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Abstract: Entropy algorithms are widely applied in signal analysis to quantify the irreg-
ularity of data. In the realm of two-dimensional data, their two-dimensional forms play
a crucial role in analyzing images. Previous works have demonstrated the effectiveness
of one-dimensional increment entropy in detecting abrupt changes in signals. Leveraging
these advantages, we introduce a novel concept, two-dimensional increment entropy (In-
crEn2D), tailored for analyzing image textures. In our proposed method, increments are
translated into two-letter words, encoding both the size (magnitude) and direction (sign) of
the increments calculated from an image. We validate the effectiveness of this new entropy
measure by applying it to MIX2D(p) processes and synthetic textures. Experimental vali-
dation spans diverse datasets, including the Kylberg dataset for real textures and medical
images featuring colon cancer characteristics. To further validate our results, we employ
a support vector machine model, utilizing multiscale entropy values as feature inputs. A
comparative analysis with well-known bidimensional sample entropy (SampEn2D) and
bidimensional dispersion entropy (DispEn2D) reveals that IncrEn2D achieves an average
classification accuracy surpassing that of other methods. In summary, IncrEn2D emerges
as an innovative and potent tool for image analysis and texture characterization, offering
superior performance compared to existing bidimensional entropy measures.

Keywords: biomedical imaging; multiscale increment entropy; texture analysis; texture
irregularity; two-dimensional increment entropy

1. Introduction
Entropy, as defined in information theory by Shannon in 1949, quantifies the level of

uncertainty present in data [1]. It measures the amount of information contained within
a variable. Extracting information from a variable is of significant interest to scientists
across various fields (see, e.g., [2–4]). In the context of information theory, several entropy
measures, e.g., approximate entropy (ApEn) [5], sample entropy (SampEn) [6], permutation
entropy (PermEn) [7], distribution entropy (DistrEn) [8], dispersion entropy (DispEn) [9],
and increment entropy (IncrEn) [10] have been developed to extract meaningful information
from unidimensional signals. These entropy measures allow scientists to analyze and
understand the underlying patterns, complexity, and dynamics present in the data [11].
However, new one-dimensional entropy measures are still being proposed to overcome the
drawbacks of existing ones.

Entropy 2025, 27, 80 https://doi.org/10.3390/e27010080

https://doi.org/10.3390/e27010080
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0001-7612-0840
https://orcid.org/0000-0002-6289-0040
https://doi.org/10.3390/e27010080
https://www.mdpi.com/article/10.3390/e27010080?type=check_update&version=1


Entropy 2025, 27, 80 2 of 17

ApEn [5] assesses pattern regularity by measuring the likelihood that similar patterns
of a certain length will remain similar when compared to other subsequences. However,
ApEn has some drawbacks. It tends to exhibit a bias toward regularity because of self-
matching, lacks relative consistency, and is sensitive to data length. SampEn [6] addresses
these issues by excluding self-matches and demonstrates relative consistency. It is less
dependent on data length. However, for very short data, SampEn may still lead to unreliable
or undefined values. PermEn was also developed as a complexity measure based on ordinal
data to quantify the complexity of the given data [7]. Following that, Liu and Wang [12]
proposed fine-graining PermEn. By fine-graining the partition, this modified version of
PermEn responds more quickly to abrupt changes in amplitude. However, PermEn only
considers the order of values in a time series, disregarding changes in magnitude between
the elements. Even in the modified version of PermEn, when the data have equal-value
elements, it either ignores them or treats them all as one symbol. Besides this, other
entropy measures for complexity analysis were introduced like distribution entropy [8]
and dispersion entropy [9], but none of them take into account the changes in magnitude
between adjacent elements.

To address these limitations, IncrEn was proposed by Liu et al. [10]. IncrEn ranks
the magnitudes of the variations between adjacent elements based on a precision factor
and the standard deviation of the data. This quantifies the changes in magnitude between
adjacent elements and also considers the order of the elements. IncrEn captures the local
dynamics and changes between consecutive data points, making it effective for detecting
abrupt changes or irregular patterns in the data. Compared to SampEn and PermEn,
IncrEn is more adept at capturing and characterizing the structural information present
in time series data [13]. IncrEn addresses the issue of undefined values that can occur in
SampEn calculations. IncrEn does not suffer from the equal-value problem encountered in
some other entropy measures. Moreover, it demonstrates robustness to noise, making it
more suitable for analyzing noisy or complex data. Liu et al. [10] compared IncrEn with
SampEn and PermEn, investigating the impact of Gaussian noise. They found that IncrEn
displayed greater sensitivity to hidden changes in time series compared to PermEn, which
treated analogous patterns as identical. Furthermore, both IncrEn and PermEn exhibited
good invariance when applied to Gaussian noise sequences, whereas the SampEn results
fluctuated significantly [10]. Furthermore, IncrEn showed better performance in seizure
detection from real epileptic EEG signals [10]. It also performed well in detecting fault
vibration signals [10].

