
HAL Id: hal-04893528
https://hal.science/hal-04893528v1

Submitted on 17 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Impact of Aging on Copper Isotopic Composition in the
Murine Brain

Esther Lahoud, Frédéric Moynier, Tu-Han Luu, Brandon Mahan, Marie Le
Borgne

To cite this version:
Esther Lahoud, Frédéric Moynier, Tu-Han Luu, Brandon Mahan, Marie Le Borgne. Impact of Ag-
ing on Copper Isotopic Composition in the Murine Brain. Metallomics, 2024, 16 (5), pp.mfae008.
�10.1093/mtomcs/mfae008�. �hal-04893528�

https://hal.science/hal-04893528v1
https://hal.archives-ouvertes.fr


 1 

Impact of Aging on Copper Isotopic Composition in the Murine Brain 

  1 

Esther Lahoud1, Frédéric Moynier1, Tu-Han Luu1, Brandon Mahan2, Marie Le Borgne3 2 

1Université Paris Cité, Institut de Physique du Globe de Paris, 1 rue Jussieu 75005 Paris, France, 3 

moynier@ipgp.fr  4 

2 School of Geography, Earth and Atmospheric Sciences, The University of Melbourne, Australia 5 

3 Université Paris Cité, LVTS, Inserm U1148, F-75018 Paris, France. 6 

  7 

 8 

Key words: aging, copper isotopes, biomarker, Alzheimer’s disease, metallomics, MC-ICP-MS 9 

  10 

 11 

Abstract 12 

Aging is the main risk factor for Alzheimer’s disease (AD). AD is linked to alterations in metal 13 

homeostasis and changes in stable metal isotopic composition can occur, possibly allowing the latter 14 

to serve as relevant biomarkers for potential AD diagnosis. Copper stable isotopes are used to 15 

investigate changes in Cu homeostasis associated with various diseases. Prior work has shown that 16 

in AD mouse models, the accumulation of 63Cu in the brain is associated with the disease’s 17 

progression. However, our understanding of how the normal aging process influences the brain’s 18 

isotopic composition of copper remains limited. In order to determine the utility and predictive power 19 

of Cu isotopes in AD diagnostics; we aim - in this study - to develop a baseline trajectory of Cu 20 

isotopic composition in the normally aging mouse brain. We determined the copper concentration 21 

and isotopic composition in brains of 30 healthy mice (WT) ranging in age from 6 to 12 months, and 22 

further incorporate prior data obtained for 3-month-old healthy mice; this range approximately 23 

equates to 20-50 years in human equivalency. A significant 65Cu enrichment has been observed in the 24 

12-month-old mice compared to the youngest group, concomitant with an increase in Cu 25 
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concentration with age. Meanwhile, literature data for brains of AD mice display an enrichment in 26 

63Cu isotope compared to WT. It is acutely important that this baseline enrichment in 65Cu is fully 27 

constrained and normalized against if any coherent diagnostic observations regarding 63Cu 28 

enrichment as a biomarker for AD are to be developed. 29 

 30 

 31 

 32 

1. Introduction  33 

The process of aging provokes wide-ranging effects on the brain, involving various cellular and 34 

molecular changes. Mitochondrial dysfunctions in brain cells lead to a decline in energy metabolism 35 

efficiency. DNA repair mechanisms become compromised resulting in increased genomic instability. 36 

Furthermore, there is an accumulation of soluble (and sometimes neurotoxic) protein precursors [1], 37 

misfolded and aggregated proteins, dysfunctional organelles and elevated levels of oxidative stress 38 

[2]. Numerous studies have established a direct association between oxidative stress, aging and 39 

cognitive decline in humans [3-7]. The progressive increase in oxidative stress during normal aging 40 

is attributed to the imbalance between the production of reactive oxygen species and the ability of 41 

cellular antioxidant defense systems to counteract them. 42 

Additionally, neuro-inflammation is a hallmark of the aging brain. Senescent glial cells, 43 

and the infiltration of immune cells into the brain contribute to a chronic state of neuro-inflammation 44 

(see fig1). This process is characterized by elevated levels of pro-inflammatory cytokines and a 45 

decline in anti-inflammatory compounds [8, 9]. Chronic neuro-inflammation not only promotes 46 

neurodegeneration but also accelerates the overall aging process of the brain [10]. 47 

Aging is recognized as the primary risk factor for neurodegenerative diseases, including 48 

Alzheimer’s disease (AD) [11, 12]. Alzheimer’s disease is a global health concern, currently affecting 49 

50 millions of individuals worldwide, with an estimated increase to nearly 113 million by 2050 [12, 50 

