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Abstract 
Reinforced concrete structures are well-known for their high durability, however, they remain 
vulnerable to natural hazards and extreme events that can impact their performance over time. In 
aggressive environments, there is a high likelihood of increased maintenance, rehabilitation, and repair 
actions that constitute a significant portion of the total lifecycle spending. Monitoring systems have 
been implemented during the last decades to collect periodically or continuously essential data about 
the durability performance of the structures in real operation. However, the effectiveness of these 
systems is impacted by sensor efficacy, influenced in turn by environmental factors, sensor durability, 
and power outages, leading to intermittent or permanent data gaps. This study proposes a 
methodology to address the problem of missing data of a Structural Health Monitoring (SHM) system, 
specifically aiming to provide more accurate and continuous information from concrete resistivity and 
temperature sensors to support the early detection of corrosion. The proposed methodology was 
applied to a repaired reinforced concrete structure with over fourteen years of data, where significant 
gaps in the measurements were present. The approach combines several techniques to fill these gaps: 
deep machine learning for air temperature, generalized linear models for concrete temperature, and 
pattern recognition for concrete resistivity. To the best of the authors' knowledge, this is the first time 
a methodology has been proposed for imputing missing data from resistivity sensors in SHM systems, 
which are increasingly being implemented. This approach is innovative and offers potential benefits 
for SHM system managers, providing more information on long-term sensor data that could aid in early 
corrosion detection and maintenance planning. The application of the proposed methodology to a real 
case study indicated a successful imputation of 43.4% of missing data although some challenges persist 
for sensors located in areas characterized by high measurements variability. The code is available at 
https://github.com/LuisRinconP/Missing-Data-Estimation-Method-for-Durability-Survey-of-
Reinforced-Concrete-Structures. 

Keywords: Structural health monitoring; Sensors; Missing Data Estimation; Artificial neural network; 
Generalized linear models; Pattern recognition; Concrete resistivity. 
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1. Introduction 
Reinforced concrete structures (RC) bridges play a crucial role in modern infrastructure, providing vital 
connections between communities and facilitating the continuous flow of people and goods. The long-
term lifespan of these structures is essential to ensure the ongoing functionality of the transportation 
network. Therefore, the maintenance of these bridges relies on their ability to withstand operational 
and environmental challenges, thus providing reliable and safe service. Climate conditions and 
extreme events can affect the goal of maintaining and extending the lifespan of RC bridges1. 

Chloride ingress produced by climate conditions is the main corrosion mechanisms impacting durability 
of RC structures in coastal areas, where the exposure to saltwater accelerates the corrosion process2. 
Under natural exposure conditions, the rate of corrosion in reinforcing steel varies significantly due to 
several uncertainties including concrete properties3. Therefore, corrosion evolution is a complex 
phenomenon that initiates internally within the structure and can affect long-term structural safety 
and reliability without timely detection through inspections1. Hence, there has been a growing interest 
recently in the use of Structural Health Monitoring (SHM) systems in reinforcement concrete 
structures to gather information about current state of the materials and to detect early corrosion4,5. 
This is because sensors could provide real-time information about the condition of the structure, which 
can be crucial for making informed decisions about maintenance schedules and repairing techniques.  

One of the challenges associated with long-term SHM is ensuring continuous measurements during 
the service life of the structure. However, some periods could not be monitored due to several factors, 
such as power outages, sensor malfunctions, data transmission issues, etc. In addition, certain data 
points also might be missing due to signal noise. Thus, missing data can occur in any experiment, and 
researchers typically address this issue by either recovering the information or imputing the missing 
data 6. The effectiveness of data imputation methods is significantly influenced by the quality and 
quantity of the available data 7. Various statistical imputation methods allow for the estimation of 
missing data, including mean imputation, spatial or temporal correlation, other statistical techniques, 
and machine learning algorithms 8–11.  

Addressing the problem of missing data has been a subject of investigation in various research domains 
and has recently gained traction in the field of SHM 8,12,13. Liu et al.14 worked with accelerometers and 
presented a multivariate time-series analysis method for infrastructure damage detection, using a 
state-space embedding approach and singular value decomposition. The proposed approach 
demonstrates computational efficiency and successful damage identification in validation tests on a 
linear spring-mass system and a benchmark experimental structure. Wan and Ni 15 presented a 
methodology for SHM data recovery on temperature and accelerometers sensors using Bayesian 
multi-task learning with a multi-dimensional Gaussian process prior, efficiently modeling multiple tasks 
and their interrelations. The proposed approach demonstrates superior performance in reconstructing 
SHM data compared to traditional Bayesian single-task learning, with a focus on the impact of 
covariance function selection. Li et al. 8 address the issue of missing time series data in SHM systems, 
focusing on the calculation of cable force by constructing a matrix of correlations between days and 
within one day, and employing a probabilistic principal component analysis (PPCA) method to improve 
data imputation. The results show that fully capturing temporal correlations from measured values 
enhances imputation accuracy, with PPCA outperforming PCA, particularly in scenarios with 
continuous missing data, highlighting the potential for improved imputation by considering temporal 
correlations across dimensions. Niu et al.16 also focused on cable force data and proposed a 
spatiotemporal graph attention network for restoring missing data in structural health monitoring 
systems, focusing on the spatial and temporal dependencies within the sensor network. Jiang et al.17 
proposed a novel data-driven generative adversarial network (GAN) to impute missing strain response 
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data from wireless sensors in structural health monitoring systems. The method was verified on a real 
concrete bridge and demonstrated superior imputation accuracy and efficiency by leveraging spatial-
temporal relationships among strain sensors without needing a complete dataset during training. 
More recently, Gao et al 12 presented a slim generative adversarial imputation network (SGAIN) for 
recovering missing deflection data of SHM systems in a highway-railway dual-purpose bridge. The 
model used slim neural networks with a generator-discriminator architecture to efficiently impute 
missing data caused by sensor malfunctions or communication outages. The SGAIN network presented 
superior performance and execution speed when compared to the conventional GAIN model. 