Entropy measures for graph signals have recently been designed [14,15]. Some two-
dimensional (2D) entropy algorithms have also been proposed recently to estimate the
irregularity of textures or images (see, e.g., [16–20]). Three-dimensional measures have
been published too [21]. The two-dimensional entropy measures have been applied to
solve many texture problems in multiple domains [22]. Although this research area is still
recent, the results obtained with the bidimensional entropy measures are very promising
in various domains (see, e.g., [23,24]). The 2D measures can be used to study texture
and analyze the irregular structures of images in a similar way to that implemented for
signals [25]. Until now, few of the bidimensional entropy measures have been imple-
mented, and many tasks are still to be explored in this way. Moreover, multiscale entropy
measures have also emerged as a significant tool in the domain of image analysis, pro-
viding a sophisticated means to assess intricate patterns within images. These measures
allow us to explore the complex nature of images by quantifying their information across
multiple scales.

Recently, multivariate multiscale increment entropy (MMIE) was introduced by Wang
et al. [13]. In [26], they proposed the multiscale IncrEn (MIE) and showed that MIE aligns
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better with the complexity loss theory of disease and aging in various physiological signals
at different scales compared to the popular multiscale SampEn (MSE) method and refined
composite multiscale dispersion entropy (RCMDE). MIE exhibits superior discrimination
ability for physiological conditions affecting time series complexity, and its robustness to
parameters outperforms MSE and RCMDE. Additionally, MIE is the most efficient in terms
of time consumption, followed by RCMDE and MSE [26].

Due to the above-mentioned advantages of IncrEn in comparison with PermEn or
SampEn, we introduce two-dimensional increment entropy (IncrEn2D). Inspired by the
ability of IncrEn in detecting changes in both the size (magnitude) and direction (sign)
of the increments calculated from a signal, we believe that this extension, along with its
multiscale variant for images, holds promise for texture pattern analysis. This approach
may offer advantages such as better characterization of structural information, improved
discrimination ability for diverse physiological conditions, and enhanced robustness to
noise and parameter variations.

This new measure was first studied through the analysis of synthetic images. Then,
real datasets, including colon cancer images, were processed, and the results were compared
with those of other, already existing 2D entropy-based measures.

2. Methods
In the following, the method we propose (IncrEn2D) is described, together with its

multiscale version. The datasets processed and the computational steps are also detailed.

2.1. Two-Dimensional Increment Entropy, IncrEn2D

The new entropy measure that we propose here, IncrEn2D, is the extension of 1D
IncrEn [10] to its bidimensional form. Its algorithm is defined as follows. Let us consider a
grayscale image I represented as a matrix of size W × H, where W is the width (rows) and
H, the height (columns). The calculation of IncrEn2D for the given image I consists of the
following steps:

1. First, an increment image V(I) is formed from the original image I. This can be
performed in two different ways, as illustrated in Figure 1:

(a) Row-wise increment image. In this case, pixel values are subtracted in adjacent
rows so the size of the increment image would be (W − 1)× H.

(b) Column-wise increment image. In this case, pixel values are subtracted in
adjacent columns, and thus, the increment image would be W × (H − 1).

Figure 1. Illustration of the two possible methods for constructing the increment image V(I).

2. Given a positive integer m, divide the increment image into overlapping blocks
of size m × m (see Figure 2, where m = 2). We define Vm(i, j) as the m-length
square block in image V(I), where the indices range from row i to i + m − 1 and
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from column j to j + m − 1. The total number of blocks Nm can be computed as
((W − 1)− m + 1)× (H − m + 1) for a row-wise increment image and (W − m + 1)×
((H − 1)− m + 1) for a column-wise increment image.

Figure 2. Illustration of steps 1 and 2 of IncrEn2D, using the row-wise method to compute the
increment image.

3. Vectorize each block to obtain an increment vector Vm(i, j) and calculate the nth
unique word sequence Wn for each Vm(i, j), for a given quantifying resolution R.
Each element of the increment vector Vm(i, j) is mapped into word pattern composed
of two parts: sign sm(i, j) and magnitude qm(i, j). The sign function produces different
results depending on the input element. If the input element is greater than 0, the
function returns 1. If the input element is equal to 0, the function returns 0. If the input
element is less than 0, the function returns −1. The magnitude that represents the
extent of difference between these neighboring pixels is determined by the resolution
parameter R. Subsequently, every increment vector is transformed into a pattern
vector comprising 2 × m2 elements (considering both sign and magnitude). To gain a
complete understanding of creating a word pattern, let us consider the example of the
template vectors illustrated in Figure 3, where the quantifying resolution R is taken
as 4. The sign is calculated as sm(i, j) = sign(Vm(i, j)), and magnitude qm(i, j) is
calculated using the following equation:

qm(i, j) =


0 if std(Vm(i, j)) = 0

min

(
R,
⌊ Vm(i,j)×R

std(Vm(i,j))

⌋)
if std(Vm(i, j)) ̸= 0

(1)

Figure 3. Template vectors illustrating the steps to obtain words.

