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Abstract
Reinforced concrete (RC) structures are well-known for their high durability; however, they remain vulnerable to
natural hazards and extreme events that can impact their performance over time. In aggressive environments, there
is a high likelihood of increased maintenance, rehabilitation, and repair actions that constitute a significant portion
of the total lifecycle spending. Monitoring systems have been implemented during the last decades to collect peri-
odically or continuously essential data about the durability performance of the structures in real operation.
However, the effectiveness of these systems is impacted by sensor efficacy, influenced in turn by environmental fac-
tors, sensor durability, and power outages, leading to intermittent or permanent data gaps. This study proposes a
methodology to address the problem of missing data of a Structural Health Monitoring (SHM) system, specifically
aiming to provide more accurate and continuous information from concrete resistivity and temperature sensors to
support the early detection of corrosion. The proposed methodology was applied to a repaired RC structure with
over fourteen years of data, where significant gaps in the measurements were present. The approach combines sev-
eral techniques to fill these gaps: deep machine learning for air temperature, generalized linear models for concrete
temperature, and pattern recognition for concrete resistivity. To the best of the authors’ knowledge, this is the first
time a methodology has been proposed for imputing missing data from resistivity sensors in SHM systems, which
are increasingly being implemented. This approach is innovative and offers potential benefits for SHM system man-
agers, providing more information on long-term sensor data that could aid in early corrosion detection and mainte-
nance planning. The application of the proposed methodology to a real case study indicated a successful imputation
of 43.4% of missing data although some challenges persist for sensors located in areas characterized by high mea-
surements variability.

Keywords
Structural health monitoring, sensors, missing data estimation, artificial neural network, generalized linear models, pat-
tern recognition, concrete resistivity

Introduction

Reinforced concrete (RC) structures bridges play a cru-
cial role in modern infrastructure, providing vital con-
nections between communities and facilitating the
continuous flow of people and goods. The long-term
lifespan of these structures is essential to ensure the
ongoing functionality of the transportation network.
Therefore, the maintenance of these bridges relies on
their ability to withstand operational and environmen-
tal challenges, thus providing reliable and safe service.
Climate conditions and extreme events can affect the

goal of maintaining and extending the lifespan of RC
bridges.1
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Chloride ingress produced by climate conditions is
the main corrosion mechanisms impacting durability
of RC structures in coastal areas, where the exposure
to saltwater accelerates the corrosion process.2 Under
natural exposure conditions, the rate of corrosion in
reinforcing steel varies significantly due to several
uncertainties including concrete properties.3 Therefore,
corrosion evolution is a complex phenomenon that
initiates internally within the structure and can affect
long-term structural safety and reliability without
timely detection through inspections.1 Hence, there has
been a growing interest recently in the use of Structural
Health Monitoring (SHM) systems in reinforcement
concrete structures to gather information about cur-
rent state of the materials and to detect early corro-
sion.4,5 This is because sensors could provide real-time
information about the condition of the structure,
which can be crucial for making informed decisions
about maintenance schedules and repairing techniques.

One of the challenges associated with long-term
SHM is ensuring continuous measurements during the
service life of the structure. However, some periods
could not be monitored due to several factors, such as
power outages, sensor malfunctions, data transmission
issues. In addition, certain data points also might be
missing due to signal noise. Thus, missing data can
occur in any experiment, and researchers typically
address this issue by either recovering the information
or imputing the missing data.6 The effectiveness of
data imputation methods is significantly influenced by
the quality and quantity of the available data.7 Various
statistical imputation methods allow for the estimation
of missing data, including mean imputation, spatial or
temporal correlation, other statistical techniques, and
machine learning algorithms.8–10

Addressing the problem of missing data has been a
subject of investigation in various research domains
and has recently gained traction in the field of
SHM.8,11,12 Liu et al.13 worked with accelerometers
and presented a multivariate time-series analysis
method for infrastructure damage detection, using a
state-space embedding approach and singular value
decomposition. The proposed approach demonstrates
computational efficiency and successful damage identi-
fication in validation tests on a linear spring–mass sys-
tem and a benchmark experimental structure. Wan
and Ni14 presented a methodology for SHM data
recovery on temperature and accelerometers sensors
using Bayesian multitask learning with a multidimen-
sional Gaussian process prior, efficiently modeling
multiple tasks and their interrelations. The proposed
approach demonstrates superior performance in recon-
structing SHM data compared to traditional Bayesian
single-task learning, with a focus on the impact of cov-
ariance function selection. Li et al.8 address the issue of