Other types of sensors have been also analyzed. Tang et al.18 developed a convolutional neural network 
for recovering multi-channel SHM data with group sparsity awareness, effectively addressing segments 
of continuous missing data. The method demonstrated strong recovery performance on synthetic, 
field-test, and seismic response monitoring data. More recently, Luo et al.19 analyzed the quantification 
and prediction of pitting corrosion of steel structures in using one-dimensional convolutional neural 
networks (1D CNN) in conjunction with electromechanical impedance (EMI) sensors. By using an EMI-
instrumented circular piezoelectric-metal transducer, it was possible to detect corrosion-induced mass 
loss. The results showed high accuracy in predicting the extent of pitting corrosion, laying a technical 
foundation for real-time and quantitative monitoring of corrosion in steel structures.  

Table 1. Publications on data imputation methods used in SHM systems. 

Research Type of Sensor/Feature 
Measured 

Imputation Method 

Liu et al. (2014)14 
Acceleration data for 
Infrastructure damage 
detection 

Multivariate time-series 
analysis, state-space 
embedding, Singular Value 
Decomposition (SVD) 

Wan and Ni (2019)15 
Temperature and 
acceleration data from 
Canton Tower 

Bayesian multi-task learning 
with Gaussian process prior 

Li et al. (2020)8 Cable force data Probabilistic Principal 
Component Analysis (PPCA) 

Niu et al. (2022)16 Cable force data Spatiotemporal Graph 
Attention Network 

Jiang et al. (2022)17 Strain response data from 
wireless sensors 

Generative Adversarial 
Network (GAN) 

Gao et al. (2022)12 Deflection data (highway-
railway dual-purpose bridge) 

Slim Generative Adversarial 
Imputation Network (SGAIN) 

Tang et al. (2021)18 Multi-channel SHM data 
(seismic and synthetic data) 

Convolutional Neural 
Network (CNN) with group 
sparsity awareness 

Luo et al. (2023)19 

Corrosion detection in steel 
structures (pitting corrosion) 
using Electromechanical 
Impedance (EMI) sensors 

One-dimensional 
Convolutional Neural 
Networks (1D CNN) 

 

The studies mentioned above have significantly contributed to deal with missing data estimation in 
SHM systems for different type of sensors (See Table 1). However, to the best of the author's 
knowledge, no research has been published regarding the imputation or filling of missing data for SHM 
durability sensors, in particularly, concrete resistivity sensors on reinforcement concrete structures.  
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Concrete resistivity sensors have proved to be useful for collecting information on chloride 
contamination and to be durable for long-term monitoring, which is particularly important, resulting 
in regular installations of sensors for SHM systems 20. However, several external factors may affect the 
electrical resistivity of concrete 21,22. Given the significant influence of temperature on resistivity, the 
installation of concrete temperature sensors is common when considering concrete electrical 
resistivity sensors, to account for temperature variations in data analysis 21. 

In this study, we introduce a novel approach that focuses specifically on filling missing data for SHM 
durability sensors, particularly concrete resistivity sensors, which has not been addressed in previous 
research. The novelty of this research lies in the development of a comprehensive methodology that 
integrates multiple techniques for imputing missing sensor data, enhancing the reliability of long-term 
corrosion monitoring and is tested on a SHM system in a reinforced concrete bridge for over ten years 
period. The article presents a methodology to fill missing data found within the use of resistivity and 
temperature sensors on SHM system. The proposed methodology uses an external input, which is air 
temperature, to improve the estimation of missing data. However, the external input also had missing 
values that needed to be adjusted. To address this, first deep learning, specifically a Feed-Forward 
Neural Network, was implemented. Due to the high correlation between air and concrete 
temperature, generalized linear models were applied to estimate the missing concrete temperature 
values. Finally, the missing data for the resistivity sensor was estimated using pattern recognition and 
the inverse relationship between temperature and electrical resistivity. The results suggest that the 
proposed methodology can serve as a valuable tool to enhance the quality of sensor data and improve 
the effectiveness of monitoring systems in the analysis for early detection of corrosion. The paper is 
structured as follows. Section 2 describes the case study, Section 3 presents the methodology 
employed, Section 4 provides the results and discussion, and finally, the research conclusions are 
presented in Section 5. 

