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Image = Cartoon+Texture
How Yves Meyer’s “Oscillating patterns in image processing and in some nonlinear

evolution equations” ended up in a computer vision model

Antonin Chambolle∗and Jean-Michel Morel†

March 12, 2024

Summary While analyzing variational restoration methods in imaging with the
eye of an harmonic analyst, Yves Meyer proposed a seminal reformulation of
image decomposition methods, which aim at separating the “cartoon” and “tex-
ture” parts of an image. In this note, we describe Meyer’s analysis of the image
denoising problem. This analysis occupied an important part of his book “Oscil-
lating patterns in image processing and in some nonlinear evolution equations”.
Starting from the famous Rudin, Osher and Fatemi (ROF) Total Variation-
based model for natural image denoising, Meyer tries to bracket the space BV ,
of functions with bounded variation, and its dual between spaces that can be
characterized by the decay of their wavelet coefficients. In that way, he first
attempts to build a bridge between the Donoho and Johnstone wavelet shrinkage
model for image denoising and the ROF model. This discussion leads him to
explore the consistency of the ROF model on examples. He proves that the ROF
model sometimes finds the right decomposition, namely BV + an oscillatory
component, and sometimes not. This leads him to pay attention to the dual of
BV and eventually to the discovery that small norms in this space character-
ize oscillatory signals very well. This exploration yields a reinterpretation and
extension of the ROF model, with the proposal of decomposing a distribution
f = u + v into two components, the first one u in BV and another one in
a dual space where oscillating components have a small norm, in the spirit of
interpolation theory. We illustrate the resulting cartoon+texture model and its
developments with striking experiments which show its impact on medicine and
society.

Keywords Digital images, total variation, Rudin-Osher-Fatemi model, wavelet
shrinkage, Besov spaces, oscillating patterns, image decomposition, cartoon,
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1 HISTORICAL BACKGROUND
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Figure 1: An “image =cartoon + texture” algorithm aims at decomposing any
image into two parts, its geometric part or texture, and its noise or textured
part. This experiment illustrates the decomposition in an ideal case. The left
image is a scan of a real cartoon drawing. The middle image is its “BV ” part,
and the image on the right its texture. Many surprising applications of this
model will be illustrated in section 4.

AMS classification numbers 26A45, 30H25, 49Q20, 68U10, 65D18,
65T60.

1 Historical background
The starting motivation of Yves Meyer, in his celebrated book [36], was to
study a well known, at that time relatively recent model for image denoising
and restoration, based on the Total Variation (TV). In the continuous setting,
one assumes that the image is represented by a scalar valued grey-level u(x) ∈
L∞(Ω) (usually, Ω is a square or a rectangle, a bounded Lipschitz domain of
R2, or a periodicity cell, yet in most of [36] it is the whole plane R2), and the
total variation is simply defined as∫

Ω

|Du| = sup

{∫
Ω

u(x)div g(x)dx : g ∈ C∞c (Ω;R2), ‖g(x)‖ ≤ 1 ∀x ∈ Ω

}
, (1)

and is the total mass (or variation) of the distributional derivative Du, which
has to be a measure in order for this quantity to be finite.

Throughout this paper we handle the case where the values of u(x) are scalar
and represent the grey level at x. Yet, a straightforward extension of our dis-
cussion and algorithms applies to color images. Color images are vector images
u(x) = (R(x), G(x), B(x)) with three scalar values standing for the amount of
red, green, blue at each pixel. A possible definition of the total variation of a
color image is to take the sum of the total variations of its color components.
Nevertheless, in in all numerical experiments, the sum is replaced by the Frobe-
nius norm of Du.

The space of functions in L1(Ω) with bounded variation is usually denoted
BV (Ω). However in most of [36], Ω is R2 and BV functions are not required to
be summable. Sobolev’s embedding only implies L2 summability.
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1 HISTORICAL BACKGROUND

The TV-based image restoration or denoising model, proposed in 1992 by
Rudin, Osher and Fatemi in [40], consists in recovering u for a noisy image g by
minimizing the energy

min
u

∫
Ω

|Du|+ λ

2

∫
Ω

(u(x)− g(x))2dx. (2)

More general inverse reconstruction problems were also considered. The ground-
breaking model (2), known as “ROF” or “TV −L2”, is one of the first nonlinear
edge-preserving image restoration models (and arguably the simplest one).

