; to be such that

0F, 05,

i 9t 96, + €Ak, () cos(ky | 0) = 0, .

that is,
€Ay, (2])sin(ky | 0)

Sl = (7)

(k1 | n) ’
where n is the vector n = (ny,...,n,) and
OF
n; = (%fj. (8)

i

Once solved the system defined by Fy, Delaunay goes back to the given Hamiltonian
F' and performs the transformation of the variables generated by the function S:

85 . . 08 .95 05
0 = % %0, %= T T ©)

2

Ty =

To complete the exposition of the technique of Delaunay let us write
F=F +AF. (10)

Hence, according to eqns. 5 and 6, when F} is transformed, the term whose argument is
(ky | 8) disappears:

Fy(z") = Fo(x}) + O(e?). (11)
The additional part AF(z,0) is transformed into AF(z*,6*) + O(e?) (the function AF
being the same as before).

The result of the Delaunay operation is then a new Hamiltonian, differing, formally,
from the given one, in only two respects:



o The term ¢Ag, cos(k; | §) disappears from F;

e Terms of order O(e?) are added to F'.

In this way, performing as many operations as necessary, we may expect to eliminate
from F' all periodic terms of order O(g). In fact all these operations can be performed
together, finding just one function S which eliminates all periodic terms of order O().
This more direct method was discussed by Poincaré under the title Lindstedt’s method
and gave origin, later, to the method of Von Zeipel, widely used in the past 30 years(see
Ferraz-Mello, 1989).

We may also expect to eliminate, with a second sequence of operations, those terms
of order O(e?); after that, the terms of order @(¢®), and so on.

In fact this is not so. Poincaré has shown that, as the work progresses, the combi-
nation of the arguments (k | #) in the transformation of AF tends to enlarge the set of
values of k (the maximum of | k | increases) reaching some values of k for which (k | n) is
less than any given limit. Thus, the method of Delaunay may not be extended indefinitely
and only a finite number of operations may be done.

We may also consider the case where one or more of the values k € D are already
such that (k | n) = 0. This case happens, for instance, when Fy(z) is degenerated, that
is, when F does not depend on all components of z. This kind of degeneracy is called
essential, as it is independent of the initial conditions. This case is general in Celestial
Mechanics where Fy depends only on the Delaunay variable L and on the variable A
canonically conjugate to the time ¢:

_ B
212

In this case the method of Delaunay does not allow us to eliminate, from the disturbing

function
> €Ay cos(k | 9), (13)
k

Fo +A. (12)

those periodic terms independent of both, the time ¢ and the mean anomaly £ (conjugate
to L). In the particular problem of the motion of the Moon, periodic terms of this kind
do not exist in the Hamiltonian and the method of Delaunay allows us to eliminate all
periodic terms of order O(¢).

In the next orders, instead of Fy, we may use the non-degenerate Hamiltonian
Fé :Fo(L,A)+6A0(L,G,H) (14)

where €Ay is the secular term of order O(¢) (i.e. the first term of the disturbing function
corresponding to k = 0).



The condition (k | n) = 0 may also be verified for some k € D, or for some k
generated in the calculations, but for a particular set of initial conditions. In this case we
have what is known as a resonance or an accidental degeneracy. It will be considered in
the next section.

2 The Method of Delaunay according to Poincaré

Poincaré (1893, chap.XIX) considered the method of Delaunay in the first part of his
chapter on the method of Bohlin and restricted his study to the case where a resonance
exists. Poincaré considered that

(k1 In)=0 (15)

for some k; € D and for some point (21, ..., ) of the domain of the z-space under study.

We may proceed as before. However, because of eqn. 15, we write also the quadratic
term in the expansion of FO(‘(%:.S".‘)- Then, instead of eqn. 5, we write

o ] dFo 05 0*Fy 05195
@) =R+ 2 5er a0, 2ZZax*ax 90; 06;
+ Y eAp(z}) cos(k | 8) + - - (16)
k

In fact, because of the difficulties introduced by the resonance, Poincaré considered
only the one-degree-of-freedom case where the disturbing function is formed just by one
term. Without loss of generality, we choose this term to be € A; cos#; and write

051 1 051

F*($I)=F0($‘I)+n1( )+ m (55~ )2 ot eAr(a])cosby +---,  (17)
where we introduced JF 2F
_ dFo _d°F

nl - dII ) ml d:L'IQ * (18)

As before, an approximated solution of the Hamilton-Jacobi equation is obtained
by choosing S; to be such that

a5 1 051\,

n1(6_91)+ (69 )2 +eA;(2])cost) = C. (19)

The difference between this equation and eqn. 6 are the right- hand side C' - nec-
essary for having a complete solution — and the presence of the quadratic term, necessary
because n; may become zero in the domain under study.



We may solve eqn. (19) to obtain
1

aS n
T = ok /o 2 (C — eds costy). (20)

The inclusion of n; in the right-hand side rises some difficulties. As it was clearly
pointed out by Garfinkel, Jupp and Williams (1971), Poincaré follows Bohlin and assumes
that ny is a small quantity of the order O(4/€). One then faces the fact that differentiations
may change the order of a term, since

dn1
= ml
dz}

is finite.

These difficulties are, in a certain way, addressed in §201 of Poincaré’s book. This
paragraph was thoroughly studied by Jupp(1973) who showed that some results given
by Poincaré cannot be reproduced, since Poincaré, apparently, discarded some important
terms in his equation for the derivative of the function T; of page 337. On the other hand,
Poincaré considered, separately, the case n; = 0 (§199) and the general case n; # 0 (but
close to zero) (§§199-200). This separation is not necessary, as shown thereafter where the
derivations of these paragraphs are given, but with an interpretation diverse of Poincaré’s
one.

Let us fix the value of 2} to be such that n; = 0, exactly, and let us assume that
the unknown function S = z}6; + S1(C1,60,) is the Jacobian generator of one canonical
transformation

(131,01) = (C, 7),

that is, the transformation

_8_S_£*+%
17 %0, T "1 B,
_05_0s

instead of that given by eqns. 9. Equation 19 still holds but, as z} was fixed to be such
that ny(z7) = 0, it is reduced to

1 851

§m1(5—0j)2 +eAg(z})cosy = C (22)

or

aS 2
6711 = \/m—l(C’—eAl cos by), (23)

where we assumed m; > 0.

Equation 22 is the Hamilton-Jacobi equation of a simple pendulum with its two
main families of solutions:



a. C >| €A1 |- In this case the square root never vanishes and keeps a constant sign.
S1(61) is a monotonically increasing (or decreasing) function. The function S,(C, ;)
is periodic, with period 2=, and this solution is said to be circulatory.

b. | C |<| €A1 |- In this case the square root is not defined for the values of #; such that
C < €Aj cosf;. The function Sy then is not defined for these values of 8;, which
cannot be reached. The function S1(C, ;) is periodic but with a period smaller than
27 and this solution is said to be libratory

In the limiting case C' =| €A [, the square root vanishes for #; = 0 or 6 = 7 (according
to A1 > 0 or Ay < 0, respectively). If, for example, A; > 0, eqn. 23 becomes

651 _ 4€A1 . 91
0 =V 7 (24)
_ /166/11 01
Sl = — m—1COS 7 (25)

Again, S; is a periodic function of 6; but the period is now 4.

or

These solutions may be represented geometrically in the polar coordinates zy, 6,
assuming that z7 is finite). The case my > 0, Ay > 0 is shown in Figure 1.
g 1 g

3 The role of the square root of the small parameter

The function S; of the preceding section is of the order O(y/€). This fact is a consequence
of the inclusion of the quadratic term in the expansion of the functions of z; about z}
and of the vanishing of n;. In this sense, eqn. 22 may be seen as a result of the matching
of the leading terms in ¢ and —3—% of the algebraic equation 17, a demarche very usual in
the Weierstrass’ functions theory (see e.g. Forsyth, 1900, part IT). Instead of it, we could
obtain this same result as a straightforward application of the implicit functions theorem
to equation 17. Indeed, this equation may be written

F(e,y) =0, (26)
where, for sake of simplicity, we wrote y for %}l.
We have
F(0,0)=0 (27)

(when € = 0, S degenerates into the Jacobian generator of an identity and S; vanishes).

