

Impact of Aging on Copper Isotopic Composition in the Murine Brain

Esther Lahoud, Frédéric Moynier, Tu-Han Luu, Brandon Mahan, Marie Le

Borgne

► To cite this version:

Esther Lahoud, Frédéric Moynier, Tu-Han Luu, Brandon Mahan, Marie Le Borgne. Impact of Aging on Copper Isotopic Composition in the Murine Brain. Metallomics, 2024, 16 (5), pp.mfae008. 10.1093/mtomcs/mfae008. hal-04893528

HAL Id: hal-04893528 https://hal.science/hal-04893528v1

Submitted on 17 Jan2025

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Impact of Aging on Copper Isotopic Composition in the Murine Brain

-

23

24

25

2	Esther Lahoud ¹ , Frédéric Moynier ¹ , Tu-Han Luu ¹ , Brandon Mahan ² , Marie Le Borgne ³
3	¹ Université Paris Cité, Institut de Physique du Globe de Paris, 1 rue Jussieu 75005 Paris, France,
4	moynier@ipgp.fr
5	² School of Geography, Earth and Atmospheric Sciences, The University of Melbourne, Australia
6	³ Université Paris Cité, LVTS, Inserm U1148, F-75018 Paris, France.
7	
8	
9	Key words: aging, copper isotopes, biomarker, Alzheimer's disease, metallomics, MC-ICP-MS
10	
11	
12	Abstract
13	Aging is the main risk factor for Alzheimer's disease (AD). AD is linked to alterations in metal
14	homeostasis and changes in stable metal isotopic composition can occur, possibly allowing the latter
15	to serve as relevant biomarkers for potential AD diagnosis. Copper stable isotopes are used to
16	investigate changes in Cu homeostasis associated with various diseases. Prior work has shown that
17	in AD mouse models, the accumulation of ⁶³ Cu in the brain is associated with the disease's
18	progression. However, our understanding of how the normal aging process influences the brain's
19	isotopic composition of copper remains limited. In order to determine the utility and predictive power
20	of Cu isotopes in AD diagnostics; we aim - in this study - to develop a baseline trajectory of Cu
21	isotopic composition in the normally aging mouse brain. We determined the copper concentration
22	and isotopic composition in brains of 30 healthy mice (WT) ranging in age from 6 to 12 months, and

further incorporate prior data obtained for 3-month-old healthy mice; this range approximately

equates to 20-50 years in human equivalency. A significant ⁶⁵Cu enrichment has been observed in the

12-month-old mice compared to the youngest group, concomitant with an increase in Cu

26 concentration with age. Meanwhile, literature data for brains of AD mice display an enrichment in
27 ⁶³Cu isotope compared to WT. It is acutely important that this baseline enrichment in ⁶⁵Cu is fully
28 constrained and normalized against if any coherent diagnostic observations regarding ⁶³Cu
29 enrichment as a biomarker for AD are to be developed.

- 30
- 31
- 32

33 1. Introduction

34 The process of aging provokes wide-ranging effects on the brain, involving various cellular and 35 molecular changes. Mitochondrial dysfunctions in brain cells lead to a decline in energy metabolism 36 efficiency. DNA repair mechanisms become compromised resulting in increased genomic instability. 37 Furthermore, there is an accumulation of soluble (and sometimes neurotoxic) protein precursors [1], 38 misfolded and aggregated proteins, dysfunctional organelles and elevated levels of oxidative stress 39 [2]. Numerous studies have established a direct association between oxidative stress, aging and 40 cognitive decline in humans [3-7]. The progressive increase in oxidative stress during normal aging 41 is attributed to the imbalance between the production of reactive oxygen species and the ability of 42 cellular antioxidant defense systems to counteract them.

Additionally, neuro-inflammation is a hallmark of the aging brain. Senescent glial cells, and the infiltration of immune cells into the brain contribute to a chronic state of neuro-inflammation (see fig1). This process is characterized by elevated levels of pro-inflammatory cytokines and a decline in anti-inflammatory compounds [8, 9]. Chronic neuro-inflammation not only promotes neurodegeneration but also accelerates the overall aging process of the brain [10].

Aging is recognized as the primary risk factor for neurodegenerative diseases, including Alzheimer's disease (AD) [11, 12]. Alzheimer's disease is a global health concern, currently affecting 50 millions of individuals worldwide, with an estimated increase to nearly 113 million by 2050 [12, 13]. It is the fifth leading cause of death in high income countries [14, 108].

52	At the cellular level, AD is characterized by two major patho-physiological features: the
53	presence of extracellular amyloid plaques (Aβ-plaques), formed by the agglomeration of the Aβ42
54	peptides, and the formation of intracellular neurofibrillary tangles (NFTs), resulting from abnormal
55	hyperphosphorylation of the tau protein [12, 15-17]. The latter is mainly due to clinical diagnosis via
56	positron emission tomography (PET) imaging, however it is noted that this technique is predicated
57	on significant deposition of $A\beta$ -plaques to breach the fidelity threshold of current imaging
58	instrumentation, which are generally unable to detect the soluble A β fraction [48-50]. Current <i>in vivo</i>
59	detection methods are invasive and onerous, involving imaging techniques such as positron-emission
60	tomography (PET) to visualize amyloid- β deposits [18], or measuring the levels of amyloid- β or tau
61	proteins in cerebro-spinal fluids [19, 20].
62	During the initial phase of the disease, $A\beta$ -plaques begin to accumulate in the extracellular
63	space, yet clinical symptoms, including loss of memory, difficulties in performing executive functions
64	and solving problems, cognitive decline, apraxia may not manifest for up to 20 years [14, 21]. This
65	asymptomatic/ preclinical stage of the disease holds great significance for the development of early
66	diagnosis techniques and the optimization of AD treatments.
67	In addition to other neurodegenerative diseases such as Wilson disease, Menkes disease,
68	Amyotrophic Lateral Sclerosis (ALS) [22 – 24, 109, 110], AD has also been associated with a change
69	in the metal homeostasis [25 - 27]. Previous works by Moynier et al., (2019, 2020) have produced
70	evidences that the changes in the metal isotopic composition, of elements like copper serve as relevant
71	biomarkers for the future diagnosis of AD [28, 42], and there is a growing body of literature that more
72	generally suggests viability of stable metal isotopes in disease biomarker development [112].
73	Copper plays a crucial role in various biological processes in the brain, functioning as a

cofactor and structural component of several enzymes involved in essential functions. It participates
 in redox metabolism, energy metabolism (cytochrome c oxidase), antioxidative defense (Zn,Cu superoxide dismutases), iron metabolism (ceruloplasmin), neurotransmitter synthesis (dopamine-β-

monoxygenase), regulation of inflammation, and neuropeptide synthesis (peptidylglycine- α amidating enzyme) (see fig1) [29- 33].

79 The concentration of Cu in the human brain is typically found to be between 3 and 5 μ g/g 80 wet weight [34, 35]. Similarly, a mouse brain contains on average 7 μ g/g for a female and 4 μ g/g for a male [43]. Copper has two stable isotopes: ⁶³Cu and ⁶⁵Cu with different relative abundances in 81 82 nature of 69% and 31%, respectively. Isotopes undergo fractionation due to changes in bonding 83 environments within the body [27, 37 - 44]. Isotope fractionation is a general term referring to the 84 process of creating isotopic variability of a particular element among coexisting species or reservoirs 85 hosting this element [40, 41]. Heavy isotopes tend to accumulate in environments characterized by 86 stiffest bonds [37, 38, 45]. For instance, ⁶⁵Cu binds preferentially to histidine, glutamate and aspartate [38, 112]. As a result of the fractionation, the isotopic composition of copper differs in organs: ⁶⁵Cu 87 accumulates in the brain, liver and kidney whilst ⁶³Cu is enriched in red blood cells (RBC) and 88 89 plasma. Changes in the isotopic composition of copper in body fluids and in different organs have 90 been used as proxies to identify cancers [46 - 49], liver diseases [50 - 54] and neurogenerative 91 diseases [24, 28, 38, 40, 42, 55, 56].

92 In AD mice models expressing the amyloid-beta precursor protein (APP), the accumulation of ⁶³Cu in the brain has been shown to be related to the progression of the disease [42]. Besides, 93 94 nuclear magnetic resonance (NMR) studies have established that Cu (II) ions interact directly with 95 A β forming a Cu (II)-A β complex *in vitro* [32, 57 – 62]. Copper might increase the number of β -sheet 96 and α -helix structures in amyloid peptides, which could be a cause of β -amyloid aggregation [63]. 97 Copper and Zinc might also be, in healthy individuals, linked with the degradation of soluble A β [64]. 98 Amyloid- β sequestering copper, the change in bonding environment due to the emergence of protein 99 aggregates, amyloid plaques (AB) and neurofibrillary tangles (NFT) is a key to understand this shift 100 in copper isotopic composition in AD brains.

