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Duality of the existing geometric variable strain models for the
dynamic modelling of continuum robots

A. Ouyoucef1, Q. Peyron1, V. Lebastard2, F. Renda3, G. Zheng1 and F. Boyer2

Abstract—The Cosserat rod theory has become a gold standard
for modeling the statics and dynamics of serial and parallel
continuum robots. Recently, a weak form of these Cosserat rod
models called the geometric variable strain model has been
derived where the robot deformations are projected on finite-
dimensional basis functions. This model has very interesting
features for continuum robotics, such as a Lagrangian form close
to classical rigid robots and the ability to tune its performances
in terms of computation time and accuracy. Two approaches
have been proposed to obtain and compute it. The first is
based on the Newton-Euler recursive algorithm and the second,
on the projection of the strong form equations using Jacobian
matrices. Although these approaches yield identical model forms,
their disparate implementations and numerical schemes render
each uniquely suited to specific applications. Notably, underlying
these disparities lies a profound duality between these models,
prompting our quest for a comprehensive overview of this duality
along with an analysis of their algorithmic differences. Finally, we
discuss perspectives for these two approaches, in particular their
hybridization, based on the current knowledge of rigid robotics.

Index Terms—Continuum robot, Cosserat rod theory, dynam-
ics, geometric variable strain model, duality.

I. INTRODUCTION

CONTINUUM robots (CRs) have gained increasing pop-
ularity in recent years, finding diverse applications in

many fields such as healthcare [1]. In this context, several
modeling techniques exist and have already been the subject
of reviews such as [2]. To perform faster movements, the
robot must be designed, analyzed, and controlled taking into
account its dynamic behavior [3]. In this context, it is desirable
to have accurate dynamic models to compute the deformed
shape of the robot under specific actuation inputs and external
forces. The finite element method (FEM) is one approach
to model such slender soft robots [4]. In this model, the
robot is divided into several sub-domains or ”elements”, and
its deformations are described by the displacement of the
elements’ nodes. Another approach is to use beam/rod theories.
Linear theories assume geometric linearity and account for
small rotations, such as the Euler–Bernoulli (E-B) beam theory
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which has been a cornerstone for modeling CR systems over
the years [5]. It characterizes a beam’s behavior under axial
forces and bending. Incorporating shear effects and rotation,
the Timoshenko beam model improves upon the E-B beam
model to model CRs [6].

For applications involving large deflections, rod theories ca-
pable of handling geometric non-linearities, such as Kirchhoff
rod theory, come into play. The Kirchhoff model extends E-
B theory and can be used to describe bending and torsion
deformations of general designs of CRs [7] .The Cosserat rod
theory extends this model further by encompassing bending,
torsion, shear, and extension [8]. As a consequence, it has
become a gold standard to accurately model serial [2] and
parallel [9] CRs, in quasi-static and dynamic regimes. There
are two main classes of implementations for the Cosserat rod
theory, as detailed in [10]: the Newtonian and the Lagrangian
approaches. The Newtonian approach uses only Newton’s three
laws, including the action-reaction principle, to establish local
relationships between robot deformation and actuation along
the rod. The resulting model can then be put into the form
of a boundary value problem (BVP), which is usually solved
using shooting methods [9]. On the other hand, the Lagrangian
approach derives from the virtual work (VW) principle (VWP)
and reduces the strong form of the partial differential equations
(PDEs) of the Cosserat model to a set of ordinary differential
equations (ODEs). To do this, the strain field, initially defined
in an infinite dimensional space, is projected onto a finite-
dimensional functional basis using the Ritz method. Several
function bases can be used and applied either between pre-
defined nodes [11, 12] as in the FEM, or along the whole robots
backbone, leading to a model referred to as the Geometric
Variable Strain (GVS) model.

The GVS model proved valuable in the general context
of CRs featuring an assembly of multiple rods, rigid bodies,
and joints as they enable the direct derivation of a concise
set of equations [10]. However, the relative nature of the
parameterization of the GVS model, considerably, increases
the non-linearities in the inertia and external force matrices.
These matrices take the form of multiple space integrals that
have to be computed, at each time step. Computing these
matrices with a low computation time while ensuring high
accuracy, represents a real challenge. To date, two approaches
have been used to solve this problem. The first approach is
based on the projection of the Cosserat PDEs with kinematic
Jacobian matrices [13], in accordance with the general Kane
method. The second approach [14], is based on Newton-
Euler (NE) recursive algorithms, as developed in [15] for rigid
multi-body systems. Both approaches are based on the same
modeling assumptions and produce for a same state, the same
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mapping between motion accelerations and actuation forces.
However, the implementation of this mapping is radically
different, and the relationships between these two realizations
of the inverse dynamics have never been studied before, nor has
their equivalence been mathematically proven. What’s more,
these GVS models have mutual advantages and disadvantages
that can be exploited and combined as required.

