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Abstract

Peste des petits ruminants (PPR) is a highly contagious disease affecting mainly sheep and

goats. Livestock movements contribute to the spread of the disease by introducing it to

naive areas or exposing susceptible animals to it in infected regions. Because of its socio-

economic impact, the Food and Agriculture Organisation (FAO) and the World Organization

for Animal Health (WOAH) have set the goal to eradicate it by 2030, one of the key steps

being the improvement of surveillance networks. The present study aimed to provide tools

to identify areas that could serve as sentinel nodes, i.e. areas that may be rapidly infected at

the onset of epidemics. Using data from a market survey conducted in Northern Nigeria, we

reconstructed the small ruminants mobility network and simulated the diffusion of PPR virus

through animal movement. From the analysis of simulation outcomes, we investigated

which nodes could act as sentinel nodes under specific conditions for disease transmission.

We considered several modified networks to get around the problem of data only being

available for part of the overall network structure and to account for potential errors made

during the field study. For each configuration, we simulated the spread of PPR using a sto-

chastic Susceptible-Infectious (SI) model based on animal movements to assess the epi-

demics’ extent and the presence of recurrent patterns to identify potential sentinel nodes.

We extracted the backbone of the reference network and checked for the presence of senti-

nel nodes within it. We investigated how the origin (seed) of the epidemics could affect the

propagation pattern by comparing and grouping seeds based on their respective transmis-

sion paths. Results showed that the isolated backbone contains 45% of sentinel nodes that

remain stable or undergo only minor changes in 9 out of 11 configurations. On top of that,

the characteristics of sentinel nodes identified in the backbone are not influenced by the

severity of the disease. The H index, in-degree, and eigenvector are the most essential vari-

ables. This study provides an overview of the major axes of animal movements in Nigeria
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and the most vulnerable locations that should be prioritized for monitoring livestock diseases

like PPR.

Introduction

In sub-Saharan Africa, livestock mobility is essential to the production and trade of livestock

and, in turn, is one of the primary sources of income for livestock owners. Due to a lack of

infrastructure and storage facilities (like slaughterhouses, fridge cells and warehouses, high-

speed roads and adapted trucks), live animals are sold at the nearest local market and then

moved through the commercial chain toward larger metropolitan areas for consumption [1].

At the same time, herds are moved around in search of better grazing as part of seasonal and

international transhumance practices [1]. In most cases, these movements are international

and concentrated between two areas: the arid gridlocked areas, where most of the livestock is

concentrated and the humid and greener areas of the West Africa region, where most of the

population lives. Transhumance and commercial livestock movements for trade provide red

meat for the population while facilitating the spread of animal and zoonotic diseases [2].

Among these animal threats, the Food and Agriculture Organisation (FAO) and the World

Organization for Animal Health (WOAH) have targeted Peste des petits ruminants (PPR) for

eradication by 2030. In epidemic situations, PPR-related morbidity can reach 90–100%, with a

mortality rate ranging from 50–90% (WOAH). In endemic situations, the mortality rate can

be around 33–37%. These high morbidity and mortality rates hinder the economic develop-

ment of affected countries. The PPR Global Eradication and Control Strategy (GCES) com-

prises four main stages to assess the country’s status and activities to be implemented to

achieve the status of a PPR-free country [3]. Vaccination is the main control method; however,

strengthening the surveillance system is crucial to eradication. In particular, as an output of

stages 3 and 4, surveillance systems should be adapted for early warning (stage 3) and focused

on the population at risk (stage 4). In recent decades, tools and methods from complex net-

work theory have been massively used in animal and human epidemiology [4]. In its basic

representation, livestock mobility can be illustrated as a graph with nodes representing prem-

ises and links (often weighted) representing movements between them [1]. Structural analysis

can provide preliminary information about potential epidemics’ size and propagation speed

and identify areas that could facilitate disease propagation, particularly at risk of infection [5].

Further, when stochastic network transmission models are used, information can be retrieved

for early warning systems and to determine the spatial extent of the epidemic [6]. Epidemic

patterns depend on the interplay between the structure of the networks and the characteristics

of the epidemic [7, 8]. The models’ assumptions, structure, complexity, and reliability depend

on the data quality and degree of detail used to reconstruct the network and the information

concerning the disease under study [5]. Even though networks are always characterized by a

high degree of heterogeneity and redundancy, there is still a need to understand how the struc-

ture of networks influences their dynamics [8]. Identifying likely transmission paths and

extracting subgraphs of the network where most information spreads are essential for studying

epidemic-spreading phenomena and designing intervention strategies [9]. Indeed, the network

backbone is the core component obtained by filtering all the redundant information while

maintaining the network hierarchy [9–12]. Nodes of the backbone are potential candidates for

surveillance systems. In Nigeria, PPR is enzootic, with seasonal outbreaks mainly occurring

during the rainy season (from June to September in the northern Region) [13]. Seroprevalence

PLOS ONE The role of backbone and identification of sentinel nodes

PLOS ONE | https://doi.org/10.1371/journal.pone.0303237 November 18, 2024 2 / 20

Funding: European Union for the project “EU

support to Livestock Disease Surveillance

Knowledge Integration” (LIDISKI).