missing time series data in SHM systems, focusing on
the calculation of cable force by constructing a matrix
of correlations between days and within one day, and
employing a probabilistic principal component analysis
(PPCA) method to improve data imputation. The
results show that fully capturing temporal correlations
from measured values enhances imputation accuracy,
with PPCA outperforming PCA, particularly in scenar-
ios with continuous missing data, highlighting the
potential for improved imputation by considering tem-
poral correlations across dimensions. Niu et al.15 also
focused on cable force data and proposed a spatiotem-
poral graph attention network for restoring missing
data in SHM systems, focusing on the spatial and tem-
poral dependencies within the sensor network. Jiang
et al.16 proposed a novel data-driven generative adver-
sarial network to impute missing strain response data
from wireless sensors in SHM systems. The method
was verified on a real concrete bridge and demon-
strated superior imputation accuracy and efficiency by
leveraging spatial–temporal relationships among strain
sensors without needing a complete dataset during
training. More recently, Gao et al.11 presented a slim
generative adversarial imputation network (SGAIN)
for recovering missing deflection data of SHM systems
in a highway–railway dual-purpose bridge. The model
used slim neural networks with a generator–
discriminator architecture to efficiently impute missing
data caused by sensor malfunctions or communication
outages. The SGAIN network presented superior per-
formance and execution speed when compared to the
conventional GAIN model.

Other types of sensors have been also analyzed.
Tang et al.17 developed a convolutional neural network
for recovering multichannel SHM data with group
sparsity awareness, effectively addressing segments of
continuous missing data. The method demonstrated
strong recovery performance on synthetic, field-test,
and seismic response monitoring data. More recently,
Luo et al.18 analyzed the quantification and prediction
of pitting corrosion of steel structures in using one-
dimensional convolutional neural networks (1D CNN)
in conjunction with electromechanical impedance
(EMI) sensors. By using an EMI-instrumented circular
piezoelectric–metal transducer, it was possible to detect
corrosion-induced mass loss. The results showed high
accuracy in predicting the extent of pitting corrosion,
laying a technical foundation for real-time and quanti-
tative monitoring of corrosion in steel structures.

The studies mentioned above have significantly con-
tributed to deal with missing data estimation in SHM
systems for different type of sensors (see Table 1).
However, to the best of the author’s knowledge, no
research has been published regarding the imputation
or filling of missing data for SHM durability sensors,
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in particularly, concrete resistivity sensors on reinforce-
ment concrete structures.

Concrete resistivity sensors have proved to be useful
for collecting information on chloride contamination
and to be durable for long-term monitoring, which is
particularly important, resulting in regular installations
of sensors for SHM systems.19 However, several exter-
nal factors may affect the electrical resistivity of con-
crete.20,21 Given the significant influence of
temperature on resistivity, the installation of concrete
temperature sensors is common when considering con-
crete electrical resistivity sensors, to account for tem-
perature variations in data analysis.20

In this study, we introduce a novel approach that
focuses specifically on filling missing data for SHM
durability sensors, particularly concrete resistivity sen-
sors, which has not been addressed in previous
research. The novelty of this research lies in the devel-
opment of a comprehensive methodology that inte-
grates multiple techniques for imputing missing sensor
data, enhancing the reliability of long-term corrosion
monitoring and is tested on a SHM system in a RC
bridge for over ten years period. The article presents a
methodology to fill missing data found within the use
of resistivity and temperature sensors on SHM system.
The proposed methodology uses an external input,
which is air temperature, to improve the estimation of
missing data. However, the external input also had
missing values that needed to be adjusted. To address
this, first deep learning, specifically a feed-forward
neural network, was implemented. Due to the high cor-
relation between air and concrete temperature, general-
ized linear models were applied to estimate the missing
concrete temperature values. Finally, the missing data
for the resistivity sensor was estimated using pattern
recognition and the inverse relationship between tem-
perature and electrical resistivity. The results suggest

that the proposed methodology can serve as a valuable
tool to enhance the quality of sensor data and improve
the effectiveness of monitoring systems in the analysis
for early detection of corrosion. The article is struc-
tured as follows: section ‘‘Case study description’’
describes the case study, section ‘‘Proposed methodol-
ogy’’ presents the methodology employed, section
‘‘Results and discussion’’ provides the results and dis-
cussion, and finally, the research conclusions are pre-
sented in section ‘‘Conclusions’’. The code created for
this research is available at https://github.com/
LuisRinconP/Missing-Data-Estimation-Method-for-
Durability-Survey-of-Reinforced-Concrete-Structures.

Case study description

Test bed description

The bridge, inaugurated in the 1980s, is located in cen-
tral Portugal. It features a main span of over 200 m
and a total length of more than 900 m, supported by
85 m high piles in the tallest section. The analyzed
bridge is located less than 5 km from the sea and serves
to connect two regions of one of Portugal’s major
cities.

A detailed inspection revealed several issues: low exe-
cution quality with concreting defects, poor-quality
painting of steel structures, reinforcement corrosion,
alkali–silica reactions, sulphate attack (primarily in the
foundations of the bridge), and frequent cracking in
prestressed girders. These factors, along with updated
design codes, dictated a rehabilitation of the structure
in the 2000s. Additional information about the structure
cannot be disclosed due to confidentiality concerns.

Concrete electrical resistivity and temperature data
were collected from five repair zones on the bridge. The
objective of the SHM system is to obtain information

Table 1. Publications on data imputation methods used in SHM systems.