2. Case study description 
2.1. Test bed description 

The bridge, inaugurated in the 1980s, is located in central Portugal. It features a main span of over 200 
m and a total length of more than 900 m, supported by 85 m high piles in the tallest section. The 
analyzed bridge is located less than 5 km from the sea and serves to connect two regions of one of 
Portugal's major cities. 

A detailed inspection revealed several issues: low execution quality with concreting defects, poor-
quality painting of steel structures, reinforcement corrosion, alkali-silica reactions, sulphate attack 
(primarily in the foundations of the bridge), and frequent cracking in prestressed girders. These factors, 
along with updated design codes, dictated a rehabilitation of the structure in the 2000s. Additional 
information about the structure cannot be disclosed due to confidentiality concerns. 

Concrete electrical resistivity and temperature data were collected from five repair zones on the 
bridge. The objective of the SHM system is to obtain information about the progress of the 
despassivation front in the concrete. Data collection occurred daily from July 2006 to November 2020. 

2.2. Sensors and measurements 

The air temperature data was obtained from the Instituto Português do Mar e da Atmosfera (IPMA), a 
public institute under the indirect administration of the state. The data comes from an automated 
weather station located less than 5 km from the analyzed bridge. The station is situated 4 m above sea 
level, and the daily average temperature, measured at a height of 1.5 m, was used. 
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Sensors were installed in five repaired zones of the structure, referred to as Location 1 (L1) through 
Location 5 (L5). Concrete electrical resistivity was measured using a two-graphite electrode resistivity 
sensor. Installation involved removing the concrete cover, placing the electrodes at depths of 15mm 
and 30mm, and then replacing the cover. Eight resistivity sensors were installed and will be referred 
to as L1-R1 if the sensor is located in Location 1 at a depth of 15mm, and L1-R2 if it is in Location 1 at 
a depth of 30mm. The concrete temperature was measured using a PT100 thermometer embedded in 
concrete installed at the same time. The temperature sensors will be named L1-T if located in Location 
1, and similarly for the other locations. Data acquisition was performed automatically daily at midnight 
using a Datataker 500. The two-graphite electrode resistivity sensors measure daily concrete electrical 
resistivity of the bridge (Figure 1a). The concrete temperature was measured in Celsius using the same 
daily frequency (Figure 1b). After more than fourteen years of measurements, several data are loss 
due to problems with the data acquisition system and the power supply unit of the data acquisition 
system. A total of 27,032 electrical resistivity data points and 19,205 concrete temperature data points 
were collected, from eight resistivity sensors and five temperature sensors. Figure 2 presents the 
missing data for each of the sensors considered in this study, highlighting significant gaps in the 
concrete resistivity sensors. 

 

Figure 1. (a) Concrete electric resistivity and (b) Concrete temperature data obtained between 2006 
and 2020. 
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Figure 2. Missing data of each sensor consider in this research. 

3. Proposed methodology 
The methodology proposed for addressing missing data in this SHM system encompasses four key 
stages. This approach begins with assessing the sizes of data gaps (Stage A), followed by procedures to 
fill gaps in air and concrete temperature data (Stage B and C), and concludes with the implementation 
of pattern recognition techniques for missing resistivity data (Stage D). Each phase aims to 
systematically tackle the absence of information in the sensor datasets, ensuring a comprehensive 
approach to data completion. Figure 3 presents a diagram of the methodology used in this paper to fill 
in missing data from the concrete resistivity and temperature sensors, where the key stages are 
highlighted. Stage A presents a recommendation for data imputation based on the size of the data gap. 
Stage B introduces the methodology using Artificial Neural Networks to fill the missing data from the 
air temperature sensor (explained in Section 3.1). Stages C and D detail the methods for imputing 
missing data from concrete temperature and electrical resistivity sensors, which are described in 
Sections 3.2 and 3.3, respectively. 
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Figure 3. Flowchart of the methodology proposed to fill the missing data of the concrete resistivity 
sensors. 

The methodology starts with the first part of stage A (See Figure 3), which consist in analyzing the 
maximum size of the gap to be filled. Table 2 presents the maximum sizes obtained for missing gaps. 
It is observed that the concrete temperature and resistivity present gaps of more than one year of lost 
information. Cho et al. 9 presented an extensive study to establish the best data imputation methods. 
In their study, three levels of gaps are established and numerical methods for filling are suggested 
(Table 3). The methodology proposed in this paper suggest following these recommendations. 
Therefore, for the missing concrete temperature and resistivity data require more intensive 
computational methods. 

Table 2. Maximum gap size per type of sensor 

Measurement Maximum gap size (days) 
Air temperature 59 
Concrete temperature 336 
Concrete resistivity 786 

 

Table 3. The method suggested for data filling. Adapted from 9. 