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0303237


varies geographically from a minimum of 11% among animals in the north-western area to a

maximum of 41% in the south-western area [14]. Nigeria is one of the main consumers of red

meat in West Africa and has to import animals from abroad to satisfy domestic demand. Most

likely because of this concentration of transboundary movements, Lineage IV of the PPR virus

has been introduced and is now circulating in Nigeria with historical lineage II [14]. However,

despite the positive contribution of mobility to animal production, and consequently to Niger-

ia’s GDP [15], and the recognized negative impact of PPR, there is still no system for collecting

information and mapping livestock movements in Nigeria. Information on livestock mobility

can consequently only be collected through ad-hoc activities, such as market surveys. These

activities are time- and resource-consuming, restricted to specific areas and a specific period of

the year, and only a relatively small number of respondents are surveyed, explaining why only

a portion of animal movement can be recorded. Moreover, reticence towards surveyors and/or

confusion between official and local names of locations can result in mistaken origins and/or

destinations of livestock movements being recorded. Consequently, the real structure of the

network may differ slightly, as well as the role that markets play in the diffusion of diseases. In

particular, such slight differences may affect the identification of sentinel nodes that could be

used as early warning areas for the circulation of the disease. In this work, we extended the

analysis conducted in a previous work [16, 17] to identify sentinel nodes. We used data from

market surveys in three Nigerian States (Plateau, Bauchi, and Kano) to study the network

structure and determine the network backbone. We checked under which network conditions

and transmission probability backbone nodes could be used as sentinel nodes. To this end, we

developed a stochastic transmission model on the network and ran several scenarios by vary-

ing the transmission probabilities or modifying the network structure. We analyzed the differ-

ent epidemic patterns to identify recurrent ones. We identified sentinel nodes and retrieved

their characteristics. In addition, we assessed how sentinel nodes and characteristics change

along with variations in the network and increased probability of transmission. We extended

the range of transmission probabilities compared with the previous study [16, 17]. We also

included an extra scenario of network modifications to understand better the interplay

between structural characteristics and transmission probabilities and how these would affect

the identification of sentinel nodes.

Materials and methods

Data and epidemic simulation

Nigeria is a federal country with three administrative divisions: State, Local Government Area

(LGA), and District/Ward. In this study, we used mobility data concerning small domestic

ruminants (goats and sheep) collected in surveys conducted in 10 markets in three States in

the central and northeastern part of Nigeria Fig 1): 6 in Plateau State (Sabo (Wase District),

Tutum (Dengi District), Jarmai (Kantana District), Yelwa (Shendam District), Doemak (Doe-

mak District), Rikkos (Jos Jarwa District)), 2 in Bauchi State (Alkaleri (Pali District), Gadanan-

maiwa (Ningi District), and 2 in Kano State (Sabongari (Wudil District), Getso (Getso

District)). The choice of the markets was based on the outcome of a workshop with stakehold-

ers [18].

In each market, around 100 livestock owners/ traders were interviewed about the origin/

destination of the movements (State, LGA, District, and name of the village), the number of

animals of each species, and the reason for the movement. Each market was visited by Dr.

Ijioma and local enumerators once between April and September 2022 (one-off). In parallel to

the market surveys, focus group discussions were held with actors to complement information.

However, this last data set was not included in our analysis, since it is the object of a separate
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work [18]. Locations recorded during the survey were geo-referenced. However, the identifica-

tion of the villages was difficult because of different factors, among them, the absence of an

official database of villages in the area to refer to also for the transcription, the difference

between official village names and commonly-used ones, the use of referring to the district to

indicate locations. Because of these issues, data were aggregated at the district level (network

nodes). A link between two districts was considered if at least one animal was moved between

the two districts. The network reconstructed from the data is hereafter referred to as a “refer-

ence network” and is used as a reference (configuration A) in the following steps.

The focus of this work is to study the propagation of PPR at the national level to identify

possible locations where outbreaks could be reported and assess how the structure of livestock

exchanges could impact the diffusion. To this end, we didn’t include livestock infection

dynamics. In Nigeria, PPR is endemic, with seasonal outbreaks. PPR prevalence varies widely

in the countries from 40% to 11%, and the vaccination coverage rate is still low. We considered

the inter-epidemic period, during which PPR was re-introduced in the area due to livestock

movement. In the following, the term “Infected” nodes indicate nodes where new cases are

registered due to the arrival of infected animals from other areas and where transmission

occurs to animals in the area. The main parameter ρ encompasses all the dynamics that could

lead to the occurrence of at least a case in the area. In this study, we have omitted several dis-

ease-related parameters that could impact the attack rate in the local population. This

approach has been used to identify candidate nodes for surveillance network [4].

At the beginning of the epidemic, all the nodes are susceptible (S) except one (hereafter

denoted the seed) in the infected state (I), chosen among all nodes with a non-zero out-degree.

The probability that an infected district could infect a susceptible one through animal move-

ments is denoted ρ, and the number of the infected neighbors of node I is denoted Ii [19]; the

Fig 1. Map of Nigeria showing our study area. The colored area indicates the study area, and the gray area shows all States not included in

the data collection. Each dot corresponds to a market surveyed: 6 in Plateau, 2 in Bauchi, and 2 in Kano.

https://doi.org/10.1371/journal.pone.0303237.g001
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probability of a susceptible node I becoming infected (I) follows a binomial distribution, with

the probability P defined as follows:

P ¼ 1 � ð1 � rÞ
Ii ; ð1Þ

In our case, each time step corresponds to one week, the recording frequency used in all the

Districts in the dataset. Probability ρ is an “effective probability” that accounts for the different

dynamics, for example, that at least one infected animal is being moved between the two

nodes, that a contact has occurred between animals and resulted in at least one new infection

in the destination node.