13]. It is the fifth leading cause of death in high income countries [14, 108].  51 
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At the cellular level, AD is characterized by two major patho-physiological features: the 52 

presence of extracellular amyloid plaques (Aβ-plaques), formed by the agglomeration of the Aβ42 53 

peptides, and the formation of intracellular neurofibrillary tangles (NFTs), resulting from abnormal 54 

hyperphosphorylation of the tau protein [12, 15-17]. The latter is mainly due to clinical diagnosis via 55 

positron emission tomography (PET) imaging, however it is noted that this technique is predicated 56 

on significant deposition of Aβ-plaques to breach the fidelity threshold of current imaging 57 

instrumentation, which are generally unable to detect the soluble Aβ fraction [48-50]. Current in vivo 58 

detection methods are invasive and onerous, involving imaging techniques such as positron-emission 59 

tomography (PET) to visualize amyloid-β deposits [18], or measuring the levels of amyloid-β or tau 60 

proteins in cerebro-spinal fluids [19, 20].  61 

During the initial phase of the disease, Aβ-plaques begin to accumulate in the extracellular 62 

space, yet clinical symptoms, including loss of memory, difficulties in performing executive functions 63 

and solving problems, cognitive decline, apraxia may not manifest for up to 20 years [14, 21]. This 64 

asymptomatic/ preclinical stage of the disease holds great significance for the development of early 65 

diagnosis techniques and the optimization of AD treatments.  66 

In addition to other neurodegenerative diseases such as Wilson  disease, Menkes disease, 67 

Amyotrophic Lateral Sclerosis (ALS) [22 – 24, 109, 110], AD has also been associated with a change 68 

in the metal homeostasis [25 – 27]. Previous works by Moynier et al., (2019, 2020) have produced 69 

evidences that the changes in the metal isotopic composition, of elements like copper serve as relevant 70 

biomarkers for the future diagnosis of AD [28, 42], and there is a growing body of literature that more 71 

generally suggests viability of stable metal isotopes in disease biomarker development [112].  72 

Copper plays a crucial role in various biological processes in the brain, functioning as a 73 

cofactor and structural component of several enzymes involved in essential functions. It participates 74 

in redox metabolism, energy metabolism (cytochrome c oxidase), antioxidative defense (Zn,Cu-75 

superoxide dismutases), iron metabolism (ceruloplasmin), neurotransmitter synthesis (dopamine-β-76 
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monoxygenase), regulation of inflammation, and neuropeptide synthesis (peptidylglycine-α-77 

amidating enzyme) (see fig1) [29- 33].  78 

             The concentration of Cu in the human brain is typically found to be between 3 and 5 μg/g 79 

wet weight [34, 35]. Similarly, a mouse brain contains on average 7 μg/g for a female and 4 μg/g for 80 

a male [43]. Copper has two stable isotopes: 63Cu and 65Cu with different relative abundances in 81 

nature of 69% and 31%, respectively. Isotopes undergo fractionation due to changes in bonding 82 

environments within the body [27, 37 - 44]. Isotope fractionation is a general term referring to the 83 

process of creating isotopic variability of a particular element among coexisting species or reservoirs 84 

hosting this element [40, 41]. Heavy isotopes tend to accumulate in environments characterized by 85 

stiffest bonds [37, 38, 45]. For instance, 65Cu binds preferentially to histidine, glutamate and aspartate 86 

[38, 112]. As a result of the fractionation, the isotopic composition of copper differs in organs: 65Cu 87 

accumulates in the brain, liver and kidney whilst 63Cu is enriched in red blood cells (RBC) and 88 

plasma. Changes in the isotopic composition of copper in body fluids and in different organs have 89 

been used as proxies to identify cancers [46 – 49], liver diseases [50 – 54] and neurogenerative 90 

diseases [24, 28, 38, 40, 42, 55, 56]. 91 

In AD mice models expressing the amyloid-beta precursor protein (APP), the accumulation 92 

of 63Cu in the brain has been shown to be related to the progression of the disease [42]. Besides, 93 

nuclear magnetic resonance (NMR) studies have established that Cu (II) ions interact directly with 94 

Aβ forming a Cu (II)-Aβ complex in vitro [32, 57 – 62]. Copper might increase the number of β-sheet 95 

and α-helix structures in amyloid peptides, which could be a cause of β-amyloid aggregation [63]. 96 

Copper and Zinc might also be, in healthy individuals, linked with the degradation of soluble Aβ [64]. 97 