In the continuity of our previous work [10] where we
explained didactically and compared the Newtonian and La-
grangian static Cosserat rod model for CRs, we propose in
this paper to focus on the two approaches leading to the GVS
dynamic model. The contributions of this paper are three-fold:

• A didactical elaboration of the two existing GVS ap-
proaches with the same notations and in the framework
of the VWP.

• A proof of their mathematical duality
• A comparative overview of the most recent implementa-

tion of the two approaches, and new perspectives.

II. BASIC CONCEPTS

Here we define the spaces of a CR, the duality that structures
the models, and the VWP as a machine for changing spaces.

A. Kinematic spaces: from strains to poses

The concept of kinematic space is one of the most important
ones of robotics as evidenced by the emblematic joint space
and workspace of rigid manipulators. In the case of CR,
more than two spaces are needed to describe these systems
whatever the considered actuation strategy [1]. In Fig. 1, we
have represented an extended version of the different spaces
subtended by a classical tendon actuated continuum robot
(TACR), for a better and easy understanding, as it is a well
known design in the community. From left to right, we find
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Fig. 1. Flow charts of kinematic spaces for a TACR. Geometric transforma-
tions and their tangents are defined symbolically by applications φ, and their
Jacobian matrices J . In yellow, we have the location of the robot’s spaces. The
red and the blue indicate the dual variables. The grey and the green represent
the backbone spaces before and after reduction, respectively.

the space of motor joints qm, the space of tendon lengths l,
the space of rod strains ϵ, with a possible reduction of it (q),
as in the case of the GVS model for example, and the space
of pose g defined by the Lie group SE(3). Once these spaces
are defined, conventional robotics models can be used to shift

from one to another according to the user’s need. For instance,
g = φ(qm) defines the forward model that maps the motor
joint space onto the workspace. i.e. a nonlinear map between
two manifolds. More generally, let be q⋆ and q the robot
coordinates in two different spaces, the map between them
and its tangent are generally noted φ, so that q⋆ = φ(q) and
J = (∂φ/∂q) respectively. This latter matrix is a Jacobian
operator that transforms velocities between the two spaces.

In this work, we exploit mainly the mapping relating the
poses and their associated speed and accelerations (g,η, η̇), to
the strain field and its time derivatives (ϵ, ϵ̇, ϵ̈). This mapping
can be deduced from the continuous geometric model along
the robot:

g′ = gξ∧ , g(0) = g0, (1)

where ξ = (g−1g′)∨ is the X-rate twist of cross-sections along
the robot, related to the strain field ϵ by ϵ = ξ−ξ0, with ξ0 the
value of ξ in a reference (stress-less) configuration of the rod.
Time-differentiating twice (1), provides the continuous model
of velocities η = (g−1ġ)∨ and accelerations η̇:

η′ = ξ̇ − adξη , η(0) = 0, (2)
η̇′ = ξ̈ − adξ̇η − adξη̇ , η̇(0) = 0, (3)

where ad is the adjoint operator of an element of se(3).
Replacing ∂./∂t by variation δ. in (2) defines compatible
displacement fields δζ = (g−1δg)∨, as:

(δζ)′ = δξ − adξδζ , δζ(0) = 0. (4)

Equations (1-4) define the differential kinematics of the CR.
Alternatively, one can integrate them with respect to the X-
variable, to obtain equivalent kinematics in integral form. The
X-ODE (1) can be integrated in the following form which
preserves the group structure of SE(3):

g = g0 exp(Ω(X)), (5)

where exp() denotes the exponential map, and Ω(X) is an
infinite series of multiple integrals of nested Lie Brackets of
ξ, named Magnus expansion [16]. For the remaining X-ODEs,
we use the relationships between ad and Ad, where Ad is the
adjoint operator of an element of SE(3) [17]:

adξ = −Ad−1
g

′
Adg, (6)

(ξ, ∂./∂X) can be indifferently replaced by (η, ∂./∂t), and
(δζ, δ.). Using these relations in (2)-(3) and (4) gives:

η = Ad−1
g

∫ X

0

Adg ϵ̇ dY , δζ = Ad−1
g

∫ X

0

Adgδϵ dY, (7)

η̇ = Ad−1
g

∫ X

0

Adg ϵ̈ dY +Ad−1
g

∫ X

0

Adgadη ϵ̇ dY. (8)

Now that all the kinematic fields are parameterized by strains,
and because these latter are in a vector space, one can
approximate them by a truncated Ritz decomposition in:

ϵ(X, t) = Φ(X)q(t), (9)

where Φ is a matrix of ”strain modes” [13, 14], while q defines
a finite (discrete) vector of generalized (strain) coordinates.
Using this strain parametrization in (7) and (8), one can shift
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δq, q̇ and q̈ out of the integrals and obtain the change of space
relations in usual finite dimensional form:

η = Jq̇ , δζ = Jδq , η̇ = J̇ q̇ + Jq̈ (10)

where we introduced the Jacobian matrix and its time deriva-
tive:

J = Ad−1
g

∫ X

0

AdgΦdY (11)

J̇ = Ad−1
g

∫ X

0

Adg adJq̇ΦdY . (12)

B. Force-displacement duality and VW

In Lagrange mechanics, a (generalised) force Q is what acts
along a small (generalised) displacement dq (or velocity q̇),
to produce a work dW = dqTQ (a power P = q̇TQ). Since
works are scalars, and displacements (or velocities) are vectors,
thus forces are vectors in the dual space of displacements
(velocities), i.e. co-vectors. Referring to Fig. 1, in the case
of a TACR, the dual of motor joint velocities, is the vector of
motor torques τm, those of tendon length velocities are the
vectors of the tensions T . The dual fields to the strain velocity
field ϵ̇ are the stress fields Λ. Those of inertial twists η are
the fields of force-wrenches F , and those of generalized strain
velocities q̇ are generalized stress forces Q.

This duality strongly structures Lagrangian mechanics and
becomes apparent when we change forces from one space
to another. To apply such a change of space, we use the
fundamental property of VWs of being invariant by any change
of coordinates or kinematic space. For instance, if q⋆ = φ(q)
is invertible, we have for any variation of q and q⋆, noted δq
and δq⋆, and such that δq⋆ = Jδq:

δW = δqTQ = δq⋆TQ⋆ = (Jδq)TQ⋆ = δqTJTQ⋆, (13)

which holding for any δq, provides the change rule for
generalized forces:

Q = JTQ⋆ , Q⋆ = J−TQ. (14)

Note that, while velocities transform forwards with Jacobian
matrices, forces transform backwards with transpositions (or
duals) of the Jacobians, as illustrated in Fig. 1.

C. Changing the space of the dynamics equations

Once the kinematics so defined, we can move on to the dy-
namics. The equations of motion of a CR can be derived by ap-
plying one of the principles of dynamics (Newton, D’Alembert,
Hamilton). In this article, we will use only D’Alembert’s
VWP, the statement of which is reminded below. At any
moment, and for any variation or ”virtual displacements” of its
configuration, parametrized by a set of generalized coordinates
q, we have the VW balance:

∀δq , 0 = δWacc − δWint − δWext, (15)

where from left to right we find the VWs of accelerations
quantities, that of internal forces and that of external forces
respectively. In practice, the dynamics in the configuration
space of qs, is obtained by expressing all the VWs of (15)
as δW = δqTQ. Then, using the fact that (15) is true for any

δq, one can remove δq in (15), to get Qacc = Qint + Qext,
which defines the dynamic balance of the system in the space
of qs.
Throughout the article, the VWP is used as a machine for
changing the dynamic model of CRs from one kinematic
space to another. To illustrate such a change, consider a
rigid manipulator whose dynamics in a generalized coordinate
system q, is:

τ = M(q)q̈ +Q(q, q̇), (16)

with τ and Q the vectors of control and Coriolis and centrifu-
gal torques, and M the mass matrix. We want to reexpress
(16) in another kinematic space defined by q⋆. To this end,
we have thanks to the kinematic invariance of works:

∀δq : 0 = δWacc − δWint − δWext

= δqT (τ −Mq̈ −Q)

= δq⋆T (τ ⋆ −M⋆q̈⋆ −Q⋆) . (17)

Then, introducing the differential consequences of the kine-
matic space change:

δq⋆ = Jδq , q̇⋆ = Jq̇ , q̈⋆ = Jq̈ + J̇ q̇ (18)

into (17), we obtain by simple identifications:

τ ⋆ = J−T τ , M⋆ = J−TMJ−1 , Q⋆ = J−TQ, (19)

where J ,Q,M in (19) depend (q, q̇) that need to be
calculated from (q⋆, q̇⋆) with q = φ−1(q⋆) and q̇ = J−1q̇⋆.

In the case of finite dimensional systems, q is an ordinary
vector of discrete generalized coordinates, as are the joint
coordinates of a rigid manipulator. However, the VWP can
be applied to the infinite dimensional configuration space of
a deformable body B, where the discrete sums of δqTQ are
replaced by integrals

∫
B δqTQ dB and q, δq and Q are now

vector fields1 over the continuous material domain of B. In this
later case, the dynamics turns to be a set of partial differential
equations, or ”strong form”, that governs the field q, while
the balance of VWs defines the ”weak form” of the same
dynamics.