Meyer’s point of view was to reformulate (2) as a “decomposition” problem
inspired by the classical definitions of interpolation spaces, as follows (cf [36,
Def. 7]):

inf
(u,v)∈BV×L2|f=u+v

(∫
|Du|+ λ|v|2

)
. (3)

In this beautiful interpretation, the model is seen to decompose any given image
f into the sum of two components: the underlying BV image u, and an oscil-
lating component v which would be the noise and texture. It is nonlinear, but
remains a convex minimization problem with a unique solution. Yet finding an
algorithm computing efficiently and precisely this unique minimum has proved
challenging. Standard proximal splitting methods, relying on a dual [13, 7] or
saddle-point [16, 9] formulation, are the basis of the most efficient methods by
now, even if purely discrete formulations based on max-flow/min-cut duality
yield (fast and) exact solutions [31, 14] for graph-based variants of the problem.

The ROF model is the first image analysis model where the “prior” on an
image is described in terms of an `1 norm (here in practice of the discrete
gradients), enforcing sparsity of the discontinuities: this general philosophy has
become in the 2000’s the core of modern approaches to image and signal analysis
(and more general data science), where the notion of sparsity is now overwhelm-
ing. Due to its simplicity, the total variation has also become one of the most
convenient “regularizers” for large scale inverse problems in imaging, such as
satellite imaging or 2D and 3D medical image reconstruction.

In the book [36], Yves Meyer developed a systematic analysis of the solutions
of (3) and their properties, introducing appropriate functional spaces of oscil-
lating functions in particular to represent the “v” component. In an attempt
to unify this approach and the statisticians’ point of view, at that time based
on wavelets and wavelet shrinkage [23, 24, 15], he tried to compare precisely
such oscillating functions with functions in appropriate Besov spaces, defined
by the decay of their wavelet coefficients. Of course, there is much more than
this in [36], such as a survey on wavelet bases, on Littlewood-Paley and wavelet
analysis, or improved Gagliardo-Nirenberg inequalities involving Besov semi-
norms, as well as applications of harmonic analysis to non-linear PDEs with
in particular a few striking results on the Navier-Stokes equation [10, 12, 33].
Also, the last part of the book develops a theory of “chirps”, or highly oscil-
lating signals, with tools very similar to the one developed for the modeling of
oscillations in images.

3



2 YVES MEYER’S ANALYSIS OF THE “ROF” MODEL

In this note, we focus on Meyer’s analysis of problem (3), and the connection
to wavelet shrinkage. We now describe, first, his analysis.

2 Yves Meyer’s analysis of the “ROF” model

2.1 The core of the problem: incompatibility of wavelet
shrinkage with BV

“Wavelet shrinkage” Meyer writes, “is more than a new denoising algorithm. It
provides a new way of understanding wavelet analysis. Indeed wavelet shrinkage
is deeply related to “nonlinear approximation”. In both cases wavelet coefficients
are sorted out. In the first situation (denoising algorithms), the first N terms
of the wavelet expansion provide us with the denoised signal or image and, in
the second case, we obtain the optimal nonlinear approximation.”

The wavelet shrinkage was introduced and studied by several groups in the
early 90’s, both from the point of view of estimation in statistics [25, 26, 23,
24] and interpolation theory [22]. Yves Meyer summarizes the main statistical
properties of the approach into the following recipe, attributed to Donoho and
collaborators:

Theorem 1 (Theorem 7 of [36]) If we are given an N ×N image u(x) which
is being corrupted by a white noise with level σ, then a wavelet shrinkage with
threshold

τ = cσ

√
logN

N
(16.8)

yields an estimator û∗N enjoying the following properties

(a) With high probability, û∗N is as smooth as u is, with smoothness measured
in a wide class of function spaces

(b) This estimator û∗N is nearly minimax.

