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A B S T R A C T

Applications of causal techniques to neural time series have increased extensively over last decades, including
a wide and diverse family of methods focusing on electroencephalogram (EEG) analysis. Besides connectivity
inferred in defined frequency bands, there is a growing interest in the analysis of cross-frequency interactions,
in particular phase and amplitude coupling and directionality. Some studies show contradicting results
of coupling directionality from high frequency to low frequency signal components, in spite of generally
considered modulation of a high-frequency amplitude by a low-frequency phase. We have compared two
widely used methods to estimate the directionality in cross frequency coupling: conditional mutual information
(CMI) and phase slope index (PSI). The latter, applied to infer cross-frequency phase–amplitude directionality
from animal intracranial recordings, gives opposite results when comparing to CMI. Both metrics were tested
in a numerically simulated example of unidirectionally coupled Rössler systems, which helped to find the
explanation of the contradictory results: PSI correctly estimates the lead/lag relationship which, however, is
not generally equivalent to causality in the sense of directionality of coupling in nonlinear systems, correctly
inferred by using CMI with surrogate data testing.
1. Introduction

The phenomenon of cross-frequency coupling (CFC) in brain elec-
trophysiological signals has recently received much attention in human
and animal studies related to various conditions of health and disease.
Beyond the synchronization phenomena in particular temporal scales,
i.e., within particular frequency bands, the cross-frequency coupling
enriches the cooperative behavior of neuronal networks and apparently
plays an important functional role in neuronal computation, communi-
cation, and learning (Canolty and Knight, 2010). Many computational
methods for detecting CFC, understood as a statistical relationship be-
tween a combination of amplitude, phase, and frequency of two distinct
frequency bands, have been proposed (Jirsa and Müller, 2013; Yakubov
et al., 2022; Yeh et al., 2023) and critically evaluated (Aru et al.,
2015; Yeh et al., 2023). Although CFC could refer to any interaction
or coherence between frequencies (Osipova et al., 2008), the phase–
amplitude coupling (PAC) –in which the phase of slower oscillations is
coupled to the amplitude of neuronal activity in higher frequency bands

∗ Correspondence to: Institute of Computer Science of the Czech Academy of Sciences, Pod Vodárenskou věží 2, 18200 Prague 8, Czech Republic.
E-mail address: mp@cs.cas.cz (M. Paluš).

— has attracted increasing interest (Canolty et al., 2006; De Hemptinne
et al., 2013).

In order to understand coherence or synchronization phenomena,
it is necessary to uncover how the synchronizing oscillatory processes
are coupled, i.e., either mutually or directionally, when one process is
influencing another in a causal relation (Paluš et al., 2001). However,
studies that specifically measure cross-frequency directionality are just
emerging (Besserve et al., 2010; Martínez-Cancino et al., 2020). In
this study we compare two techniques proposed to infer directionality
of CFC/PAC. Conditional mutual information (CMI) (Paluš et al., 2001;
Paluš, 2014) also known as transfer entropy (TE) (Schreiber, 2000)
has been proposed as information-theoretic generalization of Granger
causality for nonlinear systems (Hlaváčková-Schindler et al., 2007).
Nolte et al. (2008) proposed phase slope index (PSI) as a measure
of directionality for oscillatory signals of close frequencies, applica-
ble particularly in electroencephalogram (EEG) analysis. Jiang et al.
(2015) incorporated the PSI into CFC analysis in order to infer PAC
vailable online 16 April 2024
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directionality by applying PSI to the phase of low-frequency oscillations
and the phase extracted from the amplitude of high frequency oscilla-
tions, calling the whole method Cross-Frequency Directionality (CFD).
Furthermore, in this study we use Mutual Information (MI, see Paluš
(2007) and references therein) to find lead–lag relationship between
two oscillatory signals (Chakraborty and van Leeuwen, 2022).