However, prior to any of the above mechanistic pathways for Cu isotope fractionation being
 identified, it is requisite to first bolster our current understanding regarding the impact of the normal

103 aging process on the isotopic composition of copper in the brain remains limited, such that if present, 104 this effect can be accounted for in the development of any future biomarker based on stable Cu 105 isotopes. The objective of this study is to establish a baseline for the changes in Cu isotopic 106 composition in the brains of normally aging mice, as a proxy for that in humans. We determined the 107 copper concentration and isotopic composition in a total of 30 mice (15 males and 15 females) aged 108 6, 9 and 12-months. Our findings reveal that there is no significant difference in the Cu isotopic 109 composition of male and female mice (i.e. no sex-dependence). Therefore, we combined the data for 110 all mice in our analysis. We observed that ⁶⁵Cu is enriched in the 12-months old mice compared to 111 the younger age groups, which show no distinguishable difference. Additionally, the overall copper 112 concentration in the brain tends to increase with age

113

2. Materials and Methods

114 **2.1. Mice.** *At Hopital Bichat.*

115 The 30 WT mice used in this study were collected from VTS INSERM 1148, Hopital Bichat, Paris. 116 All the 30 mice had the same genotype: C57BL/6JRj. The mice were housed in 6 different cages, 5 117 same-sex mice per cage. The dry food given to the mice has a δ^{65} Cu =0.55±0.01 (2SD) [43].

118 **2.2. Sample collection.** *At Hopital Bichat.*

Mice_aged 6, 9 and 12-months were euthanized by receiving a lethal dose of ketamine and xylazine, followed by exsanguination. Throughout their life cycle, mice were all given the same diet previously analyzed in Cu isotopic composition- and kept in similar conditions. The brains were collected directly after death using instruments in stainless steel. The brains were then conserved in a -20 degrees Celsius freezer.

124 The biological standard used was tuna fish ERM-CE464 (TF ERM-CE464).

125 **2.3. Digestion and chemical purification** *At Institut de physique du Globe de Paris (IPGP)*

126 The dissolution, chemical purification and mass-spectrometry analyses are a close modification of

127 the protocols established previously [28, 42].

Dissolution. In polyfluoralkyl (PFA) beakers, whole brain samples and biological standard (TF ERM-CE464), all at masses around 100mg, were dissolved in a few droplets of H_2O_2 and concentrated distilled HNO₃ for a day and a half. Once the dissolution was complete, the beakers were placed opened on a hot-plate at 120°C overnight.

132 **Copper extraction.** The Cu purification is conducted using anion- exchange chromatography 133 following a protocol adapted from [65]. The samples are redissolved in 1mL of distilled 7M HCl then 134 loaded on 1.6 mL of AG-MP1 resin. Matrix elements are taken away by passing 8 mL of 7M HCl 135 through the resin. The copper is collected in 16 mL of 7M HCl. This procedure is replicated after 136 evaporation of the acid to ensure pure Cu fractions. The resin is washed following a day-long protocol 137 alternating three series of rinses with MQ water and HNO₃ 0.5N in between the two replicates. The 138 copper was extracted from the standard following the same procedure as for the samples. The yield of Cu is >99%. 139

140 **2.4. Mass Spectrometry** *At Institut de physique du Globe de Paris (IPGP)*

Copper isotope ratios were determined with multi-collection inductively-coupled-plasma mass-spectrometers (MC-ICP-MS) at the Institut de Physique du Globe de Paris France. Part of the samples were analyzed using a Nu-Instrument Sapphire and the other part using a Thermo-Fisher Neptune. Depending on instrument performance and availability on the day of analyses; no analytical differences are observed between instrument platforms (figS1; Table1B). The samples were analyzed between 1 and 5 times each depending on the amount of copper in each sample (Table1B).

147 The sample-standard bracketing (SSB) method was applied and the Cu concentration in the 148 samples and standards where match within 10%. This method consists in measuring a standard before 149 and after each sample and using the average of the two standards to normalize the sample ratio 150 [40,44]. During analytical session, the standard utilized was IPGP-Cu, previously determined to have 151 a δ^{65} Cu of +0.271 ±0.006 ‰ (2SE) relative to the NIST SRM 976 [28]. All data herein have been 152 converted to δ^{65} Cu relative to NIST SRM 976 by adding 0.271.

153 **2.5. Statistical analysis**

- 154 Statistical analysis were performed using GraphPad Prism.
- 155
- 156 3. **Results**
- 157

158 **3.1. Effect of age on the isotopic composition of Cu in the brain**

159

160 We incorporated the data from a previous study conducted by Moynier et al., [43] on 3-months 161 old mice that were bred together with the mice studied here. All data are reported in Table 1A and 162 1B and displayed in fig2. The isotopic composition of the biological standard (TF ERM-CE464) was 163 analyzed every 12 samples on both the Nu-Instrument Sapphire and Thermo-Fischer Neptune 164 instruments. The value obtained (0.09±0.02, 2SD, N=4) was consistent within error with the value 165 reported by [66, 116], (0.11±0.14, 2SD) (Table 2). The Cu isotope compositions of all materials are expressed as the ratio ⁶⁵Cu to ⁶³Cu relative to that of the internationally recognized standards SRM-166 976, in per mil (per thousand) notation, or δ^{65} Cu, and have been calculated using the formula: 167 168

169
$$\delta^{65} \text{Cu} = \left(\frac{\left(\frac{6^5 Cu}{6^3 Cu}\right) \text{sample}}{\left(\frac{6^5 Cu}{6^3 Cu}\right) \text{NIST SRM 976}} - 1\right) \times 1000$$

170

Two brain samples were analyzed on both instruments to ensure the consistency of the results. The results obtained were similar within error: brain-1 gave a δ^{65} Cu = 0.86±0.06) on the Neptune and, 0.90±0.05) on the Sapphire. Brain-2 has a δ^{65} Cu of 0.70±0.08 on the Neptune, and of 0.75±0.06) on the Sapphire.

175 The values of δ^{65} Cu for mice aged 3 to 12 months were analyzed with One-way ANOVA test 176 (p-value < 0.0001; R squared= 0.4934). Our data were analyzed with Mann-Whitney test for each age 177 categories as the data are not normally distributed and the number of data is close to 30. Mann178 Whitney test: (age 9 vs age 6; p-value = 0,0051); (age 6 vs 12; p-value = <0.0001); (age 3 vs age 6;

179 p-value = 0.7915, ns); (age 12 vs age 9; p-value = 0,0008) (see fig2A).

180 The results (see fig2A, B, C) reveal a notable evolution in the isotopic composition of copper 181 as a function of age. Mice aged between 3 and 6 months exhibit a relatively consistent composition of copper isotopes, with a δ^{65} Cu value of 0.85±0.23 (2SD). However, from the age 9 months onwards 182 183 (mean: δ^{65} Cu = 0.98±0.22 (2SD)) there is a noticeable shift towards heavier copper content and dispersion of δ^{65} Cu values, particularly evident in the 12 months old mice (mean: δ^{65} Cu = 1.32±0.61 184 185 (2SD)) (fig2A and 2B). The simple linear regression (fig2C) plotted using the values displayed in fig2B has a positive slope and shows a linear increase in the values of δ^{65} Cu depending on time. An 186 187 un-linear curve showing was plotted as well in fig2C and is also displaying a heavier copper isotopic 188 composition as a function of age. Taken as a whole, these data strongly suggest that the isotopic 189 composition of copper undergoes significant changes with age. Specifically, the copper composition 190 becomes progressively heavier with advancing age. Consequently, the aging process is associated 191 with a shift in the isotopic composition of copper, particularly in the brain, which demonstrates an age-dependent increase in the proportion of ⁶⁵Cu compared to ⁶³Cu. 192

- 193
- 194 **3.2. Effect of age on copper concentration**

195

Several studies in the literature have reported an age-related increase in copper levels in various organs. In healthy individuals, it has been observed that copper tends to increase with age in human serum [67, 68]. However, in cortical tissue affected by Alzheimer's disease (AD), the level of copper is actually decreased [69]. This decrease is believed to be associated with the binding of copper to senile plaques [70]. Other studies have shown that copper tends to decrease in salivary sediment and hair samples [71]. In rats aged 15 to 49 weeks, Cu level increase in the serum, kidney, liver and five distinct parts of the brain (cortex, corpus striatum, hippocampus, midbrain+medulla and 203 cerebellum) [72]. These findings further support the notion of age-dependent changes in copper204 amounts across different tissues and species.