The above theorem is not exactly a theorem: it requires clarification for “in
a wide class of function spaces” and a precision for “nearly minimax”. The only
clear point is given in Lemma 18 of [36], which says that the wavelet coeffi-
cients of the additive noise do not exceed c′σ

√
logN
N . (Again for c′ large enough,

and “with high probability”). But in this paper Meyer meets and addresses a
core difficulty: the only functional space that has received general approval for
modeling images is BV . Indeed, BV contains “shapes”, namely characteristic
functions of sets with finite perimeter. Such functions are obviously reasonable
models for the silhouettes of objects photographed in a scene. Hence, even if
by Lemma 18 a high enough wavelet threshold “kills the noise”, the question is:
what damage is it causing to a BV function? Meyer does not give a unique
answer to this dilemma. We might summarize his exploration as an attempt to
marry the ROF model with wavelet thresholding. But the match is not perfect.
On the one hand, wavelet thresholding is uncompromising: it can just be “hard”
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2.2 2 YVES MEYER’S ANALYSIS OF THE “ROF” MODEL

or “soft”, that’s its only concession. Thus the focus will rather be on the ROF
side: Hence Meyer considers adapting the ROF model by

• changing the space BV into another space of the “wide class” of wavelet
compatible spaces;

• changing the space L2 into a space with finer characterizations for the
wavelet thresholding.

Yet, since nothing of that will prove quite convincing, Meyer returns to the ROF
model, examines the pros and cons of this model when applied to a sum of a
BV function perturbed with an oscillatory signal. And this analysis leads to
the emergence of the space G, a pseudo dual of BV and the one space prone to
texture modeling.

2.2 Functional alternatives: the dual spaces Ḃ1,1
1 and Ḃ−1,∞∞

As we said, a first attempt to marry wavelet shrinkage and the ROF model
is to develop “good” alternatives for BV and L2. These alternative functional
spaces should be characterized by the decay of wavelet coefficients and therefore
prone to wavelet thresholding. Meyer first notices that the Banach space BV is
contained in Ln/n−1(Rn) and that this embedding is sharp. Then he examines a
first candidate to replace the BV bridgegroom for a better match with wavelet
thresholding. In the next definition, cj,k, (j, k) ∈ Z×Zn, are wavelet (frequency
and space) coefficients in a basis consisting of smooth and compactly supported
wavelets, see [36] for details.

Definition 1 (Definition 4 of [36]) The Banach space Ḃ1,1
1 is the subspace of

L
n

n−1 (Rn) defined by ∑
j∈Z

∑
k∈Zn

|cj,k|2j(1−n/2) <∞ (12.3)

The dual space of Ḃ1,1
1 is the Banach space Ḃ−1,∞

∞ . If n = 2, the latter space is
characterized by the fact that the wavelet coefficients of a generalized function
in Ḃ−1,∞

∞ belong to l∞(Z× Z2).

The attempt goes back to DeVore and Lucier [22]. These authors proposed
to replace the Banach space BV by the homogeneous Besov space B = Ḃ1,1

1

of Definition 1 in the ROF model. The above definition gives the norm of
a function f in B = Ḃ1,1

1 as the l1 norm of its wavelet coefficients. In this
proposal, the second term of the ROF model is still the L2-norm of v. Hence
the ROF functional becomes J̃(u) = ‖u‖B + λ‖v‖22. Its minimization can be
easily solved by a wavelet transform and a shrinkage of the coefficients, with the
threshold 1

2λ . A consequence is that if (uλ, vλ) mimimizes the DeVore-Lucier
functional, then the norm of vλ in the Besov space Ḃ−1,∞

∞ does not exceed
1

2λ . Meyer notices that an equivalent statement holds true for the Osher-Rudin
model (Theorem 2 below), where the same threshold is met.
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2.3 2 YVES MEYER’S ANALYSIS OF THE “ROF” MODEL

Meyer nevertheless resists this first temptation: “The DeVore-Lucier model
suffers from an obvious drawback. Indeed indicator functions of smooth domains
do not belong to Ḃ1,1

1 and edges have disappeared from images.” Hence, Meyer
considers another variant: keeping u in BV but using the Besov norm Ḃ−1,∞

∞
for analyzing the v component in the f = u+ v decomposition leads to the new
splitting algorithm by variational method,

ω̃λ(f) = inf{J0(u) = ‖u‖BV + λ‖v‖∗; f = u+ v} (14.38)

where ‖.‖∗ now denotes the norm in the Besov space Ḃ−1,∞
∞ .

The good point is that the Besov space Ḃ−1,∞
∞ admits a trivial characterization

by the wavelet coefficient decay :

Lemma 1 (Lemma 11 of [36]) Let 2jψ(2jx− k), j ∈ Z, k ∈ Z2, ψ ∈ F, be an
orthonormal wavelet basis of L2(R2) where F is a finite set consisting of three
analyzing wavelets belonging to C2 and compactly supported. Then a generalized
function f belongs to the homogeneous Besov space Ḃ−1,∞

∞ if and only if its
wavelet coefficients belong to l∞(Z3 × F ).