We also have

o 0.0 #0 (28)



and, because of the choice n; =0,

OF
—6—;/—(0’0) = 0. (29)
However, )
O*F
a—yz(o, 0) =m,, (30)

which is, generally, finite; the origin is, then, a branch point of the function y = y(g) which
is developable into a convergent series in the powers of 1/:

. 851 _ k/2

4 The method of Delaunay extended to n degrees of
freedom

In this section we consider the solutions of the generalized case
F:Fo(il)l)-i-Fz(:L',e), (32)

in a domain of the phase space including the plan z; = 3} where n; = 0. For simplicity,
we Introduced
Fy(e,0)=¢ Z A cos(k | 9). (33)
reD

It is worth emphasizing that any perturbed system with one resonance relation may be
reduced to this form by means of a sequence of operations similar to Delaunay’s or by
using a method of averaging over the high frequencies, as the method of Von Zeipel (see
Ferraz-Mello, 1989).

In order to extend to this situation the method discussed in the previous sections,
we introduce the Jacobian generating function

S(C, &2, 0)=("|0)+S1+ S+, (34)
where Sy = O(¥/?), z} is constant, and
& = (23, ..., 7)) (35)

is the projection of the vector z* over the hyperplane z} = 0. The transformation defined
by S is

95 _ . 0% 0%

S 86; Tt 06 06;

i



_ 05 _ 08 05
T 8C T 8C  acC
s 8S1 0S5,
= +
87::“

(36)

=== _—
“oxy, “+6z;

(i=1,2,...,n;p = 2,3,...,n) .As this transformation is time- independent, it conserves
the Hamiltonian, that is, F' = F'*, or

Fo(z1) + Fy(z,0) = F*(C, & 0*), (37)

where

g* = (63,...,0%) (38)

(a similar definition is adopted for §*).

The new Hamiltonian F™* is an indeterminate function and is chosen to be indepen-
dent of ¥ and to have the form

F* = Fg(23) +C + F3 (2*,0") + F5(C,",0") + - - (39)

C is of order O(¢) (as in section 2) and the functions F} are of order O(e*/?). We have
indicated that F} is also a function of &} but we remind that this parameter is, now, just
a constant, not a canonical variable.

Expanding both sides of eqn. 37 about z = z* and * = 0§, there follows

1,88 85108, 1d3F, 8S . F, 8S
Fo(e1) + 5mu (3 l) +m167116012 6dm*§ 1)3+F2( 9)+Z axfa_g,l"'@(‘fz):
~ 0F; 88
F5@i) + CH P 0+ ) gabas + F(G=0) 06" (10)
7

(all functions in the partial derivatives in this equation and in the next ones are assumed
as functions of (C, z*,9)).

Equating the terms of the same order in eqn. 40 we obtain the perturbation
equations of the extended Delaunay method:

Fo(z1) = Fo (1)
1 051 4

(66 )? + Fa(2*,0) = C + Fy (2", 0) (41)
35105 | 1&F 051 AF, 98, _ x~ OF; 5,
M50, 36, T 6 dwt3 90 0. T Bz 06; 3, a*+F3(C“’ 0,

etc.



The main equation of the method, the Poincaré-Delaunay equation

108

— 2 * _ * * 7
2m1(601) +F2(:B ,0)—C+F2(.'E )0)) (42)

is now much more involving than that of section 2. As the aim of the operation under
study is only to obtain a new Hamiltonian independent of the angle 8, this equation may
be split in two parts:

08, | 2 .
0 =\ C - Z eAg(z*) cos(k | 9) (43)
keD,
and
F3= Y eAg(z")cos(k | 0). (44)
keD,

In D; we keep all vectors £ € D whose first component, k1, is not zero and, in Dy, the
rest of them. The solution of eqn. 43 is similar to that discussed in section 2. However,
it will depend on the parameters zj,,0,. As a consequence, the kinds of motion — classed
as circulations and librations in the simple situation of section 2 — will not be invariant,
the solutions being able to change their kind as z}, 0, evolve in the time. Equations 41
define the Jacobian generator of a canonical transformation, S, and the new Hamiltonian,
F*(C,f:*,é*), defining a system of equations reduced to n — 1 degrees of freedom. If we

know how to integrate this system, obtaining
z, = z,(t) 0, = 0,(t), (45)
we may introduce these functions into the additional equation

oF*

i=-5 (46)

and obtain y(¢). We remind that F* does not depend on v and that, as a consequence,
C is constant. The inverse transformation (C,v,&*,6*) = (z,0) will, then, lead to the
solution of the given problem:

z = z(t) 6 =6(t) (47)

At least schematically, the method of Delaunay, as described here, may yield formal
solutions of the given problem.

We have to emphasize that the introduction of the constant C allows z} to be
kept fixed. We also stress the fact that it is not necessary to let z} vary to describe the
solutions in an interval of 2; about the fixed value z}. In this sense, the question addressed
by Poincaré in the opening of §201 seems to be unnecessary.



5 The singularity of Poincaré

The final analysis of the preceding section supposes that we may solve all equations of
the method. In fact, this is not so obvious. Poincaré has shown (op.cit p.323) that the
equations for S;(¢ > 2) may be singular. For instance, for ¢ = 2, we have

88y 881\ _1 (e _ L 881 3, BFZ dS,
86, — my 301) ( 3 6dm‘{3(601) * 96, ~ P (48)
where OF, 8S, OF: 0S
2 1 Vi 1
Py = Z(az* 06, 86, oz S ) (49)

Eqn. 48 is singular for 5# = 0, and this limit is actually reached in all solutions
of eqn. 43 classified as hbratlons i.e., those for which the square root in eqn. 43 is not
defined for all 8, vanishing for particular values of this angle (libration boundaries)

As Poincaré considers only the case with one degree of freedom, he succeeds to get
rid of it. Indeed, if we have just one degree of freedom, the variables z,,8, do not exist.
Then, P3 = 0, and eqn. 48 becomes

0Sy _F3 851._, 1 d&®F

Vo2 _) o (651 2 1 6F2
691 - my 661 6m1 d.’BIB

30, T oar

(50)

The singularity disappears if we choose F§ = 0.

However, in the general case, when the given Hamiltonian has more than one degree
of freedom, it is not possible to eliminate the singularity just through an appropriate
choice of F3, since this indeterminate function cannot depend on #;. In order to remove
the singularity we need to change the integration variable, following ideas close to those
developed by Hori (1966) in his Lie-series method.

6 Sessin’s integration algorithm

The algorithm introduced by Sessin to remove the singularity of Poincaré was founded
on the study of the particular one-degree-of- freedom dynamical system whose Hamilton-
Jacobi equation is eqn. 42. It is equivalent to solving the partial differential equations of
the method of Delaunay by using the method of Cauchy’s characteristics

If we introduce the notations

_ 9%
Yp = 59_1) (51)

10



and write equations 41 generically as F(f1,yp,Sp) = 0, the equations of their character-
istics are (see Carathéodory, 1965):

w, _oF
du Oy,
dy,  OF OF
du - 6, " ¥*3s, (52)
as, _ or
du P Oyp
For p = 1 (Delaunay-Poincaré equation), the equations of the characteristics are
@ _
du miy:
dy _ _O0F
du - 891
ds
—El;l = myyl. (53)
From the first two of these equations, we obtain
d?6, OF,
= —my —2 4
dw? = ™6, ©9

whose integration is theoretically possible. In particular, it yields the energy-like integral

1
2

do
(7)*+miFy = B, (55)

where the integration constant £ may be related to the variables by combining this equa-
tion and the Delaunay-Poincaré equation:

E=m(C+F}). (56)

The solutions of eqn. 54 are either circulations — when E is greater than the
maximum of F3 — or librations about the minima of that function.

