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Abstract—Our main objective in this work is to address the
challenge of enhancing the forecasting of agents trajectories for
Connected and Autonomous Vehicles (CAVs) while prioritizing
privacy. We introduce an innovative approach to Federated
Learning tailored to the contextual aspects of trajectory predic-
tion. We employ the Siamese Neural Network (SNN) to capture
context similarities between clients’ environments. Subsequent
cluster formation employs SNN to group clients with similar static
contexts for federated training, enhancing learning efficiency.

Results of our experiments on real-world datasets collected
from the highway drone dataset (highD) and the intersection
drone dataset (inD) combination, quantified by utilizing well-
established metrics such as Average Displacement Error (ADE)
and Final Displacement Error (FDE), validate the effectiveness of
our approach, obtaining superior trajectory prediction capabil-
ities, showcasing the successful alignment of Federated learning
with the intricate challenges of trajectory forecasting, all while
prioritizing privacy.

Index Terms—Trajectory prediction, Federated learning,
Siamese neural network, Connected and autonomous vehicles.

I. INTRODUCTION

Trajectory prediction stands out as one of the key areas
identified by researchers to enhance the capabilities of the
Connected and autonomous vehicles (CAVs) [1]. The goal is
to forecast future positions of agents (cars, pedestrians, etc.)
in the scene, an information to be used for planning future
routes of CAVs.

Existing research gathers trajectory data from various scenes
and combines them, ignoring the distributive part of the data.
So effectively aggregating them is a challenging task and
may lead to many privacy violations. Thus, a new plethora
of studies [2] introduced the use of Federated learning, which
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exploits the distributed capabilities of edge computing [3] and
preserves data privacy.

However, existing methods for selecting participants for
edge computing and Federated learning, mainly consider re-
sources and device capabilities of each participant [4] ignoring
the delicate setting of trajectory prediction. Therefore, we
introduce a context-tailored Federated learning approach that
better captures the intricacies of the problem in a collaborative
manner where only scene context (images, etc.) is shared
without violating user’s privacy.

An overview of the primary contributions of this work is
provided below:

• We introduce a new Federated learning framework that
leverages the use of the Siamese networks for a more
context oriented learning.

• We show the efficacy of our method using real world
datasets.

In order to clearly illustrate our results, the remaining of
this paper is arranged as follows:

• In section II we present the related work for each of
the Federated learning, trajectory prediction and Siamese
Networks.

• In section III we provide an explanation for each step of
our approach.

• In section IV we test our method and show our results.
• Lastly, in Section V we wrap up and discuss potential

directions for further research.

II. RELATED WORK

A. Federated learning

Federated learning is a machine learning paradigm that
was first presented by [5], It allows a model to be trained
across several decentralized edge devices or servers, all the



while protecting the privacy of the data on each individual
device. Using local stochastic gradient descent (SGD), each
local model in this method is trained. The global model then
aggregates the local models at each iteration until convergence
is reached.

Several research works have opened the path to improve-
ments. [6] proposed to introduce an Adam adaptive optimi-
sation when updating the global model on the server, [7]
generalised other adaptive optimisation techniques in the same
style and provided convergence guarantees, [8] introduced the
use of Adam optimiser for local clients (FedAvg-Adam) where
each client uses Adam locally and the server averages the
global weights and moments of the clients.

Another aspect of additional enhancement suggests that,
instead of using random client selection as in the original
algorithm, studies have introduced numerous criteria, mainly
based on the capabilities of participants and resource alloca-
tion. [9] and [10] proposed a novel client selection strategy
based on the resources conditions. Authors of [4] employed
a trust-based deep reinforcement learning model in order to
select the appropriate autonomous vehicles at each round to
improve performance and explainability.

B. Federated learning and trajectory prediction

The main aim of trajectory prediction is to forecast the
future positions of each agent (humans, vehicles, etc.) within a
specified scene based on their past lateral and longitudinal po-
sitions, additionally some methods also use the scene context
[11].