In this technical note we apply and compare these methods using
the same simulated nonlinear signals and EEG recordings from rats
in the case of phase–amplitude coupling and directionality. CFD/PSI
gives opposite results when comparing to CMI. Our explanation of
the observed contradiction is that PSI correctly estimates the lead/lag
relationship which, however, is not generally equivalent to causality in
the sense of directionality of coupling in nonlinear systems, correctly
inferred by using CMI with surrogate data testing. In the following,
we firstly describe briefly both CMI and CFD. Secondly, we present
simulated data and EEG recordings. Lastly, we apply both methods to
the nonlinear simulations and the EEG data and discuss differences in
the results obtained.

2. Methods

2.1. Conditional mutual information

Consider random variables 𝑋, 𝑌 , with probability distribution func-
ions PDF 𝑝(𝑥), 𝑝(𝑦) and the joint PDF 𝑝(𝑥, 𝑦). Mutual information (MI) is

a measure of general statistical dependence between 𝑋 and 𝑌 :

𝐼(𝑋; 𝑌 ) =
∑

𝑥

∑

𝑦
𝑝(𝑥, 𝑦) log

𝑝(𝑥, 𝑦)
𝑝(𝑥)𝑝(𝑦)

. (1)

Using the definition of the Shannon entropy 𝐻(𝑋) = −
∑

𝑥 𝑝(𝑥) log 𝑝(𝑥),
the mutual information can be rewritten as

𝐼(𝑋, 𝑌 ) = 𝐻(𝑋) +𝐻(𝑌 ) −𝐻(𝑋, 𝑌 ). (2)

Based on the conditional entropy, we can define the conditional mutual
information 𝐼(𝑋; 𝑌 |𝑍) of variables 𝑋, 𝑌 given the variable 𝑍 as

𝐼(𝑋; 𝑌 |𝑍) = 𝐻(𝑋|𝑍) +𝐻(𝑌 |𝑍) −𝐻(𝑋, 𝑌 |𝑍). (3)

Then, considering time series {𝑥(𝑡)}, {𝑦(𝑡)} as realizations of stochas-
tic processes {𝑋(𝑡)}, {𝑌 (𝑡)}, or, alternatively (see Paluš and Vejmelka
(2007) for details) as projections of trajectories of multidimensional
dynamical systems 𝑋 and 𝑌 , it is possible to define a measure of
directionality as time-delayed conditional mutual information 𝑇 𝜏,𝜂 :

𝑇 𝜏,𝜂
𝑋←←→𝑌 (𝑋(𝑡); 𝑌 (𝑡 + 𝜏)|𝑌 (𝑡)) = (4)

𝐼(𝑥(𝑡); 𝑦(𝑡 + 𝜏)|𝑦(𝑡), 𝑦(𝑡 − 𝜂),… , 𝑦(𝑡 − (𝑛 − 1)𝜂)),

where 𝜂 is the reconstruction time lag and 𝜏 is the forward time
lag, or prediction horizon in the Granger causality concept (Paluš and
Vejmelka, 2007). See Supplementary material for further details.

2.2. Cross-frequency directionality/phase slope index

Nolte et al. (2008) introduced PSI as a robust method to infer cou-
pling directionality between two signals, 𝑖 and 𝑗, of close frequencies,
considering that a receiver follows the driver by a fixed time lag. PSI
estimates the slope of the phase difference as a function of frequency
in a given frequency band. The sign of the slope reflects the direction
of interaction.

First, the data – the two signals, 𝑖 and 𝑗, are segmented into
𝐾 windows and the complex coherence is computed as 𝐶𝑖𝑗 (𝑓 ) =
𝑆𝑖𝑗 (𝑓 )∕

√

|𝑆𝑖𝑖(𝑓 )||𝑆𝑗𝑗 (𝑓 )|, where 𝑆 is the cross-spectral matrix across
indows and 𝑓 is the frequency. Then, PSI is defined as:

�̃�𝑖𝑗 = ℑ

(

∑

𝐶∗
𝑖𝑗 (𝑓 )𝐶𝑖𝑗 (𝑓 + 𝛥𝑓 )

)

, (5)
2

𝑓∈𝐹 𝑥
where 𝛥𝑓 is the frequency resolution, determined by the window
length, ℑ denotes taking the imaginary part. 𝐹 is the set of frequencies
over which the slope is summed.