205 Copper concentrations aren't the main focus in the study. They are determined as a matter of 206 comparison with other studies that determine the concentrations the same way. Our objective was to 207 investigate whether there were any variations in copper concentration within our samples. To 208 accomplish this, we quantified the copper concentration in each brain sample (n=30). For each 209 sample, we performed a factor 100 dilution (10µL of sample in 1mL of 0.5N HNO₃) and measured 210 the signal in volts obtained on the MC-ICP-MS. Given that the concentration and signal were 211 precisely known for the standard (NIST SRM 976), we could compute the concentration of copper in 212 each of the samples. The weight collected for each sample was 100mg±30. The data are in Table 3 213 and displayed in fig3. The concentrations are given in ppm, equivalent to a concentration given in 214 μ g/g. The means were calculated for each age category: mice aged 6 months (mean: C_{copper} = 3.73) 215 ppm, 2sd = 2.50, n=10), mice aged 9 months (mean: $C_{copper} = 4.39$ ppm, 2sd = 5.58, n=10), mice aged 216 12 months ($C_{copper} = 6.02 \text{ ppm}$, 2sd = 4.56, n=10) (see fig3).

We performed a Mann-Whitney test: age 12 vs 9 (p-value = 0,2475, ns) and age 12 vs age 6 (p-value = 0,0089, **). Ordinary one-way ANOVA and 2way ANOVA were not conclusive. However, we observe a qualitative increasing trend as a function of age. The data obtained for mice aged 9 months are very disperse compared to 6 and 12 months-old mice (see fig3).

- 221
- 222

4. Discussion

225

224

Previous studies have demonstrated differences in the isotopic composition of Cu and Fe in function of sex notably in the serum and red blood cells [28, 73, 74]. In archeological human bones, Jouen et al., have shown that the isotopic signature is dependent on sex for Cu and Fe [74].

4.1. Effect of sex on copper isotopic compositions and concentrations

229 Furthermore, several studies have indicated sex-related differences in the development of neurodegenerative diseases. For instance, men have a higher disposition for Parkinson's disease [75-230 231 77] while women constitute two-thirds of AD patients [78]. Moreover, the progression of the disease 232 progression appears to be accelerated in men [79]. Although these sex-dependent differences are 233 known, their underlying causes remain elusive and require further investigation. To better constrain 234 the sex effect on brain isotopic composition and concentration, we conducted a comparison between 235 the results obtained for males and females, irrespective of age. However, no significant difference 236 was observed between the two groups. Furthermore, we further examined the data by plotting the 237 results for males and females separately in each age category. Even after considering age as a factor, 238 no notable or statistically significant differences between the sexes were found (see fig4; Table4; 239 Table 5).

We conducted a Mann-Whitney test to compare the δ^{65} Cu values between males and females, which revealed no statistical difference (p-value = 0.1276). The mean δ^{65} Cu for males was 0,98±0.48 (2SD), while for females it was 1.13±0.67 (2SD) (see fig4A). Additionally, males and females could not be statistically differentiated based on copper concentrations (see fig4B).

Although there was no significant difference in δ^{65} Cu between males and females, it is worth 244 noting that the data for females exhibited a slightly broader distribution compared to males. 245 Furthermore, there is a tendency in the evolution of δ^{65} Cu values between males and females as a 246 247 function of time (fig4D), however more samples from future work might drive this further towards 248 statistical significance. The difference in copper isotopic composition between males and females tends to increase as a function of time. As reported in the study by Moynier et al., (2019), at age 12, 249 250 there was a discernible difference in δ^{65} Cu values between males and females. However, in our study, 251 it did not reach statistical significance (see fig4C)

252

253 **4.2.** δ^{65} Cu decreases after 12 months.

254	To provide a better understanding of the evolution of δ^{65} Cu with age, we combined our data
255	with literature [43, 107] (fig5). Moynier et al., (2022) measured 4 brains from healthy mice aged 3
256	months, Morel et al., (2022) measured 29 brains from mice aged 6, 16 and 24 months. All mice have
257	the same genotype. The data show an increase in δ^{65} Cu values before 12 months and a decrease after
258	12 months. Combining the data from Morel et al., (2022) with our data, we could observe that both
259	data from mice aged 6 months are consistent. Performing Mann-Whitney test for the 6 and 9 months,
260	p-value = 0.0004, ***, which is even lower when the data are combined with Morel et al., (2022)
261	compared to our data alone (p-value = 0.0051). Even if the measurement method and copper
262	extraction vary slightly between the studies, the results are consistent.

4.3. 12 months old WT and AD mice have different brain copper isotopic compositions

265

266 Combining our data for 12 months old healthy mice with those from Moynier et al. (2019) [28], we obtained a mean δ^{65} Cu = 1.32±0.61 (2SD) for healthy 12 months-old mice (WT), in our 267 study. For 12 months-old AD mice (AD), the mean was δ^{65} Cu = 0.50±0.29 (2SD). We also took into 268 account the δ^{65} Cu values for healthy mice brains reported in Moynier et al., (2019). The data are 269 270 statistically differentiable (Mann-Whitney, p-value < 0.01, **). The results (see fig6A; Table 6) show 271 a decrease in the isotopic composition between WT and AD at 12 months. However, we could only 272 have five samples for AD mice ages 12 months. Despite the limited data, this difference is considered 273 robust, as a statistical difference of well over 0.5 per mil is over an order of magnitude larger than 274 typical analytical precision within this and other studies.

275 This suggests that AD brains are isotopically lighter than healthy ones in terms of copper 276 isotopes (see fig6B). This is also what is found in literature in the brains of AD and WT humans [42]. 277 This can be explained by the change in bonding environment caused by the appearance of amyloid 278 plaques and neurofibrillary tangles, as copper directly interacts with A β [42,57,58, 70]. The new 279 environment created by the presence of amyloid plaques in the brain might encourage the binding of lighter isotopes and thus generating a shift in the natural isotopic fractionation of copper. Copper being a redox active metal [25] and Cu (II) ions binding preferentially to A β plaques this also could be a source of explanation for this shift [42,57,58, 70]. Conversely, the presence of Cu (0) has been detected in AD human brains [80].

Normal aging and AD have different signatures in terms of copper concentration as well. In the literature, it is reported that AD is accompanied by a deficiency in copper in the brain [69,81, 82]. Interestingly, the amount of Cu in aged human brains has been shown to have a negative correlation with the advance of A β plaques [83]. Normally aging individuals tend to have copper accumulating in the brain as a function of age. Thus, AD and healthy individuals appear to display different copper signatures regarding copper isotopic composition and copper concentration.

290

4.4. Copper related oxidative stress might be a key to understand normal aging in the brain

292

293 Oxidative stress is thought to be one of the main causes of aging in mammals [3-6]. In the 294 brain, the levels of antioxidants are low: it makes it susceptible to oxidative stress induced by the 295 redox-active nature of Cu [84]. Superoxide dismutases (SODs) are a category of ubiquitous enzymes 296 representing one of the main antioxidant defense systems against reactive oxygen species (ROS). 297 SODs catalyze the dismutation reaction of O₂•- to H₂O₂ which is then reduced to H₂O by the action 298 of catalase [85]. The reaction requires alternate reduction and reoxidation of a redox active transition 299 metal (Cu or Mn). In mammals, there are three isoforms that are all bound to catalytic metals: 300 intracellular SOD1 or CuZn-SOD, mitochondrial SOD2 or Mn-SOD and extracellular SOD3 [86]. 301 SOD1 is intracellular [87, 88].

Warner et al., (1994), have shown, through genetic manipulations increasing CuZn-SOD activity, a resistance to most forms of oxidative stress [89]. CuZn-SOD deficiency increases the vulnerability to oxidative stress and thus potentially normal aging. Copper is bound to several proteins, frequently enzymes, including metallothionein. It has been shown that SOD1 was enriched in ⁶⁵Cu relative to the metallothionein (MT) in human cortex [90]. Thus, probably due to specific
 catalytic micro-environments, SOD1 seems to be a source of Cu fractionation.

308 The distributions of Cu isotopes between MT and SOD1 in AD patients is also different compared to healthy patients [90]. CuZn-SOD activity is negatively correlated with age [91] which 309 310 might partly explain the increase of ROS in cells and tissues. However, while the activity of the 311 enzyme seems to decrease with age, its concentration appears to follow the opposite tendency. It was 312 shown that in the cerebro-spinal fluid (CSF), the concentration of SOD1 tends to increase with age 313 [111]. As we mentioned, SOD1 binding preferentially ⁶⁵Cu, which might explain the increase in ⁶⁵Cu/⁶³Cu ratio in CSF compared to the decrease in the ⁶⁵Cu/⁶³Cu ratio observed in the brain [90] 314 (fig2). The variations observed in this study and in other studies (fig6) [107] for both δ^{65} Cu values 315 316 and Cu concentrations (ppm) as a function of age might be related to SOD1 concentration and activity 317 during aging and -more generally - to enzymes binding copper in the brain. Further investigations 318 regarding this aspect would be interesting to understand precisely the mechanisms involved, notably 319 including the parallel-operating influence of MT and the influence this may have on Cu isotope 320 composition.