Substituting the value of y?, obtained from eqn. 55, into the third of eqns. 54, we

obtaln is

—d—ul' = le(E - mng) (57)
or, taking into account eqn. 56,

dSl *

E = 2(C+ F2 - Fg). (58)

11



This equation has still the indeterminate function F3 to be fixed before the inte-
gration. In the techniques for averaging Hamiltonian systems, like the method of Hori, it
is suggested to fix this function in such a way that no secular term exist in S;. That is,
F3 may be such that < %Sul >= 0. This choice is not possible here. Indeed, the function
in the right-hand side of the third of eqns. 53 is sign-definite and cannot have a zero
average (unless it is identically zero).

Therefore, it is not possible to avoid the existence of secular terms in the generating
function. But its geometric propagation may be avoided by choosing it to be independent
of },,0,. This can be done by adopting < % >= 2C, that is, Fy =< Fy >. Hence,
the only derivative of S; affected by the secular term is the derivative with respect to C.
In the transformations, the only consequence lies in the equation for the new time-like
variable v (see equs. 36) which will be given by

851
=—+..=u+.. 59
7= %0 (59)
We recall that the derivative of S; with respect to C' does not appear in the higher-order
equations and, as a consequence, the secular term Cu of Sy does not propagate. We
consider, now, the equations for the case p = 2. The first of these equations is

do;
du =M1y,
the same as for p = 1; the third one is
dSs
T = My (60)

The second equation, giving the derivative of y,, does not need to be written, since y; is
already known from the given eqn. 48:

_F}-Ps 1
miy1 my

1d3Fy , OF,

bl Y Rt 3 ) 61
v ) (61)

Hence
dSs . 1d3F, 3 OF

ERR Yl P

whose right-hand side is, now, finite.

— P, (62)

Higher-order equations may be treated almost in the same way. After substitution,
in turn, of the results obtained in the previous orders, the generic equation may be written

miyty, = Pyr;0), (63)

where P is a polynomial in y; whose coefficients are functions of z* and 6; k is an odd
integer.

12



7 Final remarks

The method of Delaunay has been included by Poincaré in his chapter on the method
of Bohlin just as an introduction to some of the difficulties found in the study of the
perturbations of resonant dynamical systems and is far from complete.

In this lecture we presented the main results found in the book and their extension
to situations close to that of real problems. Notwithstanding the fact that this method
has not yet been successfully applied to any real problem, it must be considered as an
alternative tool to study resonant dynamical systems in quest of good approximations for
their phase portrait. It is worth recalling that the Jacobian canonical transformations
used in Delaunay method are not homeomorphisms and can provide us with solutions not
able to be simply obtained with the use of the techniques founded on Lie series mappings.

One last point to be made is related to the adopted restriction to the case of just one
resonance. In fact, almost every step, in the last three sections,may be done by assuming
more than one resonance relation,say, ny = 0(A = 1,...,£) . However, it would not be
useful. Indeed, in this case, the equations of the characteristics of the Delaunay-Poincaré
equation are non-integrable dynamical systems with ¢ degrees of freedom. In the most
simple known case, this system is the 2- pendulum, a non-integrable system defined by
the Hamiltonian

H = Fo(z},z3) + €A1 cos 0; + €Ay cos by, (64)

whose solutions were discussed by Yokoyama(1983) and Lacaz(1985).
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CHAPTER XIX - BOHLIN METHODS

INTRODUCTION

This is by far the longest chapter in Volume 2. In the
following personal interpretation of Poincaré’'s work, I attempt to
include all the important aspects of the various methods he
desribes. Some of these aspects feature more prominently than
others; the choice of these is entirely my own, and I realise
others might make a different selection. Where I believe the
material is more readily understood by means of some particular
example, I include such an example. Certain parts of Poincaré’s
work have close connections with more recent research of others;
where appropriate I make reference to these relationships.

While it is my remit to concentrate my attention on Sections
204-212, 1 believe it is helpful to give a brief summary of the
earlier Sections (§199-§203) of Chapter XIX. I find, for example,
that I am unable to reproduce some of Poincaré’s formulas of §201,
concerning the passage from shallow to deep resonance. (The
ad jectives shallow and deep are here used in the sense of
Garfinkel). Poincaré arrives at similar formulas later in the
chapter (§211), where he is considering a more general case of
resonance problem. Again, I disagree with his results, but it is
easler to outline my disagreement with the aid of the simpler
problem of §201.

It is my opinion that §206 contains the most interesting and
valuable material of the whole chapter. Apart from my own
employment of the techniques described in this section, I am not
aware that others have taken advantage of the powerful methods here

advocated by Poincaré.




In the following, each section is explained in turn and, where
they have been found, minor errors in the original text are
indicated at the end of the section. All references are listed at
the end of my contribution. Where Poincaré has numbered his
equations, e.g. (4), I retain the same label, even though at
times his numbering system is either inconsistent or misleading or
both. Where I choose to number another equation, whether it be one
of my own or one of Poincaré’s un-numbered equations, I use the

square-bracket notation, e.g. [4].

Delaunay’s Method (Comprising §§ 199- 203)

§199 (pp.315-320)

The chapter begins with a general definition of the resonance
problem which is the subject of the whole of Chapter XIX. The problem
concerns a canonical system of n degrees of freedom, but with a
single critical argument.

Denoting the n-vector (X1’ Xopoven xn) by (x) the system may be

described by the following Hamiltonian equations:

F(x,x) = Fo(x) + uFl(x,x) + uze(x,x) + ... = C = constant;
= . = 3 - J— 1
X=my +...+my 5 m integer, 1 = 1(1)n (1]
ax, _OF  dy, _ _ oF
dt gy~ dt ax

It is assumed that the Fl (iz1) are periodic in x, with period Z2m,
and that |pl « 1. The resonance is associated with the critical

argument x, in that the sum

0 0 :
nm + ... nm |
11 n n !
. . 0 |
is either small or zero. In this combination the frequencies n  are



defined, in the usual way, by

0
in which []o indicates that the substitution x> x? has been made. f
Here the constants x? refer to the solution of the unperturbed j
problem corresponding to F = FO ; i.e. the solution corresponding to
p o= 0.

The so-called Delaunay method which Poincaré next alludes to is
hardly a method as such, but merely an outline of an alternative
means of approaching the problem of resonance. Poincaré describes
Delaunay’s method first as, he says, it pre-dates his own and
simplifies the understanding of the latter.

Having formulated his general resonance problem Poincaré
chooses first to investigate more closely the simpler |
one—-degree-of-freedom simple pendulum problem,

F=x + p cosy = C.,
1 1

Introducing the generating function S by X, = BS/ayl, the solution of

the resulting Hamilton-Jacobi equation is

s _ a

gyl = vY(C ucosylL

Poincaré distinguishes three cases, each of which is relevant to
later sections in this chapter; they are:

(1) C > |p| - the "ordinary" case, which is now more usually called

the circulation case,

(2) -|u| < C < |u| - the libration case, i

(3) C= |u| - the limiting or separatrix case.



He shows how, in each case, S may be written in periodic form
in an appropriate argument. He refers to the use of (i) elliptic
functions, which are doubly periodic and (ii) the phase - plane
figure of the system - in appropriate "polar" co-ordinates (his fig.
2). Poincaré concludes that while S is expandable in powers of pu,
provided |p|/C < 1, for smaller values of C, i.e. when C is of order
i, then S is of order V.