For the inference of CFD, Jiang et al. (2015) extended the applica-
tion of PSI computing the coupling between a low-frequency signal (𝑥)

ith the frequency 𝑓 and the amplitude (envelope) of faster oscillations
𝑦) with the frequency 𝜈. We refer to 𝑥𝑘 and 𝑦𝑘 as the temporal signals

for the segment or window 𝑘, and 𝑦𝜈𝑘 is the envelope of 𝑦𝑘 filtered at
frequency 𝜈. In this case, the complex coherence is rewritten as:

𝑪 (𝜈, 𝑓 ) =
∑𝐾

𝑘=1 𝑿
𝑘 (𝐘𝜈𝑘)∗

√

∑𝐾
𝑘=1

|

|

|

𝑿𝑘|
|

|

2
∑𝐾

𝑘=1
|

|

𝐘𝜈𝑘|
|

2
, (6)

here
𝑘 = FFT

(

𝒉𝑇 𝑥𝑘, 𝑛𝐹𝐹𝑇
)

(7)

and

𝒀 𝜈,𝑘 = FFT
(

𝒉T𝑦𝜈,𝑘,𝒏𝐹𝐹𝑇
)

(8)

are the Fourier transforms of 𝑥𝑘 and 𝑦𝜈𝑘 after applying a Hanning
window and 𝒏𝐹𝐹𝑇 defines the frequency resolution.

Then, for the definition of CFD, the PSI can be rewritten as:

𝛹 (𝜈, 𝑓 ) = ℑ

⎛

⎜

⎜

⎜

⎝

𝑓+ 𝛽
2

∑

𝑓− 𝛽
2

𝑪∗ (𝜈, 𝑓 )𝑪 (𝜈, (𝑓 + 𝛥𝑓 ))

⎞

⎟

⎟

⎟

⎠

, (9)

where 𝛽 denotes the bandwidth for which the phase slope is calculated.

2.3. Surrogate data testing procedure

Estimates of dependence/directionality measures from finite num-
ber of samples are always nonzero and therefore it is necessary to
relate the values computed from studied data to ranges obtained from
uncoupled processes sharing statistical properties of analyzed data.
This is the base of the surrogate data tests in which we manipulate
the original data in a randomization procedure preserving original
frequency spectra or variance on all relevant time scales. Here we use
the FFT-based surrogate data (Paluš, 2007; Lancaster et al., 2018) for
PSI in the simulated data example. The circular time-shifted surrogates,
shown effective for causality inference (Manshour et al., 2021), are
used for evaluating CMI significance in the real data application. The
results of the surrogate data tests can be represented as the 𝑍-score,
.g., for CMI, marked as 𝐼 , it is

=
𝐼𝑑 − 𝐼𝑠

𝜎𝑠
, (10)

where 𝐼𝑑 is the CMI value estimated from the studied data, 𝐼𝑠 is the
mean for 100 realizations of the surrogate data and 𝜎2𝑠 is their variance.
Typically, the results are considered statistically significant for 𝑍 > 2.
See, e.g., the results for CMI in Fig. 1. Alternatively, the surrogate
ranges can be illustrated as gray curve and whiskers (e.g., in Fig. 2),
showing the mean ±2𝜎 (standard deviation) of a set of 100 surrogate
data realizations.

2.4. Coupled Rössler systems

The simulated data generated by the unidirectionally coupled non-
linear Rössler systems is used as a benchmark for assessing the coupling
directionality methods (details in Paluš and Vejmelka (2007)).