Gap classification Maximum gap size Method suggested 
Small 1-8 Linear interpolation 
Larger 9-48 K-nearest neighbors 

Even larger >48 More computational intensive 
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Lo Presti et al. 6 presented a methodology for estimating missing data, primarily applied to rainfall data 
in Italy. The methodology is divided into two stages. Firstly, they identify a similar weather station to 
the one being analyzed to determine suitable similarity coefficients. Secondly, a regression method is 
applied to estimate the missing data. A similar methodology is employed for filling the concrete 
temperature data gaps. Therefore, air temperature data is collected from a weather station located 
3.1km away from the analyzed structure. However, this station also has missing data, with a maximum 
gap size of 59 days, which is smaller than those in the structure sensors but still significant according 
to Cho et al.9. In this initial step, a deep machine learning technique, specifically a Feed-Forward Neural 
Network, is used to compute the missing values of air temperature (stages A and B, section 3.1). Then, 
the proposed methodology considers the high correlation between air temperature and concrete 
temperature, to impute the missing data in the concrete temperature sensors (stage C, section 3.2). 

Temperature is a crucial factor in the resistivity of concrete. However, it is important to recognize that 
it is not the only factor. According to the literature, concrete resistivity is affected by several factors 
such as pore structure, ion composition in pore water, cement content, and the degree of saturation, 
among others 23. Temperature impacts resistivity by altering ion mobility, ion-ion and ion-solid 
interactions, and ion concentration in the pore solution 23,24. Typically, as the temperature of concrete 
increases, its electrical resistivity decreases 25. 

The relationship between electrical resistivity and electrical conductivity is commonly expressed as an 
inverse linear correlation 25,26. Although temperature is not the sole influencing factor, it was chosen 
for this study due to its significant impact and the availability of temperature data from the sensors. 
Since comprehensive information on all factors influencing resistivity was not available, methods were 
employed to learn from the temperature-resistivity relationship in real conditions and attempt to 
extrapolate this relationship (stage D, section 3.3). Although this represents a limitation of the study, 
it is decided to fill the resistivity gaps using an intensive computational method that associates these 
parameters, considering the missing data on temperature and resistivity as missing at random 27. 

3.1. Feed-Forward Neural Network method 

As mentioned in the previous section, when there are gaps of more than 48 consecutive data points, 
more intensive computational methods must be used for data imputation. This section presents the 
Artificial Neural Networks method used to fill the missing data for the air temperature sensor, 
corresponding to stage B in Figure 3. 

Artificial neural network models comprise a collection of neurons processing information individually 
and simultaneously, mirroring the functioning of the human brain 28, significantly enhancing the 
predictive accuracy by effectively capturing complex patterns in the data. In the context of time series 
forecasting, the Multilayer Feed-Forward Neural Network Autoregressive (FFNN-AR) model 29, stands 
out since it considers the evolution of time series data by integrating an autoregressive process of 
order 𝑝 with a non-linear function to implement the complex dynamic behavior of the data instead of 
depending linearly on the previous values.  

In this context, the temperature-lagged time series estimates are the inputs 𝑥 to the model and are 
given by 

𝑥 = 𝑥!"#, 𝑥!"$, 𝑥!"%, …	, 𝑥!"&	 (1) 

The number of neurons 𝑛 in the input layer corresponds to the autoregressive order 𝑝 which is 
determined using the partial autocorrelation function. This model processes the input of lagged-time 
series temperature values (Eq. (1)) through a hidden layer in a one-direction flow and applies activation 
functions to the hidden and output layers (See Figure 4). 
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Figure 4. Structure of the FFNN-AR model. Adapted from 28. 

The choice of the activation function in the layers corresponds to the type of the problem being solved 
and the nature of the input and output of the layers, and is determined through the loss function, i.e., 
Root Mean Square Error (RMSE) indicator (Eq. (2)) which provides a measure of accuracy by measuring 
the average magnitude of the differences between the predicted and the actual values to minimize 
the difference. In this study, the activation function for the hidden layer is a non-linear sigmoid 
activation function (Eq. (3)). A linear activation function (Eq. (4)) is applied for the output layer since 
the predictions in the output layer are the weighted sum of the resulting weights and biases from the 
hidden layer, making it directly proportional relation. 

𝑅𝑀𝑆𝐸 =	,-
(𝑌' − 𝑋')$

𝑛
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The FFNN-AR model (Eq. (5)) considers the dynamic behavior of time series by implementing non-
linearity within the hidden layer to represent nonlinearly the autoregressive process through a non-
linear activation function (Eq. (3)) to the weighted sum of the inputs 𝑥!(Eq. (1)), in which the weights 
𝜔 and biases 𝑏 are optimized using backpropagation to minimize the prediction error through a loss 
function (Eq. (2)). The prediction value 𝑃'  within the output layer applies the linear activation function 
(Eq. (4)) to the resulting weights and bias from the hidden layer, and is given by 

𝑃' = f/

⎣
⎢
⎢
⎡
-𝜔*→,𝑓* ?-𝜔'→*𝑦!"0 + 𝑏*

&

')#

A

(
$.#

')# ⎦
⎥
⎥
⎤
+ 𝑏, (5) 

The FFNN-AR model was trained on temperature measurements for the interval from 04/07/2006 to 
16/09/2006 and validated by predicting the temperature measurements from 17/09/2006 to 
04/10/2006. The architecture of the FFNN-AR model consists of 15 nodes in the input layer, a hidden 
layer with 8 nodes using a sigmoid activation function, and a single output node. Training was 
conducted over 100 epochs using the Adam optimizer with a learning rate of 0.001. The loss function 
used for training was the Root Mean Square Error (RMSE), with a final training RMSE of 0.0003°C.  