Errors:

p.317, £.17 : should read gg = VC(1-cose) = v2C sin(e/2)
1

, £.19 : ibid o 1911299551— C sine
de 2 .2
u -Ccos ¢
. as
, b7 : ibid == =B + ZB cos(ne/2)
de (0] n
, b5 : ibid S = Bo g + 2} (Bn/n) sin (ne/2).
p.318, £ : should read gg = V2u sin(y1/2)
, &4 . ibid S = -vV8u cos(yl/Z)

p-319, bll : should read C > |u|.

§200 (pp. 320-332)

The subject of this section i1s the one-degree-of-freedom
general problem governed by the Hamiltonian

F = Fo(x1) + “F1(X1’y1) + qu(xl,yl) S

where the Fi(i z 1) are periodic in the argument Y, Poincaré
states that, provided Fé(xl) # 0 then the methods of §125 are
applicable; that is, using the appropriate Taylor-series expansion,
S may be constructed as a series in powers of u. He does not state

here how small Fé is allowed to become before this method is rendered




inapplicable.
If Fé(xl) = 0, however, then it is necessary, in the first
instance, to adopt the expansions

S

S, + Vpsl S, + ... , S

il

Xy

C=¢C,+ Vﬁcl +uC, + ...

Poincaré proceeds to show how, with a suitable choice of the
constants Cp, the generator S and hence the solution can be
constructed as series in powers of V. He emphasises that with an
improper choice of Cp the derivative BSp_l/ayl, and hence S _y» may
become singular within the libration domain. It is precisely
singularities of this kind which Jupp (1970) refers to in his study
of the Ideal Resonance Problem. Subsequently, Garfinkel et al.
(1971) demonstrate how these "Poincaré" singularities can be
avoided; their procedure matches closely Poincaré’s prescription.
It transpires that C2p—1 =0, (forp=1, 2, ...), Szp__1 are series

in cos(ny1/2) and sin(ny1/2), while S2p are series in cosny, and

sinnyf

§201 (pp.332-338)

I remarked in the previous section that Poincaré did not state
how small Fé could become before the "classical" method (i.e. that
involving expansions in powers of u) fails. Poincaré takes up this
point here, by asking the question: How does one make the passage
from the case Fé # 0 to the case Fé =0 ? . The method he goes on to
describe is not attributed specifically to Delaunay, but I infer
that this is his intention. The full details of my interpretation
of this procedure are published elsewhere (Jupp, 1973), so I limit

myself here to a very brief account.



In the "classical” method the generator S is such that

_ 2

S_So+“S1+“52+" (3)
in which Sp contains the factor (nl)_(arl). On writing

n = aqu M IR (2)

and substituting into (3), it can be shown that

1,
0 EJ‘P
S = Y S U , PO [2]
P p,J
j=1
Then placing [2] in (3) yields
[e4] [+] o]
S= ¥ zsj(\/ﬁ)j= YT WP =T [3]
p=0 j=1 *’ p=o ©
Thus we have a new expansion of the generator in powers of V.
It can readily be shown that
Y 0o
T = 171 F S ’
1 F" _1' p,1
) p=
where F; is the second derivative of Fo evaluated at a specific
point. Poincaré goes on to state that
ot \° o 2a, 8S,
— | == - = L (4]
6y1 FO FO 6y1
i.e. that (6T1/6y1)2 is given by a finite expression ! If this were

true then T1 could, in theory, be expressed in finite form. As is
shown in my 1973 publication, I am unable to reproduce this result.
Poincaré goes on to state "C’est la un fait d’autant plus
remarquable qu’il peut s’éntendre, comme nous le verrons bientét, a
toutes les équations de la Dynamique". Perhaps the error is my own,
but so far nobody has come forward to verify this. Poincaré makes
no further comment regarding T2, T, . . . , as to whether or not

3

they can be written in finite form. As in the case of Tl, I




maintain that these quantities are also generally infinite. If my
conclusions are correct then the procedure prescribed in this
section for making the passage from the classical, non-resonant,
case into the domain of resonance is entirely impractical.

The significance of this discrepancy is chiefly academic, for
the method of Bohlin, provided it is correctly applied, is a much
more practical alternative means of constructing a suitable
generating function. Indeed, Garfinkel et al. (1971) show how a
"global" solution may be constructed, incorporating both deep and

shallow resonance regimes.

§202 (pp. 338-340)

In this very short section Poincaré demonstrates how the
results thus far obtained, chiefly relating to one-degree-of-freedom
systems, can readily be extended to more general problems. In
particular, he mentions the problems associated with

(1) F(xl, Xpo oo X s yl) = constant
(ii) F(x, x, . . . , x, x) = constant
1 2 n
in which Y, is the critical argument in the first Hamiltonian and %,
defined by [1], is the critical argument in the second. These

extensions are quite trivial; indeed (ii) is simply transformed to

(i) by means of a standard linear transformation of variables.

§203 (pp. 341-342)
A summary of the preceding sections is given here, Poincaré
considers the general problem associated with
F(X1’ L S A A ,yn) = constant.

If there are no commensurable relations between the angle




variables, then there is no resonance and the methods of §125 are
applicable. However, if there is a critical argument, x say, then
the associated term(s) can be ’removed’ from the Hamiltonian
following the method of Delaunay just described. In other words the
critical or resonant part of the Hamiltonian, including all the
secular terms, is isolated and integrated separately. Poincaré
labels this resonant part F’, and one must bear in mind that in this
section Fé, does not refer to a derivative as it does in earlier and

later sections.

Bohlin’'s Method

§204 (pp.343-352)

Poincaré says that Delaunay’s method, previously described, is
inconvenient as it contains, in general, too many changes of
variables. I also believe, as I have already stated, that the
method is not feasible in most resonance cases.

It is interesting to note that in his introduction to Bohlin’s
method, Poincaré says that he himself has proposed the same method,
but several days later. Is this modesty on Poincaré’s part ? Should
we, in fact, refer to the technique here described as the Bohlin-
Poincaré method ? Indeed, it is not clear at which point in the
subsequent sections Poincaré ceases to describe Bohlin’s
contribution and commences the description of his own. 1 suspect
that most of the material in §205-§212 can be attributed to Poincaré.

The resonance problem considered in this section is

characterised by the equations




%i = g , d_yi = —a_F (1)

dt ay1 dt 6xi
8s as
Fl L, ..., v, ...,y |=c. (2)
1 n
3y ay
1 n
The sum
my + +my &mno + + mn°
lyl"' nyn_ll"' n n

is very small, in which the n? are the frequencies defined in §199.
Bohlin’s method is founded upon the expansions
s=so+\/usl+psz+.
c=co+c2u+c4u2+.
Such expansions were anticipated in §200. The usual Taylor-series
expansion, followed by the separation of terms in equal powers of

vYu, generate the equations

6SO BSO
FO —_, . ., — | = C0
6y1 6yn
; =
ax1 Byi
0
(3)
2
aF 8s 8 F s 8s
% —2 == % 1Zk > — =+ Fil =65
axi 6yi 6xi6xk ay 6yk
)
2
zg§+lz ° 5o Eg—@ =0
i 2 1,k 3
axi ayi 6x16xk 6yi ayk

In (3) I have slightly modified Poincaré’s notation, in order
to clarify the meaning. My brackets []0 denote that the

substitutions X, x? have been made, after the appropriate



differentiations have been performed; the constants x? are defined
as in §199. The general equation of (3), that is the equation
corresponding to the power (Vﬁ)P, is
2
a8 F 85 8s
o] 1 p-1

1Pt e | - >+ (-1
P
axiaxk ayi 6yk

oF &S
rY_o »

_o_p 1
i 2 1,k
ax1 6yi

(o]

The notation )} 1is to be understood as a sum over both i and k. In
i,k

all but equation (3c) the combination occurs twice. In equation
(3c), the combination appears twice for i =z k, but only once for
i = k. Where I have written - F1’ @3 and @p Poincaré simply has & -
which might lead to some confusion. In any case, it is assumed
always that @p or & is a known function.
Let us suppose that the x? are such that

mlns + . .+ mnn: = 0; (4)
i.e. there is a close commensurability between the frequencies yf
Moreover, we suppose this is the only commensurability of frequencies
in the system. The intention is to construct an S such that the
6Sp/6y1 are periodic in the co-ordinates Yo Yy o o s Y Given

2

that S = ¥ x?yi, equation (3a) determines C,- In virtue of (4), we
i

conclude from (3b) that

S1 = ? ay + f(x), [5]

where the « are arbitrary constants, perhaps depending on the x?,
and ¥ is the critical argument defined by [1]. Before proceeding to
equation (3c) let us digress a little.