Following the work of Herrera [4], we define sentinel nodes as nodes that are infected fre-

quently and promptly during epidemics, i.e., nodes that are most often infected before the

peak of incidence is reached. Three factors could affect the propagation of the pathogen and

the characteristics of the sentinel nodes: transmission probability, the network structure, and

the origin of the epidemic (the seed). To evaluate the impact of transmission probabilities on

the epidemic process, we considered nine values of ρ varying from 0.01 to 0.75 (0.01, 0.05, 0.1,

0.15, 0.20, 0.25, 0.3, 0.5, 0.75). For each value of ρ, we examined various network configura-

tions (modified network described in the following section). We initiated the epidemic by

selecting all seeds with a non-zero out-degree. One hundred simulations of epidemics were

run on the observed graph. Then, for each modified network, simulations were stopped when

no new infected node was recorded over ten consecutive steps.

Various types of errors can generally be encountered during surveys. In our case, measure-

ment errors were possible because incorrect responses can be given (e.g., village names may

have the same name or be mispronounced, leading the interviewer to record a wrong name).

Another potential error was sampling error; the sample of interviewees (100 respondents)

might not represent all traders passing through the markets where the survey is conducted.

We assume the reference network (configuration A) merely represents only a subset of the

“actual” animal mobility network, and several movements could not be recorded during the

activity (non-observed links) or recorded inappropriately. Our analysis inferred the role of

non-observed links and network modifications in disease propagation and the identification

of sentinel nodes.

We ran several scenarios with modified networks to account for missing information on

the network structures and fill the knowledge gap. This helped assess the impact of modifica-

tions in network structure on the spread of the epidemic compared with the observed epi-

demic results and helped identify movements that impact disease propagation. However,

exploring all scenarios could demand a substantial effort, and in this work, we focused on sce-

narios compatible with existing data collection constraints and in-field situations. As in the

previous study [16], we considered two categories of network modifications to assess the

impact of typical errors/missing information in data collection:

Modifications due to structural misinformation. For several reasons, respondents could

be referring to misleading origins/destinations of movements. Among these reasons, we could

cite the difference between official names and commonly used names for identifying the loca-

tion, the absence of an official database of villages, and the reticence of the respondent. This

fact, while not affecting the number of movements toward/away from a market, could change

the direction of the links. Moreover, only some of the traders in the markets were interviewed,

meaning the real number of connections of the nodes may have been underestimated. We

thus mimicked changes in trade relationships using random permutations of links or by com-

pleting observed data as follows:
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1. Random partial reorganization: We randomly reordered 5% (configuration B1), 20% (con-

figuration B2), and 40% (configuration B3) of network links while maintaining the same

node indegree for destination locations. This situation corresponds to the case when inac-

curate information about the origin of the movements is provided

2. Random link insertion: We randomly added 5% (configuration C1), 20% (configuration

C2) and 40% (configuration C3) of network links

Modifications due to survey limitations. Not all markets could be sampled due to limited

resources, thus reducing network information about nodes and links. To assess the impact of

incomplete data, we simulated networks with reduced sizes by pruning out nodes and links

according to two strategies:

1. Removal of central markets: We removed the market with the most connections located in

Plateau State (configuration D1) and then removed the market with the fewest connections

in Plateau (configuration D2)

2. Removal of peripheral markets: We removed one of the surveyed markets located in Kano

(configuration E1) and another surveyed market situated in Bauchi State (configuration

E2)

We estimated the average final size of epidemics to assess the extent of simulated epidemics

across each configuration and transmission probability. Further, we used Kaplan-Meier mod-

els to examine the time to peak infection across various configurations. The models were fitted

for each transmission probability ranging from 0.01 to 0.75. Log-rank tests were used to assess

differences between configurations.

Detection of seed clusters

Following a procedure similar to the one used in Bajardi [5], we aimed to identify subsets of

seeds (seed clusters) in which epidemics were identical regarding the size and identity of

infected nodes. For each network configuration and each seed, we reconstructed the “probable

path of transmission” through the following steps Fig 2:

1. given a node j infected at time t, we identified all its potential infectors, i.e., neighbors of j
node that were previously infected

2. an oriented link was drawn from each potential infector to infected node j

3. steps 1 and 2 were repeated for all simulations using different transmission probabilities.

The weight of each link in the transmission path is associated with the frequency at which a

link appears in all the simulations

The result for each seed was an oriented weighted network called a probable path. Probable

transmission paths for different seeds were compared using the weighted Jaccard index [20] to

measure the similarity between them and used as a distance measure. The optimal number of

clusters was first identified using the elbow method, followed by k-means classification. The

clusters detected in the reference configuration (configuration A) and the modified configura-

tions were then compared using the Rand index [21] to assess how modifications could alter

propagation patterns. In a second step, the number of nodes reached by seeds in each cluster

was compared using analysis of variance, followed by a post-hoc Tukey test, to identify
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statistically distinct groups. This method allowed the identification of seed clusters, which,

once infected, could give birth to large or small epidemics (propagator).