Figure 5 presents the comparison between the predicted and actual temperature measurements from 
17/09/2006 to 04/10/2006, demonstrating good agreement between the two. Table 4 provides the 
validation error metrics: Mean Error (ME), Mean Absolute Error (MAE), and RMSE, with values of -
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0.098°C, 0.99%, and 1.34°C, respectively. The model's performance was stable, as indicated by the low 
RMSE and MAE values.  

 

Figure 5. FFNN-AR model validation 

Table 4. Validation error indicators. 

Error 
indicators 

FFNN-AR 
model 

ME (C°) -0.098 
MAE (%) 0.99 

RMSE (C°) 1.34 
 

3.2. Generalized linear models. 

Another intensive computational method used in the proposed methodology is Generalized Linear 
Models (GLMs). These are employed when a variable significantly influences the results of another 
variable. In this case, this model is part of stages C and D in Figure 3, where the predictor variable, air 
temperature, is used to estimate the values of concrete temperature and concrete electrical resistivity. 

Generalized Linear Models (GLMs) constitute a statistical framework that extends classical linear 
regression models. These models have found widespread use in civil engineering due to their ability to 
provide greater flexibility in data distribution and the relationship between the dependent variable 
and the independent variables 30–32. 

In a GLM, the relationship between the response variable 𝑌 and the predictor variables is modeled 
through a linking function 𝑔 as follows: 

𝑔(𝜇) = 𝛽1 +-𝛽'𝑥'

(

')#

 (6) 

where 𝑔 is the linking function, 𝜇 is the expected value of 𝑌, 𝛽'  are the estimated coefficients, and 𝑥'  
are the predictor variables. Different linking functions can be considered in these models, including 
linear, quadratic, compound, growth, exponential, cubic, inverse, among others. In the present 
research, the identity link function was used since the relationship between air temperature and the 
dependent variables (concrete temperature and resistivity) was assumed to be linear, therefore the 
relationship is represented as a weighted sum of the predictor variables. In the present methodology, 
the predictor variable, 𝑥, was considered to be the air temperature, which was used to obtain the 
expected value, 𝜇, corresponding to the concrete temperature and electrical resistivity. 
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Gaussian family distribution was applied for the error function due to the suitable for this problem 
according to the main key metrics used, including pseudo 𝑅$, AIC (Akaike Information Criterion), BIC 
(Bayesian Information Criterion), Mean Squared Error (MSE) Root Mean Squared Error (RMSE) and 
Mean Absolute Error (MAE). This distribution is commonly used for modeling continuous outcomes 
like temperature and resistivity, as it assumes that the residuals (errors) are normally distributed. 

3.3. Group pattern recognition. 

To achieve better results with the GLMs, a group pattern recognition algorithm was implemented to 
identify variations in the readings of the concrete resistivity sensors. These variations could be due to 
degradation processes or changes in other factors influencing the sensors that were not considered in 
this study. This step corresponds to Stage D in Figure 3. 

Pattern recognition for subgroup creation focuses on identifying and understanding patterns and 
structures within datasets involving multiple distinct groups or classes. The group-based approach aims 
to identify similarities and differences among datasets that can be divided into distinct groups or 
categories, aiding in better prediction of missing data. Various techniques exist to address group 
pattern recognition. The two primary methods focus on clustering algorithms and classification 
techniques to assign data to different classes or groups based on their characteristics 33. Clustering 
algorithms were used in the group pattern recognition for this paper. Correlation was used as the 
variable to separate different subgroups. 

4. Results and discussion 
This section presents the results of the proposed methodology for the case study described in Section 
2. In section 4.1, the missing data in the air temperature measurements are estimated, while in section 
4.2 the results obtained in filling the missing data for the concrete temperature sensors are presented. 
Section 4.3 outlines the final part of the methodology, focusing on filling the missing data for the 
resistivity sensors. 

4.1. Filling missing air temperature data 

The first step in Figure 3 is to compute the missing air temperature data. This was achieved using a 
Feed-Forward Neural Network (FFNN), as explained in Section 3.1. The recorded air temperature data 
were used to train and validate the model. Table 5 presents the amount of known and missing data, 
and the largest continuous gap of missing data of the air temperature sensor. 

Table 5. Information about the missing data in air temperature database. 