Amyloid-β sequestering copper, the change in bonding environment due to the emergence of protein 98 

aggregates, amyloid plaques (Aβ) and neurofibrillary tangles (NFT) is a key to understand this shift 99 

in copper isotopic composition in AD brains.  100 

However, prior to any of the above mechanistic pathways for Cu isotope fractionation being 101 

identified, it is requisite to first bolster our current understanding regarding the impact of the normal 102 



 5 

aging process on the isotopic composition of copper in the brain remains limited, such that if present, 103 

this effect can be accounted for in the development of any future biomarker based on stable Cu 104 

isotopes. The objective of this study is to establish a baseline for the changes in Cu isotopic 105 

composition in the brains of normally aging mice, as a proxy for that in humans. We determined the 106 

copper concentration and isotopic composition in a total of 30 mice (15 males and 15 females) aged 107 

6, 9 and 12-months. Our findings reveal that there is no significant difference in the Cu isotopic 108 

composition of male and female mice (i.e. no sex-dependence).  Therefore, we combined the data for 109 

all mice in our analysis. We observed that 65Cu is enriched in the 12-months old mice compared to 110 

the younger age groups, which show no distinguishable difference. Additionally, the overall copper 111 

concentration in the brain tends to increase with age 112 

2. Materials and Methods 113 

2.1. Mice. At Hopital Bichat.  114 

The 30 WT mice used in this study were collected from VTS INSERM 1148, Hopital Bichat, Paris. 115 

All the 30 mice had the same genotype: C57BL/6JRj. The mice were housed in 6 different cages, 5 116 

same-sex mice per cage. The dry food given to the mice has a 𝛿65Cu =0.55±0.01 (2SD) [43]. 117 

2.2. Sample collection. At Hopital Bichat.  118 

Mice aged 6, 9 and 12-months were euthanized by receiving a lethal dose of ketamine and xylazine, 119 

followed by exsanguination. Throughout their life cycle, mice were all given the same diet -120 

previously analyzed in Cu isotopic composition- and kept in similar conditions. The brains were 121 

collected directly after death using instruments in stainless steel. The brains were then conserved in 122 

a -20 degrees Celsius freezer. 123 

     The biological standard used was tuna fish ERM-CE464 (TF ERM-CE464).  124 

2.3. Digestion and chemical purification At Institut de physique du Globe de Paris (IPGP) 125 

The dissolution, chemical purification and mass-spectrometry analyses are a close modification of 126 

the protocols established previously [28, 42].  127 
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                     Dissolution. In polyfluoralkyl (PFA) beakers, whole brain samples and biological standard (TF ERM-128 

CE464), all at masses around 100mg, were dissolved in a few droplets of H2O2 and concentrated 129 

distilled HNO3 for a day and a half. Once the dissolution was complete, the beakers were placed 130 

opened on a hot-plate at 120°C overnight.   131 

                     Copper extraction. The Cu purification is conducted using anion- exchange chromatography 132 

following a protocol adapted from [65]. The samples are redissolved in 1mL of distilled 7M HCl then 133 

loaded on 1.6 mL of AG-MP1 resin. Matrix elements are taken away by passing 8 mL of 7M HCl 134 

through the resin. The copper is collected in 16 mL of 7M HCl.  This procedure is replicated after 135 

evaporation of the acid to ensure pure Cu fractions. The resin is washed following a day-long protocol 136 

alternating three series of rinses with MQ water and HNO3 0.5N in between the two replicates. The 137 

copper was extracted from the standard following the same procedure as for the samples. The yield 138 

of Cu is >99%. 139 

2.4. Mass Spectrometry At Institut de physique du Globe de Paris (IPGP) 140 

           Copper isotope ratios were determined with multi-collection inductively-coupled-plasma 141 

mass-spectrometers (MC-ICP-MS) at the Institut de Physique du Globe de Paris France. Part of the 142 

samples were analyzed using a Nu-Instrument Sapphire and the other part using a Thermo-Fisher 143 

Neptune. Depending on instrument performance and availability on the day of analyses; no analytical 144 

differences are observed between instrument platforms (figS1; Table1B). The samples were analyzed 145 

between 1 and 5 times each depending on the amount of copper in each sample (Table1B).  146 

The sample-standard bracketing (SSB) method was applied and the Cu concentration in the 147 

samples and standards where match within 10%. This method consists in measuring a standard before 148 

and after each sample and using the average of the two standards to normalize the sample ratio 149 

[40,44]. During analytical session, the standard utilized was IPGP-Cu, previously determined to have 150 

a 𝛿65Cu of +0.271 ±0.006 ‰ (2SE) relative to the NIST SRM 976 [28]. All data herein have been 151 

converted to 𝛿65Cu relative to NIST SRM 976 by adding 0.271. 152 

2.5. Statistical analysis 153 
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Statistical analysis were performed using GraphPad Prism.   154 