Recently, many trajectory prediction systems have employed
Federated learning, where the data is distributed. [12] pre-
sented a Spatio-Temporal Prediction framework in Multi-
Robot systems, where each agent contributes to the global
learning. Another approach [13] designed a trajectory predic-
tion method for vehicles based on Federated learning, taking
into consideration both space and time. Adding to this momen-
tum, [14] proposed an automatic human Trajectory Prediction
Model Design under a Federated learning Framework. [15]
elaborated a Federated learning vehicle trajectory prediction
algorithm that tackles the risks of cyberattacks. Additionally,
novel client selection methods for trajectory prediction, which
mainly consider the explainability of the model, have been
adopted [4].

C. Siamese Neural Network(SNN)

In the field of artificial intelligence research, Siamese net-
works have become increasingly prominent when used in tasks
that need measures of similarity or dissimilarity [16].

In a recent study [17], the authors delineate a novel approach
wherein they treat the local and global models of Federated
learning as distinct branches within the Siamese Neural Net-
work (SNN) architecture during local training. This approach
effectively governs the model update direction by continuously

Fig. 1. Preamble training of SNN

adapting the model similarity, thereby personalizing the local
model.

III. METHOD

Our solution consists of a preamble training of SNN as
illustrated in Fig. 1, followed by two main parts as shown in
Fig. 2, the first part consists of the clusters creation where
clients with similar static context are grouped together, and
the second part where each cluster constructs its own global
model using Federated learning detailed explanation of each
component of our framework is provided below:

A. Preamble training of SNN

Motivated by the goal of effectively learning context sim-
ilarity between different environments from image data, the
Siamese Network is trained beforehand using environment
images of scenes from ’inD’ [18] and ’highD’ [19], more
detailed description of these datasets is provided in IV-A. It
is important to note that, in the preamble training we exclu-
sively used images and only from specific scenes (to avoid
influencing the subsequent framework results) in creating a
custom dataset for Siamese Networks training. We utilize the
contrastive loss function, which has demonstrated its reliability
for embedding learning tasks [20] [21], the mathematical
formula is defined as the following:

Loss =α(1− y) ∥fw1(I1)− fw2(I2)∥
2

+ βymax(0,m− ∥fw1
(I1)− fw2

(I2)∥2)
(1)

In this context, we have two inputs: I1, I2 each one
denoting an environment image. The variable y represents a
label indicating whether the environments are similar or not.
Additionally, there are two constants, α and β, which control
the trade-off between different terms. In our case, both α and



(a) Clusters formation step (b) Federated training

Fig. 2. Two-Step Process: Cluster Creation Based on Static Context and Federated learning for cluster-specific Global Models

β are set to 1 to balance the model’s ability to discriminate
between similar and dissimilar pairs. Moreover a margin value,
m, which is set to 2 in our scenario.
∥fw1

(I1)− fw2
(I2)∥ denotes the Euclidean distance calcu-

lated in an embedded feature space. Here, ’f ’ represents an
embedding function that transforms an input context map into
a real vector.

B. Clusters formation

In this part of our framework, we suggest using our trained
SNN to form our clusters. Each available client sends its
static context to the central server, Subsequently, the server
then proceeds to create clusters using the method outlined in
Algorithm 1.

At each iteration of our loop, we randomly elect a client
from the available clients then compare its environment with
the remaining clients, the closer matching clients form a
cluster which later used for the Federated learning training.

The resemblance of two clients is calculated using their
context as input to the SNN which results in the computation
of the Euclidean distance metric, the smaller distance produced
indicates a lower dissimilarity between the two clients context
and the client will be chosen to join the cluster if the
dissimilarity doesn’t exceed the Limit.

C. Federated training

In this module of our framework, we leverage the existing
clusters created by the previous part to complete our federated
training. In contrast with existing methods, each cluster will
only train its own global model in parallel.

The intricate details of the training process are provided in
Algorithm 2.

After the training phase, the testing scenes context images
are initially compared to random scenes from each cluster
using the SNN to determine the suitable global model for
evaluation.