321

322 4.5. Effect of glial cells and neuroinflammation on copper contents in the brain

323

324 Astrocytes are a specific type of glial cells in the central nervous system (CNS) that are 325 reported to have - amongst others - a role in the maintenance of extracellular ion homeostasis [92, 326 93]. They are key regulators of Cu and Fe in the brain [94 – 96]. Astrocytes express copper 327 transporter 1 (Ctr1) [97] as well as MT [98] and glutathione (GSH) [99]. Ctr1 is the main copper 328 transporter in eukaryotic cells and is responsible for copper entrance in the cell [100]. When the brain 329 ages, astrocytes encounter senescence and their functions become dysregulated [101]. This is thought 330 to have an impact on the accumulation of debris and especially Aβ plaques [102, 103]. Furthermore, 331 copper has been shown to activate the secretion of inflammatory products such as IL- 6, NO and

332 TNF- α by interacting with microglia [104]. Microglia are as well as astrocytes a type of glial cell and 333 the main type of immune cell in the brain [105]. Inflammation in the brain promotes the appearance 334 and development of neurodegenerative diseases [10,106]. Ashraf et al., (2019), demonstrated that 335 glial senescence may induce differential regional content of metals (Cu, Zn, Fe) [106]. In chronic and 336 acute inflammatory conditions, copper is reported to be at higher concentrations in the brain. In the 337 same conditions, labile copper was found to be also at higher concentrations in microglia. It has been 338 shown in copper-deficient rats that a lack of copper is linked with a sensitivity to acute inflammatory 339 agents [113]. Copper seems to be implied in the regulation of inflammation in the brain. Moreover, the copper complex copperbis(thiosemicarbazones) (Cu^{II} (atsm)) was shown to be a potential 340 341 therapeutic candidate for strokes and acute brain injuries [114]. This same copper complex has also 342 been shown to have protective effects in animal models of neurodegenerative diseases such as ALS and AD [114, 115]. Cu^{II} (atsm) was reported to have an anti-inflammatory action by potentially 343 344 restoring the brain copper homeostasis [114]. We propose that the senescence of glial cells, as well as neuro-inflammation and its peripheral processes during ageing, could be key contributing factors 345 346 to understanding the accumulation of copper, and potentially other metals, in the ageing brain, and 347 therefore hold relevance in understanding the evolution of Cu isotope compositions in the brain as a 348 function of age as well as potential therapeutic candidates.

349

350 5. Conclusions

This study has provided evidence that the isotopic composition of copper in the brain undergoes changes with normal ageing, manifesting an increase in the ${}^{65}Cu/{}^{63}Cu$ ratio with age. These results suggest that the copper isotopic signature becomes progressively heavier as individual ages, accompanied by a tendency towards Cu accumulation in the aging brain. Notably, we observed a distinct shift in ${}^{65}Cu/{}^{63}Cu$ ratio between healthy and AD model mice at 12 months. While the ultimate utility of Cu isotopes in AD diagnostics remains to be clear, the present work provides an invaluable baseline trajectory of Cu isotope compositions in the brain with age. This baseline progression must be well-understood so that it can be deconvolved from other alterations to Cu isotope compositions, namely the observed light Cu isotope excursion in the AD brain; this is paramount to mechanistically and statistically isolating a potential biomarker signal induced by the disease. These findings greatly contribute to the development of a baseline Cu isotope signature associated with normal aging, enhancing our ability to understand Cu isotope changes induced by neurodegenerative diseases such as Alzheimer's.

364

365 **6.** Acknowledgments

We thank Tu-Han Luu for her help with the mass-spectrometers laboratory at IPGP. EL thanks AAT for fundings. FM thank the ERC for the POC Grant DAI (# 101081580). Parts of this work were supported by IPGP multidisciplinary program PARI, by Region Île-de-France SESAME Grants no. 12015908, EX047016, and the IdEx Université de Paris grant, ANR-18-IDEX-0001 and the DIM ACAV+.

7. Disclosure statement

372 The authors have no actual or potential conflicts of interest.

373

8. Data availability

375 The data underlying this article are available in the article and in its online supplementary material.

376

377

378 Figure captions

Fig1. The roles of copper in a healthy brain. Made with BioRender.

380

Fig 2. A. δ^{65} Cu in healthy mouse brain in function of age. Boxes extend from the 25th and 75th percentile, the line inside the box represents the median, the whiskers show the minimum and

maximum of the values. p-value < 0.001; **, p-value < 0,0001; ****. B. δ^{65} Cu in healthy mouse brain in function of age. Each point corresponds to the mean for one mouse, n corresponds to the number of brains measured per age category. C. Simple linear regression for the data displayed in figure 2B (black full line) with 95% confidence intervals (dotted line), R²= 0.3946 and quadratic second order polynome (red full line), R²= 0.5126. GraphPad Prism.

Fig 3. Concentration of copper (ppm) in function of age. Boxes extend from the 25th and 75th percentile, the line inside the box represents the median, the whiskers show the minimum and maximum of the values. p-value < 0.02, *. GraphPad Prism.

Fig 4. A, B, C. δ^{65} Cu in function of sex (A), copper concentration in function of sex (B), δ^{65} Cu in function of sex and age (C). (D) is the evolution of the p-values for unpaired-t tests between males and females as a function of age, $R^2 = 0.9988$. Boxes extend from the 25th and 75th percentile, the line inside the box represents the median, the whiskers show the minimum and maximum of the values.

Fig5. δ^{65} Cu in healthy mouse brain in function of age. Data from (Moynier et al., 2022) and (Morel et al., 2022) were incorporated to the data from this study. Boxes extend from the 25th and 75th percentile, the line inside the box represents the median, the whiskers show the minimum and maximum of the values. p-value < 0.001, ***. GraphPad Prism.

Fig 6. A, B. Isotopic composition of copper in the brain of healthy and AD mice. p-value < 0.001, **
(A), copper isotopic composition of a healthy (green) and Alzheimer brain (red) (B). Boxes extend
from the 25th and 75th percentile, the line inside the box represents the median, the whiskers show the
minimum and maximum of the values. GraphPad Prism, Bio Render.

- 403
- 404
- 405
- 406
- 407

408 Figures

409

 Image: Second second

420	Made with BioRender.
421	
422	
423	
424	
425	
426	
427	
428	
429	
430	
431	
432	
433	

- 45.

- 442 Fig1. The roles of copper in a healthy brain. Made with BioRender.

Fig 2. A. δ^{65} Cu in healthy mouse brain in function of age. Boxes extend from the 25th and 75th percentile, the line inside the box represents the median, the whiskers show the minimum and maximum of the values. p-value < 0.001; **, p-value < 0,0001; ****. B. δ^{65} Cu in healthy mouse brain in function of age. Each point corresponds to the mean for one mouse, n corresponds to the number of brains measured per age category. C. Simple linear regression for the data displayed in figure 2B (black full line) with 95% confidence intervals (dotted line), R²= 0.3946 and quadratic second order polynome (red full line), R²= 0.5126. GraphPad Prism.

- 455
- 456
- 457 458
- 459
- 460
- -00
- 461
- 462

Fig 3. Total concentration of copper (ppm) in healthy mouse brain in function of age. Boxes extend from the 25^{th} and 75^{th} percentile, the line inside the box represents the median, the whiskers show the minimum and maximum of the values. p-value < 0.02, *. GraphPad Prism.

475

476

Fig 4. A, B, C, D. δ^{65} Cu in healthy mouse brain in function of sex (A), copper concentration in healthy mouse brain in function of sex (B), δ^{65} Cu in healthy mouse brain in function of sex and age, p-value = 0.16, non-significative (C). (D) is the evolution of the p-values for unpaired-t tests between males and females as a function of age, R² = 0.9988. Boxes extend from the 25th and 75th percentile, the line inside the box represents the median, the whiskers show the minimum and maximum of the values. ns: not significative.

- 483
- 484
- 485

486

487

Fig5. δ^{65} Cu in healthy mouse brain in function of age. Data from (Moynier et al., 2022) and (Morel et al., 2022) were incorporated to the data from this study. Boxes extend from the 25th and 75th percentile, the line inside the box represents the median, the whiskers show the minimum and maximum of the values. p-value < 0.001, ***. GraphPad Prism.

515 50 FigS1. Copper icotopic composition of healthy mice brains depending on the MC-ICP-MS used for
517 the measure. ns = not significative. GraphPad Prism.