The autonomous system is defined as:

�̇�1 = −𝜔1𝑥2 − 𝑥3
�̇�2 = 𝜔1𝑥1 + 𝑎𝑥2

( )

(11)

̇ 3 = 𝑏 + 𝑥3 𝑥1 − 𝑐 ,



NeuroImage 292 (2024) 120610A. Arinyo-i-Prats et al.
Fig. 1. Comoludograms of the EEG data. Results for the three main components Sch-IC (A, D, G, J), lm-IC (B, E, H, K) and PP-IC (C, F, I, L). Areas of statistically significant
directionality of cross-frequency phase–amplitude coupling obtained from CMI for the influence of low-frequency phase on high-frequency amplitude (LFP ←→ HFA: A, B, C), and
for HFA ←→ LFP (D, E, F); and CFD for LFP ←→ HFA (G, H, I), and for HFA ←→ LFP (J, K, L); renormalized with the 𝑍-score. Only values of |𝑍| > 2 are shown.
and the response system:

�̇�1 = −𝜔2𝑦2 − 𝑦3 + 𝜀
(

𝑥1 − 𝑦1
)

�̇�2 = 𝜔2𝑦1 + 𝑎𝑦2
( )

(12)
3

�̇�3 = 𝑏 + 𝑦3 𝑦1 − 𝑐 .
The term 𝜀
(

𝑥1 − 𝑦1
)

in Eq. (12) is the diffusive coupling through
which the system 𝑋 influences the system 𝑌 , written as 𝑋 ←←→ 𝑌 .

For 𝑎 = 0.15, 𝑏 = 0.2, 𝑐 = 10.0, and frequencies 𝜔1 = 1.015 and
𝜔2 = 0.985, we call this system 𝑅1. Then we swap the values 𝜔1 and 𝜔2

calling the second system 𝑅2. In both systems 𝑋 is autonomous, driving
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Fig. 2. Comparison of dependence and directionality measures for the coupled Rössler
systems with varying coupling strength. Top row coherence COH, second row CMI for
𝑋 ←→ 𝑌 direction, third row CMI for 𝑌 ←→ 𝑋 direction, fourth row PSI, indicating the
irection 𝑋 ←→ 𝑌 by its positive values and the opposite direction by its negative values;
he last row LAG is the lag maximizing cross-mutual information of the phases of both
ime series. The top panel presents these results for the 𝑅1 system, the bottom panel
or 𝑅2. The gray curve and whiskers illustrate the surrogate means and mean ±2𝜎
standard deviations) for the set of surrogate data realizations.

through the diffusive coupling term 𝜀(𝑥1 − 𝑦1), characterized by the
oupling strength 𝜀. However, for 𝑅1, 𝑋 is faster than 𝑌 , and in 𝑅2 𝑋

is slower. Time series are generated as solutions of the systems (11),
(12) for different values of 𝜀 ∈ [0−0.25] for 𝑅1 and 𝜀 ∈ [0−0.1] for 𝑅2.
See Supplementary material for further details.

2.5. Code availability

FORTRAN codes for CMI estimation are available at http://www.cs.
cas.cz/mp/projects/sw/. Codes for CFD estimation from EEG data are
available at https://github.com/VictorLopezMadrona/Matlab_Neurosci
ence, PSI code from https://doc.ml.tu-berlin.de/causality/. FORTRAN
codes for generating and processing the simulated data are available
upon request from M. Paluš.

2.6. EEG data

Electrophysiological recordings from the hippocampus of one rat
were acquired with a 32 channels silicon probe (Neuronexus Tech-
nologies, Michigan, USA). The sampling frequency was 5 kHz and
the data was filtered between 0.5 Hz and 300 Hz, and at 50 Hz
and 100 Hz to remove the net noise. Then, independent component
analysis (Makarov et al., 2010) was applied on the whole dataset,
4

𝜔

obtaining three main components related to the CA3 Schaffer collateral
(Sch-IC) and the projections from the entorhinal cortex to the CA1
stratum lacunosum-moleculare (lm-IC) and to the dentate gyrus through
the perforant pathway (PP-IC). For details see López-Madrona et al.
(2020). In this work we used the first 65 536 samples of the animal
s10.

2.7. Ethics statement

An adult male Long-Evans rat, with a weight of 250–300 g, was
recorded while the animal freely explored a known 50 × 50 cm open
field. All animal experiments were approved by the Animal Care and
Use Committee of the Instituto de Neurociencias de Alicante, Ali-
cante, Spain, and comply with the Spanish (law 32/2007) and Euro-
pean regulations (EU directive 86/609, EU decree 2001–486, and EU
recommendation 2007/526/EC).