4. Count the total number of instances Q(Wn) of every unique nth word pattern Wn.
5. Compute the relative frequency of each unique word using the following equation:

F(Wn) =
Q(Wn)

Nm
, (2)
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where Nm is the total number of words for the given increment image.
6. Calculate the two-dimensional increment entropy, IncrEn2D, of image I using the

following equation:

IncrEn2D(I, m, R) = −
(2R+1)m2

∑
n=1

F(Wn) log F(Wn). (3)

With a specific m and R, each increment vector yields (2R + 1)m2
distinct patterns.

Thus, IncrEn2D is bounded within [0, m2 × log(2R + 1)]. While this upper bound of
IncrEn2D reflects theoretical maximum information content, it is important to note that the
formulation of IncrEn2D diverges from classical entropy principles. While classical Shannon
entropy focuses on individual pixels, IncrEn2D extends this concept by analyzing blocks of
pixels and is influenced by a quantification parameter (R). Thus, while it retains elements
of Shannon entropy, it introduces a novel approach that considers spatial dependencies
within images.

2.2. Multiscale 2D Increment Entropy

One- and two-dimensional entropy measures are commonly employed to quantify
the irregularity within signals or images at a specific scale. These methods are adept at
identifying repetitive structures and are particularly effective in scenarios of complete
randomness, such as white noise. However, their sensitivity to high-frequency components
can lead to an oversight of multiple inherent scales in the data [17]. To address this limita-
tion, researchers have introduced multiscale entropy-based approaches. These methods
have demonstrated interesting results in the domain of texture classification (see, e.g., [16]).
Moreover, they offer the capability to evaluate irregularities across different scales, provid-
ing a comprehensive insight into the complexity of a given signal or image. Therefore, we
herein propose the multiscale IncrEn2D (MIncrEn2D) to measure the complexity of image
textures at different scale factors τ. The two-step process for calculating MIncrEn2D is
described as follows:

1. Coarse-graining procedure: The non-overlapping moving-average coarse-graining
procedure is used in this study to divide the image into multiple scales. In this pro-
cedure, a non-overlapping window of size τ sweeps across the entire image, and
the pixels within each window are averaged. These resulting average values shape
the coarse-grained images. These images, while not being the subsets of the origi-
nal, encapsulate information about the entire original image. When considering an
image I of dimensions W × H, a coarse-grained image G(τ) at scale factor τ is ex-
pressed mathematically as follows:

G(τ)
i,j =

1
τ2

k=iτ,l=jτ

∑
k=(i−1)τ+1,l=(j−1)τ+1

Ik,l , (4)

where 1 ≤ i ≤
⌊

H
τ

⌋
, 1 ≤ j ≤

⌊
W
τ

⌋
, and τ is the scale factor. For scale factor 1, the

coarse-grained image corresponds to the original image. At higher scale factor, the
dimensions of the coarse-grained image are reduced by a factor of τ.

2. Application of IncrEn2D: In the subsequent step, IncrEn2D is applied individually on
each of the coarse-grained images.
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2.3. Evaluation Images and Computational Steps

To evaluate the performances of IncrEn2D, MIX2D(p) processes, as well as artifi-
cial periodic and synthesized textures, were used. Real datasets were also processed
and studied.

2.3.1. Two-Dimensional MIX Process (MIX2D(p))

The creation of MIX2D(p) processes is based on the definition of its unidimensional
version, MIX1D(p). MIX2D(p) denotes images where the parameter p corresponds to the
level of white noise. As p goes from 0 (representing completely periodic sinusoidal images)
to 1 (indicating highly irregular images), the images of size W × H exhibit different degrees
of spatial irregularity, described as MIX2D(p)i,j = (1 − zi,j)xi,j + zi,jyi,j, i = 1, 2, ...., H,

j = 1, 2, ...W, where xi,j = sin( 2πi
12 ) + sin( 2π j

12 ), and yi,j represents a uniform two-
dimensional matrix of white noise, spanning from −

√
3 to

√
3. In this context, zi,j represents

a random variable that takes the value 1 with a probability of p and the value 0 with a
probability of 1− p [25]. Consequently, as the value of p increases, the images become more
irregular; see Figure 4.

