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Abstract
Background. Federated learning (FL) has gained wide popularity as a col-
laborative learning paradigm enabling collaborative AI in sensitive healthcare
applications. Nevertheless, the practical implementation of FL presents technical
and organizational challenges, as it generally requires complex communication
infrastructures. In this context, consensus-based learning (CBL) may represent
a promising collaborative learning alternative, thanks to the ability of combin-
ing local knowledge into a federated decision system, while potentially reducing
deployment overhead.
Methods. In this work we propose an extensive benchmark of the accuracy and
cost-effectiveness of a panel of FL and CBL methods in a wide range of collabora-
tive medical data analysis scenarios. The benchmark includes 7 different medical
datasets, encompassing 3 machine learning tasks, 8 different data modalities, and
multi-centric settings involving 3 to 23 clients.
Findings. Our results reveal that CBL is a cost-effective alternative to FL. When
compared across the panel of medical dataset in the considered benchmark, CBL
methods provide equivalent accuracy to the one achieved by FL.Nonetheless,
CBL significantly reduces training time and communication cost (resp. 15 fold
and 60 fold decrease) (p < 0 · 05).
Interpretation. This study opens a novel perspective on the deployment of col-
laborative AI in real-world applications, whereas the adoption of cost-effective
methods is instrumental to achieve sustainability and democratisation of AI by
alleviating the need for extensive computational resources.
Funding. This work was supported by the 3IA Côte d’Azur Investments in
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1 Introduction
Collaborative learning (CL) has become a popular paradigm for the exploitation of
Artificial Intelligence (AI) in healthcare applications1,2. CL allows multiple parties to
jointly solve analytical tasks by combining local knowledge extracted from the respec-
tive data. These abstractions can, for instance, take the form of global data statistics,
machine learning (ML) model parameters, or model’s predictions. This paradigm is
rapidly gaining popularity in healthcare applications due to its appealing promises for
accuracy/privacy trade-off3,4

Federated Learning (FL) has been identified as a key CL paradigm2, focusing on
collaboratively optimizing model parameters across clients, each holding local datasets
(Figure 1, left). FL is based on an iterative optimization paradigm in which each client
shares model parameters partially trained on the respective local data, which are then
aggregated by a central server to obtain a global model. Although FL has demon-
strated significant advantages in security and privacy over centralized approaches, its
implementation in real-world applications is not straightforward and can face techni-
cal and organizational challenges5, reflecting the technology’s complexity as well as
significant computational costs6.

Consensus-based learning (CBL)7–9 represents a valid CL alternative to FL. CBL
does not rely on a shared training routine nor on a common model architecture across
parties, but instead combines the predictions obtained from the different models inde-
pendently trained by each client on their local data. CBL thus relies on an off-line
setting, in which information is exchanged only at inference time (Figure 1, right).

Bearing in mind the duality between these paradigms, when it comes to implement-
ing collaborative frameworks we currently lack quantitative benchmarks illustrating
the quality and cost-effectiveness of specific CL settings in real-world medical appli-
cations. On the one hand, FL has been widely investigated for CL applications,
in particular for healthcare 10–12. On the other hand, while there exists a large
body of literature demonstrating the effectiveness of CBL over training local mod-
els [CITAZIONE], its applications to distributed datasets remain underinvestigated
except, to our knowledge, for the work of Guha et al. 7 (preprint) and Chaudhari
et al. 13 . In the context of medical imaging applications, the capabilities of different
CL paradigms have been discussed in Gupta et al. 14 , without, however, providing
any experimental evaluation. To our knowledge, a general reference point that allows
comparison between CBL and FL paradigms while considering the accuracy and
cost-effectiveness of these paradigms is still missing.
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Fig. 1: Training and inference phases for federated learning (FL, on the left) and
consensus-based learning (CBL, on the right). In FL training is performed collab-
oratively to produce a common global model across clients. The global model is
subsequently used for inference on new data instances. CBL instead requires clients
to train a model on the respective local data independently. Inference on new data
instances is performed collaboratively through consensus.

In this work we carry out the first comparative analysis of the capabilities and
cost-effectiveness of CBL and FL. We compare the performance of a panel of state-
of-the-art FL and CBL methods on a variety of learning tasks and data modalities
representative of real-world medical use cases. Our results show that in most of the
evaluated benchmarks, CBL is a cost-effective alternative to FL, achieving comparable
performance with the advantage of reducing training and communication costs. This
opens a novel perspective on the deployment of collaborative AI in the real-world, in
which the opportune choice of CL paradigms suited to the specifics of each task can
mitigate the implementation burden of CL.