By way of illustration, for a TACR, the VWP can be applied
in any kinematic space in the flowchart in Fig. 1. In the
remainder of the article, we will do so in three of these spaces.
Thus, the model of a CR will first be derived in the space of
poses g, then moved to that of strains ϵ and finally to that of
modal coordinates q of (9). Note that while the g coordinates
are absolute, i.e. they refer to the inertial frame, the ϵ and q
coordinates, are relative, i.e. they refer to the cross-sectional
frames. As we move forward, we will look at the two main
approaches that can be used to achieve these changes of space.

III. STRONG FORM OF CR DYNAMICS

Serial and parallel continuum manipulators are typically
modelled by considering one or several Cosserat rods
cantilevered at one end and free, or assembled at a platform,

1In the remainder of the article, the notations q and Q will be reserved for
finite vectors, while others will be introduced for such fields.
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at the other. As a sub-theory of continuous media mechanics,
the dynamic model of such rods is naturally defined in a
space of absolute coordinates, here realized by the field of
inertial poses g. It consists of the following ingredients:

• A definition of (small) strain measurements:

ϵ = ξ − ξ0 , (20)

• The dynamic balance in the medium:

Λ′ = Mη̇ − adTηMη + adTξ Λ− F̄ ext , (21)

• Boundary conditions (BCs):

g(0) = g0 , Λ(l) = F+ (22)

• A constitutive law, e.g. for an elastic material:

Λ = Hϵ. (23)

where Λ is the field of stress wrenches, F̄ ext and F+

are the density of external wrench per unit of X , and the
concentrated external wrench applied at the tip X = l of
the rod, respectively, while H and M are its cross-sectional
Hooke tensor and its density of inertia tensors respectively,
all expressed in the cross-section frames along the rod.

The model of a continuum manipulator needs also to
incorporate a model of actuation, that can be entered through:

• The model of the stresses, which can be the sum of the
internal stresses given by the constitutive law and distributed
internal actuation wrenches expressed in the cross-sectional
frame, like in the case of TACR [13, 14]:

Λ = Λact +Hϵ. (24)

with Λact the field of stress wrench produced by the actuation.

• The model of distributed external wrenches, if we have an
external actuation possibly depending on the robot pose, such
as magnetic CRs with ferromagnetic elastic bodies [18]:

F̄ ext = F̄ act + F̄ env (25)

with F̄ act and F̄ env, the (g,η)-dependent models of the
density field of force wrench produced by the actuation and
the external environment respectively.

• The model of BCs, if actuation is applied through bound-
aries. For instance, if the manipulator is fully actuated at its
basis by an external wrench F act,−, which is the case for
concentric tube robots (CTRs) [19] and most designs of
continuum parallel robots (CPRs) [20], one can replace the
geometric boundary conditions at g(0) = g0, by the condition
on wrenches:

Λ(0) = −F act,− (26)

As a note, F act,− can be either directly imposed in case of
torque control of the robot actuators or induced by geometrical
constraints through Lagrange multipliers in case of displace-
ment control.
The dynamic balance (21) can be deduced by applying the

VWP in the space of cross-sectional poses g, i.e. by imposing
that the balance (15) holds for any field of virtual displace-
ments δζ = (g−1δg)∨, compatible with the geometric BC of
(22), i.e. s.t. δζ(0) = 0. To see how this can be achieved, let us
consider the case of a CR internally actuated with a controlled
stress-field Λact, and decompose the VW of external forces in
(15), as:

δWext = δWenv + δWact (27)

where the VW of environmental forces is:

δWenv =

∫ l

0

δζT F̄ env dX + δζ(l)TF+ (28)

while, for the sake of genericity, the actuation forces are
considered a part of the external forces for all actuation
strategies:

δWact = −
∫ l

0

δϵTΛact dX. (29)

As regards the two other contributions δWint and δWacc, we
have:

δWint = −
∫ l

0

δϵT (Hϵ) dX, (30)

δWacc =

∫ l

0

δζT F̄ in dX (31)

with F̄ in is the density of inertial forces :

F̄ in = Mη̇ − adTηMη (32)

Now let us remark that (28) and (31), being naturally expressed
in the space of poses, they need no further algebraic manip-
ulation. However, this is not the case of the two others (29)
and (30), which being naturally defined in the space of strains,
need to be transferred to the space of poses, to obtain all the
works of (15) in the same space. To achieve this transfer, we
use (4) to express δϵ = δξ in terms of δζ in (30) and (29),
that can then be by-part integrated with respect to X . Once
gathered with other contributions coming from (28) and (31),
the integral terms of these by-part integrations directly provide2

the PDEs (21), while the residual boundary terms of the by-
part integrations can be gathered with the VW of F+, to form
the second BC of (22).