Let U be any function of the n-vector (y), such that all the
derivatives 6U/6yi are periodic functions of the y,- Thus U is such
that it may be expanded in a series whose terms possess one of the

following forms:

10




«y., accos(p1y1 + ..+ pnyn), o 51n(p1y1 + . .+ pnyn).
Denote by U - U (Poincaré uses [U] in place of U) all the

trigonometric terms in U except those for which

1 2
1 2

5|’U
£

n

Poincaré calls U the mean value of U. In more familiar
terminology we would call U the long-period or resonant part of U;
note that U contains the linear (secular) terms in Y, It is then

clearly evident that

= = — U au U au
& ) n? Y . const, 12 = vt_2, [6]
dy ay‘ i dy ayi ayi
In the light of [5],
S =8 ,
1 1

and so, from [6], the long-period part of the equation (3c) reduces

to
A2
1 ) a FO 681 BS1 _
constant + 5 _— + F1 = C2
axiaxk ayl Byk o
or
8°F 8s. &S
1 ¥ o} 1 1 _ ' _ 7
ik T T = C2 [Fll0 . (7)

axiaxk Byi 6yk
0
Then, with the aid of [5], equation (7) may be written
A’ + 2B€” +D = C, - [Fl_, (8)

where the constants A, B and D depend upon the . For 681/8yi to
be periodic in x it is necessary and sufficient that

2 , =

B A(D C2 + [F1]o) 20
Now the o, in [5] are arbitrary and, without any loss of generality,

we may write

«a =o =.....=0 =0. (9)

11




[This statement is verified by Poincaré at the end of this section.]

Incidentally, the choice (9) is tantamount to assuming

« o o
—_ = — = = _n . [7]
m m m
1 2 n
With the choice (9), equation (8) reduces to
Af’? = ¢’ - [F.] (8.2)
2 170 ° ’

Equations [1], [5], (9) and (8.2) lead to the explicit formula for

Sl; namely

— 1 J r T
s, = 3 | dc, [Fl(x)]o dx . 8]
*
The determination of S2 is in two parts. First, 82 is found from the

non-resonant part of (3c); thus we write

0 682 *
- Zn S + [ F ] =0, (11)
i ay 1
1 i 0
o
where my asterisk * indicates the non-resonant part; 1i.e. U* =U - U.
Suppose that
¥
[ F1 ]O = E Ap cos (piy1 *py,*t .- PY * Bp),

where the subscripts p are my own, to indicate that the constants Ap

and B usually depend upon the combinations of the P, It then
p
follows from (11) that
A sin{p y+ ... +tpy+p
S=§+S*=§(x)+z o} 171 n n p
2 2 2 0 0
p pn+... +pn
11 nn

*
None of the divisors in this series is zero, because F1 contains no term

depending on the critical argument x. Second, to determine §2 we
must turn to equation (3d) and take its long-period part. Making

use of [6] and the fact that s: = 0, we deduce that

12




. 8% S, 85, ~
2 }: 3x 9x_ 8y 8y = [ . ] ) (9]
: ik i k )
i,k 0
Hence, since 681/6y1 = mif’ and 6§2/6yk = mk§; , integration of [9]

leads to

2

2 [®_]
= (2) (2)
2 OC1 y1+”'+ocn yn+ 3 “f'
E: mm [8 F /0x 8x ]
ik 0 i Tk o

i,k [10]

In the light of relations [7], let us further assume that the arbitrary
constants a:2) are chosen such that

(X,(Z) (2) (X.(Z)
1 2 _ n [11]

m m m
1 2 n

The consequence of this choice is that

o %5, o %5, :
—Zi:ni-a—y:=—fnia—yi=0, [12] 5

which, in turn, implies

Thus, in equation [8] for S1’ C; may be replaced by Cz

Now that S1 and 52 have been completely determined, S; can similarly
be found from the next equation (3e) and §3 from equation (3f).
The method may be continued to any desired order. We observe that,

in general, S 1is determined from two consecutive equations in (3);
p

(p+1)/2

namely those of orders qu and It is easily

demonstrated that, at order p, provided

a(p) a(p) oc(p)

A -2 - =R , (10)
m m m
1 2 n

in parallel with [11], then




0 a§p
"‘Ei:nia—yi=0, [13]

which is the generalisation of [12].

Libration Case (Comprising §205, §206)

§205 (pp. 352-354)
It can happen that C2 = max [f1]0. In such cases f‘, and
therefore asl/ayi, vanishes for some values of Y, Such a state is
known as libration. To investigate this case further let us simplify

the system, as we did before in §199; thus, we assume that

Then x = y,» So that Y, is now the critical argument. With
reference to the previous section U* is now a periodic function in
Yor voen Yoo but not Y, We found before that, provided equations
(9) are chosen to apply, S1 depends only on . In this case the

equation equivalent to (7), for the determination of

S, is
1
1 62F0 8s, 2
= — =C - [F]_ . (13)
2 8x2 ay1 2 1°0
1 0

*
For the calculation of S2 equation (11) remains valid, while equation

[9]1 for §2 reduces to

8°F ] 85 &S
0 2 71 [

| — — = 63]. (15)
6x1 an1 6y1 0

[Note that each combination i, k occurs twice in [9], and so

the factor 1/2 in [9] is cancelled]. Carrying the procedure to the
* *

next orders the functions S3, Sa’ S4, §4, . . .are computed in turn.

14



Error:

p. 353, b7; should read Y, Ygr von s

o<

§§206 (pp. 354-366)

While Poincaré makes no explicit statement of the fact, it is
clear that the equations of the previous section cannot be applied
directly in cases of libration, since 681/8y1 vanishes for some
values of v, Unless appropriate measures are taken the subsequent
expressions for the Sp are singular for these same values of Y,

I discovered, quite independently, precisely this circumstance in
Garfinkel’s original solution of the Ideal Resonance Problem
(Garfinkel, 1966). In this solution Garfinkel uses a procedure which
he calls the Bohlin-von Zeipel method. The difficulty was
subsequently overcome (Garfinkel et al, 1971) by making a
"proper”choice of new Hamiltonian and introducing a "regularising"
function.

Nonetheless, this difficulty associated with these
singularities and another difficulty, referred to as the "loss of an
order of magnitude on differentiation with respect to the momentum",
renders Garfinkel’s revised solution extremely complicated. I
maintain that my own solution of the Ideal Resonance Problem, based
on the methods Poincaré describes in this section, is significantly
simpler and more practical. I briefly outline my method at the end
of this section.

In my opinion this section is the most interesting and valuable
of the whole chapter. On the other hand, in some respects it is
also the most bewildering.