Figure 4. MIX2D(p) family of images with varying noise levels, p.

To assess the effectiveness of IncrEn2D in quantifying images with varying degrees of
irregularity and randomness, different MIX2D(p) images were created and used.

2.3.2. Artificial Periodic and Synthesized Texture Images

To assess the behavior of IncrEn2D during the transformation of periodic textures
into their synthesized counterparts, four sets of periodic textures and their corresponding
synthesized textures were used from [27].

2.3.3. Image with Additive Noise

To examine the influence of two-dimensional white Gaussian noise (WGN2D) and
salt-and-pepper noise (SPN2D) on IncrEn2D, we conducted an evaluation using the widely
recognized Lena image with size 256 × 256 pixels, as a standard reference. To achieve image
normalization, we applied a two-step process. After converting the image to its grayscale
form, we subtracted the mean of the image from each pixel value. Next, we divided the
resulting values by the standard deviation of the image. Following the normalization of the
image within the range of 0 to 1, we systematically introduced various levels of WGN2D

with a mean equal to 0 and variance values of 0.01, 0.03, 0.05, and 0.07. The noise was
added to almost every pixel of the image. Furthermore, we integrated SPN2D with noise
density values of 0.01, 0.05, and 0.09 into the aforementioned normalized reference image.
In the case of SPN2D, the noise density, d, determines the amount of noise applied to the
image, with d being multiplied by the number of pixels.
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2.3.4. Effect of Different Standard Deviation Computations on IncrEn2D

We also explored the influence of the standard deviation computation in Equation (1)
on the IncrEn2D results using MIX2D(p) processes. More precisely, we studied IncrEn2D

when the standard deviation of the increment block (Vm(i, j)) is used and when the standard
deviation of the whole increment image V(I) is used in Equation (1).

2.3.5. Effect of Row-Wise and Column-Wise Increment Images

As mentioned above, the two main approaches used to calculate the increment images
(the first step of the algorithm) are the row-wise and column-wise increment methods.
In this work, we evaluated the influence of these two different ways of computation by
creating simulated images with vertical and horizontal stripes (see Figure 5). For the vertical
and horizontal stripe pattern images, we set the image dimensions to 256 × 256 pixels, set
the stripe width (vertical stripes) and strip height (horizontal stripes), and calculated the
number of stripes based on the image width. Then, we generated ten different patterns of
each category by creating random binary pattern arrays, where each element represents the
color of a stripe (0 for black, 1 for white). We constructed the vertical and horizontal stripe
pattern images using these patterns by setting pixel values accordingly. We also carried out
an experiment with pure white and black images, where all pixel values were equal to 255
for pure white and 0 for pure black, to evaluate the performance of our proposed method
in these extreme cases.

Figure 5. Simulated images of size 256 × 256 pixels with vertical stripes (patterns 1–10) and horizontal
stripes (patterns 11–20).

2.3.6. Kylberg Real Texture Dataset

In this study, a portion of the Kylberg texture dataset was used. The dataset can be
accessed publicly from [28]. Specifically, we chose six distinct categories of images. These
images represent various fabrics and surfaces: canvas1, cushion1, linsseeds1, sand1, stone1,
and seat2 (see Figure 6. Each sample is 576 × 576 pixels in size).
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Figure 6. One image (576 × 576 pixels) of each of the six selected categories from the Kylberg dataset.

2.3.7. Colon Cancer Dataset

Colon adenocarcinoma stands out as the most prevalent forms of colon cancer, ac-
counting for over 95% of all colon cancer instances. It occurs when a specific type of tissue
growth, known as adenoma, develops in the large intestine, eventually transforming into
cancer [29]. Multiscale increment entropy (MIncrEn2D) was applied on part of the lung
and colon cancer histopathological image dataset known as the LC25000 dataset for the
validation of the approach. This dataset comprises 25,000 color images showcasing five
distinct lung and colon tissue types [30]. For this study, we only considered a portion of
the colon cancer part (160 images of cancerous and normal tissue). Some samples of the
cancerous and normal tissues from the dataset are presented in Figure 7.

Figure 7. A few sample images (768 × 768 pixels) from the LC25000 dataset: (a–d) colon cancer
tissues and (e–h) normal tissues.