Research Type of sensor/Feature measured Imputation method

Liu et al. (2014)13 Acceleration data for infrastructure damage detection Multivariate time-series analysis, state-space
embedding, SVD

Wan and Ni (2019)14 Temperature and acceleration data from Canton Tower Bayesian multitask learning with Gaussian
process prior

Li et al. (2020)8 Cable force data PPCA
Niu et al. (2022)15 Cable force data Spatiotemporal graph attention network
Jiang et al. (2022)16 Strain response data from wireless sensors GAN
Gao et al. (2022)11 Deflection data (highway–railway dual-purpose bridge) SGAIN
Tang et al. (2021)17 Multichannel SHM data (seismic and synthetic data) CNN with group sparsity awareness
Luo et al. (2023)18 Corrosion detection in steel structures

(pitting corrosion) using EMI sensors
1D CNN

1D CNN: one-dimensional convolutional neural networks; CNN: convolutional neural network; EMI: electromechanical impedance; GAN:

generative adversarial network; PPCA: probabilistic principal component analysis; SGAIN: slim generative adversarial imputation network; SHM:

structural health monitoring; SVD: singular value decomposition.
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about the progress of the despassivation front in the
concrete. Data collection occurred daily from July 2006
to November 2020.

Sensors and measurements

The air temperature data were obtained from the
Instituto Português do Mar e da Atmosfera (IPMA), a
public institute under the indirect administration of the
state. The data come from an automated weather sta-
tion located less than 5 km from the analyzed bridge.
The station is situated 4 m above sea level, and the
daily average temperature, measured at a height of
1.5 m, was used.

Sensors were installed in five repaired zones of the
structure, referred to as Location 1 (L1) through
Location 5 (L5). Concrete electrical resistivity was
measured using a two-graphite electrode resistivity sen-
sor. Installation involved removing the concrete cover,
placing the electrodes at depths of 15 mm and 30 mm,
and then replacing the cover. Eight resistivity sensors
were installed and will be referred to as L1–R1 if the
sensor is located in Location 1 at a depth of 15 mm,
and L1–R2 if it is in Location 1 at a depth of 30 mm.
The concrete temperature was measured using a PT100
thermometer embedded in concrete installed at the
same time. The temperature sensors will be named L1-

T if located in Location 1, and similarly for the other
locations. Data acquisition was performed automati-
cally daily at midnight using a Datataker 500. The
two-graphite electrode resistivity sensors measure daily
concrete electrical resistivity of the bridge (Figure
1(a)). The concrete temperature was measured in
Celsius using the same daily frequency (Figure 1(b)).
After more than fourteen years of measurements, sev-
eral data are loss due to problems with the data acqui-
sition system and the power supply unit of the data
acquisition system. A total of 27,032 electrical resistiv-
ity data points and 19,205 concrete temperature data
points were collected, from eight resistivity sensors and
five temperature sensors. Figure 2 presents the missing
data for each of the sensors considered in this study,
highlighting significant gaps in the concrete resistivity
sensors.

Proposed methodology

The methodology proposed for addressing missing data
in this SHM system encompasses four key stages. This
approach begins with assessing the sizes of data gaps
(stage A), followed by procedures to fill gaps in air and
concrete temperature data (stages B and C), and con-
cludes with the implementation of pattern recognition
techniques for missing resistivity data (stage D). Each
phase aims to systematically tackle the absence of
information in the sensor datasets, ensuring a compre-
hensive approach to data completion. Figure 3 presents
a diagram of the methodology used in this article to fill
in missing data from the concrete resistivity and tem-
perature sensors, where the key stages are highlighted.
Stage A presents a recommendation for data imputa-
tion based on the size of the data gap. Stage B intro-
duces the methodology using artificial neural networks
to fill the missing data from the air temperature sensor
(explained in section ‘‘Feed-forward neural network
method’’). Stages C and D detail the methods for
imputing missing data from concrete temperature and
electrical resistivity sensors, which are described in sec-
tions ‘‘Generalized linear models’’ and ‘‘Group pattern
recognition,’’ respectively.

The methodology starts with the first part of stage
A (see Figure 3), which consists in analyzing the maxi-
mum size of the gap to be filled. Table 2 presents the
maximum sizes obtained for missing gaps. It is
observed that the concrete temperature and resistivity
present gaps of more than 1 year of lost information.
Cho et al.9 presented an extensive study to establish
the best data imputation methods. In their study, three
levels of gaps are established and numerical methods
for filling are suggested (Table 3). The methodology
proposed in this article suggest following these

Figure 1. (a) Concrete electric resistivity and (b) concrete
temperature data obtained between 2006 and 2020.
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recommendations. Therefore, for the missing concrete
temperature and resistivity data require more intensive
computational methods.