IV. REDUCED MODEL IN STRAIN PARAMETRIZATION

A. From the strong form to the reduced strain-based model

In this section, we detail how the reduced dynamic model
of CRs in the space of strain coordinates q, can be obtained
from the above strong form in the space of g. In this finite
dimensional discrete space, this model takes the usual form of
a set of ODEs in Lagrangian form:

Qact(q) = M(q)q̈ +Q(q, q̇) +Kq (33)

where M is the matrix of generalized inertia, Qact is the
vector of generalized actuation forces, Q is the vector of
external (e.g. gravity, contacts...), Coriolis and centrifugal
forces, Kq is the vector of generalized restoring forces, with

2Thanks to the fact that (15) holds for any δζ compatible with the geometric
BC.
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K the generalized stiffness matrix.

As presented in Section II.C, the reduced model (33) can be
deduced from the above strong form by using the VWP (15),
to move from the space of (absolute) poses g to that of the
(relative) strain coordinates q. Technically, there are two ways
to achieve this change of space:

• By converting absolute virtual twists δζ into relative ones
δϵ, using kinematic Jacobian matrices, according to the
so-called Kane’s method, here referred to as the Jacobian
based approach [11].

• By converting the force wrenches F into stress wrenches
Λ through a generalization of the NE inverse dynamics
algorithm from rigid to continuous robots [14].

In this section, we provide the computational principle of each
of these two ways.

B. Jacobian based approach

The Jacobian-based approach is the reciprocal of the
computational process evoked at the end of section III, i.e. it
aims to move (28) and (31) from the space of poses to the
space of strains. Practically, this is achieved by introducing
(10) in the weak form (15), and thanks to the kinematic
invariance of VWs, to identify the result with the expected
expression of the weak form in the space of qs:

• ∀δq ∈ Rn, we have:

0 = δWint + δWext − δWacc (34)

= δζ(l)TF+ +
∫ l

0
δζT (F̄ env − F̄ in)dX

−
∫ l

0
δϵT (Λact +Hϵ)dX

= δqT (Qact(q)−M(q)q̈ −Q(q, q̇)−Kq).

To apply the above identity, we need to consider separately the
stress and force wrenches as distinguished by the notations Λ
and F in all the above, and defined first in Section II.B.

1) Generalized forces generated by stress-wrenches Λ:
The VW developed by restoring and actuation stresses being
directly defined in the space of strains, we simply have with
ϵ = Φq and δϵ = Φδq:

δWint + δWact = −
∫ l

0
δϵT (Λact +Hϵ)dX

= −δqT
∫ l

0
ΦT (Λact +HΦq)dX

= δqT (Qact −Kq). (35)

which gives by identification:

K =

∫ l

0

ΦTHΦdX , Qact = −
∫ l

0

ΦTΛactdX. (36)

2) Generalized forces generated by force-wrenches F : The
VW developed by environmental and inertial forces needs to
be shifted from the space of poses to that of strains. Using the
integrated kinematics of (10), we find:

δWacc − δWenv = −δqTJT (l)F+−
δqT

∫ l

0
JT (F̄ env − F̄ in)dX = δqT (Mq̈ +Q). (37)

Now replacing F̄ in by its detailed expression (32) and using
(10), (37) gives by identification:

M(q) =
∫ l

0
JTMJdX ,

Q(q, q̇) =
∫ l

0
JT (MJ̇ − adTJq̇MJ)dXq̇

−
∫ l

0
JT F̄ envdX − JT (l)F+. (38)

Let us remark that all these expressions depend on g through
the model of (F̄ env,F+) (e.g. due to gravity), as well as
through Adg in the expressions (11), (12) of J and J̇ .

C. NE based approach
In the previous approach, we started from the VW

balance (15),(27)-(29) and converted the absolute virtual
displacement fields along with the force wrenches (inertial
and environmental) work, into strain variation fields.
Reciprocally, one can first compute the stress-wrench field Λ
generated by the force-wrenches exerted onto the CR, and
use it in the following alternative identity, which is equivalent
to (34):

• ∀δq ∈ Rn, we have:

0 = δWint + δWext − δWacc (39)

=
∫ l

0
δϵT (Λ−Λact −Hϵ)dX

= δqT (Qact(q)−M(q)q̈ −Q(q, q̇)−Kq).