Node vulnerability and definition of sentinel nodes

In this work, we defined sentinel nodes based on their vulnerability and the moment in time at

which they are infected. There is no univocal definition of a node’s vulnerability. This article

defines vulnerability as the probability of a node getting infected early in the epidemic. We

used simulation results to identify sentinel nodes for each configuration and transmission

probability. For each node, we estimated:

1. the number of simulations infection occurred before the epidemic peaked frequency

2. the average frequency of infection and the standard deviation

3. the classical threshold (average frequency + 2 standard deviations) was used to classify

nodes; Nodes with a frequency higher than the threshold were classified as sentinel; other-

wise, they were classified as infected (i.e., after the epidemic peaked) and not infected (but

remained susceptible throughout the simulation)

Characterization of sentinel nodes

The above procedure enabled the dynamic identification of sentinel nodes (i.e. through the use

of numerical simulations). However, we also wanted to identify the structural characteristics

of sentinel nodes. We hypothesized that sentinel nodes can be found among the network’s

backbone nodes. The backbone is a sparse subset of nodes and links encompassing most infor-

mation circulating within the network. For this reason, we hypothesize that the disease is most

likely spread via the backbone. Several methods have been used to extract the backbone from

the network. In this study, we used the LD (Local Degree) approach applied by Neal et al. [12],

which assesses edge importance by considering the endpoints of the nodes and prioritizing

those linked to central nodes. Following edge ranking and normalization, the most significant

Fig 2. Steps used to build the probable path of transmission.

https://doi.org/10.1371/journal.pone.0303237.g002
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edges of each node are retained in a sparser network that, nevertheless, preserves hierarchical

structures. This procedure forms the network by preserving key edges to maintain its essential

structure. The backbone was extracted from each configuration. The ten generated backbone

structures were compared to the reference backbone (extracted from the reference network)

using the Jaccard index to determine its stability.

In this work, we used the following centrality measures to characterize each node in each

configuration: in/out Degree [22], betweenness [23], in/out Closeness [23], in/out H index

[22], in/out Neighborhood [24], and Eigenvector centrality [25]. We then used a random forest

algorithm [26] to classify the centrality measures that characterize sentinel nodes. In addition,

we investigated whether the characteristics of the sentinel nodes changed—or not—depending

on the probability of transmission by repeating this step for each configuration. A 5-fold cross-

validation was done to assess the performance of the random forest model. This entails divid-

ing the dataset into five equal portions. The model is trained on four folds in each iteration

and evaluated on the fifth. The process is repeated five times, guaranteeing that each data point

contributes to training and evaluation exactly once. By averaging the performances across the

five iterations, we obtained a more reliable estimate of the model’s predictive ability, thereby

reducing the risk of overfitting or bias resulting from a single data split. All analyses were per-

formed using R software (version 4.3.3) and the following packages: ggplot2, igraph, and

randomForest.

Results

Description of the network and identification of the backbone

The network reconstructed using market data yielded an oriented network with 144 nodes and

268 links, forming one weakly connected component and two strong ones Fig 3. Hereafter,

this network is used as a reference for comparisons (configuration A). The backbone extracted

from the reference network (reference backbone) comprises 20 nodes Fig 3. Out of the total of

20 nodes, 40% (8 out of 20) are located in Plateau, 25% (5 out of 20 in Bauchi, 10% (2 out of 20

in Kano, and the remaining 25% (5) are distributed across other States, particularly those in

the southern part of Nigeria. It is noteworthy that the nodes forming the backbone are geo-

graphically dispersed from the northern to the southern States.

Fig 3. Visual representation of the reference network (configuration A) and the extracted backbone (reference backbone). A: Reference

network: 144 nodes and 268 links. B: Reference backbone using the sparsify method [11], which contains 20 nodes from different States. Each

color corresponds to the State or the District (node) in our study area (Plateau, Bauchi and Kano).

https://doi.org/10.1371/journal.pone.0303237.g003
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The backbone of modified networks was compared with the reference network using the

Jaccard Index as a similarity measure [27]; when subjected to modifications, the structure of

the backbones for configurations B1, B2, B3, C1, and D2 was identical to the reference one

(similarity of 1 or close to 1, indicating an exact match in node composition Table 1). In con-

trast, the backbone extracted from E1 and E2 has less similarity with the reference backbone

(respective scores of 0.6 and 0.7), indicating a moderate difference in the node composition

compared to that of the reference backbone. Finally, the backbones of configurations C2, C3,

and D1 resemble each other the least, with respective scores of 0.2, 0.1, and 0.3, highlighting

divergences from the reference backbone.

The impact of variations in network structure and transmission probability

ρ on epidemic final size

For the reference scenario (configuration A), we simulated 100 simulations for each of the 63

possible seeds of the epidemics. As the in-degree and out-degree remain unchanged, the same

number of seeds is found in configurations B1, B2, and B3. Otherwise, the number rises to 70,

88, and 102 in configurations C1, C2, and C3, respectively, and falls to 60, 62, 57, and 58 in

configurations D1, D2, E1, and E2 respectively. From 29% to 43% of the seeds are concen-

trated in Plateau State, while Bauchi State accounts for 20% to 32% of the seeds and Kano State

for smaller proportions ranging between 5% and 12%, see S1 Table.