Lo Presti et al.6 presented a methodology for esti-
mating missing data, primarily applied to rainfall data
in Italy. The methodology is divided into two stages.
First, they identify a similar weather station to the one
being analyzed to determine suitable similarity coeffi-
cients. Second, a regression method is applied to esti-
mate the missing data. A similar methodology is
employed for filling the concrete temperature data
gaps. Therefore, air temperature data are collected
from a weather station located 3.1 km away from the

analyzed structure. However, this station also has miss-
ing data, with a maximum gap size of 59 days, which is
smaller than those in the structure sensors but still sig-
nificant according to Cho et al.9. In this initial step, a
deep machine learning technique, specifically a feed-
forward neural network, is used to compute the miss-
ing values of air temperature (stages A and B, see sec-
tion ‘‘Feed-forward neural network met’’). Then, the
proposed methodology considers the high correlation
between air temperature and concrete temperature, to

Figure 2. Missing data of each sensor consider in this research.

Table 3. The method suggested for data filling. Adapted from
Cho et al.9

Gap
classification

Maximum
gap size

Method
suggested

Small 1–8 Linear interpolation
Larger 9–48 K-nearest neighbors
Even larger .48 More computational

intensive

Table 2. Maximum gap size per type of sensor.

Measurement Maximum gap size (days)

Air temperature 59
Concrete temperature 336
Concrete resistivity 786

Rincon et al. 5



impute the missing data in the concrete temperature
sensors (stage C, see section ‘‘Generalized linear
models’’).

Temperature is a crucial factor in the resistivity of
concrete. However, it is important to recognize that it
is not the only factor. According to the literature, con-
crete resistivity is affected by several factors such as
pore structure, ion composition in pore water, cement
content, and the degree of saturation, among others.22

Temperature impacts resistivity by altering ion mobi-
lity, ion–ion and ion–solid interactions, and ion con-
centration in the pore solution.22,23 Typically, as the
temperature of concrete increases, its electrical resistiv-
ity decreases.24

The relationship between electrical resistivity and
electrical conductivity is commonly expressed as an
inverse linear correlation.24,25 Although temperature is
not the sole influencing factor, it was chosen for this

study due to its significant impact and the availability
of temperature data from the sensors. Since compre-
hensive information on all factors influencing resistiv-
ity was not available, methods were employed to learn
from the temperature–resistivity relationship in real
conditions and attempt to extrapolate this relationship
(stage D, see section ‘‘Group pattern recognition’’).
Although this represents a limitation of the study, it is
decided to fill the resistivity gaps using an intensive
computational method that associates these para-
meters, considering the missing data on temperature
and resistivity as missing at random.26

Feed-Forward Neural Network method

As mentioned in the previous section, when there are
gaps of more than 48 consecutive data points, more inten-
sive computational methods must be used for data

Figure 3. Flowchart of the methodology proposed to fill the missing data of the concrete resistivity sensors.
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imputation. This section presents the Artificial Neural
Networks method used to fill the missing data for the air
temperature sensor, corresponding to stage B in Figure 3.

Artificial neural network models comprise a collec-
tion of neurons processing information individually
and simultaneously, mirroring the functioning of the
human brain,27 significantly enhancing the predictive
accuracy by effectively capturing complex patterns in
the data. In the context of time series forecasting, the
multilayer feed-forward neural network autoregressive
(FFNN-AR) model,28 stands out since it considers the
evolution of time series data by integrating an autore-
gressive process of order p with a nonlinear function to
implement the complex dynamic behavior of the data
instead of depending linearly on the previous values.

In this context, the temperature–lagged time series
estimates are the inputs x to the model and are given by

x = xt�1, xt�2, xt�3, . . . , xt�p ð1Þ

The number of neurons n in the input layer corre-
sponds to the autoregressive order p which is deter-
mined using the partial autocorrelation function. This
model processes the input of lagged-time series tem-
perature values (Equation (1)) through a hidden layer
in a one-direction flow and applies activation functions
to the hidden and output layers (see Figure 4).

The choice of the activation function in the layers
corresponds to the type of the problem being solved
and the nature of the input and output of the layers,
and is determined through the loss function, that is,
root mean square error (RMSE) indicator (Equation
(2)) which provides a measure of accuracy by measur-
ing the average magnitude of the differences between
the predicted (Y) and the actual values to minimize the
difference. In this study, the activation function for the

hidden layer is a non-linear sigmoid activation function
(Equation (3)). A linear activation function (Equation
(4)) is applied for the output layer since the predictions
in the output layer are the weighted sum of the result-
ing weights and biases from the hidden layer, making it
directly proportional relation:

RMSE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i = 1

(Yi � Xi)
2

n

s
ð2Þ

fh(x) =
1

1 + e�x
ð3Þ

fo(x) =
Xn2 + 1

i = 1

wh!o + bh ð4Þ

The FFNN-AR model (Equation (5)) considers the
dynamic behavior of time series by implementing non-
linearity within the hidden layer to represent nonli-
nearly the autoregressive process through a nonlinear
activation function (Equation (3)) to the weighted sum
of the inputs xt (Equation (1)), in which the weights v

and biases b are optimized using backpropagation to
minimize the prediction error through a loss function
(Equation (2)). The prediction value Pi within the out-
put layer applies the linear activation function
(Equation (4)) to the resulting weights and bias from
the hidden layer, and is given by

Pi = fo
Xn2 + 1

i = 1

vh!ofh
Xp

i = 1

vi!hyt�l + bh

" #" #
+ bo ð5Þ

The FFNN-AR model was trained on temperature
measurements for the interval from July 04, 2006 to
September 16, 2006 and validated by predicting the
temperature measurements from September 17, 2006 to
October 04, 2006. The architecture of the FFNN-AR
model consists of 15 nodes in the input layer, a hidden
layer with eight nodes using a sigmoid activation func-
tion, and a single-output node. Training was conducted
over 100 epochs using the Adam optimizer with a
learning rate of 0.001. The loss function used for train-
ing was the RMSE, with a final training RMSE of
0.0003�C.