Poincaré begins "Pour étudier plus complétement nos functions,

it faut faire un changement de variables". I assume that the

15



functions, referred to are the derivatives 8S /ayi. He gives no
p
reason for adopting this particular method of proceeding. As in

8205, it is assumed that m o= 1, m,=...=m = 0. He begins by

introducing a finite auxiliary function T, such that
T = To + 1/p.T1 + uTz [14]
with
0
T =S =xy + ... %y [15]

He defines T1 such that

BZFO oT.  oT

1 1 1 _ 1=
3 Ligx ox | 3y, &y~ G [“"1]' (7.2)
i,k i k i o

0]

which is equation (7) with S1 and C; replaced by T1 and C2

respectively. In addition, he imposes the relation
aT1
— = x’ , i=2(1)n.
ayi !

’

where the X3 are constants. It is perhaps noteworthy that in (7)
Poincaré writes 62F0/ax16xk, while in (7.2) he writes BzFo/ax?ax:
I believe, in both cases, he must mean 62Fo/6xi6xk evaluated at

% = x? (i = 1(1)n). It follows that T, is of the form

i
T = XY, * oo v Xy Tl(yll
Recall that in the case of S1’ we set the constants a, equal to
zero (equation (9)); here the x; are non-zero. Equation (7.2)

may now be written

Al771 +2B°1 +D=cC -1[F1 , (8.3)

where A is a constant depending on the x?, while B and D
depend also on the constants x; . Moreover, B 1is linear and D

is quadratic in the xi’. It follows that

16




Mo, | B on, % [Nk
3y, A 2 AR A
Poincaré next defines xi by the formula
x! = (B®-AD+AC,)/A%. [16]

There results the formula for Tl; thus,

By f———————
T =x"y +. . . +x"y - 1 J X -y dy
2 n 'n A 1 1

[17]
in which ¢ is defined by
[F1]o = Ay.
It is still not at all obvious to me why Poincaré has chosen T1 in
this particular way. Later on it will be seen just how significant

the choice is.

Next, T2 is chosen, in analogy with equation (11), such that

However, the further constraint

=0 [18]
is imposed. Accordingly, T2 is independent of the xi’. Lastly the
constant C1 is defined by

0
C = n x’
1 % 1 1

in which we must remember that n? = 0.
The outcome of all these definitions is that on replacing S by

T in F there results

F[ 8T 8T aT

A y Yoo Yoo oo oo yn] = Co + VY C1+ u C2 +
1 2

+ 0(u Vu)]
The function T, depending as it does on (x’) and (y), is used as a

generating function by Poincaré to effect the canonical change of

17




variables (x, y)-— (x’, y’) defined by

= 7= y=_' [19]

In explicit form, from equations [14], [15], [17] and [19], we have

X
1

x? + Vu [— % * VXD - Y ] ,

-y
(16)
0 9T, '
X, =X+ x| Vo + 5;; , i=2(1)n
y
, _ 4B .
vi =y, Vs e Ve g i=2(1)n.

i

I believe that Poincaré has here made another error. In equation
{(16a) he has the additional term u 6T2/8y1 in the right-hand side.
Yet with the choice [18], T2 must be independent of the critical
argument v, Fortunately, the apparent error does not seem to have

any significant effect. Poincaré proceeds to draw an analogy

between (16b) and the elliptic functions he introduced in §199. He
argues that Vxl’—x is a periodic function of Y, with the period

’

proportional to Vu. Further, he remarks that X, plays a role
analagous to the modulus of the elliptic functions. He concludes
that on changing variables from (x, y)—(x’, y’) the Hamiltonian F

becomes a periodic function of the yi’. The period of these

functions is 2nvu for vy, 1= 2(1)n, but

dy1 B
vu — = VP [20]
o VXL TV

for yl’. The limits of integration are the bounds on Y, in

18



libration.
The simple scaling change of variables
y," = Vuz, [21]

yields an F which has period P in z, but 2m in z, for i = 2(1)n.

’

When F is expressed in terms of X, and CI the first three terms
of the expansion are

C, + Cqu + Cu,
each of which is independent of the z,. Co is an absolute constant,

4

depending on the xlo, while C1 is linear in X i = 2(1)n and, in
virtue of [16], C2 is linear in xl’ but quadratic in the other xi’
In order to retain the standard form of Hamilton’s equations in the
transformed variables Poincaré defines H such that

F=C, + Vil . [22]

*
(Poincaré uses the symbol F where I have written H, but I have

already used the asterisk for another purpose.) Then
= — JE— = —~—— (17)

However, while H has period 2w in the variable z, i =2(01)n,
it has period P in 21. To overcome this problem, which would
otherwise lead to mixed-secular terms in the later necessary
inversion procedures, a simple change of variables is sufficient;
thus Poincaré defines the canonical transformation

4

(x1 ) 21) — (ul, v1) by

1 21[21
u o= S de1’ v, T - (18)
The final set of canonical variables is (ul, x2’, RN xn’, Vi Z,

., Z ). Poincaré asserts that the new Hamiltonian H, when expressed
n

19



in terms of this set of variables, may be handled by the methods
discussed in §134. It is worth noting here that this new
Hamiltonian is essentially non-resonant. For while 6F0/8x1 = 0 and
82F0/6xf # 0 it is easy to show that, if we write

H=H + VﬁHl FHH

then because H = C, a’HO/aulj =0for j=1, 2 ...

Further
o8, A o
8u 8x’ du P )
1 1 1

At this juncture I believe it will be instructive to demonstrate an
application of the procedures advocated by Poincaré in this section.
The Ideal Resonance Problem (I.R.P.) first formulated by Garfinkel in i
1966, is a special case of the problem under consideration in this
section. In my original solution (Jupp, 1969) of this problem I
made use, to great advantage, of Poincaré’s techniques. I will
therefore briefly explain my approach. In order not to confuse the 1
reader with symbols already used in my description of Poincaré’s
works I elect to modify the symbols I used in 1969.

The I.R.P., in its simplest form, is a one-degree-of -freedom
system governed by the equations

F = b(x) + 2p a(x) sinzy, no<< 1

3—’t‘=g§, - (23]
(In the original publication I used A(x) and B(x) rather than a(x)
and b(x)). Resonance is associated with the vanishing of 8b/8x for
some value of X; X, say. The direct Bohlin method applied to this
problem runs into difficulties in cases of libration, because of
the appearance of the Poincaré-type singularities mentioned in

§205. (There are also other significant difficulties with this

direct method.)

20



Following the ideas of Poincaré I make three transformations of
variables as described below.

Transformation 1: (x, y) > (p, a).

dy. [24]

(SRl

q= ( % Vu} I lp - P, sin’yl”

in which P, is a constant yet to be defined.

By making the identifications of p, a4 X, and posinzy with X1I’
yl’, x1o and Y respectively, it is readily seen that [24a, b] are
equivalent to (16a, b). Moreover, in this application B = 0. Then,
writing

F(x, y) =& (p, 9 [25]

and taking into account that ab/dx = 0 at X = X, a Taylor-series

expansion yields

n {n) (n-2)
ot 2 P, 2 22, 2 -2
®(p,q) = b, + V. (up) % onfw ¥ ——57y S VW cn’ oW,
0 \ p_ (n-2)!
n-2 n: 0
[26]
There is no term in Y since béi) = n.l0 = 0. The notation bén)

means a“b/ax“ evaluated at X = xo, and sn and cn are the Jacobil

elliptic functions with modulus k and argument w given by

:
Py 2
k = Vp/P w=2 [ ——) d. [27]
The constant P, is now chosen SO that the leading term in the

infinite series in [26] is independent of w(i.e. q). Accordingly,

we choose
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_ (2)
P, = 4a0/bo . [28]

N

Since the I.R.P. described here has just one degree of freedon,

equations (16c,d) are not relevant.