 155 

3. Results 156 

  157 

3.1. Effect of age on the isotopic composition of Cu in the brain 158 

  159 

         We incorporated the data from a previous study conducted by Moynier et al., [43] on 3-months 160 

old mice that were bred together with the mice studied here. All data are reported in Table 1A and 161 

1B and displayed in fig2. The isotopic composition of the biological standard (TF ERM-CE464) was 162 

analyzed every 12 samples on both the Nu-Instrument Sapphire and Thermo-Fischer Neptune 163 

instruments. The value obtained (0.09±0.02, 2SD, N=4) was consistent within error with the value 164 

reported by [66, 116], (0.11±0.14, 2SD) (Table 2). The Cu isotope compositions of all materials are 165 

expressed as the ratio 65Cu to 63Cu relative to that of the internationally recognized standards SRM-166 

976, in per mil (per thousand) notation, or 𝛿65Cu, and have been calculated using the formula:  167 

 168 

𝛿!"Cu = %
& 𝐶𝑢	
!"

𝐶𝑢	
!$ ) 𝑠𝑎𝑚𝑝𝑙𝑒

& 𝐶𝑢	
!"

𝐶𝑢	
!$ )𝑁𝐼𝑆𝑇	𝑆𝑅𝑀	976

− 1< × 	1000				 169 

 170 

           Two brain samples were analyzed on both instruments to ensure the consistency of the results. 171 

The results obtained were similar within error: brain-1 gave a 𝛿65Cu = 0.86±0.06) on the Neptune 172 

and, 0.90±0.05) on the Sapphire. Brain-2 has a d65Cu of 0.70±0.08 on the Neptune, and of 0.75±0.06) 173 

on the Sapphire.  174 

            The values of 𝛿65Cu for mice aged 3 to 12 months were analyzed with One-way ANOVA test 175 

(p-value < 0.0001; R squared= 0.4934). Our data were analyzed with Mann-Whitney test for each age 176 

categories as the data are not normally distributed and the number of data is close to 30. Mann-177 
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Whitney test: (age 9 vs age 6; p-value = 0,0051); (age 6 vs 12; p-value = <0.0001); (age 3 vs age 6; 178 

p-value = 0.7915, ns); (age 12 vs age 9; p-value = 0,0008) (see fig2A).  179 

             The results (see fig2A, B, C) reveal a notable evolution in the isotopic composition of copper 180 

as a function of age. Mice aged between 3 and 6 months exhibit a relatively consistent composition 181 

of copper isotopes, with a 𝛿65Cu value of 0.85±0.23 (2SD).  However, from the age 9 months onwards 182 

(mean: 𝛿65Cu = 0.98±0.22 (2SD)) there is a noticeable shift towards heavier copper content and 183 

dispersion of 𝛿65Cu values, particularly evident in the 12 months old mice (mean: 𝛿65Cu = 1.32±0.61 184 

(2SD)) (fig2A and 2B). The simple linear regression (fig2C) plotted using the values displayed in 185 

fig2B has a positive slope and shows a linear increase in the values of 𝛿65Cu depending on time. An 186 

un-linear curve showing was plotted as well in fig2C and is also displaying a heavier copper isotopic 187 

composition as a function of age. Taken as a whole, these data strongly suggest that the isotopic 188 

composition of copper undergoes significant changes with age. Specifically, the copper composition 189 

becomes progressively heavier with advancing age. Consequently, the aging process is associated 190 

with a shift in the isotopic composition of copper, particularly in the brain, which demonstrates an 191 

age-dependent increase in the proportion of 65Cu compared to 63Cu.  192 

  193 

3.2. Effect of age on copper concentration 194 

  195 

            Several studies in the literature have reported an age-related increase in copper levels in 196 

various organs. In healthy individuals, it has been observed that copper tends to increase with age in 197 

human serum [67, 68]. However, in cortical tissue affected by Alzheimer's disease (AD), the level of 198 

copper is actually decreased [69]. This decrease is believed to be associated with the binding of copper 199 

to senile plaques [70]. Other studies have shown that copper tends to decrease in salivary sediment 200 

and hair samples [71]. In rats aged 15 to 49 weeks, Cu level increase in the serum, kidney, liver and 201 

five distinct parts of the brain (cortex, corpus striatum, hippocampus, midbrain+medulla and 202 
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cerebellum) [72]. These findings further support the notion of age-dependent changes in copper 203 