Algorithm 1 Pseudo-code of our Clusters formation algorithm
using clients context
Initialization:

Clusters {}
Clients← get available clients()
/* Gather all available clients*/
while Clients.is not empty() do

V {}
Client E is randomly designated from Clients
V.add(E)
for C in Clients do

if Limit > calculate distance(E env, C env) then
/* similarity is calculated using the SNN
between client E and C context images*/

V.add(C)
end if

end for
Clusters.append(V)
Clients← Clients − V

end while

IV. EXPERIMENTS

In this experimental section, we opted for MID [22] as
our trajectory prediction base model where 8 timesteps are
utilized as observed data to predict 12 timesteps. This choice
was motivated not only because its fast convergence but also
by its precision and the diversity of trajectories it offers. We
adapt it to predict trajectories for all agents in the scene, rather
than just pedestrians.

For the optimization strategy, we use FedAvg-Adam from
[8], where each client employs Adam for local updates, and
the server averages the clients models. Furthermore, and to
assess the efficiency of our method, we choose to compare
our approach of client choice against utilizing all available



Algorithm 2 Pseudo-code of the Federated training process
Main Loop:

Initialize k
/* K is the number of selected clients at each round
for V in Clusters in parallel do

Create global agentv()
while not termination criteria met(rounds, performance)
do

Server-Client Interaction:
selected clients ← randomly select K clients from
available clients in V
for client in selected clients do

send global parameters to clients(client,global param
,optimizer moments)
/* Send global parameters to the selected clients */

end for
Client-Server Interaction:
for client in selected clients do

(received params, optimizer moments)←
receive and update local parameters(client)
/* Client update local parameters */
local epochs execution(client, received params)
/* Client executes local training epoch */
send new data to server(client, new data)
/* Client send local parameters to server */

end for
Update global parameters

end while
end for

participants without the process of client selection.

A. Dataset

To properly evaluate our method, we combine the two
following datasets into one rich setup with different scenes
from distinct locations: the ’inD’ [18] and the ’highD’ [19]
datasets, examples are showed in Fig. 3.

The ’inD’ collection comprises approximately 13,599 roads
users (pedestrians, vehicles, etc.) trajectories and scenarios
captured from a drone point of view at intersections from
four distinct locations. The ’highD’ dataset, on the other hand,
consists of scenes captured on highways from six distinct sites
and includes more than 110,000 vehicles, both datasets are
captured at 25 frames per second using a 4k resolution camera.

Note that we preprocessed both datasets similarly using a
step size of 12 and a window size of 35.

B. Setup

We made each client get access to a selection of scenes from
a certain location. For a total of 12 clients, we constructed six
that employ scenes from the ”inD” dataset and the remaining
six from the ”highD” dataset. TABLE I shows the scenes that
are available to each client.

(a) highD environment exam-
ple

(b) inD environment example

Fig. 3. Visualization of highD and inD Datasets

we divided our testing into two stages. We employed scenes
from the ”highD” dataset to test our algorithms first, and
then we utilized scenes from the ”inD” dataset to repeat the
testing. We were able to properly assess the effectiveness
and generalizability of our approaches across the two datasets
and their corresponding contexts thanks to this sequential
methodology.

The simulation of the communication process was done
programmatically to mimic real-world scenarios where a fed-
erated collection of edge devices communicates with one
another.

TABLE I
AVAILABLE CLIENTS

Dataset Clients Scenes
highD C1 ’01’, ’02’, ’03’

C2 ’15’, ’16’, ’17’, ’18’, ’19’,
’20’, ’21’, ’22’, ’23’, ’24’

C3 ’11’, ’12’
C4 ’07’, ’08’, ’09’, ’10’
C5 ’14’, ’27’, ’28’
C6 ’04’, ’05’, ’06’

inD C7 ’22’, ’23’
C8 ’07’, ’08’, ’09’, ’10’
C9 ’25’

C10 ’30’, ’31’, ’32’
C11 ’01’, ’02’, ’03’, ’04’, ’05’, ’06’
C12 ’19’

C. Metrics

The selection of appropriate metrics is crucial for objec-
tively assessing the performance of predictive models thus
we utilize the popular Average displacement error (ADE) and
Final displacement error (FDE) measures.

• ADE : Quantifies the mean Euclidean distance, measured
in meters, as in [23] with the following:

ADE =
1

NA ×H

NA∑
i=1

H∑
t=1

∣∣∣Ŷt[i]− Yt[i]
∣∣∣ (2)

Where H is the prediction horizon, Ŷ , Y are the predicted
and ground truth trajectories across H and NA is the total
number of agents in the scene.