Fig 4 gives an overview of the simulation results obtained for all configurations, focusing on

the distribution of final sizes. We used an interval of 20 steps for all the simulations, corre-

sponding to the duration of the rainy season in weeks. Independently of the configuration cho-

sen, the epidemic’s final size and duration are influenced by transmission probability, an

increase in a shorter amount of time. In all the configurations, the same behavior was observed

for the lowest value of the transmission probability (ρ=0.01): very few, if not none, of the

nodes became infected during the interval simulated. However, when the probability of trans-

mission increased, some structural variations affected the size of the epidemic. The reattribu-

tion of links while maintaining the same degree (B1, B2, and B3) or incorporating only 5%

supplementary links (C1) did not change the final size with respect to the reference one. We

observed a marginal impact when introducing an additional 20% of links (C2) or excluding

Table 1. Impact of changes in the configuration on the reference backbone (backbone extracted from the reference network).

Configuration Reduced nodes % Reduced edges % Similarity (Jaccard score)

A 87 84 -

B1 87 84 1

B2 87 84 1

B3 87 84 1

C1 88 85 1

C2 87 88 0.2

C3 82 86 0.1

D1 89 83 0.3

D2 86 81 0.9

E1 89 85 0.6

E2 90 86 0.7

“Reduced Nodes %” and “Reduced Edges %” are the percentage of nodes and edges that are not found in the backbone for each configuration. “Similarity (Jaccard

Score)” is the Jaccard similarity score for each configuration compared to the reference backbone.

https://doi.org/10.1371/journal.pone.0303237.t001
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peripheral markets (E1, E2). Adding a large number of links (C3) led to a considerable increase

in the final size of the epidemic, from (ρ = 0.1). When we excluded the central market in Pla-

teau State (D1), widely different estimates of the final size of the epidemics were already

observed Fig 4 at low transmission probability (ρ = 0.05)) but became clear at higher transmis-

sion probabilities.

Fig 5 shows the time required to reach the epidemic’s peak. Each plot corresponds to a spe-

cific value of the transmission probability, while each color corresponds to a different configu-

ration. As expected, the time to the peak diminishes with increased transmission probability

for each configuration. Moreover, significant variations were observed in the time to reach the

peak for the transmission probabilities of 0.3, 0.5, and 0.75, with p-values below 0.0001. Signifi-

cant differences were also observed for transmission probabilities of 0.01, 0.2, and 0.25,

emphasizing variability in the time to peak infection based on the network configuration.

Conversely, no significant differences were observed for transmission probabilities of 0.05,

0.1, and 0.15, suggesting comparable infection dynamics across configurations. We used

Fig 4. Results of PPR simulations using the SI model, showcasing the animal mobility network. The average final size in simulated

epidemics is presented under different configurations (from A to E2), and for each transmission probability (ρ = 0.01, 0.05, 0.1, 0.15, 0.2,

0.25, 0.3, 0.5, 0.75). The final size fluctuates significantly under condition C3 (when adding 40% of links) and under condition D1 (deleting

the most centrally connected node).

https://doi.org/10.1371/journal.pone.0303237.g004
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cluster analysis to identify a subset of seeds with similar invasion paths and whose epidemics

have comparable final sizes. If epidemics originated from nodes belonging to the cluster, they

would likely impact the same set of nodes. In the reference network, the elbow method sug-

gested that the optimal number of clusters is three. The clusters consist of geographically dis-

persed seeds, each formed by seeds originating from different States Fig 6. These observations

remained consistent across all configurations.

A comparative analysis of the distributions in the reference network with those in the modi-

fied networks revealed that these clusters are sensitive to network modifications. In the B1 con-

figuration, similarity was low (Rand index = 0.45) even in the case of minor variations in link

distribution, and this trend persisted with a significant fraction of links rewired in configura-

tions B2 and B3 (0.42 and 0.45, respectively). The similarity in configurations C1 and C2 was

comparatively lower (0.56). By introducing more links in the configuration, C3 considerably

Fig 5. Kaplan-Meier curves showing the time required to reach peak infection as a function of each transmission

probability and configuration. This model was applied to the SI model’s result, including all simulated epidemics. p

represents the p-value and ρ the probability of transmission.

https://doi.org/10.1371/journal.pone.0303237.g005
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altered the identified clusters (Rand index = 0.30). Removing a peripheral market in configura-

tions E1 and E2 led to a Rand index of 0.37 and 0.56, indicating changes in clusters particularly

identified in configuration E1. However, in configuration D, when the Zawan market, i.e. the

most connected in Plateau State, was eliminated, the resulting Rand index was only 0.11. Oth-

erwise, eliminating the least connected central market has less influence (0.56) on cluster dis-

tribution than in configuration D1. Analysis of the size of the epidemics revealed a significant

influence of the cluster in all configurations (p-values <0.0001), indicating significant statisti-

cal differences in epidemic potential among clusters and that, depending on the cluster to

which the seed belongs, epidemics could have different extents. Tukey’s test revealed signifi-

cant differences (p< 0.01) in the size of the epidemic among the clusters, indicating that some

clusters tend to infect more nodes than others, see S2 Table. In the following, “cluster propaga-

tor” refers to the cluster whose epidemics originating in one of its seeds reaches the largest

Fig 6. Number of seeds in each seed cluster per State obtained with the k-means classification. The number of seeds is shown on the x-axis

and the name of the State is on the y-axis. Each line corresponds to the distribution in clusters (color) of seeds in the States.

https://doi.org/10.1371/journal.pone.0303237.g006
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number of nodes. Across all configurations, most seeds in the cluster propagator belonged to

Plateau State, followed by Bauchi, while only a small number belonged to Kano or other States.