Measured 
data 

Missing 
data 

Maximum 
continue gap 

4975 277 59 
 

Figure 6 presents the results of the FFNN method for filling missing air temperature data. It is observed 
that the calculated values align adequate with the temperature variations produced by the sensors. To 
estimate the approximation accuracy of the FFNN, five artificial gaps of 1, 5, 10, 25, and 60 days were 
created. Table 6 presents the main error metrics obtained between all the artificial gaps and the values 
measured by the meteorological station. The MAE of 3.51 indicates that, on average, the values are 
off by 3.51ºC, which is an acceptable value for the study. The 𝑅$ value of 0.78 implies that 78% of the 
variability in the air temperature can be explained by the model, which is generally considered a strong 
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result according to Insukindro 34. Therefore, it can be concluded that the results present an adequate 
fit of the proposed model, indicating that this step of the methodology functions properly. 

 

Figure 6. Data filling of air temperature using the FFNN method. 

Table 6. Principal error indicators for the FFNN method. 

Temperature sensor Value Units 
Mean Absolute Error (MAE) 3.51 ºC 
Mean Squared Error (MSE) 18.62 º𝐶$ 

Root Mean Squared Error (RMSE) 4.32 ºC 
Coefficient of Determination (𝑅$) 0.78 - 

 

4.2. Filling missing concrete temperature data. 

Once a gap-free air temperature database is obtained, the methodology is applied to the concrete 
temperature sensors. Table 7 displays the Pearson correlation coefficients between air temperature 
and the five concrete temperature sensors installed within the structure. Schober et al.35 suggest that 
a Pearson coefficient between 0.7 and 0.89 can be considered a strong correlation. Therefore, with 
correlation coefficients greater than 0.8, the methodology used GLM to estimate missing data from 
the concrete temperature sensors. Table 7 also presents the amount of known and missing data, and 
the largest continuous gap of missing data of the five concrete temperature sensors. Two sensors (L4-
T and L5-T) acquired less data and presented maximum continuum gap of 336 days.  

 

Table 7. Information about the missing data in concrete temperature sensors. 

Concrete Temperature 
sensor 

Measured 
data 

Missing 
data 

Maximum 
continue gap 

Pearson 
Correlation 

L1-T 4106 1146 197 0.91 
L2-T 4106 1146 197 0.92 
L3-T 4106 1146 198 0.92 
L4-T 3444 1808 336 0.83 
L5-T 3444 1808 336 0.84 

 

Figure 7 illustrates the results of filling missing data for the concrete temperature sensors. It is 
noteworthy that the estimations from the GLM adequately fill the gaps in the data for the five concrete 
temperature sensors. Additionally, a discernible seasonal trend is observed throughout the analyzed 
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period that is also well represented by the filled data. Table 8 presents the primary error indicators for 
the series of the GLM model adjusted for each sensor. The L2-T and L5-T sensors show the best MAE 
and RMSE values, indicating greater precision when filling concrete temperature. However, the 
average MAE is 1.296ºC, with low variability (standard deviation of 0.061), indicates that most sensors 
have similar precision in terms of mean absolute error. The average 𝑅$ is 0.786, with a standard 
deviation of 0.072. This indicates that, on average, the sensors explain 78.6% of the variability in 
temperature measurements, although some sensors (such as the L4-T and L5-T) have lower 𝑅$ values. 
Overall, the results demonstrate the high applicability of this methodology, even in cases where there 
is a high correlation among the data despite gaps of more than 48 days.  

 

Figure 7. Data filling of the concrete temperature sensors using GLM. 
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Table 8. Error indicators for the GLM model. 

Concrete temperature 
sensor 

MAE 
(ºC) 

MSE 
(º𝐶$) 

RMSE 
(ºC) 𝑅$ 

L1-T 1.29 2.98 1.73 0.84 
L2-T 1.25 2.72 1.65 0.85 
L3-T 1.29 2.98 1.73 0.84 
L4-T 1.40 3.52 1.88 0.70 
L5-T 1.25 2.80 1.67 0.70 

 

4.3. Filling concrete resistivity data 

The final step of the methodology is based on the premise of a correlation between temperature and 
electrical resistivity. This relationship is evident in Figure 8(a) and Table 9 where a negative correlation 
is observed for almost all cases. However, some sensors do not exhibit a clear correlation (Figure 8(b)). 
GLMs are consider on the estimation of the missing data in this section. However, the direct application 
of GLM is not feasible without first identifying patterns in the data. Therefore, pattern recognition 
techniques are employed to identify subgroups within the dataset that exhibit consistent trends, which 
then allows for the application of GLM for predictive purposes. 

 

Figure 8. Relation between concrete temperature and resistivity sensors. 
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Table 9. Pearson correlation between concrete resistivity and concrete temperature. 

Name of the sensors Correlation Resistivity sensor Temperature sensor 
L1-R1 L1-T -0.841 
L1-R2 L1-T -0.961 
L2-R1 L2-T -0.472 
L2-R2 L2-T -0.953 
L3-R1 L3-T -0.274 
L3-R2 L3-T -0.360 
L4-R1 L4-T -0.952 
L5-R1 L5-T -0.329 

 

Figure 9 presents a 3D representation of Figure 8(b), highlighting the potential changes in correlation 
over time. These variations may be associated with fluctuations in concrete conditions. While the 
correlation varies, its association with temperature appears consistent. Hence, it is proposed to 
employ a group pattern recognition for resistivity data (Stage D in Figure 3, section 3.3).  