amounts across different tissues and species.  204 

        Copper concentrations aren’t the main focus in the study. They are determined as a matter of 205 

comparison with other studies that determine the concentrations the same way. Our objective was to 206 

investigate whether there were any variations in copper concentration within our samples.  To 207 

accomplish this, we quantified the copper concentration in each brain sample (n=30). For each 208 

sample, we performed a factor 100 dilution (10μL of sample in 1mL of 0.5N HNO3) and measured 209 

the signal in volts obtained on the MC-ICP-MS. Given that the concentration and signal were 210 

precisely known for the standard (NIST SRM 976), we could compute the concentration of copper in 211 

each of the samples. The weight collected for each sample was 100mg±30. The data are in Table 3 212 

and displayed in fig3. The concentrations are given in ppm, equivalent to a concentration given in 213 

μg/g. The means were calculated for each age category: mice aged 6 months (mean: Ccopper = 3.73 214 

ppm, 2sd = 2.50, n=10), mice aged 9 months (mean: Ccopper = 4.39 ppm, 2sd = 5.58, n=10), mice aged 215 

12 months (Ccopper = 6.02 ppm, 2sd = 4.56, n=10) (see fig3). 216 

            We performed a Mann-Whitney test: age 12 vs 9 (p-value = 0,2475, ns) and age 12 vs age 6 217 

(p-value = 0,0089, **). Ordinary one-way ANOVA and 2way ANOVA were not conclusive. 218 

However, we observe a qualitative increasing trend as a function of age. The data obtained for mice 219 

aged 9 months are very disperse compared to 6 and 12 months-old mice (see fig3).   220 

 221 

 222 

4. Discussion   223 

4.1. Effect of sex on copper isotopic compositions and concentrations 224 

 225 

             Previous studies have demonstrated differences in the isotopic composition of Cu and Fe in 226 

function of sex notably in the serum and red blood cells [28, 73, 74]. In archeological human bones, 227 

Jouen et al., have shown that the isotopic signature is dependent on sex for Cu and Fe [74]. 228 
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Furthermore, several studies have indicated sex-related differences in the development of 229 

neurodegenerative diseases. For instance, men have a higher disposition for Parkinson’s disease [75-230 

77] while women constitute two-thirds of AD patients [78]. Moreover, the progression of the disease 231 

progression appears to be accelerated in men [79]. Although these sex-dependent differences are 232 

known, their underlying causes remain elusive and require further investigation.  To better constrain 233 

the sex effect on brain isotopic composition and concentration, we conducted a comparison between 234 

the results obtained for males and females, irrespective of age. However, no significant difference 235 

was observed between the two groups. Furthermore, we further examined the data by plotting the 236 

results for males and females separately in each age category. Even after considering age as a factor, 237 

no notable or statistically significant differences between the sexes were found (see fig4; Table4; 238 

Table 5). 239 

        We conducted a Mann-Whitney test to compare the 𝛿65Cu values between males and females, 240 

which revealed no statistical difference (p-value = 0.1276). The mean 𝛿65Cu for males was 0,98±0.48 241 

(2SD), while for females it was 1.13±0.67 (2SD) (see fig4A). Additionally, males and females could 242 

not be statistically differentiated based on copper concentrations (see fig4B). 243 

         Although there was no significant difference in 𝛿65Cu between males and females, it is worth 244 

noting that the data for females exhibited a slightly broader distribution compared to males. 245 

Furthermore, there is a tendency in the evolution of 𝛿65Cu values between males and females as a 246 

function of time (fig4D), however more samples from future work might drive this further towards 247 

statistical significance. The difference in copper isotopic composition between males and females 248 

tends to increase as a function of time. As reported in the study by Moynier et al., (2019), at age 12, 249 

there was a discernible difference in 𝛿65Cu values between males and females. However, in our study, 250 

it did not reach statistical significance (see fig4C) 251 

 252 

4.2. 𝜹65Cu decreases after 12 months. 253 
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            To provide a better understanding of the evolution of 𝛿65Cu with age, we combined our data 254 

with literature [43, 107] (fig5). Moynier et al., (2022) measured 4 brains from healthy mice aged 3 255 

months, Morel et al., (2022) measured 29 brains from mice aged 6, 16 and 24 months. All mice have 256 

the same genotype.  The data show an increase in 𝛿65Cu values before 12 months and a decrease after 257 

12 months. Combining the data from Morel et al., (2022) with our data, we could observe that both 258 

data from mice aged 6 months are consistent. Performing Mann-Whitney test for the 6 and 9 months, 259 

p-value = 0.0004, ***, which is even lower when the data are combined with Morel et al., (2022) 260 

compared to our data alone (p-value = 0.0051). Even if the measurement method and copper 261 

extraction vary slightly between the studies, the results are consistent.  262 

 263 

4.3. 12 months old WT and AD mice have different brain copper isotopic compositions 264 