2.8. Data availability

The EEG data are available at DIGITAL.CSIC (Canals-Gamoneda
and Álvarez-Salvado, 2020). The simulated data were obtained by
numerical integration of the coupled Rössler systems using the Bulirsch-
Stoer method (Press et al., 1992) which uses adaptive integration steps,
however, the final sampling time 0.314 was prescribed. Details or data
are available upon request from M. Paluš.

3. Results

3.1. EEG cross-frequency directionality from CMI and CFD

In Fig. 1 we compare the CMI and CFD results, returning consid-
erable differences in the phase–amplitude directionality for the three
EEG signals from the rat hippocampus, Sch-IC, lm-IC and PP-IC, in
the frequency bands from 5 to 15 Hz for the LF phase and from 40 to
250 Hz for the HF amplitude. In the color-scale we show the 𝑍-score
for each measure (CMI in Fig. 1A–F, violet color; CFD in Fig. 1G–
L, green color) for |𝑍| > 2. In the case of the CFD, we separated
ositive values, detecting the coupling from the low frequency phase to
he high frequency amplitude (PAC), from negative values, signifying
he opposite coupling from the high frequency amplitude to the low
requency phase (APC). Note that CFD only decides for one specific
irection of coupling at each pair of frequency bands, as it cannot
imultaneously return both positive and negative values. Thus, unlike
MI which tests the two directions separately, there are no overlaps of
irections detected by CFD.

For the comparison of the methods, we only used a sequence of
5 536 samples from one animal (s10). Still, for this reduced dataset,
he comoludogram produced using CFD shows the APC first described
y López-Madrona et al. (2020).

In the case of CMI (A–F, violet color) we can see that the dominant
irection of coupling is that of phase ←←→ amplitude, i.e., from low
requency to high frequency oscillations, while in the case of CFD (G–L,
reen color) the dominant coupling is directed from high-frequency to
ow-frequency oscillations.

.2. Analysis of coupled Rössler systems

Fig. 2 presents different proxies of coupling and directionality for
oth Rössler systems 𝑅1 and 𝑅2, as functions of coupling strengths 𝜀.

Examples of typical signals 𝑥1 and 𝑦1 obtained by integrating Rössler
ystems 𝑅1 and 𝑅2, and related instantaneous phases 𝜙𝑋 and 𝜙𝑌 are
resented in Fig. 3.

Following Osipova et al. (2008), in the upper panels of Fig. 2
e computed the coherence (COH) between the series 𝑥1 and 𝑦1

n a spectral band including both (close) system frequencies 𝜔1 and

2 (see Fig. S1 in Supplementary material). The coherence increases
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Fig. 3. Rössler systems data and instantaneous phases. From top to bottom: A segment
of time evolution of variables 𝑥1 and 𝑦1 and related phases 𝜙𝑋 and 𝜙𝑌 for the Rössler
systems 𝑅1 for 𝜀 = 0.0625; a segment of time evolution of variables 𝑥1 and 𝑦1 and
elated phases 𝜙𝑋 and 𝜙𝑌 for the Rössler systems 𝑅2 for 𝜀 = 0.045.

ntil the synchronization threshold, (𝜀 ≈ 0.12 for 𝑅1, 𝜀 ≈ 0.055
or 𝑅2), when the systems are fully coherent. The gray line with
hiskers represent means ± two standard deviations of the surrogate
ata distribution, representing the null hypothesis of independence,
.e., uncoupled systems.

In the middle panels of Fig. 2 we show the CMI averaged for a range
f lags (cf Fig. 4A, B) for both directions, first for 𝑋 ←←→ 𝑌 , followed by
he opposite direction 𝑌 ←←→ 𝑋. CMI points to the system forcing 𝑋 ←←→ 𝑌
ntil the level of full coherence, where also the opposite direction
←←→ 𝑋 becomes significant. Recall that, in nonlinear systems, coupling

irection can be inferred when the systems are coupled but not yet fully
ynchronized (Paluš and Vejmelka, 2007).