 

Figure 9. Relation of concrete resistivity, concrete temperature, and days of the sensors in location 3 
(L3-T and L3-R1). In red, are possible different trends. 

Group pattern recognition is used to identify subgroups among the analyzed sensors where data 
exhibit a consistent trend. The minimum subgroup size of 365 days was selected to reflect the seasonal 
cycles that influence concrete resistivity. This period was chosen because it aligns with typical climatic 
patterns, ensuring that the subgroups capture the variations that occur due to temperature and 
environmental changes over a complete year.  
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Starting from this minimum group size, a correlation is calculated, and the most recent data point is 
compared to the prediction using GLM. To minimize user-induced bias, the segmentation process was 
designed to be as objective as possible. We implemented a method that compares the relative error 
between the measured point and the prediction, triggering a new subgroup when this error exceeds a 
predefined threshold. This automatic procedure reduces manual intervention in subgroup creation, 
ensuring that the segmentation is based on statistical consistency rather than subjective visual 
interpretation. A relative error threshold of 0.8 was assumed based on engineering judgment to ensure 
good separation of subgroups during the pattern recognition process. When the error between the 
next measured point and the calculated prediction surpasses the threshold, a new subgroup is 
initiated. 

Figure 10 displays resistivity values segmented by subgroups, while Table 10 presents the Pearson 
correlation for each subgroup. The methodology did not identify more than one subgroup for the L1-
R1, L1-R2, and L4-R1 sensors, suggesting that the separation into subgroups it is not necessary because 
a strong correlation was estimated for the considered data indicating consistency in the measurements 
(See Figure 10(a, b, and g)). For the other sensors, the separation of the data into subgroups reveals a 
variability that is not consistent with the original correlations – i.e., positive correlations. This suggests 
that temporal patterns and trends may vary significantly over time, highlighting the importance of 
considering subgroups in the analysis to capture more complex dynamics. This pattern recognition also 
is useful to identify some subgroups with low or positive correlations for which the available data 
cannot be accurately used for filling purposes.  
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Figure 10. Subgroups identified using the proposed methodology in concrete resistivity sensors. 
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Table 10. Fundamental information of each subgroup of concrete resistivity sensors. 

Concrete 
Resistivity 

sensor 
Subgroup Measured 

data 
Missing 

data 

Maximum 
continue 

gap 
𝑅$ 

Subgroup 
correlation 

Sensor 
correlation 

L1-R1 1 3888 1364 200 0.60 -0.78 -0.78 
L1-R2 1 3620 1632 210 0.80 -0.89 -0.89 

L2-R1 
1 364 1412 1012 0.12 0.35 

-0.44 2 459 64 64 0.60 -0.77 
3 2253 700 151 0.23 -0.48 

L2-R2 1 1884 1427 219 0.76 -0.87 -0.87 2 1533 408 151 0.84 -0.91 

L3-R1 

1 365 0 0 - 0.29 

-0.22 

2 654 277 197 0.10 0.31 
3 1065 297 114 0.27 -0.52 
4 560 206 120 0.13 0.35 
5 586 358 151 0.28 -0.53 
6 874 10 10 0.79 -0.89 

L3-R2 

1 364 270 268 0.05 -0.22 

-0.33 2 673 831 455 0.48 -0.69 
3 1318 690 151 0.28 -0.53 
4 1096 10 10 0.41 -0.64 

L4-R1 1 2882 2370 339 0.62 -0.78 -0.78 

L5-R1 1 1071 1709 786 0.12 -0.35 -0.27 2 1523 949 165 0.00 0.03 
 

Once the subgroups for each sensor have been identified, the final part of stage D (Figure 3) is carried 
out. This part involves estimating the missing data for the subgroups using GLM models to complete 
the information for the resistivity sensors. For sensors where no subgroups were identified, the entire 
database of the sensor and the air temperature was used for the estimation of missing data. Table 10 
also presents the subgroups obtained from the methodology, the amount of known and missing data, 
the largest continuous gap of missing data. 

Table 10 also provides the 𝑅$, the correlation for each subgroup and the original correlation of each 
sensor. It is observed that in most of the created subgroups, the correlation values are more consistent 
compared to the expected correlation, indicating that the methodology is capable of extracting specific 
trends from the analyzed data. The predictions for sensors L1-R1, L1-R2, L3-R2, and L4-R1 align 
remarkably well, with correlations below -0.7 and 𝑅$ values exceeding 0.6. The authors consider an 
adequate estimation of the missing data occurs when the correlations are below -0.7 and 𝑅$ values 
above 0.6. In that scenario, subgroup 2 of L2-R1 and subgroup 6 of L3-R1 should also be included 
among the successful predictions. Figure 11 showcases the data filled by the methodology for all 
concrete resistivity sensors. It is observed that the proposed approach provides a consistent data filling 
for the groups for which correlations are below -0.7 and 𝑅$ values above 0.6, as it is characteristically 
shown in Figure 11. However, it is also noted (e.g., Figure 11(h), subgroup 2) that data filling provided 
by this method is not suitable when the above-mentioned conditions are not satisfied.  
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Figure 11. Data filling of the concrete resistivity sensors using pattern identification and GLMs. 