Figure 5 presents the comparison between the pre-
dicted and actual temperature measurements from
September 17, 2006 to October 04, 2006, demonstrat-
ing good agreement between the two. Table 4 provides
the validation error metrics: mean error (ME), mean
absolute error (MAE), and RMSE, with values of
20.098�C, 0.99%, and 1.34�C, respectively. The mod-
el’s performance was stable, as indicated by the low
RMSE and MAE values.

Figure 4. Structure of the FFNN-AR model. Adapted from
Rincon et al.27

FFNN-AR: feed-forward neural network autoregressive.
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Generalized linear models

Another intensive computational method used in the
proposed methodology is Generalized Linear Models
(GLMs). These are employed when a variable signifi-
cantly influences the results of another variable. In this
case, this model is part of stages C and D in Figure 3,
where the predictor variable, air temperature, is used
to estimate the values of concrete temperature and con-
crete electrical resistivity.

Generalized Linear Models (GLMs) constitute a
statistical framework that extends classical linear
regression models. These models have found wide-
spread use in civil engineering due to their ability to
provide greater flexibility in data distribution and the
relationship between the dependent variable and the
independent variables.29–31

In a GLM, the relationship between the response
variable Y and the predictor variables is modeled
through a linking function g as follows:

g mð Þ= b0 +
Xn

i = 1

bixi ð6Þ

where g is the linking function, m is the expected value
of Y , bi are the estimated coefficients, and xi are the
predictor variables. Different linking functions can be
considered in these models, including linear, quadratic,
compound, growth, exponential, cubic, inverse, among
others. In the present research, the identity link func-
tion was used since the relationship between air tem-
perature and the dependent variables (concrete
temperature and resistivity) was assumed to be linear;
therefore, the relationship is represented as a weighted
sum of the predictor variables. In the present metho-
dology, the predictor variable, x, was considered to be
the air temperature, which was used to obtain the
expected value, m, corresponding to the concrete tem-
perature and electrical resistivity.

Gaussian family distribution was applied for the
error function due to the suitable for this problem
according to the main key metrics used, including
pseudo R2, Akaike information criterion, Bayesian
information criterion, MSE, RMSE, and MAE. This
distribution is commonly used for modeling continuous

outcomes like temperature and resistivity, as it assumes
that the residuals (errors) are normally distributed.

Group pattern recognition

To achieve better results with the GLMs, a group pat-
tern recognition algorithm was implemented to identify
variations in the readings of the concrete resistivity
sensors. These variations could be due to degradation
processes or changes in other factors influencing the
sensors that were not considered in this study. This
step corresponds to Stage D in Figure 3.

Pattern recognition for subgroup creation focuses
on identifying and understanding patterns and struc-
tures within datasets involving multiple distinct groups
or classes. The group-based approach aims to identify
similarities and differences among datasets that can be
divided into distinct groups or categories, aiding in bet-
ter prediction of missing data. Various techniques exist
to address group pattern recognition. The two primary
methods focus on clustering algorithms and classifica-
tion techniques to assign data to different classes or
groups based on their characteristics.32 Clustering algo-
rithms were used in the group pattern recognition for
thisarticle. Correlation was used as the variable to sep-
arate different subgroups.

Results and discussion

This section presents the results of the proposed metho-
dology for the case study described in section ‘‘Case
study description.’’ In section ‘‘Filling missing air tem-
perature data’’, the missing data in the air temperature
measurements are estimated, while in section ‘‘Filling
missing concrete temperature data’’ the results obtained
in filling the missing data for the concrete temperature
sensors are presented. Section ‘‘Filling concrete resistiv-
ity data’’ outlines the final part of the methodology,

Table 4. Validation error indicators.

Error indicators FFNN-AR model

ME (�C) 20.098
MAE (%) 0.99
RMSE (�C) 1.34

FFNN-AR: feed-forward neural network autoregressive; MAE: mean

absolute error; ME: mean error; RMSE: root mean squared error.

Figure 5. FFNN-AR model validation.
FFNN-AR: feed-forward neural network autoregressive.
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focusing on filling the missing data for the resistivity
sensors.

Filling missing air temperature data

The first step in Figure 3 is to compute the missing air
temperature data. This was achieved using a feed-
forward neural network (FFNN), as explained in sec-
tion ‘‘Feed-forward neural network method.’’ The
recorded air temperature data were used to train and
validate the model. Table 5 presents the amount of
known and missing data, and the largest continuous
gap of missing data of the air temperature sensor.