  265 

                 Combining our data for 12 months old healthy mice with those from Moynier et al. (2019) 266 

[28], we obtained a mean 𝛿65Cu = 1.32±0.61 (2SD) for healthy 12 months-old mice (WT), in our 267 

study. For 12 months-old AD mice (AD), the mean was 𝛿65Cu = 0.50±0.29 (2SD). We also took into 268 

account the 𝛿65Cu values for healthy mice brains reported in Moynier et al., (2019). The data are 269 

statistically differentiable (Mann-Whitney, p-value < 0.01, **). The results (see fig6A; Table 6) show 270 

a decrease in the isotopic composition between WT and AD at 12 months. However, we could only 271 

have five samples for AD mice ages 12 months. Despite the limited data, this difference is considered 272 

robust, as a statistical difference of well over 0.5 per mil is over an order of magnitude larger than 273 

typical analytical precision within this and other studies. 274 

                    This suggests that AD brains are isotopically lighter than healthy ones in terms of copper 275 

isotopes (see fig6B). This is also what is found in literature in the brains of AD and WT humans [42]. 276 

This can be explained by the change in bonding environment caused by the appearance of amyloid 277 

plaques and neurofibrillary tangles, as copper directly interacts with Aβ [42,57,58, 70]. The new 278 

environment created by the presence of amyloid plaques in the brain might encourage the binding of 279 
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lighter isotopes and thus generating a shift in the natural isotopic fractionation of copper. Copper 280 

being a redox active metal [25] and Cu (II) ions binding preferentially to Aβ plaques this also could 281 

be a source of explanation for this shift [42,57,58, 70]. Conversely, the presence of Cu (0) has been 282 

detected in AD human brains [80]. 283 

                 Normal aging and AD have different signatures in terms of copper concentration as well. 284 

In the literature, it is reported that AD is accompanied by a deficiency in copper in the brain [69,81, 285 

82]. Interestingly, the amount of Cu in aged human brains has been shown to have a negative 286 

correlation with the advance of Aβ plaques [83]. Normally aging individuals tend to have copper 287 

accumulating in the brain as a function of age. Thus, AD and healthy individuals appear to display 288 

different copper signatures regarding copper isotopic composition and copper concentration. 289 

 290 

4.4. Copper related oxidative stress might be a key to understand normal aging in the brain 291 

  292 

                Oxidative stress is thought to be one of the main causes of aging in mammals [3-6]. In the 293 

brain, the levels of antioxidants are low: it makes it susceptible to oxidative stress induced by the 294 

redox-active nature of Cu [84]. Superoxide dismutases (SODs) are a category of ubiquitous enzymes 295 

representing one of the main antioxidant defense systems against reactive oxygen species (ROS). 296 

SODs catalyze the dismutation reaction of O2•− to H2O2 which is then reduced to H2O by the action 297 

of catalase [85]. The reaction requires alternate reduction and reoxidation of a redox active transition 298 

metal (Cu or Mn). In mammals, there are three isoforms that are all bound to catalytic metals: 299 

intracellular SOD1 or CuZn-SOD, mitochondrial SOD2 or Mn-SOD and extracellular SOD3 [86]. 300 

SOD1 is intracellular [87, 88].  301 

                  Warner et al., (1994), have shown, through genetic manipulations increasing CuZn-SOD 302 

activity, a resistance to most forms of oxidative stress [89]. CuZn-SOD deficiency increases the 303 

vulnerability to oxidative stress and thus potentially normal aging. Copper is bound to several 304 

proteins, frequently enzymes, including metallothionein. It has been shown that SOD1 was enriched 305 
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in 65Cu relative to the metallothionein (MT) in human cortex [90]. Thus, probably due to specific 306 

catalytic micro-environments, SOD1 seems to be a source of Cu fractionation.  307 

              The distributions of Cu isotopes between MT and SOD1 in AD patients is also different 308 

compared to healthy patients [90]. CuZn-SOD activity is negatively correlated with age [91] which 309 

might partly explain the increase of ROS in cells and tissues. However, while the activity of the 310 

enzyme seems to decrease with age, its concentration appears to follow the opposite tendency. It was 311 

shown that in the cerebro-spinal fluid (CSF), the concentration of SOD1 tends to increase with age  312 

[111]. As we mentioned, SOD1 binding preferentially 65Cu, which might explain the increase in 313 