The original images, initially sized at 768 × 768 pixels, were preprocessed to ensure
uniformity and reduce computational load prior to entropy calculation. During this stage,
all images were converted to grayscale images and resized to 128× 128 pixels using bilinear
interpolation prior to entropy calculation. Multiscale analysis considered scale factors of
up to 4, resulting in the smallest image size of 32 × 32 pixels. MIncrEn2D provided entropy
values across all scales for both cancerous and normal tissues. This study utilized these
entropy values as features for classifying tissues, employing a support vector machine
(SVM) with a radial basis kernel function due to its ability to capture intricate relationships.
The dataset comprised 160 histopathological images from LC25000, evenly divided between
cancerous and normal tissues. Out of these, 70% of the dataset (112 images) were allocated
for training, while the remaining 30% (48 images) were reserved for testing. The primary
features for classification were entropy values, derived from 4 different scale factors. The
SVM classifier was trained on the training dataset and evaluated using the test dataset.
This procedure was repeated 5 times and took the average values to ensure consistency
in evaluation. To evaluate the classifiers performance, metrics such as the classification
accuracy, precision, recall, and F1-score were computed. The results obtained using features
given by IncrEn2D were compared with the results given by the now well-known multiscale
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bidimensional sample entropy (SampEn2D) [25] and multiscale bidimensional dispersion
entropy (DispEn2D) [19] measures.

3. Results
This section details the results obtained from the aforementioned images.

3.1. Two-Dimensional MIX Process (MIX2D(p))

We created 256 × 256 pixel MIX2D(p) images by varying the parameters—m = 2, 3, 4
and p = 0 to 1 with a step size of 0.05—resulting in 21 different p values. Figure 8 illustrates
that higher p values correspond to greater IncrEn2D entropy. The entropy increase from
p = 0 to p = 1 decreases with higher m: for m = 2, the range is 1.6435 to 7.6724, while for
m = 4, it is 0.8280 to 3.2162. Smaller block sizes (e.g., m = 2) capture finer details, while
larger sizes encompass broader patterns.

Figure 8. IncrEn2D for MIX2D(p) images of size 256 × 256 pixels for R=4 and m = 2, 3, and 4.

Figure 9 shows that increasing R from 2 to 6 results in a steeper curve, especially
notable for R = 4, 5, 6. Higher R values provide finer detail, but diminishing dif-
ferences suggest a saturation point where increased resolution has limited impact on
pattern understanding.

Figure 9. IncrEn2D for MIX2D(p) images of size 256 × 256 pixels for m = 2 and varying R values
from 2 to 6.
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We conducted additional experiments to assess the reliability of our proposed IncrEn2D

across varying image sizes, aiming to verify its performance in measuring image irregularity.
Specifically, we computed IncrEn2D for MIX2D(p) while progressively increasing image
sizes from 64 × 64 to 1024 × 1024 pixels, with m = 2, R = 4, and p varying from 0 to 1. The
results, as depicted in Figure 10, consistently demonstrate stable results with changes in
image size.

Figure 10. IncrEn2D for MIX2D(p) images of different sizes for m = 2 and R = 4.

3.2. Artificial Periodic and Synthesized Texture Images

The results obtained with the artificial periodic and synthesized textures are presented
in Table 1. We observe that IncrEn2D values are greater for the synthesized textures
compared to their corresponding periodic textures.

Table 1. IncrEn2D for artificial periodic textures and their synthesized textures.

Texture a Texture b Texture c Texture d

3.6085 0.8242 3.2130 1.6720

Synthesized a Synthesized b Synthesized c Synthesized d

3.8193 1.1930 4.0133 3.0262

3.3. Image with Additive Noise

Table 2 presents the IncrEn2D values obtained from the Lena image at different levels
of WGN2D and SPN2D. The results indicate that when higher variance values are applied
to WGN2D, IncrEn2D values also increase. Similarly, a higher noise density in SPN2D leads
to higher entropy values.

Table 2. IncrEn2D values for Lena image on which different levels of 2D white Gaussian noise
(WGN2D) and salt-and-pepper noise (SPN2D) were added. Parameters were set as m = 2 and
R = 4 using the column-wise increment image method and the standard deviation of a block for the
IncrEn2D calculation.

Type of Noise Noise Level Addded IncrEn2D

WGN2D mean = 0, variance = 0.01 6.7972
WGN2D mean = 0, variance = 0.03 6.8522
WGN2D mean = 0, variance = 0.05 6.9075
WGN2D mean = 0, variance = 0.07 6.9304
SPN2D noise density = 0.01 2.3120
SPN2D noise density = 0.05 2.6380
SPN2D noise density = 0.09 2.9342
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3.4. Effect of Different Standard Deviation Computations on IncrEn2D

It is evident from Figure 11 that the results obtained with the standard deviation of
the original image I are somewhat misleading: the entropy values for MIX2D(0.9) and
MIX2D(1) are lower than those of MIX2D(0.8). The standard deviation of increment block
(Vm(i, j)) provides better entropy estimates than the standard deviation of increment image
(V(I)). The discrepancy arises from how the standard deviation is computed: the whole
increment image considers all pixels, yielding a larger variance, while the increment block
focuses on a fraction, providing a more localized measure of variation.