In the lower-middle panels of Fig. 2 we show the results of the PSI
pplied to the signals of both oscillators. There are many values of 𝜀
under the synchronization threshold) in which the PSI values for the
1 system are significantly negative indicating the directionality 𝑌 ←←→ 𝑋,

.e., opposite to the one simulated (𝑋 ←←→ 𝑌 ). Only for the coherent
ystems (large 𝜀), the significantly positive PSI shows consistently the
orrect directionality 𝑋 ←←→ 𝑌 .

In the case of the coupled 𝑅2 system, the PSI becomes significantly
ositive from 𝜀 ≈ 0.03 till 𝜀 ≈ 0.045. This correct directionality
etection is followed by PSI fluctuations around the transition to the
ynchronized state where, for large 𝜀, the significantly positive PSI
gain shows the correct directionality 𝑋 ←←→ 𝑌 .

Finally, in the bottom graphs (LAG) we show the lag which maxi-
izes the lagged Mutual Information 𝐼

(

𝜙𝑋 (𝑡);𝜙𝑌 (𝑡 + 𝜏)
)

of the phases
f the coupled Rössler oscillators. Thus, a positive lag 𝜏 means that

is delayed and follows 𝑋, or, in other words, 𝑋 is leading 𝑌 . A
egative lag 𝜏 means that 𝑌 is leading 𝑋. Comparing the sign of the
ag maximizing the MI and the significant values of PSI, we can see
n agreement in most cases. Recall that the directionality of coupling
s in the direction 𝑋 ←←→ 𝑌 for both 𝑅1 and 𝑅2 systems. It seems that
he PSI correctly infers the lead/lag relationship which, however, is not
enerally equivalent to the direction of coupling.

.3. Lead/lag relationships versus direction of coupling/causality

In order to better understand the above findings, we present detailed
nalysis of CMI and lagged cross-MI obtained from the instantaneous
hases of the two Rösler systems 𝑅1, for 𝜀1 = 0.0625, and 𝑅2, for
2 = 0.045. A segment of analyzed signals 𝑥1 and 𝑦1 and related
5

nstantaneous phases 𝜙𝑋 and 𝜙𝑌 are illustrated in Fig. 3. It can hardly
Fig. 4. Causality and lead/lag relationship in Rössler systems. CMI [nats] (A, B) and
MI [nats] (C, D) as functions of time lag 𝜏, for the Rössler systems 𝑅1 (A, C) with
𝜔1 = 1.015, 𝜔2 = 0.985, 𝜀1 = 0.0625; and for the Rössler systems 𝑅2 (B, D) with
𝜔1 = 0.985, 𝜔2 = 1.015, 𝜀1 = 0.045. For CMI the red dashed curve shows the direction
𝑋 → 𝑌 , the solid blue curve 𝑌 → 𝑋. For MI solid green curve indicates 𝑌 leading 𝑋,
dashed purple curve indicates 𝑋 leading 𝑌 . Vertical lines indicate lags maximizing MI.

e determined which signal is leading which just by looking at the
aveforms or phases, although these values of 𝜀 were chosen so that
oth CMI and PSI give statistically significant results (Fig. 2).

We also present CMI and lagged cross-MI for EEG data to see the
elations between the phase of 6.5 Hz (8 Hz) oscillations and the
mplitude of 167 Hz (100 Hz) oscillations. These frequency pairs were
hosen to fit into the areas of significant values of either PSI or CMI in
ig. 1.

.3.1. CMI for Rössler systems
In Fig. 4A, B, CMI as a function of time lag 𝜏 is presented for the

wo Rössler systems 𝑅1 (A), and 𝑅2 (B). In order to distinguish the two
oupling directions, the red dashed curve represents CMI for the direc-
ion 𝑋 ←←→ 𝑌 ; and the solid blue line represents the opposite direction 𝑌
𝑋. The red dashed curve is always distinctively positive, while the

lue curve stays near the zero value, thus the true directionality 𝑋 ←←→ 𝑌
as inferred for both cases, 𝑅1 and 𝑅2, in accordance with the coupling

defined in Eqs. (11) and (12).