65Cu/63Cu ratio in CSF compared to the decrease in the 65Cu/63Cu ratio observed in the brain [90] 314 

(fig2). The variations observed in this study and in other studies (fig6) [107] for both d65Cu values 315 

and Cu concentrations (ppm) as a function of age might be related to SOD1 concentration and activity 316 

during aging and -more generally - to enzymes binding copper in the brain. Further investigations 317 

regarding this aspect would be interesting to understand precisely the mechanisms involved, notably 318 

including the parallel-operating influence of MT and the influence this may have on Cu isotope 319 

composition.  320 

 321 

4.5. Effect of glial cells and neuroinflammation on copper contents in the brain 322 

 323 

                 Astrocytes are a specific type of glial cells in the central nervous system (CNS) that are 324 

reported to have - amongst others - a role in the maintenance of extracellular ion homeostasis [92, 325 

93].  They are key regulators of Cu and Fe in the brain [94 – 96]. Astrocytes express copper 326 

transporter 1 (Ctr1) [97] as well as MT [98] and glutathione (GSH) [99]. Ctr1 is the main copper 327 

transporter in eukaryotic cells and is responsible for copper entrance in the cell [100]. When the brain 328 

ages, astrocytes encounter senescence and their functions become dysregulated [101]. This is thought 329 

to have an impact on the accumulation of debris and especially Aβ plaques [102, 103]. Furthermore, 330 

copper has been shown to activate the secretion of inflammatory products such as IL- 6, NO and 331 
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TNF-α by interacting with microglia [104]. Microglia are as well as astrocytes a type of glial cell and 332 

the main type of immune cell in the brain [105]. Inflammation in the brain promotes the appearance 333 

and development of neurodegenerative diseases [10,106]. Ashraf et al., (2019), demonstrated that 334 

glial senescence may induce differential regional content of metals (Cu, Zn, Fe) [106]. In chronic and 335 

acute inflammatory conditions, copper is reported to be at higher concentrations in the brain. In the 336 

same conditions, labile copper was found to be also at higher concentrations in microglia. It has been 337 

shown in copper-deficient rats that a lack of copper is linked with a sensitivity to acute inflammatory 338 

agents [113]. Copper seems to be implied in the regulation of inflammation in the brain. Moreover, 339 

the copper complex copperbis(thiosemicarbazones) (CuII (atsm)) was shown to be a potential 340 

therapeutic candidate for strokes and acute brain injuries [114]. This same copper complex has also 341 

been shown to have protective effects in animal models of neurodegenerative diseases such as ALS 342 

and AD [114, 115]. CuII (atsm) was reported to have an anti-inflammatory action by potentially 343 

restoring the brain copper homeostasis [114].  We propose that the senescence of glial cells, as well 344 

as neuro-inflammation and its peripheral processes during ageing, could be key contributing factors 345 

to understanding the accumulation of copper, and potentially other metals, in the ageing brain, and 346 

therefore hold relevance in understanding the evolution of Cu isotope compositions in the brain as a 347 

function of age as well as potential therapeutic candidates.  348 

  349 

5. Conclusions 350 

             This study has provided evidence that the isotopic composition of copper in the brain 351 

undergoes changes with normal ageing, manifesting an increase in the 65Cu/63Cu ratio with age. These 352 

results suggest that the copper isotopic signature becomes progressively heavier as individual ages, 353 

accompanied by a tendency towards Cu accumulation in the aging brain. Notably, we observed a 354 

distinct shift in 65Cu/63Cu ratio between healthy and AD model mice at 12 months. While the ultimate 355 

utility of Cu isotopes in AD diagnostics remains to be clear, the present work provides an invaluable 356 

baseline trajectory of Cu isotope compositions in the brain with age. This baseline progression must 357 
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be well-understood so that it can be deconvolved from other alterations to Cu isotope compositions, 358 

namely the observed light Cu isotope excursion in the AD brain; this is paramount to mechanistically 359 

and statistically isolating a potential biomarker signal induced by the disease. These findings greatly 360 

contribute to the development of a baseline Cu isotope signature associated with normal aging, 361 

enhancing our ability to understand Cu isotope changes induced by neurodegenerative diseases such 362 

as Alzheimer’s.  363 
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Figure captions 378 