Meyer writes: “this lemma is extremely attractive since it nicely relates the
functional norm in Ḃ−1,∞

∞ to an algorithm named wavelet shrinkage and which
consists in putting to zero all wavelet coefficients which are less than a given
threshold.”

2.3 After all, can’t we apply wavelet thresholding to BV ?
Left in doubt about the above attempts to smuggle in wavelet compatible spaces
into image analysis, Meyer cyclically returns to the desire of “applying Theorem
1” to the space BV . The problem is that

Corollary 1 (Corollary 2 of [36]) The space BV cannot be characterized by
size properties on wavelet coefficients.

Nevermind! For Meyer, “The fact that BV can be accepted comes from the
decision to neglect logarithmic factors like logN in the minimax risk. If this
decision is accepted, we can cheat and claim that the characterization of BV
will be the same as the one of two simpler Besov spaces. Indeed we have

Ḃ1,1
1 ⊂ BV ⊂ Ḃ1,1

∞ . (16.9)

Then Donoho observed that the estimates of the minimax risks he could prove
for these two Besov spaces differ only by logarithmic factors. That is why BV
can be treated by the wavelet shrinkage algorithm.”

Is that correct? In fact, the only results so far comparing the solution of (2)
to wavelet thresholding algorithms are results of Cohen, Petrushev, Xu [18].
These authors, in particular, establish that in the Haar basis, given a L2 function
f (in the unit cube), the function u obtained by a hard thresholding of the
smaller wavelet coefficients has an energy (2) which compares to the minimal
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2.4 2 YVES MEYER’S ANALYSIS OF THE “ROF” MODEL

value (up to some explicit, yet large multiplicative constant), see [18, Thm. 9.3].
In any other case, wavelet shrinkage or thresholding actually mimicks solving (2)
without being really equivalent, and it is even not known whether the solution
will be of bounded variation (see [18, §3] for such results in the 2D Haar basis).
Since BV is not a good space for wavelet analysis, Meyer will then turn to
examine its dual space, or rather an Ersatz G of its dual space, in the hope that
it will be more amenable.

2.4 The emergence of the space G, “dual of BV”
Among the many functional thorns of BV , Meyer notices that BV is not sep-
arable (i.e., does not contain a numerable dense subspace). Hence, the dual
space of BV is not a function space. “However, there exists a closed subspace
of BV which has a simple dual.” Meyer considers the closed subspace1 BV of
BV consisting of all f(x) such that ∂jf ∈ L1(Rn), j = 1, ..., n. Then the dual
space of BV is the Banach space G of Definition 2.

Definition 2 (Definition 10 of [36]) Let G denote the Banach space consisting
of all generalized functions f(x) which can be written as

f(x) = ∂1g1(x) + ∂2g2(x), g1, g2 ∈ L∞(R2) (4)

The norm ‖f‖∗ of f in G is defined as the lower bound of all L∞ norms of
the functions |g| where g = (g1, g2), |g(x)| = (|g1|2 + |g2|2)1/2(x) and where the
infimum is computed over all decompositions (4) of f.

Since L∞(R2) is a dual space, it is easily seen that there exists an optimal
decomposition (4) which provides the norm. A second definition of this norm
‖f‖∗ is given by the following obvious lemma:

Lemma 2 (Lemma 2 of [36]) Let BV be defined as being the closure in BV of
the Schwartz class. Then the Banach space G is the dual space BV∗ of BV.

For Meyer, “the Banach space G will play a key role in modeling the structured
component of an image”. It will in fact measure how oscillatory the non BV
component is. Here Meyer goes away from the initial ROF model, which was
designed as a means to retrieve the noise free BV component of an image.
The focus will be to model texture as the necessary complement of the BV
component.