The number and identity of sentinel nodes varied with ρ and configuration

Fourteen sentinel nodes (Alaba, Dengi, Gwaywalada, Jos Jarawa, Lamba, Obolloafor, Okoa-

mako, Pali, Port Harcourt, Shendam, Taura, Zawan, Lafia, and Wase) were identified in the

reference network for various transmission probabilities (ρ> 0.01). Notably, three nodes—

Obolloafor (Enugu State), Okoamako (Delta State), and Port Harcourt (Rivers State)—consis-

tently maintained their vulnerability status independently of the transmissibility of the disease.

When we examined the results of the different transmission probabilities separately, at ρ =

0.01, no potential sentinel node was identified, but from ρ = 0.05, between 6 and 9 nodes

exhibited vulnerability per transmission probability Fig 7. The total number of sentinel nodes

in the other configurations was lower than in the reference network (B1 = 9, B2 = 11, B3 = 10,

C1 = 9, C2 = 8, C3 = 11, D1 = 7, D2 = 10, E1 = 9, E2 = 8). However, it is worth noting that five

nodes (Alaba, Jos Jarawa, Obolloafor, Okoamako, and Wase) consistently emerged as sentinels

and remained fixed across all configurations.

Fig 7. Tornado plot showing the variation in the number of sentinel nodes for each transmission probability. The

gain or loss of the number of nodes according to the reference (here, it’s ρ = 0.1) is shown on the x-axis, and the

different scenarios used in the study (configurations) are displayed on the y-axis.

https://doi.org/10.1371/journal.pone.0303237.g007

PLOS ONE The role of backbone and identification of sentinel nodes

PLOS ONE | https://doi.org/10.1371/journal.pone.0303237 November 18, 2024 13 / 20

https://doi.org/10.1371/journal.pone.0303237.g007
https://doi.org/10.1371/journal.pone.0303237


The presence of sentinel nodes on the backbone

As mentioned above, the reference network contained 14 sentinel nodes, nine on the back-

bone, representing 45% of the backbone nodes. Between 6 and 9 nodes were shared between

the reference backbone, the sentinel nodes of the reference network, and the sentinel nodes of

each configuration. Table 2) shows that most shared nodes are located in Plateau State, while

only one shared node is located in Bauchi State and none in Kano State. The remaining senti-

nel nodes are distributed across other States (mostly in southern states).

We used random forest classification to analyze the centrality measures that characterize

sentinel nodes. Fig 8 presents the Gini index, highlighting the most critical centrality measures

across all configurations within each transmission probability. In Configuration A, the in-

degree centrality and in-H index appear to be the most critical factors (Gini Index between 60

and 100%). The importance of eigenvalue centrality increased with an increase in transmission

probability and became the most crucial factor for ρ = 0.75. As defined in [26], the eigenvalue

centrality indicates the node’s importance, which is expected since structural properties take

the lead for ρ close to 1 and consistently maintain a high value across all transmission probabil-

ities, indicating a robust influence of incoming connections. On the other hand, in configura-

tions B1, B2, and B3, in-neighbourhood and in-closeness appear to be essential centrality

measures in addition to those observed in the reference network. In configurations C1, C2,

and C3, in-neighbourhood, in-degree, eigenvector, and in-closeness are the most important,

and their Gini index varies with transmission probability. The in-degree and in-H index are

the most important in configurations D1 and D2. Next, in-neighborhood, eigenvector, and in-

closeness appear relevant but vary with the different probabilities. Finally, configurations E1

and E2 parallel configuration A in high in-degree centrality but vary in eigenvector centrality,

in-H index, and in-closeness. However, when the sentinel nodes on the backbone were

restricted, the essential characteristics of the sentinel nodes remained the same even when

transmission probabilities varied Fig 8. These attributes include in-degree, in-H index, and

eigenvector centrality. Significantly, they retained the same importance and order concerning

different transmission probabilities.

Discussion

In Nigeria, the lack of a livestock identification system and an automatic data centralization

system are obstacles to depicting a reliable network of commercial livestock mobility [27].

Table 2. Number of sentinel nodes shared between configurations and the backbone, with State-wise specification. CommonRef indicates the set of nodes in the refer-

ence backbone (i.e. configuration A) that are also sentinel ones. Sentinel nodes are counted independently of all transmission probabilities.