Transformation 2: (p(t), q(t)) = (p(z), s(T)):

The relations s = qu—bq, [29]
T = tu'’? [30]
® =b + p¥ [31]

ensure that the transformed equations of motion are in the standard

form
gg _ av ds _ _o¥

dt 8s’ dtr  dp
We observe that [29] corresponds to equation [21], while [31]
is similar to [22], but with p as a factor rather than Y. This is
because in this application C1= 0. In order to retain the standard
form of Hamilton’s equations the time has been scaled by the factor

V.

Transformation 3: (p, s) » (u, V)

Returning to equation [20], in which the period P of libration

is defined, and in view of [27a], for the I.R.P. we obtain

sin 'k
P = ___d_y_z_
Vp-p_ sin’y
. -1 0
-sin 'k
Simple integration yields
P = 4K/po“ 2

where K is the complete elliptic integral of the first kind.

Accordingly, the transformation equations (18) become, in the

case of the I.R.P.,
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1/2

p s
_ 2 _ 0
u = 3 J Kdp, v=—pmp—. [32]
np
0
Writing p = pokz, [32a] may be written
4po1/2 4p(1)/2 .

in which E is the complete elliptic integral of the second kind and
k’ is the complementary modulus. Equation [33] relates the ’new’
momentum variable u to the elliptic modulus k.

Summary of the I.R.P. transformation.

The 3 transformations just described may be condensed to the
single canonical transformation (x, y) — (u, v) defined by
X =X+ (upo)l/2 ken(w, k),
siny = k sn(w, k), [34]
with w = 4Kv/m.
The modulus k and complete elliptic integral K depend on u,
according to equation [33]. The transformation [34], in view of [26]

and [31]}, furnishes the new Hamiltonian.

b b (2)k2 ® b (n) 2a (n-2)
y=2°%_ +pY 'y (up)?K" O e+ —2 . snfu|en™w
2 0 0 n! p (n-2)!
n=3 o]
=\Ito+\/u\lll+p\lrz+... [35]
The leading term Wo is such that
%o o Mooax | L@ n (361
du dk du 00 2K

In libration 0 < k < 1 and so 8¥ /8u is non-zero. Thus V¥ is
[o]
essentially a non-resonant Hamiltonian. The transformed system of

equations

23




du _ o¥ dv. _ -8¥

may be formally solved using either the standard von Zeipel
procedure (Jupp, 1969) or a method based on Lie series (Jupp, 1973).
In either case the solutions are constructed as series in powers of
V. It is important to understand, however, that this last
procedure is not what is usually referred to as Bohlin’s method.

For in arriving at [37] with ¥ as defined in [35] we have
transformed the problem into one of the type which Poincaré
discusses in §125 - but with Vu replacing the p of §125.

Let us return to Poincaré’s text on page 360. I find the
remainder of this section quite difficult; Poincaré’s line of
reasoning is not made clear to simple-minded people like myself.
Nevertheless, I will endeavour to explain the text as best I can;
but I sometimes choose to deviate from his order of presentation.

Poincaré’s successive changes of variables just described have

transformed the problem into one involving the new set of variables

(u, x’, ... x', v, z. ...,z ). Let the function V be such that
2 n 1 2 n
av av av _
H v ' 3z C 3z Ve Zy e z | = const. (23)
1 n
with
_ v , _9v L
u1 - 'a_vl) Xi - Ei ’ 1 = 2(1)!‘1.

In other words let V take on the role with H as S did with F (cf.
equation (2) of §204). Then V can be determined in the form.

Vo=Vo+ \/p.Vl UV,
with

_ pl 2 n ’ P o=
V1 = Bi vt B Zt ot B 2t Vi ., 1 1(1)n.

Here the Bip are constants and the Vl’ are periodic, with period 2m,
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in v, and z, with the exception that Vo’ = 0. It follows that

n n
av =Ygy« ) N 4z = udv + Y v.dz
1 dz i 11 i
av 1 i=2 1 1=2
is an exact differential. The complete transformation (x, y) -

(ul, x’, V1’ z) is canonical and so the difference

n n
L x dy - vu [ u dv, =¥ v, dzi] = dS - vudv

i=1 ! i=2

is also an exact differential. The factor Vﬁ appears because of the
second, scaling transformation. We conclude that the S defined

here, 1i.e.

n
dS = ¥ xdy (20)

is precisely the same as the S of §205. Poincaré thus establishes
that the two systems of equations, the one in the original variables,
and the other in the transformed new variables, are essentially
identical. In the previous sections the constants a, and af were
chosen according to hypotheses (9) and (10), which did not detract
in any way from the generalisation of the procedure. Similarly the
Bs must satisfy corresponding conditions; they are simply that the
x; (i = 2(1)n) vanish with p = 0.

Through the various transformation equations it is possible, in

theory, to write

il

e (v, vy, ..., ¥)

yl 1 2 n

Xi = cl (v1’ Yy o yn)

where 6 and Ci are periodic, with period 2m, with respect to each of
the n variables. Consider the case corresponding to Yoo e y

n

being constants; then the equations
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v, = e(v1)’ X = §1(V1)
describe a closed curve in the (xl, yl) plane as Vv, increases by 2.

Eliminating v, is equivalent to writing the exact equation

g =5
1 6y1
which again describes a closed curve. [This must be so since we are

throughout this section considering libration.] On the other hand,
following the procedure described in §205 we construct X, as
follows:

s s a8s p/2 6Sp

x1=a—2+\/p.—6—1 +p—a—3+...+u —6———
yl yl yl yl

(26)

In theory the series is infinite, and divergent, put in practice we
must choose 2a term at which to terminate the series. Poincaré asks
whether the curve, in the (X1’ yl) plane, given by (26), 1is closed.

As 1 remarked at the beginning of this section, it 1is not
generally possible, at all orders, to construct BSp/ayl, which
remains finite within the libration domain. Poincaré does not
mention this fact before, put he here gives the reason for the
singular derivatives. The reason 1S that, at order P, the resonant
part of Sp is calculated from an equation of the form

0 P =103
2 ay ay [®p+1]0 * Cp+1 (27)

where Cp = 0 for p odd; equation (15) is of this form, with p = 2.

Poincaré agserts that 652/6y1 remains finite because [63] vanishes
0

with le/ayi; this is indeed true, as I have myself verified that,

for example, in the one—degree—of—freedom case

oF 1 95, 1 3°F, 3s, 3
[3]=_[’]_,__ __ o 1. (38]
3°0 6x1 ay1 6 ax3 6y1

0 1 o
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However, this is not the case when p = 3. Moreover, it is not
possible to choose C4 to keep a§3/6y1 finite at both zeros of
BSI/ayl. Further difficulties of the same kind exist for all odd
values of p.

Poincaré chooses to illustrate this situation by means of a

simple example. It is obvious that the equation

is a closed ellipse. However, the infinite expansion

2 2 4

T e T

(1-y*)? (1-y

does not describe a closed curve, since x > w as y > ¥ 1.
Poincaré concludes this section on libration by stating that
all such difficulties can be avoided by changing the variables

(x, y) » (ul, Xy Vo z) as described. 1 have already shown that, in

the case of the I.R.P., his prescription is wholly satisfactory.