This leads Meyer to return to the idea of dethroning BV by bracketing it by
more amenable spaces: “Finally we consider the already mentioned Besov space
E = Ḃ−1,∞

∞ . We then have G ⊂ E and these embeddings are easily obtained
if one observes that these [...] spaces G and E are the dual spaces of BV, and
Ḃ1,1

1 . This latter sequence is decreasing and the dual one is increasing.” [36,
1In most of [36], the domain of the functions is R2, as is standard in the wavelet commu-

nity, and Meyer calls BV the space of L2 (Ln/(n−1) in higher dimension n) functions with
finite total variation, rather than the usual definition which would require f to be in L1(R2).
Similarly, in his notation, BV differs from W 1,1(R2) as functions in that space are merely L2.
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2.5 2 YVES MEYER’S ANALYSIS OF THE “ROF” MODEL

p. 54] “We are happy to learn” Meyer says, “that BV∗ is nearly characterized by
size estimates on wavelet coefficients:”

Proposition 1 (Proposition 3 of [36]) If one is using an orthonormal wavelet
basis (Theorem 10 of of L2(R2)), then the wavelet coefficients cj,k of any f
in BV∗ are uniformly bounded. Conversely if cj,k, (j, k) ∈ Z × Z2, are the
wavelet coefficients of f and if the non-increasing rearrangement c∗n of |cj,k|
satisfy

∑
n≥1 c

∗
n/n <∞, then f ∈ BV

∗.

At the end of the day, Meyer doesn’t like cheating, and he will return to examine
again his thorny contender, BV rather than replacing it by another space. In
the next section we summarize his formalization of the solutions of the ROF
problem. This formalization leads him to discover that the pseudo dual of BV
comes up naturally as a new functional model for what he will define as “texture”.

2.5 Analysis of the consistency of the ROF model
Meyer returns to his formulation of the ROF model (3) with some more precise
notation.

Definition 3 (Definition 7 of [36]) For a positive parameter λ and a given
function f(x) in L2(R2), the Osher-Rudin model selects the decomposition f =
uλ + vλ which is the solution of the following variational problem

inf{J(u); f = u+ v} (13.1)

where
J(u) = ‖u‖BV + λ‖v‖22 (13.2)

This infimum which is denoted by ωλ(f) is computed over all possible decom-
positions of f into a sum f = u + v between a function u in BV (R2) and a
function v in L2(R2).

A first meaningful observation is that the norm of the “dual of BV ” appears nat-
urally when attempting to characterize the noise part of the ROF decomposition.
Indeed,

Lemma 3 (Lemma 3 of [36]) If g ∈ L2(R2), then∣∣∣∣∫ f(x)g(x) dx

∣∣∣∣ ≤ ‖f‖BV ‖g‖∗ (14.3)

Meyer then investigates the mathematical properties of the optimal pair (u, v)
in the Osher-Rudin model.

Theorem 2 (Theorem 3 and Lemma 4 of [36]) Let f, u and v be three functions
in L2(R2) and let ‖ · ‖∗ be defined by Definition 2.
If ‖f‖∗ > 1/(2λ), then the Osher-Rudin decomposition f = u+v is characterized
by the following two conditions

‖v‖∗ =
1

2λ
and

∫
u(x)v(x) dx =

1

2λ
‖u‖BV (14.6)
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2.5 2 YVES MEYER’S ANALYSIS OF THE “ROF” MODEL

If ‖f‖∗ ≤ 1/(2λ), then u = 0, v = f .

“Roughly speaking” says Meyer, “this result says that an oscillating image f(x)
will be treated as a texture by the Osher-Rudin algorithm and that the correct
norm for detecting textures is the G-norm”.

Relapsing into his pet subject, Meyer writes that “Theorem 2 paves the
road for Donoho’s ‘wavelet shrinkage’. This algorithm consists in (a) writing
the wavelet series

∑
cλψλ(x) of f , (b) putting to 0 all the wavelet coefficients

|cλ| which do not exceed 1/(2λ), (c) retaining the other terms in the wavelet
expansion of f but shrinking cλ to cλ − η/(2λ) where η = ± is the sign of cλ.
Roughly speaking, this algorithm yields the u component in the Osher-Rudin
model. Indeed Proposition 1 tells us that ‖v‖∗ is almost the l∞ norm of the
wavelet coefficients of v and Theorem 2 says that ‖v‖∗ = 1/(2λ).”

But, finally leaving behind the “almosts” and the “roughly speakings”, Meyer
returns to the solution of the ROF model to observe that we always have
|
∫
g(x)h(x) dx| ≤ ‖g‖BV ‖h‖∗ by Lemma 3 while (14.6) implies

∫
u(x)v(x) dx =

‖u‖BV ‖v‖∗. This means that u is an element of BV where the linear form
g 7→

∫
g(x)v(x) dx attains its upper bound. This coupling between u and v

leads to the notion of extremal pair.