Number of common nodes Plateau State Bauchi State Kano State Other State

CommonRef 9 5 1 0 3

CommonRef
T

B1 7 3 0 0 4

CommonRef
T

B2 8 3 1 0 4

CommonRef
T

B3 8 4 0 0 4

CommonRef
T

C1 8 4 1 0 3

CommonRef
T

C2 7 3 1 0 3

CommonRef
T

C3 9 4 1 0 4

CommonRef
T

D1 6 2 1 0 3

CommonRef
T

D2 9 4 1 0 4

CommonRef
T

E1 9 4 1 0 4

CommonRef
T

E2 8 4 1 0 3

https://doi.org/10.1371/journal.pone.0303237.t002
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Such data are essential to pinpointing sentinel nodes and, hence, designing surveillance and

control programs. This study primarily focused on identifying nodes likely to be used as senti-

nels across three Nigerian States, using the network we built using data gathered in a market

survey as a reference network and a stochastic SI model to simulate the diffusion of PPR. To

overcome the reference network’s limitations and assess the impact of unobserved links and

nodes, we generated ten distinct configurations using elementary link operations such as

rewiring and addition and targeted node deletion. The impact of structural modifications on

the dissemination of epidemics became apparent when 40% of links were added, and resulted

in faster and more extensive diffusion. However, eliminating the peripheral market in Bauchi

Fig 8. Random forest result. A: Gini Index showing the most important centrality measure per probability of transmission of the observed

network. B: Most important centrality measure per probability of transmission of the sentinel node on the backbone. The result was obtained

from the random forest classification. Iin_deg = in-degree, in_H = in-H index, eigenvec = eigenvector, in_ngb = in-neighborhood, in_clo = in-

closeness, bet = betweenness, trst = transitivity.

https://doi.org/10.1371/journal.pone.0303237.g008
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State influenced the diffusion dynamics. This finding aligns with the insights offered by Wright

[28], whose research highlighted the pivotal role of peripheral nodes in the intricate dynamics

of directed networks—eliminating the most highly connected central markets, such as the

Zawan market (one of the markets surveyed), can significantly impact the final size of the epi-

demic. This emphasizes the critical need for market selection during sampling to avoid losing

information crucial for effective surveillance and control measures.

For each configuration, we identified clusters of seeds based on the similarity of their inva-

sion path. Clusters were spatially scattered and present in several States. This observation

aligns with the results reported in [5]. A cluster reaching more nodes (called seed propagators)

was identified in each configuration, whose members are mostly located in Plateau State. This

can be explained by the position and economic activity of Plateau State, the gateway for animal

movements towards the densely populated area on the coast [15]. Few seed propagators were

identified in Kano State. However, this result should be interpreted cautiously, as it could be

due to non-homogeneous sampling, as only two markets were sampled in Bauchi and Kano.

In contrast, six markets were sampled in Plateau State. Increasing the sample size in States

such as Bauchi and Kano is feasible using either a randomized or stratified sampling approach.

This will enhance the representativeness of the markets selected for the study.

The study successfully located 14 sentinel nodes in the reference network, dispersed in 9

different States: Alaba (Lagos State), Dengi (Plateau State), Gwaywalada (Federal Capital Terri-

tory), Jos Jarawa (Plateau State), Lamba (Plateau State), Lafia (Nasarawa State), Obolloafor

(Enugu State), Okoamako (Delta State), Pali (Bauchi State), Shendam (Plateau State), Wase

(Plateau State), Zawan (Plateau State), Taura (Jigawa State), Port Harcourt (Rivers State). Six

of the 14 nodes are located in Plateau, underscoring the region’s susceptibility to diseases like

PPR. Regardless of transmission probability, the status of three nodes, Obolloafor, Okoamako,

and Port Harcourt, remained invariant. These nodes could thus function as optimal sentinel

nodes. Five of the ten markets sampled were classified as sentinel, four located in Plateau State

and 1 in Bauchi State. This finding raises questions about the representativeness of the chosen

sample and suggests bias in the network reconstruction as the network was built using data

collected in these markets. Nevertheless, other sentinel nodes that do not belong to the market

were identified, indicating that although the quantity of data collected is limited, some infor-

mation on network structure can be captured. In other configurations, the number of sentinel

nodes decreased slightly. Thus, adding links does not necessarily increase the number of senti-

nel nodes; the identity of the sentinel nodes varies. Only five nodes consistently kept the same

status across all these configurations, of which 2 (Obolloafor and Okoamako) are the stable

nodes mentioned previously. These nodes are not among the markets sampled so that they

could be the best sentinel nodes.

By isolating the backbone, we gained a clearer understanding of the core structure of the

network. The finding that 45% of the sentinel nodes are located on the backbone is a signifi-

cant insight. It suggests that, as a structurally important subset of the network, the backbone

plays a crucial role in harboring sentinel nodes. From a broader perspective, this finding

implies that monitoring and protecting the backbone may be particularly important to prevent

the risk of early disease spread. More research is needed to understand the exact role of the

other half of the backbone nodes that are unsuitable sentinel candidates. In addition, a more

appropriate method to better capture vulnerability can also be explored.