3.3.2. MI for Rössler systems
We computed the lagged cross-MI of the phases 𝜙𝑋 (𝑡) and 𝜙𝑌 (𝑡) for

both cases of the coupled Rössler oscillators. In Fig. 4C, D, the dashed
purple curve represents 𝐼

(

𝜙𝑋 (𝑡);𝜙𝑌 (𝑡 + 𝜏)
)

for the positive lag 𝜏; the
solid dark green curve represents the negative lag 𝜏 flipped into positive
values or, equivalently, the lag for 𝐼

(

𝜙𝑋 (𝑡+ 𝜏);𝜙𝑌 (𝑡)
)

. The time lag for
which MI is maximized (marked by the vertical lines) represents the
best alignment of the two phase series and thus uncover the lead/lag
relation of the two systems. For 𝑅2 (Fig. 4D) the maximum is found in
𝐼
(

𝜙𝑋 (𝑡);𝜙𝑌 (𝑡+𝜏)
)

for 𝜏 = 18, thus we can see that 𝑌 lags 𝑋, or 𝑋 leads 𝑌
by 18 samples which agrees with the direction of coupling, or causality
relation given by Eqs. (11) and (12). However, for 𝑅1 (Fig. 4C) we can
see that the maximum is find in 𝐼

(

𝜙𝑋 (𝑡 + 𝜏);𝜙𝑌 (𝑡)
)

for 𝜏 = 7, which
is equivalent to 𝐼

(

𝜙𝑋 (𝑡);𝜙𝑌 (𝑡 + 𝜏)
)

for 𝜏 = −7, therefore 𝑋 lags 𝑌 or
𝑌 leads 𝑋 by 7 samples, which contradicts the linear understanding of
causality. We can see that in nonlinear oscillatory systems the lead/lag
relationship is not equivalent to causality or the direction of coupling.
See also Supplementary material for another example of nonlinear
oscillatory systems.
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Fig. 5. Causality and lead/lag relationship in EEG. CMI [nats] (A, B) and MI [nats]
C, D) as functions of time lag 𝜏, for EEG signal in the lm-IC channel frequency pair
.5 Hz–167 Hz (A, C) and EEG signal in the lm-IC channel frequency pair 8 Hz–100 Hz
B, D). For CMI the red dashed curve shows the direction LFP → HFA, the solid blue
urve HFA → LFP. For MI solid green curve indicates HFA leading LFP, dashed purple
urve indicates LFP leading HFA. Vertical lines indicate lags maximizing MI.

.3.3. CMI for EEG
The lm-IC channel has been selected for the example of the CMI

nd MI analysis of EEG signals. For the relation of the 8 Hz phase
nd the 100 Hz amplitude (Fig. 5B) CMI returns high values for the
irectionality LF phase ←←→ HF amplitude (dashed red curve), while for the
irection HF amplitude ←←→ LF phase (solid blue curve) the CMI stays near
he zero value. This result corresponds to the violet spot of significant
oupling directionality in Fig. 1B. On the other hand, in the case of the
.5 Hz phase and 167 Hz amplitude (Fig. 5A) CMI has similarly low
alues in both directions, i.e., no statistically significant causality was
etected by CMI for this frequency pair, while a significant area in PSI
omodulogram can be seen (Fig. 1K).

.3.4. MI for EEG
The lagged cross-MI was again used to establish the lead/lag rela-

ionship, but in the EEG case between the phase of the low frequency
scillations and the amplitude of the high frequency oscillations. In
oth cases the maxima are located in the solid green curve (Fig. 5 C, D)
epicting the mutual information 𝐼

(

𝐻𝐹 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒(𝑡);𝐿𝐹 𝑝ℎ𝑎𝑠𝑒(𝑡 + 𝜏)
)

s the function of the time lag 𝜏. Thus, the HF amplitude is leading LF
hase by 102 and 26 samples for the relation 6.5 Hz phase–167 Hz
mplitude and 8 Hz phase–100 Hz amplitude, respectively.