Figure 6 presents the results of the FFNN method
for filling missing air temperature data. It is observed
that the calculated values align adequate with the tem-
perature variations produced by the sensors. To esti-
mate the approximation accuracy of the FFNN, five
artificial gaps of 1, 5, 10, 25, and 60 days were created.
Table 6 presents the main error metrics obtained
between all the artificial gaps and the values measured
by the meteorological station. The MAE of 3.51 indi-
cates that, on average, the values are off by 3.51�C,
which is an acceptable value for the study. The R2

value of 0.78 implies that 78% of the variability in the
air temperature can be explained by the model, which
is generally considered a strong result according to
Insukindro.33 Therefore, it can be concluded that the
results present an adequate fit of the proposed model,
indicating that this step of the methodology functions
properly.

Filling missing concrete temperature data

Once a gap-free air temperature database is obtained,
the methodology is applied to the concrete temperature

sensors. Table 7 displays the Pearson’s correlation
coefficients between air temperature and the five con-
crete temperature sensors installed within the structure.
Schober et al.34 suggest that a Pearson’s coefficient
between 0.7 and 0.89 can be considered a strong corre-
lation. Therefore, with correlation coefficients greater
than 0.8, the methodology used GLM to estimate miss-
ing data from the concrete temperature sensors. Table
7 also presents the amount of known and missing data,
and the largest continuous gap of missing data of the
five concrete temperature sensors. Two sensors (L4-T
and L5-T) acquired less data and presented maximum
continuum gap of 336 days.

Figure 7 illustrates the results of filling missing data
for the concrete temperature sensors. It is noteworthy

Table 5. Information about the missing data in air temperature
database.

Measured data Missing data Maximum
continue gap

4975 277 59

Table 6. Principal error indicators for the FFNN method.

Temperature sensor Value Units

MAE 3.51 �C
MSE 18.62 �C2

RMSE 4.32 �C
Coefficient of determination (R2) 0.78 —

FFNN: feed-forward neural network; MAE: mean absolute error; MSE:

mean squared error; RMSE: root mean squared error.

Figure 6. Data filling of air temperature using the FFNN
method.

Table 7. Information about the missing data in concrete temperature sensors.

Concrete temperature sensor Measured data Missing data Maximum continue gap Pearson’s correlation

L1-T 4106 1146 197 0.91
L2-T 4106 1146 197 0.92
L3-T 4106 1146 198 0.92
L4-T 3444 1808 336 0.83
L5-T 3444 1808 336 0.84
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that the estimations from the GLM adequately fill the
gaps in the data for the five concrete temperature sen-
sors. Additionally, a discernible seasonal trend is
observed throughout the analyzed period that is also
well represented by the filled data. Table 8 presents the
primary error indicators for the series of the GLM
model adjusted for each sensor. The L2-T and L5-T
sensors show the best MAE and RMSE values, indi-
cating greater precision when filling concrete

temperature. However, the average MAE is 1.296�C,
with low variability (standard deviation of 0.061), indi-
cates that most sensors have similar precision in terms
of mean absolute error. The average R2 is 0.786, with a
standard deviation of 0.072. This indicates that, on
average, the sensors explain 78.6% of the variability in
temperature measurements, although some sensors
(such as the L4-T and L5-T) have lower R2 values.
Overall, the results demonstrate the high applicability

Figure 7. Data filling of the concrete temperature sensors using GLM for each sensor.
GLM: generalized linear model.
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of this methodology, even in cases where there is a high
correlation among the data despite gaps of more than
48 days.

Filling concrete resistivity data

The final step of the methodology is based on the pre-
mise of a correlation between temperature and electri-
cal resistivity. This relationship is evident in Figure 8(a)
and Table 9 where a negative correlation is observed
for almost all cases. However, some sensors do not
exhibit a clear correlation (Figure 8(b)). GLMs are
consider on the estimation of the missing data in this
section. However, the direct application of GLM is not

feasible without first identifying patterns in the data.
Therefore, pattern recognition techniques are employed
to identify subgroups within the dataset that exhibit
consistent trends, which then allows for the application
of GLM for predictive purposes.

Figure 9 presents a 3D representation of Figure
8(b), highlighting the potential changes in correlation
over time. These variations may be associated with
fluctuations in concrete conditions. While the correla-
tion varies, its association with temperature appears
consistent. Hence, it is proposed to employ a group
pattern recognition for resistivity data (stage D in
Figure 3, see section ‘‘Group pattern recognition’’).

Group pattern recognition is used to identify sub-
groups among the analyzed sensors where data exhibit
a consistent trend. The minimum subgroup size of
365 days was selected to reflect the seasonal cycles that
influence concrete resistivity. This period was chosen
because it aligns with typical climatic patterns, ensuring
that the subgroups capture the variations that occur
due to temperature and environmental changes over a
complete year.

Table 8. Error indicators for the GLM model.