 20 

4.4. Sensitivity analysis of error propagation 

A sensitivity analysis was conducted to evaluate the impact of the MAE results of Table 6 in the 
imputation of air temperature on the subsequent predictions of concrete temperature and electrical 
resistivity. Since air temperature is a key input in the imputation process, it was necessary to assess 
how uncertainties in its estimation propagate through the model and affect the predicted values for 
other variables. 

Three scenarios were defined to simulate the potential impact of the MAE on the imputed air 
temperature: Scenario 1: The imputations of air temperature were increased by the MAE value of 
3.51°C. Scenario 2: The original imputed air temperature was used as a baseline. Scenario 3: The air 
temperature imputation were decreased by the MAE value of 3.51°C. For each scenario, the 
Generalized Linear Model (GLM) was applied to predict the missing values of concrete temperature 
and resistivity. The differences between the predictions in Scenario 1 and Scenario 3 were compared 
to those in Scenario 2 (baseline) to quantify the impact of perturbations in air temperature on the 
predicted variables. 

The sensitivity analysis demonstrates that the MAE of 3.51°C in the imputed air temperature has a 
minimal effect on the predictions of concrete temperature and resistivity, with average impacts of less 
than 1.5%. Table 11 presents the impact on the imputation of concrete temperature and concrete 
resistivity, calculated as the relative error with respect to Scenario 2 (baseline). This low sensitivity 
indicates that the model is resilient to uncertainties in air temperature imputations, supporting the 
validity and robustness of the proposed methodology. The slight asymmetry observed in the results 
suggests that further investigation could be conducted to better understand the model's sensitivity to 
variations in lower temperature ranges, but these findings do not compromise the overall reliability of 
the results. 

Table 11. Impact of Air Temperature Imputation Errors on Concrete Temperature and 

Resistivity Predictions. 

Scenario 

Impact on 
Concrete 

Temperature 
(%) 

Direction 
(Concrete 

Temperature) 

Impact on 
Concrete 
Resistivity 

(%) 

Direction 
(Concrete 
Resistivity) 

1. Air Temperature 
Imputation +3.51ºC 

-0.66 Decrease 0.75 Increase 

2. Baseline - - - - 
3. Air Temperature 
Imputation -3.51ºC 

1.48 Increase -0.61 Decrease 

 

5. Conclusions 
The present research addresses the challenge of missing data in the durability performance monitoring 
of reinforced concrete structures using SHM systems. The proposed methodology employs a 
combination of feed-forward neural networks, generalized linear models, and pattern recognition 
techniques to impute missing data in air temperature measurements as well as in concrete resistivity 
and temperature sensors. 

The scientific value of this study lies in the significant expansion and improvement of a preliminary 
methodology presented by the authors 10. While the previous work was limited to a single year of data 
for a single resistivity and temperature sensor and focused on filling small data gaps of up to 61 days, 
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this paper introduces a more robust approach. By incorporating over fourteen years of sensor data 
and integrating air temperature as an additional input for data imputation, the present study 
demonstrates a more comprehensive and accurate methodology capable of filling longer data gaps. 
This is the first study, to the best of the authors' knowledge, to apply such an imputation methodology 
for missing data in resistivity sensors within SHM systems. 

The results demonstrate that the methodology is particularly effective for sensors with strong 
correlations between temperature and resistivity (absolute Pearson correlation value greater than 0.7) 
and high 𝑅$ values (above 0.62). Consequently, 43.4% of the missing data was estimated adequately. 
The integration of air temperature as an input improves the overall accuracy of the imputation process, 
particularly in long-term sensor data analysis, and offers practical benefits for SHM system managers 
in the context of the interpretation of the data for early corrosion detection and maintenance planning. 

Despite these advances, some limitations remain. The methodology relies heavily on the correlation 
between temperature and resistivity, which can be problematic in scenarios of concrete deterioration, 
where this relationship may break down. This limits the effectiveness of the approach in certain 
deteriorated conditions. Furthermore, the use of GLMs proved to be effective in subgroups with high 
correlation, but less so in groups with lower correlation values, suggesting the need for future research 
into more advanced computational models that do not depend solely on correlation. 

Pattern recognition allowed the identification of subgroups with similar behaviors, improving Pearson 
correlation and missing data estimation. However, with only 43.4% of the estimated data achieving a 
strong correlation with the measured data, there is still room for improvement. Future studies could 
explore the application of more sophisticated machine learning models or hybrid approaches that can 
address data variability more effectively, particularly in regions with high uncertainty. 
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