Figure 11 presents the effect of different standard deviation computations on IncrEn2D.

Figure 11. Effect of different standard deviations on IncrEn2D values with m = 2 and R = 4.

3.5. Effect of Row-Wise and Column-Wise Increment Images

Despite the differences in the calculation, it can be observed, through Figure 12, that
the IncrEn2D values obtained with MIX2D(p) from both the row-wise and column-wise
approaches are almost the same. This similarity in IncrEn2D values can be attributed to
the inherent characteristics of MIX2D(p) images. The results obtained with horizontal and
vertical stripe pattern images are presented in Table 3.

Figure 12. IncrEn2D values with row-wise and column-wise increment images for MIX2D(p) of size
256 × 256 pixels with m = 2 and R = 4.
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Table 3. IncrEn2D values for vertical and horizontal stripes pattern images. Parameters were set as
m = 2 and R = 4.

Vertical Stripe Images Horizontal Stripe Images

Texture
Image

Row-Wise
Increment

Image

Column-
Wise

Increment
Image

Texture
Image

Row-Wise
Increment

Image

Column-
Wise

Increment
Image

Pattern 1 0 0.3537 Pattern 1 0.2197 0
Pattern 2 0 0.3537 Pattern 2 0.2558 0
Pattern 3 0 0.1836 Pattern 3 0.3537 0
Pattern 4 0 0.1836 Pattern 4 0.1432 0
Pattern 5 0 0.2558 Pattern 5 0.3224 0
Pattern 6 0 0.3224 Pattern 6 0.3537 0
Pattern 7 0 0.3224 Pattern 7 0.2892 0
Pattern 8 0 0.2197 Pattern 8 0.3224 0
Pattern 9 0 0.2197 Pattern 9 0.2892 0

Pattern 10 0 0.3537 Pattern 10 0.2892 0

As anticipated, the experiment with pure white and black images resulted in IncrEn2D

values of 0, as these types of images exhibit no irregularities.

3.6. Kylberg Real Texture Dataset

Table 4 presents the IncrEn2D, SampEn2D, and DispEn2D values for the selected
Kylberg texture groups. The results indicate distinct entropy values for the six selected
groups with almost all entropy measures except that SampEn2D shows minor differ-
ences between cushion1 and linseeds1. The same is observed for DispEn2D with sand1
and stone1.

Table 4. IncrEn2D, SampEn2D, and DispEn2D values for six different groups of texture surfaces from
the Kylberg dataset. Parameters were set as follows: m = 2 for all, R = 4 for IncrEn2D, r = 0.2 of the
standard deviation of an image for SampEn2D, and c = 3 for DispEn2D.

Cushion1 Sand1 Linseeds1 Stone1 Canvas1 Seat2
IncrEn2D 5.0148 6.3386 6.4282 6.6797 7.6083 7.7559

SampEn2D 2.2899 4.3193 2.2025 4.9939 8.0463 6.1602
DispEn2D 2.4051 2.975 2.599 2.969 3.6843 3.1331

3.7. Colon Cancer Dataset

The anatomical and biological characteristics of colon cancer often exhibit distinct
horizontal arrangements along the colon length. For this reason, in the present experimen-
tation, the preference was to employ row-wise increment images. The results obtained with
colon cancer data can be seen in Figure 13. We observe lower IncrEn2D values for normal
colon tissues and higher IncrEn2D values for cancerous tissues, irrespective of the scale
factor used. This relationship between IncrEn2D and tissue types implies its potential as a
valuable tool in distinguishing between normal and cancerous colon tissues.

Moreover, the results based on the SVM model show an average classification accuracy
of 77.22%, compared to SampEn2D and DispEn2D, which achieved average classification
accuracies of 59.31% and 47.63%, respectively, obtained using the same model (see Table 5).
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Figure 13. Multiscale IncrEn2D values with m = 2, R = 4, and scale factors from 1 to 4 for cancerous
and normal tissues.

Table 5. Classification results obtained from the colon cancer data with the multiscale approaches
(from scale factors 1 to 4) for IncrEn2D, SampEn2D, and DispEn2D features.

Multiscale Multiscale Multiscale
IncrEn2D SampEn2D DispEn2D

Accuracy 77.22% 59.31% 47.62%
Precision 78.64% 62.68% 47.41%

Sensitivity 80.95% 24.20% 33.33%
Specificity 37.80% 62.20% 34.00%
F1-score 78.60% 61.03% 47.51%

3.8. Computational Time

In this study, we also conducted a comparative analysis for IncrEn2D, SampEn2D,
and DispEn2D in terms of computational time across different image sizes ranging from
50 × 50 to 200 × 200 pixels. We used MATLAB R2024a on a personal computer equipped
with an Intel(R) Core(TM) i7-5600U CPU operating at 2.60 GHz and 8 GB RAM. To achieve
this, we utilized images of varying dimensions from the Kylberg dataset. The results are
presented in Table 6. We notice that DispEn2D exhibits the shortest computational time, even
with larger image sizes. IncrEn2D closely follows, maintaining its computational advantage
for small- to moderate-sized images. SampEn2D incurs the highest computational time,
particularly with larger image sizes.