In this alternative view, which corresponds to the NE-based
approach of rigid robotics, the generalized forces generated
by inertial and environmental force-wrenches, take the form:

M(q)q̈ +Q(q, q̇) = −
∫ l

0

ΦTΛdX, (40)

where at any X ∈ [0, l], Λ(X) is the stress-wrench that
balances all the inertial and environmental forces exerted onto
the piece of rod [X, l]. To calculate this stress-wrench field,
one can introduce the dual relationship to (6):

adTξ = −AdTgAd−T ′
g (41)

into the original dynamic balance (21) that can then be
integrated backward from l to X as:

Λ(X) = AdTgAd−T
g(l)F+

+AdTg
∫ l

X
Ad−T

g(Y )(F̄ env − F̄ in)(Y ) dY. (42)

Following the NE approach of rigid manipulators, one can
first compute (g,η, η̇) from (q, q̇, q̈) with the integrated (5)
and (10), or differential kinematics (1)-(3), and use a (g,η)-
dependent model of environmental forces with that of inertial
ones (32), to compute all these force-wrenches along the CR.
These values of (F̄ in, F̄ env,F+) are then introduced into (42)
which is projected onto the Ritz basis Φ through (40). In the
language of NE, this computational process defines a two-pass
(one called ”forward kinematics”, the other called ”backward
dynamics”) algorithm, named IDM , for ”inverse dynamic
model”. Referring to (40), one has:

M(q)q̈ +Q(q, q̇) = IDM(q, q̇, q̈). (43)

We will see later how this algorithm can be implemented
numerically or symbolically.
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V. SIMILARITIES AND DIFFERENCES

The two approaches are based on the same physical model
(Cosserat), with a same parametrization (strain coordinates),
and both lead to the inverse dynamic model of a CR, i.e. to
a model of the actuation forces Qact as some functions of
(q, q̇, q̈). From this highest point of view, they only differ by
the computational algorithm used to obtain these functions,
as shown on the flow chart diagram in Fig. 2. As introduced
before, they are extensions of the Kane’s method and Luh’s
algorithm that have both been extensively studied in the context
of rigid robotics. Therefore, after demonstrating the duality
of the Jacobian and NE approaches and their algorithmic
differences, we will provide perspectives on hybridizing both
based on current rigid robotics knowledge.

A. Mathematical duality

In this section, we prove the equivalence of the two ap-
proaches presented above. Since they differ from each other
only through the treatment of force-wrenches, we will con-
centrate on them, and show that starting from their model in
the NE-approach, one can deduce their model in the Jacobian
based one. To go further into details, remind that in the
Jacobian based approach, the vector of generalized forces
generated by any distribution of force-wrenches (F̄ ,F+), is
given by:

Q = −JT (l)F+ +

∫ l

0

JT F̄dX. (44)

While in the NE-one, the same vector is given by:

Q = −
∫ l

0

ΦTΛdX (45)

where Λ is the field of stress-wrench that balances F̄ and F+.
As a result, to prove the equivalence of the two approaches,

it suffices to prove that (44) and (45) are equal for any given
pair (F̄ ,F+). The proof below goes from (45) to (44) and
is segmented in two steps. In the first step, we will explicitly
state the expression (42) of Λ as a function of (F̄ ,F+). In
the second, we will explicitly demonstrate the identity of (44)
and (45).

1) Proof of (42): Introducing (41) into (21), with F̄ =
F̄ in − F̄ ext, gives:

Λ′ +AdTgAd−T ′
g Λ = F̄ . (46)

Now multiplying (46) by Ad−T
g , gives:

Ad−T
g Λ′ +Ad−T ′

g Λ = Ad−T
g F̄ . (47)

whose left-hand side can be written as:

(Ad−T
g Λ)′ = Ad−T

g F̄ . (48)

Integrating (48) from X to l and using the BC (22):

Λ(X) = AdTg(X)Ad−T
g(l)F+ −AdTg(X)

∫ l

X

Ad−T
g F̄dY. (49)

2) Proof of (44) = (45): We start by introducing (49) into
(45), which gives:

−
∫ l

0
ΦTΛdX = −

(∫ l

0
ΦTAdTg(X)dX

)
Ad−T

g(l)F+

+
∫ l

0
ΦTAdTg(X)

(∫ l

X
Ad−T

g(Y )F̄dY
)
dX. (50)

In the first term of the right-hand side of this expression, we
recognize the expression (11) of J , and we have:

−

(∫ l

0

ΦTAdTg dXAd−T
g(l)

)
F+ = −JT (l)F+. (51)

Applying a by-part integration to the second term of the right-
hand side of (50), noted I , gives:

I = −
[ ∫X

0
ΦTAdTg dY

∫ l

X
Ad−T

g F̄dY

]l
0

+
∫ l

0

(∫X

0
ΦTAdTg dYAd−T

g

)
F̄dX. (52)

The first term equals to 0 as:

−
∫ l

0
ΦTAdTg dY

∫ l

l
Ad−T

g F̄dY

+
∫ 0

0
ΦTAdTg dY

∫ l

0
Ad−T

g F̄dY = 0. (53)

Using the expression (11) of the Jacobian matrix in the
second term of (52) , gives:

I =

∫ l

0

JT F̄dX. (54)

Finally, using (51) and (54) in (50), we do have:

−
∫ l

0

ΦTΛdX = −JT (l)F+ +

∫ l

0

JT F̄dX. (55)

As announced, the identity (55) proves the equivalence of the
two approaches. Moreover, the computational process leading
to (55), being entirely based on the duality of twists and
wrenches (matrix transposition, by part integration), the two
algorithms can be said to be dual of each other.

B. Formulation and implementation

The Jacobian-based approach leads naturally to a model with
an explicit formulation, meaning it provides access to each
vector and matrix in Eq. (33). Indeed, by forward integrating
(from X = 0 to l) the equations of the Jacobian and its time
derivative (11-12), obtained from the analytical integration of
the kinematic models (2-3), one can integrate the equations of
the reduced model matrices (38). Moreover, in its latest ver-
sion [13], this approach uses spatial integration schemes that
have analytical formulations, to symbolically compute each
model matrix, and export it into a single function. As such,
one can obtain not only every matrices but also their analytical
derivatives with respect to design or control parameters. This
makes this model particularly interesting for the performance
analysis and design of CRs, where for example the matrices
must be combined and differentiated to compute singularity
detection criteria [20]. For control, this enables also reshaping
Eq. (33) in the usual state-space form ẋ = f(x,u), where
x = (qT , q̇T )T is the state vector and u is the control vector,
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Jacobian based approach Newton-Euler recursive
approach

Geometric model: (1)

Kinematic models:
(2)
(3)

Dynamic model: (21)

Boundary conditions: (22)

(24)Constitutive law:

Modal decomposition: (9)∫
(1): Analytical approximation

(e.g. Magnus expansion)∫
(2-3) analytically:

(10)

(11)

(12)

Virtual works principle on (21) Virtual works principle on (24)

Numerical integration of
(1-3, 21) and (40)

(40)

Application of the IDM function

Or

For α=1:n, calculate the αth column of
M :

Reduced model:

∫ l
0

(1, 11, 12)
∫ l
0

(1-3)

∫ 0
l

(21, 40)
X=0

X=l

X=0

X=l

IDM(q, q̇, q̈)

Fig. 2. Synthesis of the steps in both approaches side by side. The blue and red areas are relative to the NE recursive approach and Jacobian based approach,
respectively. The yellow part corresponds to the full Cosserat rod model.

for which most work on the control of smooth dynamical
systems has been built. On the contrary, the NE-based approach
uses an implicit formulation, where a part of the matrices is
not directly available, in particular the mass matrix. The set of
non-linear equations (43) needs to be solved with a numerical
solver to get q̈ from (q, q̇) and the actuation and external
forces, as illustrated in Fig. 2. If one wants to obtain the mass
matrix and forces of (33) with such a generalized IDM , it
suffices to feed it with some specific inputs. For α = 1 : n,
calculate the αth column of M :

Mα = IDM(q,0, δα)− IDM(q,0,0) (56)

with δα a unit vector with zero entries, except the αth.
This algorithm was implemented in a pure numerical setting
in [10, 14], leveraging numerical spatial integration schemes,
to validate the GVS against the geometrically exact FEM with
explicit time-integrators. Although simple to implement, this
further NE algorithm remains too slow to be used beyond this
objective.

C. Space and time integration

Concerning time integration, the Jacobian-based approach
naturally leads to using explicit schemes, for which the mass
matrix of the Lagrangian model (33) needs to be explicitly
computed and inverted. However, the dynamics of flexible
systems lead to numerically stiff ODE systems whose explicit
integration is problematic. The practical manifestation of this
limitation is that, to preserve stability, the user has to add
artificially high damping and/or use very small time steps,
which slows down the simulation considerably, if it doesn’t
simply explode. As a consequence, using explicit schemes may
not efficiently capture certain dynamic behaviors specific to
some robot architectures, such as high-frequency vibrations
in CRs with a low mass-to-stiffness ratio, the buckling phe-
nomenon in CPRs [20], and the snapping phenomenon in
CTRs [19]. Therefore, to preserve stability and maintain large
time steps (and save computations), it is strongly recommended