Errors:

p. 356, b 6: should read " ... la deuxiéme équation (16) "

p. 357, 1 3: should read " ... notre deuxiéme équation (16) !
p. 359, b 13: should read " ... C2 est un polyndme de premier ordre

par rapport a xl’ mais de deuxiéme ordre par rapport
'

aux autres xi

p. 366, 1 2: should read " . . .~ —/5—
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Limiting (Separatrix) Case (comprising §207-§210)

§207 (pp- 366-368)
The separatrix case corresponds to C2 = max [fllo in equation
(15). We are still assuming m, = 1, m = 0 (i > 1) and so nio =0

and X (=y1) is the critical argument. In this limiting case it was

shown in §200 that 651/6y1 is periodic in Y, put with period im,

rather than 2m. Moreover, there is a single value of Y, for which

C2— [fllo vanishes. Without loss of generality we choose this value

to correspond to y1 = 0. Then,

651
_1 -0 fory, = 2km,
y 1
1
for any integer k. For example, with F1 = cosy, and C2 =1,
as
5?1 - yi=cos y = V2 sin(yl/Z)

1
= 0 for Y, = 2km,

Next, in view of equations (15) and (27, Poincaré asks whether the
asp/ayl remain finite, given that 651/6y1 vanishes at y = 2km.
After a lengthy, in depth, analysis he concludes that these
derivatives, and hence the Sp do remain finite in the limiting case.
But this conclusion is not reached until the end of §210, and for
reasons of economy of space 1 prefer to present here only a brief
summary of Poincaré’s analysis.

Bohlin’ s method of §204, prescribes Ci = 0 for odd values of 1.
In equation (27), when p is odd, we may always choose Cp+1 such that
the right-hand side vanishes for Y, = 2km. Accordingly the GSp/ay1
remain finite, and so therefore do the §p and Sp. However, this
choice is not available to us when p is even in equation (27), for
then Cp+ - 0. To establish that BSp/ay1 remains finite when p 1s

1

even it is necessary to prove that, at Y, = 0,

] =0 (29)
p+tl1 O
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is a self-satisfied relation. Poincaré constructs such a proof in

the next three sections.

§208-§210 (pp. 368-383)

Poincaré proves that (29) is self-satisfied in a style which
typifies his rigour and enthusiasm for his subject. In his proof he
employs material from earlier sections; namely 8§42, 43, 44, 79, 145
and also results from Chapters VII and XV.

Rather than attempt to present Poincaré’'s analysis I will

simply verify that 654/6y1 remains finite. The case corresponding

to p = 2 has already been verified, in that equation [38]
illustrates that [53]0 is factored by 651/8y1. %
Let us consider, without loss of generality, the one-degree-of-
freedom case corresponding to Hamiltonian F (x, y), in which F is of
the standard form and y is the critical argument. Then -
[aFo/ax]O = Fo’ = 0. The formal Bohlin method provides the

set of equations

F =C,
0 0
lpvgs 247 =, |
2 0 1y 1 2
72 1 "i 3 ’ —_ \
F“s S + = F + F' s =0, [39] ;
0 1y 2y 6 o 1y 1 1y
2" 1 & 2 l " 2 }__ wir 4 }
Fo S1y S3y * 2 Fo Szy * 2 F0 1y Szy * 4 Fo 1y + :
+ F’ + = F” +F =C, T
2y 1 1y 2 4 |
|
" 1 ”i 2 2 1 nwin 3 :
F¥s S +F”S S + 3 F (s s +Ss S )+ =>F + |
0 1y 4y 0 2y 3y 2 0 1y 3y 1y 2y 6 01y 2y
1 ” 5 1 7 3 ’
- "t ' " + — + F S = O,
* St Fo 1y * F1 Ssy * F1 S1y Szy 2 Fl S1y 1y
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In these equations I have omitted, for the purpose of
simplification, the brackets []0; it is to be understood that all
the functions Fi and their derivatives are evaluated at x = xo, the

root of aFo/ax = 0. Further, as there exists a single degree of

»*
freedom we here have Sp = Sp, since Sp = 0. The derivatives 8S /8y
p

are here abbreviated to S g
p
With reference to equation 27), C5 = 0 and the only terms in
[55]0 not explicitly factored by Sly in [39e] I label M; thus
M=F"§S S + F' S .
o "2y "3y 1 "3y
However, in virtue of [39c], we see that

2

FII S = _l FIII S _,Fl .
0 2y 6 o 1y 1
Accordingly
M=-LF S5 S .
6 o 1y 3y

We have demonstrated that every term appearing in [39e], which is
the equation for the determination of S4, ig factored by S1y' It
follows that S4y and S4 are non-singular. I have verified that the
same is true for Ss' Although I haven’t attempted the proof, I am
sure an inductive proof, much more concise that Poincaré’s, is

feasible.

Relation with the series of §125.

§211 (pp. 383-387)

In this section Poincaré extends the procedure (Delaunay’ s?)
described in §201 to the problem involving n degrees of freedom but
a single critical argument. That is, he is here interested in the
passage from the classical regime to the resonance regime. Just as
I was unable to reproduce his results in the earlier section, I

cannot agree with his conclusions here.
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Corresponding to (2) of §201, Poincaré lets
= o +al Vu+ oC .. (2)

1 1 i 1
and substitutes these formulas into the classical, non-resonant,
formulation of the generating function. Then, assuming that

m ao + m ao + . . . . *tnm ao = 0,

1 1 2 2 n n
*

he obtains a new generator S expanded in powers of Yu ; he writes

*= s 4 7
S So+w/usl+usz+... (4)

He then derives

a8s au au
— — =nm A7+l__1_+1_
ay 1 Y ay1 73 X

+ ... (9)

in which A is a simple constant coefficient and

1 1 1
y=m o« +m_ o + . . . +m o . (7)
1 01 2 2

-1 -3 2p-1
Further, % U1’ v Uz’ R ¢ Up are analagous to SLl, SzJ"
.,Sp . in my account of §201. While I can confirm (9), I am
unable to reproduce the equation
BS; 2 5 2 2 6U1
(-a—y—] =m1A'y+m1A'a—y, [40]
1 1
which compares with [4]. Poincaré asserts that the set of
identities
au au, 2
2.]'1’11 A1 ay (sy—l'] =0 .
[41]
au BU1 8U2
2m A +2 — — =0,
8 X ay1 8y2

leads to [40]. Poincaré says of [41] that they
curieuses et inattendues _.."%. If these last were identities, [40]
would certainly be true. However, I have not been successful in

establishing the validity of [41], and thus I question {40].
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As I pointed out at the end of §201, this apparent difficulty
is an academic one. The passage into resonance can be made quite

gatisfactorily using an appropriate version of a Bohlin procedure.

Divergence of the series

§212 (pp. 388-393)

Poincaré states that the series derived in this chapter are
divergent; he is clearly referring to the series for x(=85/8y) and
for S. He proves this statement, for the case of circulation, by
choosing a particular series of §204. Then, in view of the
transformations of §206, he states that the 1libration case
transforms to the ordinary (circulation) case; consequently the
corresponding series also diverge. He defines the proof of the
statement for the limiting (separatrix) case until a later chapter.

Poincaré goes on to state that the divergence is due, not to
small divisors - which can be avoided as has been shown, but to the
appearance of large multipliers in the numerators. For example, a
term such as

ApSin(plyl + ... pnyn)
generates the multiplier P, when differentiated with respect to Y,
and it is quite possible that P, is large.
Error:

p. 393: equation (5) should read " . . . - -V e

Concluding Remarks

This Chapter has been concerned principally with the
construction of the series for the generating function S in cases of

resonance. His treatment refers only to problems involving a single
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critical argument; he does not attempt to investigate here the much
more difficult problems associated with multiple resonances. He
skillfully demonstrates, in the single critical argument case, how
small divisors may always be avoided.

He defers until the next chapter the final stages of the
solution, which involves the differentiation of S with respect to
the ’new’ momenta (his x?) and inversion procedures. The
interpretation of Poincaré’s work on these matters is left to
another person. For my part I am happy to rest my pen, having spent
many hours, sometimes of frustration but mostly of pleasure, in my

task.

ALAN JUPP

MAY 1989
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