- 518
- 519
- 520
- 521 References
- 522 1. McLean, C. A., Cherny, R. A., Fraser, F. W., Fuller, S. J., Smith, M. J., Beyreuther, K., Bush,
- 523 A. I., Masters, C. L. Soluble pool of Abeta amyloid as a determinant of severity of
- neurodegeneration in Alzheimer's disease. Ann. Neurol, 1999, 46, 860–866. doi: 10.1002/1531-
- 525 8249(199912)46:6<860::aid-ana8>3.0.co;2-m
- 526

527	2.	Mattson, MP., Arumugam, TV. Hallmarks of brain aging: adaptive and pathological
528		modification by metabolic states. Cell. Metab, 2018, 27, 1176-1199. doi:
529		10.1016/j.cmet.2018.05.011.
530 531		
532	3.	Junqueira VB, Barros SB, Chan SS, Rodrigues L, Giavarotti L, Abud RL, Deucher GP. Aging
533		and oxidative stress. Mol. Aspects. Med., 2004, 5-16. doi: 10.1016/j.mam.2004.02.003.
534	4.	Harman, D. Protein oxidation in aging and age-related diseases. Gerontology, 1956, 11, 298-
535		300. doi:10.1093/geronj/11.3.298.
536		
537	5.	Harman, D. The biologic clock: the mitochondria? J. Am. Geriatr. Soc., 1972, 4,145-7.
538		doi:10.1111/j.1532-5415.1972.tb00787.x.
539		
540	6.	Beckman KB, Ames BN. The free radical theory of aging matures. Physiol Rev, 1998, 78, 547-
541		81. doi: 10.1152/physrev.1998.78.2.547.
542		
543	7.	Berr, C., Balansard, B., Arnaud, J., Roussel, AM., Alpérovitch, A. Cognitive Decline Is
544		Associated with Systemic Oxidative Stress: The EVA Study. J Am Geriatr Soc, 2000, 48, 1285-
545		1291. doi: 10.1111/j.1532-5415.2000.tb02603.x.
546 547		
548	8.	Gemechu, JM., Bentivoglio, M., T cell recruitment in the brain during normal aging. Front. Cell.
549		Neurosci., 2012, 6, 38. doi: 10.3389/fncel.2012.00038.
550		
551	9.	Deleidi, M., Jäggle, M., Rubino, G. Immune aging, dysmetabolism, and inflammation in
552		neurological diseases. Front. Neurosci., 2015, 9, 172. doi: 10.3389/fnins.2015.00172.
553		

554	10. Kempuraj, D., Thangavel, R., Natteru, PA., Selvakumar, G. P., Saeed, D., Zahoor, H., Zaheer,
555	A. Neuroinflammation induces neurodegeneration. J. Neurosurg.: Spine., 2016, 1.
556 557	
558	11. Roberts, BR., Ryan, TM., Bush, AI., Masters, CL., Duce, JA. The role of metallobiology and
559	amyloid - β peptides in Alzheimer's disease. J. Neurochem., 2012, 120, 149-166. doi:
560	10.1111/j.1471-4159.2011.07500.x.
561	
562	12. Knopman, DS., Amieva, H., Petersen, RC. Alzheimer disease. Nat. Rev. Dis. Primers., 2021,
563	7, 33 2021. doi: 10.1038/s41572-021-00269-y
564	
565	13. Prince, MJ., Wimo, A., Guerchet, MM., Ali, GC., Wu, YT., Prina, M. World Alzheimer Report
566	2015-The Global Impact of Dementia: An analysis of prevalence, incidence, cost and trends.
567	2015.
568	14. Hampel, H., Hardy, J., Blennow, K. The Amyloid-β Pathway in Alzheimer's Disease. Mol.
569	Psychiatry., 2021, 26, 5481-5503. doi: 10.1038/s41380-021-01249-0
570	
571	15. Mucke, L., Selkoe, DJ. Neurotoxicity of amyloid β -protein: synaptic and network dysfunction.
572	Cold Spring Harb. Perspect. Med., 2012, 2, a006338. doi: 10.1101/cshperspect.a006338.
573	
574	16. Hardy, JA., Higgins, GA. Alzheimer's disease: the amyloid cascade hypothesis. Science, 1992,
575	256, 184-185. doi: 10.1126/science.1566067
576 577	
578	17. Zempel, H., Mandelkow, E. Lost after translation: missorting of Tau protein and consequences
579	for Alzheimer disease. Trends. Neurosci., 2014, 37, 721-732. doi: 10.1016/j.tins.2014.08.004.
580	

581	18. Gordon, BA., Blazey, TM., Su, Y., Hari-Raj, A., Dincer, A., Flores, S., Benzinger, TL. Spatial
582	patterns of neuroimaging biomarker change in individuals from families with autosomal
583	dominant Alzheimer's disease: a longitudinal study. Lancet. Neurol., 2018, 17, 241-250.
584	doi:10.1016/S1474-4422(18)30028-0.
585	
586	19. Blennow, K., Zetterberg, H. Biomarkers for Alzheimer's disease: current status and prospects
587	for the future. J. Intern. Med., 2018, 284, 643-663. doi: 10.1111/joim.12816.
588 589	
590	20. Olsson, B., Lautner, R., Andreasson, U., Öhrfelt, A., Portelius, E., Bjerke, M., Zetterberg, H.
591	CSF and blood biomarkers for the diagnosis of Alzheimer's disease: a systematic review and
592	meta-analysis. Lancet Neurol., 2016, 15, 673-684. doi: 10.1016/S1474-4422(16)00070-3.
593	
594	21. Dubois, B., Feldman, HH., Jacova, C., Hampel, H., Molinuevo, JL., Blennow, K. Advancing
595	research diagnostic criteria for Alzheimer's disease: the IWG-2 criteria. Lancet. Neurol., 2014,
596	13, 614–29. doi: 10.1016/S1474-4422(14)70155-3.
597	
598	22. Faa, G., Lisci, M., Caria, M. P., Ambu, R., Sciot, R., Nurchi, V. M., Crisponi, G. Brain copper,
599	iron, magnesium, zinc, calcium, sulfur and phosphorus storage in Wilson's disease. J. Trace
600	Elem Med. Biol., 2001, 15, 155-160. doi: 10.1016/S0946-672X(01)80060-2.
601 602	
603	23. Nooijen, JL., De Groot, CJ., Van Den Hamer, CJ., Monnens, LA., Willemse, J., Niermeijer, MF.
604	Trace element studies in three patients and a fetus with Menkes' disease. Effect of copper
605	therapy. Pediatr. Res., 1981, 15, 284-289. doi: 10.1203/00006450-198103000-00017.
606	

607	24. Sauzéat L, Bernard E, Perret-Liaudet A, Quadrio I, Vighetto A, Krolak-Salmon P, Broussolle
608	E, Leblanc P, Balter V. Isotopic Evidence for Disrupted Copper Metabolism in Amyotrophic
609	Lateral Sclerosis. iScience, 2018, 6, 264-271. doi: 10.1016/j.isci.2018.07.023.
610 611	
612	25. Barnham KJ., Bush AI. Biological metals and metal-targeting compounds in major
613	neurodegenerative diseases. Chem. Soc. Rev, 2014, 43, 6727–6749. doi : 10.1039/C4CS00138A
614	
615	26. Pithadia, AS., Lim, MH. Metal-associated amyloid-β species in Alzheimer's disease. Curr. Opin.
616	Chem. Biol., 2012, 16, 67-73. doi: 10.1016/j.cbpa.2012.01.016.
617	
618	27. Moynier, F., Vance, D., Fujii, T., Savage, P. The isotope geochemistry of zinc and copper. Rev.
619	Mineral. Geochem., 2017, 82, 543-600. doi:10.2138/rmg.2017.82.13.
620	
621	28. Moynier, F., Creech, J., Dallas, J., Le Borgne, M. Serum and brain natural copper stable isotopes
622	in a mouse model of Alzheimer's disease. Sci. Rep., 2019, 9, 11894. doi : 10.1038/s41598-019-
623	47790-5.
624	
625	29. Scheiber, IF., Dringen, R. Astrocyte functions in the copper homeostasis of the brain.
626	Neurochem. Int., 2013, 62, 556-565. doi: 10.1016/j.neuint.2012.08.017.
627 628	
629	30. Kaim, W., Rall, J. Copper-a "modern" bioelement. Angewandte Chemie International Edition
630	in English, 1996, 35, 43-60. doi: 10.1002/anie.199600431.
631	