Table 6. Comparison of computational time in seconds to calculate IncrEn2D, SampEn2D, and
DispEn2D on one image with different dimensions from the Kylberg dataset. Parameters were set as
follows: m = 2 for all, R = 4 for IncrEn2D, r = 0.2 × standard deviation of image for SampEn2D, and
c = 3 for DispEn2D.

Size (Pixels) 50 × 50 100 × 100 150 × 150 200 × 200
IncrEn2D 0.137 0.458 0.897 3.000

SampEn2D 0.562 2.733 15.760 58.914
DispEn2D 0.123 0.049 0.077 0.097

4. Discussion
The results of this work demonstrate that IncrEn2D offers superior performance in

texture analysis across various image sizes and noise conditions, providing insights into
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its effectiveness for diverse image types and patterns. With the MIX2D(p) images, the
behavior of IncrEn2D with respect to the parameter p highlights its sensitivity to entropy
changes. Specifically, higher p values correspond to greater IncrEn2D entropy, suggesting
that this parameter plays a key role in capturing the complexity of textures. Moreover,
the observation that entropy increases from p = 0 to p = 1 decrease with higher block
sizes m, illustrating the scale-dependent nature of this measure. Smaller block sizes, such
as m = 2, are more adept at capturing finer details, whereas larger block sizes, such as
m = 4, are better suited for recognizing broader patterns, aligning with previous findings
in multiscale entropy analysis.

The impact of the threshold R is equally important, with higher values yielding finer
detail, though the diminishing returns beyond R = 4 suggest a saturation point. This result
is crucial for practical applications, as it implies that increasing R beyond certain values
may offer little additional benefit in terms of pattern recognition, potentially optimizing
the computational cost for future implementations. Therefore, for the final selection of the
R value, one can consider the trade-off between enhanced resolution and computational
complexity. Based on the observed results, we can conclude that the optimal parameter
set for further experimentation would be m = 2 and R = 4. This combination enables the
IncrEn2D to effectively quantify the irregularity of the images under analysis.

Our findings with synthetic and periodic textures reinforce the robustness of IncrEn2D,
with synthesized textures consistently exhibiting higher entropy values than their periodic
counterparts. This shows the discriminative power of IncrEn2D in distinguishing between
periodic and synthesized textures, while also providing a measure of the periodicity within
the images. In other words, it provides a reliable method for differentiating between images
that possess inherent periodic characteristics and those that have been artificially created
or modified. The behavior of IncrEn2D under noise conditions further validates its stability
and utility. As the variance of 2D white Gaussian noise (WGN2D) increases, so does the
IncrEn2D value, confirming its sensitivity to added randomness in the image. Similarly,
salt-and-pepper noise (SPN) at higher densities results in increased entropy values, reflect-
ing its ability to quantify the complexity introduced by these types of distortions. This
characteristic can be advantageous in real-world applications where noise is an inevitable
factor, such as in medical imaging.

An important aspect of our analysis is the performance of IncrEn2D with different
standard deviation measures. The results demonstrate that the standard deviation of the
increment vector provides the best differentiation of textures, outperforming both the
standard deviation of the image itself and the increment image. This localized approach
captures fine-grained entropy changes more effectively. Additionally, the block-based
analysis introduces spatial locality, with the standard deviation of the increment block
reflecting variations within a specific neighborhood, offering more insight into image
structure and patterns. In contrast, the standard deviation of the whole increment image
considers variations across the entire image, potentially diluting detailed information.
Furthermore, the standard deviation of the increment vector (yellow curve in Figure 11)
shows a smoother curve, indicating less sensitivity to localized changes within the image.
This could result in a less steep entropy plot, as the measure focuses on overall patterns
rather than reacting strongly to localized features.

Our experiments with row-wise and column-wise increment images on MIX2D(p)
show a similar curve (see Figure 12). MIX2D(p) images tend to exhibit certain statistical
properties, such as local spatial correlation and smooth intensity transitions. These proper-
ties result in a relatively balanced distribution of pixel differences in both horizontal and
vertical directions. While the row-wise and column-wise increment images may emphasize
different aspects of the image structure, their overall impact on IncrEn2D entropy is compa-
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rable due to the statistical properties of MIX2D(p) images. The balance between horizontal
and vertical variations ensures that the distribution of pixel differences is similar in both
cases, leading to similar IncEn2D values.