• FDE: indicates the final Euclidean distance in meters
where the trajectories are only assessed over the last
predicted position T. This calculation is performed as
follows:

FDE =
1

NA

NA∑
i=1

∣∣∣ŶT [i]− YT [i]
∣∣∣ (3)

We used a server with these specifications:
• GPU/RAM: NVIDIA Quadro RTX 4000/755GiB
• CPU: Intel(R) Xeon(R) Gold 6226R CPU @ 2.90GHz

D. Results

This section presents the results of our experiments. Sub-
section IV-D1 demonstrates the viability of our SNN cluster
formation solution for selecting the most suitable clients for
the training.

Subsequently in IV-D2, we assessed our method using
highD scenes. Later in Section IV-D3, our evaluation was
extended to scenes from the inD dataset.

1) Client selection: In this Subsection we present the
produced clusters from Algorithm 1 as illustrated in TABLE
II, we can notice that the created clients clusters from the
static environment fellow the same trend as the initial datasets
before the reintegration indicating that our method successfully
generated meaningful clusters for the training.

TABLE III shows the selected clients at a random round
of the training where K clients are drafted from the created
clusters distinct from the random selection.

TABLE II
RESULTING CLUSTERS FROM SNN

Clusters Selected clients

V1 C1, C2, C3, C4, C5, C6

V2 C7, C8, C9, C10, C11, C12

TABLE III
EXAMPLE OF SELECTED CLIENTS FOR A TRAINING ROUND

Random Ours
V2 V1

C4, C2,
C11

C11, C8,
C12

C2, C4,
C5

K=3

C4, C2,
C6, C11,
C8, C12

C7, C12,
C9, C10,
C11, C8

C1, C3,
C2, C4,
C5, C6

K=6

2) Evaluation on highD: Our first experiments were con-
ducted on scenes from the highD dataset, more precisely on
scenes (’58’, ’59’, ’60’).

After using the SNN to calculate similarity between the
evaluation scenes and random scenes from clusters V1 and
V2, the model resulting from training on cluster V1 was

chosen for the evaluation, Fig. 4 and Fig. 5 show a respective
comparison between randomly choosing participants for the
training and our framework using ADE and FDE while con-
sidering different numbers of participating clients. The results
clearly indicate that our framework consistently outperforms
the random participant selection method across various scenes
by achieving lower displacement predictions.

Note that each client trains for one local epoch and the total
number of rounds is 55 in all our experiments. The shaded
region in the graphs represents the variability values resulting
from running the experiments multiple times.

Fig. 4. Results on highD scenes when selecting 3 clients per round

Fig. 5. Results on highD scenes when selecting 6 clients per round

3) Evaluation on inD: Our later phase of experiments were
conducted on scenes (’13’, ’14’) from the inD dataset, the
model resulting from cluster V2 was chosen for the evaluation.
Fig. 6 and Fig. 7 confirm respectively that our framework
performs better and achieves superior ADE and FDE results in
comparison to the default Federated learning framework using
random participants choice.

V. CONCLUSION AND FUTURE WORK

This paper tackles the problem of trajectory prediction for
CAVs, highlighting the necessity of practical approaches that
Take into account the distributed nature of trajectory data while
preserving privacy.

We introduced a context-tailored Federated learning frame-
work employing Siamese Networks for a context-oriented
learning during the preamble training. Guided by the trained
Siamese Networks, the cluster formation process organizes



Fig. 6. Results on inD dataset when selecting 3 clients per round

Fig. 7. Results on inD dataset when selecting 6 clients per round

clients with similar static contexts for federated training. Then,
the federated training module refines global models in parallel
within these clusters, the experiments conducted on real-
world datasets, combining scenes from ’inD’ and ’highD’
demonstrate the efficacy of the proposed method.

Our method helps CAVs make better decisions and plan
better routes increasing their navigation efficiency in real-
world scenarios.

To increase the contributions that this work has made, we
may investigate variants in SNN designs and integrate more
sophisticated machine learning approaches. Potential areas for
further research include examining the dynamic nature of the
scenes and integrating real-time adaptability.
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