Definition 4 (Definition 11 of [36]) Let us assume that u and v are real valued
functions in L2(R2) and u ∈ BV . We say that (u, v) is an extremal pair if∫

u(x)v(x) dx = ‖u‖BV ‖v‖∗ (14.7)

If u and v are two functions in L2(R2) and if (u, v) is an extremal pair, then
the Osher-Rudin algorithm applied to f = u+v with λ defined by ‖v‖∗ = 1/(2λ)
yields back this pair, as Theorem 2 shows.

Then Meyer proves a remarkable list of consistency and inconsistency results
for the ROF model, given that this model should ideally give back the BV part
of a function. For example

Lemma 4 (Lemma 8 of [36]) If Ω is any smooth domain, then there exists an
extremal pair (u, v) such that u = χΩ.

Proposition 2 (Proposition 8 of [36]) Let us apply the Osher-Rudin algorithm
to a textured image modelized by fN (x) = m(Nx)f0(x) where f0(x) is a simple
geometrical form and m(x) is a periodic pattern. Let us assume that N tends
to infinity. Then, up to an error term whose L2-norm is O(N−1/2), the Osher-
Rudin algorithm yields the same geometrical component u0 as if the texture were
averaged (fN is replaced by µf0 where µ is the mean value of m(x)).

These positive results contrast with the two negative statements proved next:

Lemma 5 (Lemma 9 of [36]) The product ωχΩ between a smooth function ω ∈
C∞(R2) and the indicator function of a smooth domain Ω is not, in general, the
u component of an extremal pair.

9



3 THE LEGACY

Proposition 3 (Proposition 6 of [36]) If Ω is the unit square, then the indi-
cator function χΩ of Ω cannot be the u component arising in the Osher-Rudin
algorithm.

Last but not least, Meyer’s analysis leads him to return to the virtues of soft
thresholding:

Lemma 6 (Lemma 10 of [36]) If f belongs to L2(R2) and if (u, v) is the min-
imizer of the Osher-Rudin functional (13.1), then all wavelet coefficients of v
are less than γ/λ where γ is an absolute constant. Conversely if a soft thresh-
olding is applied to f with threshold C/λ, then the resulting function f̂ is a good
substitute for being the optimal u. Indeed f = f̂ + R where λ‖R‖22 ≤ Cωλ(f).
Here also C is some absolute constant.

This “ ‘good substitute” is nevertheless discussable. If in the preceding lemma
the constant C were equal to 1 and if ωλ(f) were also bounding the BV norm
of f̂ , then we would get an optimal pair and the bridge would be complete, but
such a strong result is obviously not true. A conjecture was that f̂ obtained
from f by soft thresholding belongs to BV . Yet, even this is unlikely to be
true in general. It was and still is only proven for the hard thresholding of
Haar wavelets coefficients, as mentioned earlier. Precisely, [18, Theorem 9.3] by
Petrushev, Cohen, Xu, DeVore actually guarantees that the BV norm of f̂ is
bounded after (hard) thresholding.

3 The legacy

3.1 The Cartoon + Texture model
In image analysis, the most influential part of Yves Meyer’s book, beyond the
general idea of measuring oscillatory signals by appropriate (dual) norms, is a
variant of (3). The new idea of Meyer is found in [36, eq. (14:38)] (see p. 72),
where he proposes to replace (3) with a “new splitting algorithm [...] provided
by a variational problems which reads

ω̃λ(f) = inf {J0(u) = ‖u‖BV + λ‖v‖∗ : f = u+ v}

where ‖ · ‖∗ now denotes the norm in the Besov space Ḃ−1,∞
∞ .” What is very

interesting, here, is the idea to directly look for a decomposition of the image
into a regular/cartoon part and an oscillatory part, without relying on convex
duality results such as Theorem 2.