Concrete temperature sensor MAE (�C) MSE (�C2) RMSE (�C) R2

L1-T 1.29 2.98 1.73 0.84
L2-T 1.25 2.72 1.65 0.85
L3-T 1.29 2.98 1.73 0.84
L4-T 1.40 3.52 1.88 0.70
L5-T 1.25 2.80 1.67 0.70

GLM: generalized linear model; MAE: mean absolute error; MSE: mean squared error; RMSE: root mean squared error.

Figure 8. Relation between concrete temperature and
resistivity sensors for sensor in location (a) L1 and (b) L3.

Figure 9. Relation of concrete resistivity, concrete
temperature, and days of the sensors in location 3 (L3-T and
L3-R1). In red, are possible different trends.
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Starting from this minimum group size, a correlation
is calculated, and the most recent data point is com-
pared to the prediction using GLM. To minimize user-
induced bias, the segmentation process was designed to
be as objective as possible. We implemented a method
that compares the relative error between the measured
point and the prediction, triggering a new subgroup
when this error exceeds a predefined threshold. This
automatic procedure reduces manual intervention in
subgroup creation, ensuring that the segmentation is
based on statistical consistency rather than subjective
visual interpretation. A relative error threshold of 0.8
was assumed based on engineering judgment to ensure
good separation of subgroups during the pattern recog-
nition process. When the error between the next

measured point and the calculated prediction surpasses
the threshold, a new subgroup is initiated.

Figure 10 displays resistivity values segmented by
subgroups, while Table 10 presents the Pearson’s corre-
lation for each subgroup. The methodology did not
identify more than one subgroup for the L1-R1, L1-
R2, and L4-R1 sensors, suggesting that the separation
into subgroups it is not necessary because a strong cor-
relation was estimated for the considered data indicat-
ing consistency in the measurements (see Figure 10(a),
(b), and (g)). For the other sensors, the separation of
the data into subgroups reveals a variability that is not
consistent with the original correlations—that is, posi-
tive correlations. This suggests that temporal patterns
and trends may vary significantly over time, highlight-
ing the importance of considering subgroups in the
analysis to capture more complex dynamics. This pat-
tern recognition also is useful to identify some sub-
groups with low or positive correlations for which the
available data cannot be accurately used for filling
purposes.

Once the subgroups for each sensor have been iden-
tified, the final part of stage D (Figure 3) is carried out.
This part involves estimating the missing data for the
subgroups using GLM models to complete the infor-
mation for the resistivity sensors. For sensors where no
subgroups were identified, the entire database of the
sensor and the air temperature was used for the estima-
tion of missing data. Table 10 also presents the sub-
groups obtained from the methodology, the amount of

Table 9. Pearson’s correlation between concrete resistivity
and concrete temperature.

Name of the sensors Correlation

Resistivity sensor Temperature sensor

L1-R1 L1-T 20.841
L1-R2 L1-T 20.961
L2-R1 L2-T 20.472
L2-R2 L2-T 20.953
L3-R1 L3-T 20.274
L3-R2 L3-T 20.360
L4-R1 L4-T 20.952
L5-R1 L5-T 20.329

Table 10. Fundamental information of each subgroup of concrete resistivity sensors.

Concrete
resistivity sensor

Subgroup Measured
data

Missing
data

Maximum
continue gap

R2 Subgroup
correlation

Sensor
correlation

L1-R1 1 3888 1364 200 0.60 20.78 20.78
L1-R2 1 3620 1632 210 0.80 20.89 20.89
L2-R1 1 364 1412 1012 0.12 0.35 20.44

2 459 64 64 0.60 20.77
3 2253 700 151 0.23 20.48

L2-R2 1 1884 1427 219 0.76 20.87 20.87
2 1533 408 151 0.84 20.91

L3-R1 1 365 0 0 — 0.29 20.22
2 654 277 197 0.10 0.31
3 1065 297 114 0.27 20.52
4 560 206 120 0.13 0.35
5 586 358 151 0.28 20.53
6 874 10 10 0.79 20.89

L3-R2 1 364 270 268 0.05 20.22 20.33
2 673 831 455 0.48 20.69
3 1318 690 151 0.28 20.53
4 1096 10 10 0.41 20.64

L4-R1 1 2882 2370 339 0.62 20.78 20.78
L5-R1 1 1071 1709 786 0.12 20.35 20.27

2 1523 949 165 0.00 0.03
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Figure 10. Subgroups identified using the proposed methodology for each concrete resistivity sensors.
GLM: generalized linear model.
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known and missing data, the largest continuous gap of
missing data.

Table 10 also provides the R2, the correlation for
each subgroup and the original correlation of each sen-
sor. It is observed that in most of the created sub-
groups, the correlation values are more consistent
compared to the expected correlation, indicating that
the methodology is capable of extracting specific trends
from the analyzed data. The predictions for sensors L1-
R1, L1-R2, L3-R2, and L4-R1 align remarkably well,
with correlations below 20.7 and R2 values exceeding
0.6. The authors consider an adequate estimation of
the missing data occurs when the correlations are below
20.7 and R2 values above 0.6. In that scenario, sub-
group 2 of L2-R1 and subgroup 6 of L3-R1 should also
be included among the successful predictions. Figure
11 showcases the data filled by the methodology for all
concrete resistivity sensors. It is observed that the pro-
posed approach provides a consistent data filling for
the groups for which correlations are below 20.7 and
R2 values above 0.6, as it is characteristically shown in
Figure 11. However, it is also noted (e.g., Figure 11(h),
subgroup 2) that data filling provided by this method is
not suitable when the abovementioned conditions are
not satisfied.