The comparison between the backbone extracted from the reference network and the senti-

nel nodes identified in the observed network across all configurations revealed a consistent

alignment with 6 to 9 common nodes. The backbone can be a reliable proxy for identifying

sentinel nodes and transcending network fluctuations. However, our study underlines that

modifications related to link reattribution failed to alter the structure of the backbone; indeed,
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even adding up to 5% of links did not significantly influence its structure. However, beyond

this threshold, the structure did undergo drastic changes. This suggests that up to 5% missing

data may produce consistent results, but more than 20% missing data will render the backbone

structure less stable. If a central market with the least connections is not sampled, it will not

impact the backbone structure, while the opposite may be true if the most connected central

market is omitted. What is more, the removal of peripheral markets had only a moderate

impact on the structure. Thus, using the backbone as a set of monitoring nodes may be ade-

quate when disturbance is limited. Still, beyond a certain number of modifications, increased

caution should be exercised in its use for monitoring purposes. In-depth sensitivity analysis is

required to accurately identify the exact thresholds and types of disturbance that significantly

impact the reliability of the backbone. Presently, the most influential centrality measures in

defining sentinel nodes differ across configurations and reveal sensitivity to changes in trans-

mission probabilities. Overall, the in-degree and in-H index appear to be the best indicators of

sentinel nodes in the reference network. At the same time, the roles of the eigenvector, in-

closeness, and in-neighbourhood were more nuanced for other configurations. They depended

on the interplay between the structure of the network and transmission probabilities. In-

degree played a pivotal role in constructing our SI model, thus justifying its relevance as a sig-

nificant feature. The in-H index [22] has been shown to play a pivotal role in identifying senti-

nel nodes, therefore serving as a crucial metric to characterize sentinel nodes within a

network. Derived from the broader concept of the H-index and commonly used to assess a

researcher’s productivity and academic impact [29], the in-H index focuses on node relation-

ships in the context of networks. A node with a high in-H index implies that it is surrounded

by neighbors that are potential sources of infection. In other words, a high in-H index suggests

that the node is at the core of a network with diverse neighbors, thereby increasing the likeli-

hood of rapid infection. This metric provides vital insights into the network structure, helping

identify nodes that may be particularly influential in the potential diffusion of disease.

In our study, the in-degree and in-H index are correlated in all the configurations,

highlighting the resilience of these centrality measures. While not a major concern for the ran-

dom forest model, which adeptly manages correlated variables, the potential redundancy of

information between these measures demands more attention since it may introduce complex-

ity in attributing importance to each variable in the model. Targeting nodes with high in-

degree and in-H index can make PPR surveillance cost-effective by concentrating resources on

these critical areas that are more likely to detect disease timely. The outcomes of this work

would help focusing surveillance efforts where they are most needed, optimizing the use of

resources and reducing the costs associated with widespread monitoring. To implement it and

made it sustainable, several strategies can be employed: redistributing veterinary officers and/

or Community Animal Health Workers (CAHWs) in these sentinel areas to report routinely

information about the epidemiological situation; involving communities through engagement

and training programs to enhance local participation and reporting; developing automated

data collection platforms fed by the veterinarian officers that could provide alerts on realtime

to streamline operations.

Eigenvector has been highlighted as one of the essential measures, but it needs to be more

stable across configurations and transmission probabilities. Analyses conducted by Herrera

[4] and Colman [30] already demonstrated the ability of eigenvector centrality to identify sen-

tinel nodes. Nevertheless, its variable influence may depend more on specific network condi-

tions and transmission probabilities; therefore, caution should be exercised when selecting it

as an attribute for a sentinel node.

In-closeness and in-neighborhood appear to be important in several cases, indicating that

the influence of overall network proximity and direct incoming neighbors can influence
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vulnerability. These measures can be considered indicators of vulnerability. Still, the variability

of their importance per probability of transmission and configuration requires a thorough

evaluation of their relevance for identifying sentinel nodes.

However, our analysis of backbone characteristics showed that the attributes of nodes iden-

tified within the backbone remained constant across different transmission probabilities. In-

degree, in-H index, and eigenvector centrality were the most significant. This suggests that

extracting a backbone and estimating these measures could provide a set of nodes to monitor

closely.

While implementing prevention and control strategies targeting nodes with a high in-

degree and/or in-H index may prove effective, the complexity of calculating these measures—

mainly due to the scarcity of data and temporal considerations—means that we should not

rely solely on these identified criteria. Optimal choices for sentinel nodes depend on several

factors, including the network’s structural layout (e.g., nodal positioning) [30], the flow

dynamics within the network, disease transmissibility (with less transmissible diseases posing

tracking challenges), and temporal variations within the network (nodes with stable contact

sets are better suited for epidemic detection) [31]. However, given that network structure can

evolve due to seasonal transhumance, the movement of livestock linked to festivities, and the

presence of diseases in the area, methods are required to adjust the criteria used for sentinel

node identification in response to changes. This can be achieved by using dynamic approaches

to be sure that the identification of sentinel nodes remains relevant and reliable despite net-

work fluctuations.

In this work, we considered only three cases of network modifications, i.e. when a low

(5%), medium (20%), and high (40%) proportion of links were added/rewired. A more system-

atic analysis, considering more modification levels, will be necessary to determine the thresh-

old at which structural changes become critical and impact disease progression. This study has

underlined that adding links impacts the backbone structure when more than 20% of links are

added. Yet, the specifics of these changes and the nuances resulting from adding between 5%

and 20% links still need to be explored. As the quality of the prediction depends on the epi-

demic parameters, such as transmission and recovery rates, a more sophisticated model (SIR)

would be capable of better capturing the interplay of animal movements (structure, volume,

and temporal aspects) and transmission dynamics. To this end, more data should be collected

to ascertain whether these same structural characteristics will continue to justify node vulnera-

bility. Additional analysis is required to validate the model, compare disease simulation out-

comes on the data-based and reconstructed networks, and cross-reference these with

biological information such as PCR data.
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