632	31. Rubino, JT., Franz, KJ. Coordination chemistry of copper proteins: how nature handles a toxic
633	cargo for essential function. J. Inorg. Biochem., 2012, 107, 129-143. doi:
634	10.1016/j.jinorgbio.2011.11.024.
635	
636	32. Atwood, CS., Scarpa, RC., Huang, X., Moir, RD., Jones, WD., Fairlie, DP., Bush, AI.
637	Characterization of Copper Interactions with Alzheimer Amyloid β Peptides: Identification of
638	an Attomolar-Affinity Copper Binding Site on Amyloid β 1-42. J. Neurochem, 2000, 75, 1219-
639	1233. doi: 10.1046/j.1471-4159.2000.0751219.
640	
641	33. Conforti, A., Franco, L., Milanino, R., Totorizzo, A., Velo, GP. Copper metabolism during acute
642	inflammation: studies on liver and serum copper concentrations in normal and inflamed rats. Br.
643	J. Pharmacol., 1983, 79, 45. doi: 10.1111/j.1476-5381.1983.tb10493.x.
644	
645	34. Lech, T., Sadlik, JK. Copper concentration in body tissues and fluids in normal subjects of
646	southern Poland. Biol. Trace. Elem. Res., 2007, 118, 10-15. doi:10.1007/s12011-007-0014-z.
647 648	
649	35. Rahil-Khazen, R., Bolann, BJ., Myking, A., Ulvik, RJ. Multi-element analysis of trace element
650	levels in human autopsy tissues by using inductively coupled atomic emission spectrometry
651	technique (ICP-AES). J. Trace Elem. Med. Biol., 2002, 16, 15-25. doi: 10.1016/S0946-
652	672X(02)80004-9.
653	
654	36. Wong, PC., Waggoner, D., Subramaniam, JR., Tessarollo, L., Bartnikas, TB., Culotta, VC.,
655	Gitlin, JD. Copper chaperone for superoxide dismutase is essential to activate mammalian
656	Cu/Zn superoxide dismutase. Proc. Natl. Acad. Sci. U.S.A., 2000, 97, 2886-2891. doi:
657	org/10.1073/pnas.040461197

658	
659	37. Mahan, B., Moynier, F., Jørgensen, AL., Habekost, M., Siebert, J. Examining the homeostatic
660	distribution of metals and Zn isotopes in Göttingen minipigs. Metallomics, 2018, 10, 1264-1281.
661	doi : 10.1039/c8mt00179k.
662	
663	38. Fujii, T., Moynier, F., Abe, M., Nemoto, K., Albarède, F. Copper isotope fractionation between
664	aqueous compounds relevant to low temperature geochemistry and biology. Geochim.
665	Cosmochim. Acta., 2013, 110, 29-44. doi: 10.1016/j.gca.2013.02.007.
666	
667	39. Paquet, M., Fujii, T., Moynier, F. Copper isotope composition of hemocyanin. J. Trace Elem.
668	Med. Biol., 2022, 71, 126967. doi: 10.1016/j.jtemb.2022.126967.
669	
670	40. Mahan, B., Antonelli, M. A., Burckel, P., Turner, S., Chung, R., Habekost, M., Moynier, F.
671	Longitudinal biometal accumulation and Ca isotope composition of the Göttingen minipig
672	brain. Metallomics, 2020, 12, 1585-1598.
673 674	
675	41. Albarede, F., Télouk, P., Balter, V., Bondanese, VP., Albalat, E., Oger, P., Fujii, T. Medical
676	applications of Cu, Zn, and S isotope effects. Metallomics, 2016, 8, 1056-1070. doi:
677	10.1039/c5mt00316d
678	
679	42. Moynier, F., Borgne, M. L., Lahoud, E., Mahan, B., Mouton-Liger, F., Hugon, J., Paquet, C.
680	Copper and zinc isotopic excursions in the human brain affected by Alzheimer's disease.
681	Alzheimer's. Dement.: Diagn. Assess. Dis., 2020, 12, e12112. doi:10.1002/dad2.12112.
682	

683	43. Moynier, F., Merland, A., Rigoussen, D., Moureau, J., Paquet, M., Mahan, B., Le Borgne, M.
684	Baseline distribution of stable copper isotope compositions of the brain and other organs in mice.
685	Metallomics, 2022, 14. doi:10.1093/mtomcs/mfac017.
686	
687	44. Moynier, F., Fujii, T. Theoretical isotopic fractionation of magnesium between chlorophylls.
688	Sci. Rep., 2017, 7, 6973. doi: 10.1038/s41598-017-07305-6.
689	
690	45. Schauble, EA. Applying stable isotope fractionation theory to new systems. Rev. Mineral.
691	Geochem., 2004, 55, 65-111. doi: 10.2138/gsrmg.55.1.65.
692	
693	46. Balter, V., Nogueira da Costa, A., Bondanese, V. P., Jaouen, K., Lamboux, A., Sangrajrang, S.,
694	Hainaut, P. Natural variations of copper and sulfur stable isotopes in blood of hepatocellular
695	carcinoma patients. Proc. Natl. Acad. Sci, 2015, U.S.A, 112, 982-985. doi:
696	10.1073/pnas.1415151112
697	
698	47. Télouk P, Puisieux A, Fujii T, Balter V, Bondanese VP, Morel AP, Clapisson G, Lamboux A,
699	Albarede F. Copper isotope effect in serum of cancer patients. A pilot study. Metallomics, 2015,
700	299-308. doi: 10.1039/c4mt00269e.
701 702	
703	48. Schilling, K., Larner, F., Saad, A., Roberts, R., Kocher, H. M., Blyuss, O., Crnogorac-Jurcevic,
704	T. Urine metallomics signature as an indicator of pancreatic cancer. Metallomics, 2020, 12, 752-
705	757 doi: 10.1039/d0mt00061b
706	
707	49. Schilling, K., Moore, R. E., Capper, M. S., Rehkämper, M., Goddard, K., Ion, C., Larner, F.
708	Zinc stable isotopes in urine as diagnostic for cancer of secretory organs. Metallomics, 2021,
709	13, mfab020. doi: 10.1093/mtomcs/mfab020

712	50. Costa-Rodriguez, M., Anoushkina, Y., Lauwens, S., Van Vlierberghe, H., Delanghe, J.,
713	Vanhaecke, F. Isotopic analysis of Cu in blood serum by multi-collector ICP-mass spectrometry:
714	A new approach for the diagnosis and prognosis of liver cirrhosis? Metallomics, 2015, 7, 491-
715	498. doi:10.1039/c4mt00319e.
716	
717	51. Costas-Rodríguez, M., Van Campenhout, S., Hastuti, AA., Devisscher, L., Van Vlierberghe, H.,
718	Vanhaecke, F. Body distribution of stable copper isotopes during the progression of cholestatic
719	liver disease induced by common bile duct ligation in mice. Metallomics, 2019, 11, 1093-1103.
720	doi:10.1039/c8mt00362a.
721 722	
723	52. Lamboux, A., Couchonnal-Bedoya, E., Guillaud, O., Laurencin, C., Lion-François, L.,
724	Belmalih, A., Balter, V. The blood copper isotopic composition is a prognostic indicator of the
725	hepatic injury in Wilson disease. Metallomics, 2020, 12, 1781-1790. doi:10.1039/d0mt00167h.
726	
727	53. Lauwens, S., Costas-Rodríguez, M., Van Vlierberghe, H., Vanhaecke, F. Cu isotopic signature
728	in blood serum of liver transplant patients: a follow-up study. Sci. Rep., 2016, 6, 30683. doi:
729	10.1038/srep30683.
730	
731	54. Van Campenhout, S., Hastuti, AA., Lefere, S., Van Vlierberghe, H., Vanhaecke, F., Costas-
732	Rodríguez, M., Devisscher, L. Lighter serum copper isotopic composition in patients with early
733	non-alcoholic fatty liver disease. BMC Research Notes, 2020, 13, 225. doi: 10.1186/s13104-
734	020-05069-3.
735	

736	55. Larner, AJ. MACE for diagnosis of dementia and MCI: examining cut-offs and predictive
737	values. Diagnostics, 2019, 9, 51. doi: 10.3390/diagnostics9020051.
738	
739	56. Solovyev, N., El-Khatib, A. H., Costas-Rodríguez, M., Schwab, K., Griffin, E., Raab, A.,
740	Vanhaecke, F. Cu, Fe, and Zn isotope ratios in murine Alzheimer's disease models suggest
741	specific signatures of amyloidogenesis and tauopathy. J. Biol. Chem., 2021, 296. doi:
742	10.1016/j.jbc.2021.100292.
743	
744	57. Tõugu, V, Tiiman, A, Palumaa, P. Interactions of Zn(ii) and Cu(ii) ions with Alzheimer's
745	amyloid-beta peptide. Metal ion binding, contribution to fibrillization and toxicity. Metallomics,
746	2011, 3, 250 doi:10.1039/c0mt00073f
747 748	
749	58. Zhao, J., Shi, Q., Tian, H., Li, Y., Liu, Y., Xu, Z., Meunier, B. TDMQ20, a specific copper
750	chelator, reduces memory impairments in Alzheimer's disease mouse models. ACS Chem.
751	Neurosci., 2020, 12, 140-149. doi: 10.1021/acschemneuro.0c00621.
752	
753	59. Sarell, CJ., Syme, CD., Rigby, SE., Viles, JH. Copper (II) binding to amyloid-β fibrils of
754	Alzheimer's disease reveals a picomolar affinity: stoichiometry and coordination geometry are
755	independent of $A\beta$ oligomeric form. Biochemistry, 2009, 48, 4388-4402. doi:
756	10.1021/bi900254n.
757	
758	60. Barritt, JD., Viles, JH. Truncated amyloid- β (11–40/42) from Alzheimer disease binds Cu2+
759	with a femtomolar affinity and influences fiber assembly. J. Biol. Chem, 2015, 290, 27791-
760	27802. doi: 10.1074/jbc.M115.684084
761 762	