to use implicit time integration to simulate CR dynamics. In
this context, the simulator turns to be a predictive-corrective
algorithm that requires both the residual vector of the dynamics
(33), and its Jacobian to be computed at each step of a Newton
loop. Recently, the NE-based GVS has been extended to this
further context in [21]. In this case, NE’s implicit formulation
has proved to be a valuable aid in coping with the considerable
increase in nonlinearities introduced by the linearization of
dynamics (the Jacobian of its residual vector). More precisely,
the IDM of (43) has been exactly differentiated to produce
a tangent IDM or TIDM , that allows the Jacobian of the
residual vector to be computed efficiently. As shown in [21],
although the computation of the tangent is more demanding
in terms of complexity, the approach is sufficiently stable to
allow large time steps and reduce simulation times.

Concerning space integration, while (10)-(12) are usual in-
tegrals in vector spaces that could be integrated using standard
numerical quadrature (e.g. Gauss, Simpson...), (1) needs to be
integrated on the Lie group SE(3). In [13], this integration has
been achieved with the Jacobian-based approach by applying a
Fourth-order Zannah quadrature approximation of the Magnus
expansion (5), as proposed in [16]. To avoid the double
space integrations due to the introduction of (10)-(12) into
(38), the approximation of (5) is time-differentiated twice to
evaluate δζ, η, and η̇ at the Gauss points of the (unique)
remaining integral of (38). In contrast, the NE approach has
been developed so far with purely numerical spatial integra-
tion schemes. To cope with the Lie group structure of (1),
quaternions are used, which enables using standard integration
schemes in R4. In [14], this has been first performed with usual
explicit finite difference schemes (e.g. Runge Kutta) as this
is done in the Newtonian approach of [9]. More recently, the
differential properties of the forward and backward ODEs have
been exploited to integrate them with a spectral method [10].
However, despite its high performance in terms of convergence
and accuracy, the spectral integration requires more nodes than
the Zannah quadrature. Due to its numerical character it is
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much less optimized in terms of computations (redundancies
of operations, multiplication by zeros...). While this is not a
problem for analysis and design applications, it can be for
online control or planning applications.

VI. HYBRIDIZATION OF THE TWO APPROACHES:
CONCLUSION AND PERSPECTIVES FOR THE GVS

A. Simulation
Based on the above discussion, we can conclude that the

Jacobian approach is more advanced than the NE approach
from the point of view of spatial integration, while the NE
approach is more advanced than the Jacobian approach from
the point of view of time integration. Therefore, for the purpose
of efficient simulation, it is natural to say that the first approach
has to be extended to implicit integration while the NE based
one needs to be implemented in symbolic form. In the first
case, the extension requires to cope with the complex nonlinear
calculation of the tangent dynamics. To this end, one can
take inspiration from the recent progress accomplished in rigid
robots dynamics [22], or use the symbolic differentiation of the
recursions proposed in [21] to derive the TIDM from the
IDM algorithm. Reciprocally, the spatial integration based
on Magnus expansion and quadrature developed in [13] for
the Jacobian-based approach can naturally replace the spectral
integration of [10]. The result would be a purely symbolic
implementation of the IDM and TIDM algorithms. This
would be in line with rigid robot dynamics, for which it
has been concluded that the most efficient implementations
of inverse and forward rigid robot dynamics are based on
NE algorithms implemented and optimized with symbolic
computation engines such as Mathematica or Maple [23].

B. Control
In rigid robotics, it is now well established that the La-

grangian and NE models need not be opposed, but are in fact
complementary. In detail, the explicit form (33) is a valuable
aid to designing nonlinear controllers in the first instance,
which can then be implemented in implicit form in fast,
compact NE algorithms. The archetypal example of this idea is
the computed-torque controller of a rigid manipulator, whose
synthesis and analysis are based on the Lagrangian model in
explicit form, while its most efficient implementation uses its
implicit NE algorithmic realization. Exploiting this comple-
mentarity requires to change control laws into equivalent NE
algorithms. While this equivalence is straightforward in the
case of a rigid manipulator, it can be much more difficult in the
case of CRs. However, in [14] this idea was first applied to a 3-
segment in-plane TACR, with the aim of testing a non-linear
two-time-scale controller, like those developed in the 90s to
control flexible arms with motor-actuated localized joints [24].
This simple example shows that this complementarity between
Lagrangian and NE points of view could also be applied to
CRs, in particular by exploiting the structure they share with
the flexible segment and concentrated joint robot models of
the 90s. From this point of view, the recent article [25] did a
further step towards this idea, since it provides an algorithm
for testing whether the dynamics of a CR can be put into the
collocated control form, of these other robots.
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