Sensitivity analysis of error propagation

A sensitivity analysis was conducted to evaluate the
impact of the MAE results of Table 6 in the imputa-
tion of air temperature on the subsequent predictions
of concrete temperature and electrical resistivity. Since
air temperature is a key input in the imputation pro-
cess, it was necessary to assess how uncertainties in its
estimation propagate through the model and affect the
predicted values for other variables.

Three scenarios were defined to simulate the poten-
tial impact of the MAE on the imputed air tempera-
ture: Scenario 1: The imputations of air temperature
were increased by the MAE value of 3.51�C. Scenario
2: The original imputed air temperature was used as a
baseline. Scenario 3: The air temperature imputation
were decreased by the MAE value of 3.51�C. For each
scenario, the Generalized Linear Model (GLM) was

applied to predict the missing values of concrete tem-
perature and resistivity. The differences between the
predictions in Scenario 1 and Scenario 3 were com-
pared to those in Scenario 2 (baseline) to quantify the
impact of perturbations in air temperature on the pre-
dicted variables.

The sensitivity analysis demonstrates that the MAE
of 3.51�C in the imputed air temperature has a minimal
effect on the predictions of concrete temperature and
resistivity, with average impacts of less than 1.5%.
Table 11 presents the impact on the imputation of con-
crete temperature and concrete resistivity, calculated as
the relative error with respect to Scenario 2 (baseline).
This low sensitivity indicates that the model is resilient
to uncertainties in air temperature imputations, sup-
porting the validity and robustness of the proposed
methodology. The slight asymmetry observed in the
results suggests that further investigation could be con-
ducted to better understand the model’s sensitivity to
variations in lower temperature ranges, but these find-
ings do not compromise the overall reliability of the
results.

Conclusions

The present research addresses the challenge of missing
data in the durability performance monitoring of RC
structures using SHM systems. The proposed metho-
dology employs a combination of feed-forward neural
networks, generalized linear models, and pattern recog-
nition techniques to impute missing data in air tem-
perature measurements as well as in concrete resistivity
and temperature sensors.

The scientific value of this study lies in the signifi-
cant expansion and improvement of a preliminary
methodology presented by the authors.10 While the
previous work was limited to a single year of data for a
single resistivity and temperature sensor and focused
on filling small data gaps of up to 61 days, this arti-
cleintroduces a more robust approach. By incorporat-
ing over fourteen years of sensor data and integrating
air temperature as an additional input for data imputa-
tion, the present study demonstrates a more compre-
hensive and accurate methodology capable of filling

Table 11. Impact of air temperature imputation errors on concrete temperature and resistivity predictions.

Scenario Impact on concrete
temperature (%)

Direction (concrete
temperature)

Impact on concrete
resistivity (%)

Direction (concrete
resistivity)

1. Air temperature imputation + 3.51�C 20.66 Decrease 0.75 Increase
2. Baseline — — — —
3. Air temperature imputation 23.51�C 1.48 Increase 20.61 Decrease

GLM: generalized linear model.
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Figure 11. Data filling of the concrete resistivity sensors using pattern identification and GLMs for each sensor.
GLM: generalized linear model.
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longer data gaps. This is the first study, to the best of
the authors’ knowledge, to apply such an imputation
methodology for missing data in resistivity sensors
within SHM systems.

The results demonstrate that the methodology is
particularly effective for sensors with strong correla-
tions between temperature and resistivity (absolute
Pearson’s correlation value greater than 0.7) and high
R2 values (above 0.62). Consequently, 43.4% of the
missing data was estimated adequately. The integration
of air temperature as an input improves the overall
accuracy of the imputation process, particularly in
long-term sensor data analysis, and offers practical
benefits for SHM system managers in the context of
the interpretation of the data for early corrosion detec-
tion and maintenance planning.

Despite these advances, some limitations remain.
The methodology relies heavily on the correlation
between temperature and resistivity, which can be pro-
blematic in scenarios of concrete deterioration, where
this relationship may break down. This limits the effec-
tiveness of the approach in certain deteriorated condi-
tions. Furthermore, the use of GLMs proved to be
effective in subgroups with high correlation, but less so
in groups with lower correlation values, suggesting the
need for future research into more advanced computa-
tional models that do not depend solely on correlation.

Pattern recognition allowed the identification of
subgroups with similar behaviors, improving Pearson’s
correlation and missing data estimation. However, with
only 43.4% of the estimated data achieving a strong
correlation with the measured data, there is still room
for improvement. Future studies could explore the
application of more sophisticated machine learning
models or hybrid approaches that can address data
variability more effectively, particularly in regions with
high uncertainty.
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