763	61. Drew, SC. The case for abandoning therapeutic chelation of copper ions in Alzheimer's Disease.						
764	Front. Neurosci., 2017, 11, 317. doi: 10.3389/fnins.2017.00317						
765							
766	62. Mital, M., Wezynfeld, NE., Frączyk, T., Wiloch, MZ., Wawrzyniak, UE., Bonna, A., Drew, SC.						
767	A functional role for $A\beta$ in metal homeostasis? N-truncation and high-affinity copper binding.						
768	Angew. Chem., 2015, 127, 10606-10610. doi: 10.1002/ange.201502644.						
769 770							
771	63. Dai, B., Sargent, CJ., Gui, X., Liu, C., Zhang, F. Fibril self-assembly of amyloid-spider silk						
772	block polypeptides. Biomacromolecules, 2019, 20, 2015-2023. doi:						
773	10.1021/acs.biomac.9b00218.						
774							
775	64. Strozyk, D., Launer, LJ., Adlard, PA., Cherny, RA., Tsatsanis, A., Volitakis, I., Bush, AI. 2009.						
776	Zinc and copper modulate Alzheimer A β levels in human cerebrospinal fluid. Neurobiol.						
777	Aging., 30, 1069-1077. doi:10.1016/j.neurobiolaging.2007.10.012.						
778 779							
780	65. Maréchal, CN., Télouk, P., Albarède, F. Precise analysis of copper and zinc isotopic						
781	compositions by plasma-source mass spectrometry. Chem. Geol., 1999, 156, 251-273. doi:						
782	10.1016/S0009-2541(98)00191-0						
783							
784	66. Sauzéat, Marta Costas-Rodríguez, Emmanuelle Albalat, Nadine Mattielli, Frank						
785	Vanhaecke, Vincent Balter, Inter-comparison of stable iron, copper and zinc isotopic						
786	compositions in six reference materials of biological origin, Talanta, 2021, 221, 121-576. doi:						
787	10.1016/j.talanta.2020.121576.						
788							

789	67. Maynard, CJ., Cappai, R., Volitakis, I., Cherny, RA., White, AR., Beyreuther, K., Li, QX.
790	Overexpression of Alzheimer's disease amyloid- β opposes the age-dependent elevations of brain
791	copper and iron. J. Biol. Chem., 2002, 277, 44670-44676. doi: 10.1074/jbc.M204379200.
792	
793	68. Madaric, A., Ginter, E., Kadrabova, J. Serum copper, zinc and copper/zinc ratio in males:
794	influence of aging. Physiol. Res., 1994, 43, 107-107.
795	
796	69. Deibel, MA., Ehmann, WD., Markesbery, WR. Copper, iron, and zinc imbalances in severely
797	degenerated brain regions in Alzheimer's disease: possible relation to oxidative stress. J. Neurol.
798	Sci., 1996, 143, 137-142. doi: 10.1016/S0022-510X(96)00203-1.
799	
800	70. Miller, LM., Wang, Q., Telivala, TP., Smith, RJ., Lanzirotti, A., Miklossy, J. Synchrotron-based
801	infrared and X-ray imaging shows focalized accumulation of Cu and Zn co-localized with β -
802	amyloid deposits in Alzheimer's disease. J. Sruct. Biol., 2006, 155, 30-37. doi:
803	10.1016/j.jsb.2005.09.004.
804 805	
806	71. Bales, CW., Freeland-Graves, JH., Askey, S., Behmardi, F., Pobocik, RS., Fickel, JJ., Greenlee,
807	P. Zinc, magnesium, copper, and protein concentrations in human saliva: age-and sex-related
808	differences. Am. J. Clin. Nutr., 1990, 51, 462-469. doi: 10.1093/ajcn/51.3.46.
809	
810	72. Palm R, Wahlström G, Hallmans G. Age related changes in weight and the concentrations of
811	zinc and copper in the brain of the adult rat. Lab. Anim., 1990, 24, 240-245.
812	doi:10.1258/002367790780866128
813	
814	73. Albarède, F. Metal stable isotopes in the human body: a tribute of geochemistry to medicine.
815	Elements, 2015, 11, 265-269. doi: 10.2113/gselements.11.4.265

818	74. Jaouen K., Balter V., Herrscher E., Lamboux A., Télouk P., Albarède F. Fe and Cu stable					
819	isotopes in archeological human bones and their relationship to sex. Am. J. Phys. Anthropol.,					
820	2012, 148:334–340. doi: 10.1002/ajpa.22053.					
821						
822	75. Van Den Eeden SK, Tanner CM, Bernstein AL, Fross RD, Leimpeter A, Bloch DA, Nelson LM.					
823	Incidence of Parkinson's disease: variation by age, gender, and race/ethnicity. Am. J. Epidemiol.					
824	2003, 157, 1015-22. doi: 10.1093/aje/kwg068.					
825 826						
827	76. Wooten GF, Currie LJ, Bovbjerg VE, Lee JK, Patrie J. Are men at greater risk for Parkinson's					
828	disease than women? J. Neurol. Neurosurg. Psychiatry., 2004, 637-9. doi:					
829	10.1136/jnnp.2003.020982.					
830						
831	77. Shulman, A., Goldstein, B., Strashun, A. M. Central nervous system neurodegeneration and					
832	tinnitus: a clinical experience. Int Tinnitus J, 2007, 13, 118-31.					
833						
834	78. Hebert LE, Weuve J, Scherr PA, Evans DA. Alzheimer disease in the United States (2010-2050)					
835	estimated using the 2010 census. Neurology, 2013, 80, 1778-83. doi:					
836	10.1212/WNL.0b013e31828726f5.					
837						
838	79. Lapane, KL., Gambassi, G., Landi, F., Sgadari, A., Mor, V., Bernabei, R. Gender differences in					
839	predictors of mortality in nursing home residents with AD. Neurology, 2001, 56, 650-654.					
840	doi:10.1212/WNL.56.5.650.					
841						

842	80. Everett, J., Lermyte, F., Brooks, J., Tjendana-Tjhin, V., Plascencia-Villa, G., Hands-Portman, I,
843	Telling, N. D. Biogenic metallic elements in the human brain? Sci. Adv., 2021, 7, eabf6707.
844	doi: 10.1126/sciadv.abf6707.
845 846	81. Giacoppo, S., Mandolino, G., Galuppo, M., Bramanti, P., Mazzon, E. Cannabinoids: new
847	promising agents in the treatment of neurological diseases. Molecules, 2014, 19, 18781-18816.
848	doi : 10.3390/molecules191118781.
849 850	82. Klevay, LM. Alzheimer's disease as copper deficiency. Med. Hypotheses., 2008, 70, 802-807.
851	doi: 10.1016/j.meny.2007.04.051
852 853	83. Exley, C., House, E., Polwart, A., Esiri, MM. Brain burdens of aluminum, iron, and copper and
854	their relationships with amyloid- β pathology in 60 human brains. J. Alzheimer's Dis., 2012, 31,
855	725-730. doi: 10.3233/JAD-2012-120766.
856	
857	84. Hung YH, Bush AI, La Fontaine S. Links between copper and cholesterol in Alzheimer's
858	disease. Front. Physiol., 2013, 4-111. doi: 10.3389/fphys.2013.00111
859 860	
861 862	85 Abreu IA Cabelli DE Superovide dismutases a review of the metal-associated mechanistic
0.62	53. Abreu IA, Cabelli DE. Superoxide disinutases-a review of the inclai-associated incentinistic
863	variations. Biochim Biophys Acta. 2010, 263-74. doi: 10.1016/j.bbapap.2009.11.005. Epub
864	2009 Nov 13. PMID: 19914406.
865 866	
867	86. Fukai, T., Ushio-Fukai, M. Superoxide dismutases: role in redox signaling, vascular function,
868	and diseases. Antioxid Redox Signal., 2011, 15, 1583-606. doi: 10.1089/ars.2011.3999.
869	