While the actual use of the latter space would yield a solution u obtained by
a complex algorithm involving wavelet shrinkage, and in particular not invariant
by translation (see [5, Sec. 5] for a sub-optimal approach), the first authors who
developed this idea for applications are L. Vese and S. Osher [43] who replaced
(as suggested by Meyer), the Ḃ−1,∞

∞ norm with the so-called G-norm, leading

10



3.1 The Cartoon + Texture model 3 THE LEGACY

to the variational formulation

inf
(u,v)∈BV×G,

f=u+v

(∫
|Du|+ λ|v|G

)
. (5)

This approach took advantage of Meyer’s next result, which he summarized in
the saying, “oscillating patterns have small norms in G ”:

Lemma 7 (Lemma 14 of [36]) Let fn, n ≥ 1 be a sequence of functions in
L2(D) with the following three properties

(a) there exists a compact set K such that the supports of fn, n ≥ 1 are
contained in K

(b) there exists an exponent q > 2 and a constant C such that ‖fn‖q ≤ C

(c) the sequence fn tends to 0 in the distributional sense.

Then ‖fn‖G tends to 0 as n tends to infinity.

In the Vese and Osher [43] work, the G-norm was approximated by dual
norms of W 1,p spaces with various choices of p (ideally, one would let p →
1), and a third intermediate L2 penalization was introduced for computational
purposes. More modern techniques would simply rely on standard Douglas-
Rachford [35] or primal-dual splitting [16], for instance, the results in Fig. 2 have
been obtained by such approaches which are relatively efficient. In another paper
with A. Solé [38], the same authors developed an alternate model to extract
textures, based on the squared H−1 seminorm, which is computationally easier
to implement. Further numerical experiments based on this model were also
presented in [44].

= +

Figure 2: The left image is decomposed into a BV (middle) and “G” (right)
components. The decomposition extracts perfectly, in this example, the pattern
from the background.
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= +

Figure 3: Another example: extraction of oscillating patterns in a mammogra-
phy.

This general approach and its interpretation by Osher, Solé and Vese inspired
many authors in the subsequent years. In [4], the authors proposed a variant of
the problem studied in [43, 44], based on a decomposition problem of the form

min
u,v

{∫
|Du|+ 1

2λ
‖f − u− v‖2L2 : |v|G ≤ µ

}
replacing the penalization in the G-norm with a constraint. The main reason
to do so was that it becomes very easy to develop an alternating minimization
algorithm with respect to u and v to tackle this problem: each minimization
amounts to solving one problem of the form (3), as is obvious with respect to the
u variable and follows from easy convex duality arguments for the v variable.
The paper [2] developed further on this idea. In [5] was presented a systematic
study of some dual Sobolev norms for measuring oscillatory components. Also,
the authors proposed a 3-components decomposition approach based on the G-
seminorm and a dual Besov norm for scale separation, all models coming with
algorithms and numerical experiments. Interestingly, the latter model was then
successfully exploited in [20] to denoise ancient documents and separate the text
and texture from the noise.

Further ahead, Theorem 2 found another application, as it was understood
that by varying the parameter λ, one could easily define a nonlinear “scale-
space” analysis extracting oscillatory components at various scales (see Fig. 4
for an example). This idea of a “spectral” Total Variation analysis was proposed
in [28, 11, 41]. Thanks to this approach, one can modify in an image only
the details at a particular scale without affecting the other components, see
Fig. 5 for an example. This idea has had a lot of influence recently in the
imaging community and is developed in for instance, for various applications,
in [8, 3, 32].

3.2 The TV+L1 model
The solution of (5) requires relatively costly numerical computations, and in
the early 2000s it was not well understood how it should be tackled. A solution
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Figure 4: Nonlinear TV −G decomposition: top left, the original image, bottom
left, the lower frequency component. The other pictures are the G components
at different scales of increasing frequencies.

Figure 5: Swap of two presidential “high frequency” components. (Images cour-
tesy of M. Benning, see [8] for further examples.)

to this dilemma between mathematical consistency and an efficient numerical
implementation stems from the works of Mila Nikolova. Just one year after
Meyer, Nikolova introduced a discrete version of what would be later called the
“TV −L1” model [37, 17]. Jean-François Aujol analysed the continuous TV −L1

model and proved formal properties that implied a correct cartoon + texture
separation, like for the TV −G model [6]. The model reads

inf
(u,v)∈BV×L1|f=u+v

(∫
|Du|+ λ|v|

)
, (6)

where the only difference with the ROF TV − L2 model is the replacement of
the exponent 2 by the exponent 1.

This minimization process was not obvious either at that time. Fortunately,
the progress in nonsmooth optimization (as well as the dissemination of old
powerful ideas, such as operator splitting, proximal methods [19, 39] or Aug-
mented Lagrangian type algorithms [9, 30]), led to a few powerful and simple
methods to solve efficiently large classes of singular convex optimization prob-
lems such as the TV − L2 and TV − L1 models, see [7, 16]. Graph-cuts can
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also be useful [21, 29]. Specific techniques were also introduced for the TV −L1

model, based on its “morphological” character, see [27].