. Discussion

In the present study we have shown disagreements of two coupling
irectionality measures: cross-frequency directionality (CFD) based on
he phase slope index (PSI) and the conditional mutual information
CMI, also known as transfer entropy). First, in an animal study using
EG from rats (Fig. 1), CFD suggested that in the studied EEG the high-
requency amplitude drove the low-frequency phase. This finding was
ust a reproduction of the results of López-Madrona et al. (2020). On
he contrary, the CMI results in Fig. 1 were dominated by the opposite
ausality or coupling directionality, meaning that the low-frequency
hase drives the high-frequency amplitude. In order to understand this
iscrepancy, we applied CMI and PSI, the essence of CFD, on phases
f unidirectionally coupled Rössler oscillators. The Rössler systems had
lose, but different natural frequencies. We studied both combinations
f coupling: faster-to-slower and slower-to-faster system, and PSI in-
erred the correct direction of coupling and agreed with CMI only
n one of these cases. Later we performed the same analysis with
6

an der Pol oscillators (see Supplementary material) and found that
orrect and incorrect results of PSI were obtained apparently randomly,
rrespectively of natural frequency ratios.

The conditional mutual information, however, in all cases correctly
nferred the coupling direction given by the mathematical model used
o generate the data.

Then we applied the lagged mutual information (MI) on the phases
f both types of coupled Rössler systems. Identifying the lag which max-
mizes the lagged MI we were able to distinguish which system leads
he other one. When PSI was statistically significant, its ‘‘direction’’
greed with the lead/lag relationship given by the lagged MI. Thus we
re able to claim that PSI correctly identifies the lead/lag relationship
hich is supposed to agree with the direction of causal influences in

inear systems. In nonlinear system, however, the lead/lag relationship
s not generally equivalent to the causality/coupling direction. Then
e studied the lagged MI, as well as CMI for selected combinations of

ow-frequency phase and high-frequency amplitude of the rat EEG. We
ould see that for some frequency combinations CMI clearly inferred
he coupling direction LF phase ←←→ HF amplitude, while MI showed
hat the high-frequency amplitude led the low-frequency phase. This
nalysis suggests that the cross-frequency coupling in the studied EEG
s a nonlinear phenomenon for which the lead/lag relation, uncovered
y both PSI and lagged MI, is not equivalent to the causal relation or
oupling direction as it is understood in coupled nonlinear dynamical
ystems. Therefore, for constructions of mathematical models in com-
utational neuroscience, results inferred by CMI are relevant, not the
ead/lag relations, uncovered by CFD/PSI.

The conditional mutual information (transfer entropy) is a promis-
ng directionality measure for analyzing the cross-frequency interac-
ions, as already proposed by Besserve et al. (2010) or Martínez-
ancino et al. (2020) and demonstrated by Gupta and Paluš (2021) who
pplied CMI to data from simulated epileptic seizures and successfully
ncovered all directional interactions between different time-scales
ncluded in the Epileptor model. We believe that CMI can contribute
o better understanding of nonlinear cross-frequency interactions in the
rain dynamics.

ode availability

FORTRAN codes for CMI estimation are available at http://www.cs.
as.cz/mp/projects/sw/. Codes for CFD estimation from EEG data are
vailable at https://github.com/VictorLopezMadrona/Matlab_Neurosci
nce,PSI code from https://doc.ml.tu-berlin.de/causality/. FORTRAN
odes for generating and processing the simulated data are available
pon request from M. Paluš.
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Data availability

The EEG data are available at DIGITAL.CSIC: Canals-Gamoneda,
S., Álvarez-Salvado, E., 2020. Electrophysiology of rat hippocampus
Novelty and TMaze.

https://doi.org/10.20350/digitalCSIC/12537.
The simulated data were obtained by numerical integration of the

coupled Rössler systems using the Bulirsch-Stoer method which uses
adaptive integration steps, however, the final sampling time 0.314 was
prescribed. Details or data are available upon request from M. Paluš.
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Appendix A. Supplementary information about causality and di-
rectionality of coupling, used methods and simulated data.
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