870	87. Crapo, JD., Oury, T., Rabouille, C., Slot, JW., Chang, LY. Copper, zinc superoxide dismutase
871	is primarily a cytosolic protein in human cells. Proc. Natl. Acad. Sci. U S A, 1992, 89, 10405-
872	9. doi: 10.1073/pnas.89.21.10405.
873 874	88. Okado-Matsumoto A., Fridovich I. Subcellular distribution of superoxide dismutases (SOD) in
875	rat liver: Cu,Zn-SOD in mitochondria. J. Biol. Chem., 2001, 276, 38388-93. doi:
876	10.1074/jbc.M105395200.
877 878	
879	89. Warner, HR. Superoxide dismutase, aging, and degenerative disease. Free. Radic. Biol. Med.,
880	1994, 17, 249-258. doi: 10.1016/0891-5849(94)90080-9
881	
882	90. Larner, F., McLean, CA., Halliday, A., Blaine R. Copper Isotope Compositions of Superoxide
883	Dismutase and Metallothionein from Post-Mortem Human Frontal Cortex. Inorganics, 2019, 7,
884	86 doi:10.3390/inorganics7070086
885 886	
887	91. Rybka J, Kupczyk D, Kędziora-Kornatowska K, et al. Glutathione-related antioxidant defense
888	system in elderly patients treated for hypertension. Cardiovasc. Toxicol., 2011, 1-9. doi:
889	10.1007/s12012-010-9096-5.
890	
891	92. Parpura V., Heneka M. T., Montana V., Oliet S. H., Schousboe A., Haydon PG., Glial cells in
892	(patho)physiology. J. Neurochem., 2012, 121, 4–27. doi: 10.1111/j.1471-4159.2012.07664.x
893	
894	93. Schmidt, MM., Dringen, R. Glutathione (GSH) synthesis and metabolism. Neur. Met. in vivo,
895	2012, 1029-1050. doi: 10.1007/978-1-4614-1788-0_36.
896 897	

898	94. Dringen, R., Bishop, GM., Koeppe, M., Dang, TN., Robinson, SR. The pivotal role of astrocytes							
899	in the metabolism of iron in the brain. Neurochem. Res, 2007, 32, 1884-1890. doi:							
900	10.1007/s11064-007-9375-0							
901								
902	95. Tiffany-Castiglioni, E., Hong, S., Qian, Y. Copper handling by astrocytes: insights into							
903	neurodegenerative diseases. Int. J. Dev. Neurosci., 2011, 29, 811-818. doi:							
904	10.1016/j.ijdevneu.2011.09.004							
905 906								
907	96. Dringen, R., Scheiber, IF., Mercer, JF. Copper metabolism of astrocytes. Front. Aging.							
908	Neurosci., 2013, 5, 9. doi: 10.3389/fnagi.2013.00009.							
909	97. Scheiber IF., Mercer JF., Dringen R. 2010. Copper accumulation by cultured astrocytes.							
910	Neurochem. Int, 451-60. doi: 10.1016/j.neuint.2009.12.002.							
911								
912	98. Aschner M., Astrocyte metallothioneins (MTs) and their neuroprotective role. Ann.N.							
913	Y.Acad.Sci. 1997, 825, 334-347. doi: 10.1111/j.1749-6632.1997.tb48445.x							
914								
915	99. Dringen, R., Hamprecht, B. Glutathione restoration as indicator for cellular metabolism of							
916	astroglial cells. Dev. Neurosci, 1998, 20, 401-7. doi: 10.1159/000017337.							
917 918	100. Lee, J., Pena, M. M. O., Nose, Y., Thiele, D. J. Biochemical characterization of the human							
919	copper transporter Ctr1. J. Biol. Chem., 2002, 277, 4380-4387. doi: 10.1074/jbc.M104728200							
920 921								
922	101. Sikora, E., Bielak-Zmijewska, A., Dudkowska, M., Krzystyniak, A., Mosieniak, G.,							
923	Wesierska, M., Wlodarczyk, J. Cellular senescence in brain aging. Front. Aging. Neurosci.,							
024	2021 13 646024 doi: 10 3380/fnagi 2021 646024							
924	2021, 15, 040924. doi: 10.5509/11/agi.2021.040924.							

926	102. Bhat R., Crowe EP., Bitto A., Moh M., Katsetos CD., Garcia FU., Astrocyte Senescence as a
927	Component of Alzheimer's Disease. PLoS ONE 7, 2012, e45069. doi:
928	10.1371/journal.pone.0045069
929 930	
931	103. Han, X., Zhang, T., Liu, H., Mi, Y., Gou, X. Astrocyte senescence and Alzheimer's disease:
932	A review. Front. Aging. Neurosci., 2020, 12, 148. doi:10.3389/fnagi.2020.00148.
933	
934	104. Zhou, Q., Zhang, Y., Lu, L., Zhang, H., Zhao, C., Pu, Y., Yin, L. Copper induces microglia-
935	mediated neuroinflammation through ROS/NF-kB pathway and mitophagy disorder. Food.
936	Chem. Toxicol., 2022, 168, 113-369. doi : 10.1016/j.fct.2022.113369.
937	
938	105. Nayak, D., Roth, TL., McGavern, DB. Microglia development and function. Annu. Rev.
939	Immunol., 2014, 32, 367–402. doi:10.1146/annurev-immunol-032713-120240
940	
941	106. Ashraf, A., Michaelides, C., Walker, TA., Ekonomou, A., Suessmilch, M., Sriskanthanathan,
942	A., So, PW. Regional distributions of iron, copper and zinc and their relationships with glia in a
943	normal aging mouse model. Front. Aging. Neurosci, 2019, 351. doi: 10.3389/fnagi.2019.00351
944 945	107. Morel, JD., Sauzéat, L., Goeminne, L.J.E. et al. The mouse metallomic landscape of aging
946	and metabolism. Nat Commun, 2022, 607. <u>https://doi.org/10.1038/s41467-022-28060-x</u>
947 948	108. World Health Organization, Dementia, Key facts, 2015, https://www.who.int/news-
949	room/fact-sheets/detail/dementia.
950 951	109. Lamboux, A., Couchonnal, E., Guillaud, O., Laurencin, C., Lion-François, L., Belmalih, A.,
952	Mintz, E., Brun, V., Bost, M., Lachaux, A., Balter, V., The blood copper isotopic composition

is a prognostic indicator of the hepatic injury in Wilson disease, Metallomics, 2020, 12. 10.1039/D0MT00167H.

955

959

963

966

954

- 110. Aramendía, M., Rello V., Luis Resano, M., Vanhaecke, F. Isotopic analysis of Cu in serum
 samples for diagnosis of Wilson's disease: A pilot study 2013. J. Anal. At. Spectrom.. 675-681.
 10.1039/C3JA30349G.
- 960 111. Frutiger, K., Lukas, T., J., Gorrie, G.,, et al. Gender difference in levels of Cu/Zn superoxide
 961 dismutase (SOD1) in cerebrospinal fluid of patients with amyotrophic lateral sclerosis.
 962 2008 Amyotrophic Lateral Sclerosis, 184-187. 10.1080/17482960801984358
- 964 112. Mahan, B., et al. Isotope metallomics approaches for medical research. Cell Mol Life Sci, 77,
 965 2020. doi:10.1007/s00018-020-03484-0
- 967 113. An, Y., Li, S., Huang, X., Chen, X., Shan, H., Zhang M. The Role of Copper Homeostasis in
 968 Brain Disease. Int J Mol Sci. 2022, 23. doi:10.3390/ijms232213850
- 969

- 970 114. Huuskonen, MT., Tuo, QZ., Loppi, S, et al. The Copper bis(thiosemicarbazone) Complex
 971 Cu^{II}(atsm) Is Protective Against Cerebral Ischemia Through Modulation of the Inflammatory
 972 Milieu. Neurotherapeutics. 2017, 14. doi:10.1007/s13311-016-0504-9
- 974 115. Soon, CPW., Donnelly, PS., Turner, BJ., et al. Diacetylbis(N(4)-methylthiosemicarbazonato)
 975 copper(II) (CuII(atsm)) protects against peroxynitrite-induced nitrosative damage and prolongs
 976 survival in amyotrophic lateral sclerosis mouse model. J Biol Chem. 2011, 286.
 977 doi:10.1074/jbc.M111.274407
- 978
- 116. Luu TH, Peters D, Lahoud E, Gérard Y, Moynier F. Copper Isotope Compositions Measured
 Using a Sapphire Dual Path MC-ICPMS with a Collision/Reaction Cell. Anal Chem. 2024 Jan
 5. doi: 10.1021/acs.analchem.3c05192. Epub ahead of print. PMID: 38179926.
- 982

983			
984			
985			
986			
987			
988			
989			
990			
991			
992			
993			
994			
995			
996			
997			
998			
999			
1000			
1001			
1002			
1003			
1004			
1005			

1006			
1007			
1008			
1009			
1010			
1011			
1012			
1013			
1014			
1015			
1016			
1017			
1018			
1019			
1020			
1021			
1022			
1023			
1024			
1025			
1026			
1027			
1028			
1029			

1030			
1031			
1032			
1033			
1034			
1035			
1036			
1037			
1038			
1039			
1040			
1041			
1042			
1043			
1044			
1045			
1046			
1047			
1048			
1049			
1050			
1051			
1051			
1052			

1053			
1054			
1055			
1056			
1057			
1058			
1059			