4 Impact of decompositions model
We have an ideal observatory to realize the impact on society of the car-
toon+texture model. While it is generally difficult to demonstrate such an
impact, this has become quite simple in image processing thanks to the online
publication of algorithms. In 2014 Vincent Le Guen published his implementa-
tion based on [16] of the TV − L1 model [34], in the Image Processing on Line
(IPOL) journal www.ipol.im. This online publication has the main interest that
users from all sectors of science and society can upload their own images to the
executable paper’s demo website and get an immediate numerical simulation
of the result. Furthermore, each IPOL paper has its archive where all online
experiments are recorded if the users allow it. This enables us to illustrate four
real applications of the TV −L1 model that are simply selected from the article’s
online archive where they can still be found.

Our brain’s hability to separate a drawing from its underlying filigrane is
illustrated in the next figure. This application is crucial for the analysis and
control of fiducial images such as banknotes and identity documents. The ability
of this model is well illustrated in Fig. 6. The second application, for which

Figure 6: A basic (but far from simple) cartoon + texture separation

many instances are present in the archive, is medical image detail enhancement.
Here the user focuses on the textural part of the image, not its background.
Indeed, in many image analysis we are in a situation where the cartoon is a
mere background to be removed. The next experiment found in the IPOL
archive shows a decomposition of a mammography, where the enhancement of
the interesting structure is obvious in the textural part. See Fig. 7. Also the
image in Figure 2, left, was taken from this archive and can be successfully
decomposed with this model, even if on such examples, the results of (5) seem
slightly superior.

Perhaps the most recurrent application of the cartoon+texture model is its
systematic use in police inquests to recognize challenging fingerprint samples.
Here, the separation of the texture from the background delivers a much clearer
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Figure 7: Extraction of the meaningful patterns in a mammography. To be
compared with Fig. 3.

picture of the fingerprint’s minutiae. It increases the chances that the police’s
automatic fingerprint identification system (AFIS) succeeds. The fact that so
many such fingerprint experiments are being made on line by important police
departments indicates that this invention has not yet be inserted in the most
current AFISs. The first experiment below illustrates a simple case study of
extraction of a fingerprint on a textured wooden background (which goes into
the cartoon part), see Fig. 8, top. The second experiment (Fig. 8, bottom)

Figure 8: Analysis of fingerprints with the TV+L1 model

illustrates the use of the decomposition in new fingerprint verification sytems,
that directly take a picture of the finger. Here again the separation is amazing.
The next experiment, Fig. 9 shows a spectacular extraction. It seems that the
police officers did not care too much about leaving a trace of their activity in an
image processing journal; many FBI experiments are also present in the archive.
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Figure 9: Extraction of a fingerprint from a document with the TV+L1 model

But the usage of the cartoon+texture model by police is not limited to
fingerprint extraction, and our last experiment extracted from the IPOL archive
shows, in Fig. 10 how the very same algorithm helps reading licence plates in
night images.

Figure 10: Extraction of a licence plate

5 Conclusion
The discussion on the right function space to model natural images and to per-
form denoising by wavelet shrinkage may now seem futile. Indeed, technology
has led to learn implicitly and intensively fine statistics of natural images by
endowing it in the weights of large convolutional networks [46, 45, 42]. These
denoising algorithms perform beautifully and beat by several decibels the best
handcrafted algorithms. Yet, as we have seen, the cartoon+texture model pro-
posed by Meyer has become a classic in image processing. It is extremely prac-
tical, as it separates essential shapes in an image from the accidents of their
textures. In 1954 the visionary psychologist Attneave [1] sketched the program
of what would decades later become computer vision. He noticed that our vi-
sual perception of images should rely on the extraction of piecewise smooth
silhouettes (that would be encoded by their extrema of curvature) and by their
“texture”. Texture was defined by Attneave as an additional characteristic of
shapes, like the color. So our visual perception amounted, according to At-
tneave, to perform an f = u+ v decomposition, thus separating two immiscible
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phases. In some sense Meyer’s vision and work, first directed at making com-
patible two functional models for image denoising, ended up in a realization of
Attneave’s program.
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