Fig1. The roles of copper in a healthy brain.  Made with BioRender. 379 

 380 

Fig 2. A. d65Cu in healthy mouse brain in function of age. Boxes extend from the 25th and 75th 381 

percentile, the line inside the box represents the median, the whiskers show the minimum and 382 
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maximum of the values. p-value < 0.001; **, p-value < 0,0001; ****. B. d65Cu in healthy mouse 383 

brain in function of age. Each point corresponds to the mean for one mouse, n corresponds to the 384 

number of brains measured per age category. C. Simple linear regression for the data displayed in 385 

figure 2B (black full line) with 95% confidence intervals (dotted line), R2= 0.3946 and quadratic 386 

second order polynome (red full line), R2= 0.5126. GraphPad Prism. 387 

Fig 3. Concentration of copper (ppm) in function of age. Boxes extend from the 25th and 75th 388 

percentile, the line inside the box represents the median, the whiskers show the minimum and 389 

maximum of the values. p-value < 0.02, *. GraphPad Prism. 390 

Fig 4. A, B, C. d65Cu in function of sex (A), copper concentration in function of sex (B), d65Cu in 391 

function of sex and age (C). (D) is the evolution of the p-values for unpaired-t tests between males 392 

and females as a function of age, R2 = 0.9988. Boxes extend from the 25th and 75th percentile, the line 393 

inside the box represents the median, the whiskers show the minimum and maximum of the values. 394 

Fig5. d65Cu in healthy mouse brain in function of age. Data from (Moynier et al., 2022) and (Morel 395 

et al., 2022) were incorporated to the data from this study. Boxes extend from the 25th and 75th 396 

percentile, the line inside the box represents the median, the whiskers show the minimum and 397 

maximum of the values. p-value < 0.001, ***. GraphPad Prism.  398 

Fig 6. A, B. Isotopic composition of copper in the brain of healthy and AD mice. p-value < 0.001, ** 399 

(A), copper isotopic composition of a healthy (green) and Alzheimer brain (red) (B). Boxes extend 400 

from the 25th and 75th percentile, the line inside the box represents the median, the whiskers show the 401 

minimum and maximum of the values. GraphPad Prism, Bio Render. 402 
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Fig1. The roles of copper in a healthy brain.  Made with BioRender. 442 
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 445 

 446 

 447 

Fig 2. A. d65Cu in healthy mouse brain in function of age. Boxes extend from the 25th and 75th 448 

percentile, the line inside the box represents the median, the whiskers show the minimum and 449 

maximum of the values. p-value < 0.001; **, p-value < 0,0001; ****. B. d65Cu in healthy mouse 450 

brain in function of age. Each point corresponds to the mean for one mouse, n corresponds to the 451 

number of brains measured per age category. C. Simple linear regression for the data displayed in 452 

figure 2B (black full line) with 95% confidence intervals (dotted line), R2= 0.3946 and quadratic 453 

second order polynome (red full line), R2= 0.5126. GraphPad Prism. 454 
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 463 

 464 

Fig 3. Total concentration of copper (ppm) in healthy mouse brain in function of age. Boxes extend 465 

from the 25th and 75th percentile, the line inside the box represents the median, the whiskers show the 466 

minimum and maximum of the values. p-value < 0.02, *. GraphPad Prism. 467 
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 474 

 475 

 476 

Fig 4. A, B, C, D. d65Cu in healthy mouse brain in function of sex (A), copper concentration in 477 

healthy mouse brain in function of sex (B), d65Cu in healthy mouse brain in function of sex and age, 478 

p-value = 0.16, non-significative (C). (D) is the evolution of the p-values for unpaired-t tests between 479 

males and females as a function of age, R2 = 0.9988. Boxes extend from the 25th and 75th percentile, 480 

the line inside the box represents the median, the whiskers show the minimum and maximum of the 481 

values. ns: not significative.  482 

 483 

 484 

 485 

 486 

 487 

Fig5. d65Cu in healthy mouse brain in function of age. Data from (Moynier et al., 2022) and (Morel 488 

et al., 2022) were incorporated to the data from this study. Boxes extend from the 25th and 75th 489 

percentile, the line inside the box represents the median, the whiskers show the minimum and 490 

maximum of the values. p-value < 0.001, ***. GraphPad Prism.  491 



 22 

 492 

 493 

 494 

 495 

 496 

 497 

 498 

 499 

Fig 6. A, B. Isotopic composition of copper in the brain of healthy and AD mice. p-value < 0.001, ** 500 

(A), copper isotopic composition of a healthy (green) and Alzheimer brain (red) (B). Boxes extend 501 

from the 25th and 75th percentile, the line inside the box represents the median, the whiskers show the 502 

minimum and maximum of the values. GraphPad Prism, Bio Render. 503 
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 513 

 514 

  515 
FigS1. Copper icotopic composition of healthy mice brains depending on the MC-ICP-MS used for 516 
the measure. ns = not significative. GraphPad Prism. 517 
 518 
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