The results obtained with horizontal and vertical stripe pattern images
(see Figure 5) emphasize the critical significance of considering texture orientation
when applying IncrEn2D ; see Table 3. The row-wise increment image is able to capture
changes within each row, exhibiting sensitivity to horizontal variations and effectively
detecting features and patterns extending horizontally across the image. Consequently,
the row-wise increment image yields non-zero IncrEn2D values for horizontal pat-
tern images, while registering zero values for vertical pattern images. In contrast,
the column-wise increment image is able to capture changes within each column,
demonstrating sensitivity to vertical variations and in detecting features and patterns
that extend vertically. As a result, the column-wise increment image yields non-zero
IncrEn2D values for vertical pattern images and, conversely, reports zero values for
horizontal pattern images.

It is important to note that the choice between row-wise and column-wise increment
images may depend on the specific characteristics of the image data or the analysis goals.
For instance, if the image dataset predominantly contains horizontally oriented features
or patterns, the row-wise increment image might provide more relevant information.
Conversely, the column-wise increment image may be more informative if the dataset
consists of vertically oriented features.

The application of IncrEn2D to the Kylberg dataset revealed distinct entropy values for
most texture groups, providing a strong basis for its use in texture classification tasks. The
results suggest that IncrEn2D, like SampEn2D and DispEn2D, could serve as a valuable tool
for distinguishing between different patterns of fabrics and surfaces. They also highlight
the potential ability of the measures for discriminating measures in texture analysis.

Finally, the colon cancer dataset results underscore the superior performance of
IncrEn2D in medical image analysis. Achieving an average classification accuracy of
77.22% with the SVM model, IncrEn2D significantly outperformed SampEn2D (59.31%) and
DispEn2D (47.63%) under the same conditions. Additionally, IncrEn2D achieves the highest
precision and sensitivity, indicating that, when it predicts positive cases (colon cancer), it is
more accurate compared to SampEn2D and DispEn2D. Moreover, it is better at capturing
actual positive cases. On the other hand, SampEn2D exhibits the highest specificity, sug-
gesting that it performs better at correctly identifying negative cases compared to IncrEn2D

and DispEn2D. However, the major problem of SampEn2D is that it can lead to undefined
values at high-scale factors. DispEn2D and IncrEn2D do not have this undefined value
problem. Moreover, the F1-score indicates that IncrEn2D achieves a better balance between
precision and sensitivity.

From a computational perspective, DispEn2D exhibited the shortest computational
time across all image sizes, followed closely by IncrEn2D. However, IncrEn2D maintains a
favorable balance between computational efficiency and performance, particularly for small-
to moderate-sized images. In contrast, SampEn2D incurs significantly higher computational
costs, especially with larger images, which may limit its practical applicability in real-time
or large-scale applications.

Though IncrEn2D demonstrates effectiveness across different datasets, it is imperative
to acknowledge its inherent limitations. Notably, the performance of IncrEn2D may be
hindered when dealing with large images (like 1024 × 1024 pixels), where computational
efficiency may become a constraint. Additionally, it is pertinent to mention that IncrEn2D

currently operates solely on grayscale images, indicating a limitation in its applicability to
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colored images. These considerations underscore the need for further research to address
these constraints and improve the applicability of the proposed method.

5. Conclusions
In this paper, we introduced a novel bidimensional entropy measure, IncrEn2D, and

its multiscale form, to, respectively, estimate the irregularity and complexity of an image.
These measures take into account both the size (magnitude) and direction (sign) of the
increments calculated from an image. We studied their capability as powerful techniques for
image analysis. We thoroughly examined the influence of the two parameters, namely the
embedding dimension m and the quantification parameter R. We validated the performance
of IncrEn2D using MIX2D(p) processes, as well as artificial and synthesized textures. We
also investigated the impact of different standard deviations and increment image choices
on the IncrEn2D calculation. Furthermore, the choice between row-wise and column-wise
increment images should align with the specific image dataset’s predominant orientation
or analytical objectives.

We validated IncrEn2D on two real texture datasets: Kylberg and a medical dataset
with colon cancer images. For Kylberg, IncrEn2D effectively distinguished fabric pat-
terns with distinct entropy values in designated groups, showing potential comparable to
DispEn2D and faster computation than SampEn2D. In biomedical images, IncrEn2D differ-
entiated normal and cancerous colon tissues across scale factors, outperforming multiscale
SampEn2D and multiscale DispEn2D in accuracy and precision. This highlights IncrEn2D as
a reliable texture descriptor with broad relevance in biomedical applications. Overall, the
introduced IncrEn2D emerges as an innovative and possible tool for image analysis and
texture characterization.
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