2 Methods
This section introduces the dataset and benchmarks adopted in our work (Section 2.1
and 2.3), along with the panel of FL and CBL methods evaluated in the experiments
(Section 2.2).

2.1 Benchmark design
We formalized our goal of comparing CBL and FL methods by formulating the two
following research questions: i) are there particular combinations of data and ML task
where one of the two paradigms provides significantly better model performance? ii)
what is the difference in resources requirements between FL and CBL to achieve the
same accuracy level on a given combination of data and ML task?
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Table 1: Collaborative learning (CL) methods evaluated in the benchmark: six meth-
ods for federated learning (FL) and five methods for consensus-based learning (CBL).

Method CL Paradigm Reference
FedAvg FL McMahan et. Al., 201717

FedProx FL Li et Al., 201818

scaffold FL Karimireddy et Al., 202019

FedAdam FL Reddi et Al., 202020

FedAdagrad FL Reddi et Al., 202020

FedYogi FL Reddi et Al., 202020

Avg CBL Guha et Al., 20197

Mv CBL Safdar et Al., 202121

Staple CBL Warfield et Al., 200422

Ube CBL Inspired by Ruta et Gabrys, 200023

Abe CBL Inspired by Ruta et Gabrys, 200023

To answer these questions we identified seven heterogeneous benchmarks, defined
by their datasets and associated ML tasks, considered representative of real-world case
studies. The targeted tasks include segmentation of MRI (FedProstate, FedIXI, FeTS)
and segmentation of CT images (FedKITS), diagnosis (FedHeart), disease subtyping
(FedISIC ), and survival probability prediction (FedTCGA-BRCA). The benchmarks
present a high degree of heterogeneity in terms of the number of clients in the feder-
ation (from 3 to 23), sample sizes (100 to over 2000 patients), data modalities (total
of 8 different modalities), and distribution of data among clients, thus reflecting the
heterogeneity of real-world applications.

Concerning FL methods, our benchmark covers standard aggregation strategies
adopted in FL benchmarks for healthcare in the literature10,15. We included the
standard aggregation mechanism proposed in the seminal work of McMahan et al.,
FedAvg , along with subsequent approaches aimed at mitigating the impact of
client heterogeneity in the optimization: FedProx, Scaffold, as well as FedAdam,
FedYogi, and FedAdagrad .

For CBL methods, we tested several classical fusion strategies to combine the
predictions of local models, such as plain averaging (Avg) and majority voting
(Mv). Moreover, for segmentation tasks, we used Staple, which optimizes consen-
sus through expectation-maximization. Finally, we proposed two CBL methods based
on decision averaging: uncertainty-based (Ube) and autoencoder-based ensembling
(Abe). Both methods rely on the weighted average of local predictions. For Ube
the weights are estimated by quantifying the uncertainty of the predicted labels.
For Abe the uncertainty was quantified by the reconstruction error on the testing
point of an autoencoder trained on the local dataset. This measure is a proxy for
out-of-distribution detection16.

Table 1 presents an overview of the 6 FL and 5 CBL methods used in the
benchmark. Further details on all the methods are available in Section 2.2.

We analyzed the CL methods by assessing the respective performance and cost-
effectiveness. As a measure of task performance we quantified the dice score, the
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balanced accuracy, and the C-Index for respectively segmentation, classification, and
survival tasks. We assessed the cost-effectiveness by measuring the training time and
network usage required by each CL method. The training time was estimated as
the total wallclock time necessary to obtain the collaborative model. The network
usage was the total data transferred on the network during training. We considered
a scenario in which all clients participate in every round of FL training, and we used
the same model architecture across clients for each experiment. The performance of
different CL methods was evaluated on the same cross-validation partitions.

2.2 Collaborative Learning Methods
We consider a collaborative setting with M clients. A dataset D belonging to client i
is composed of data samples Di = {zk,i}Ni

k=1, being Ni the dataset size. We consider a
model f with parameters θ, a loss function L, and we denote the prediction of a data
instance z by h = f(z, θ).

FL is a collaborative paradigm associated with the optimization of a loss dis-
tributed among M clients defined as L(θ) :=

∑M
i=1 piLi(θi), where the losses of local

models (θi) are averaged by using the weights pi. Solving this optimization prob-
lem leads to global model parameters θg. We consider here a comprehensive panel of
state-of-the-art optimization approaches, which are at the core of the FL literature:
• FedAvg17 is the backbone of FL optimization, and is based on an iterative process

where, at each optimization round r, clients execute a fixed number of local stochas-
tic gradient descent steps and send the partially optimized model θr

i to the server.
The server averages the received models according to the weights pi to obtain a
global one, θr+1

g . The global model is then sent to the clients to initialize the next
optimization round.

• FedProx18 tackles the problem of federated optimization with data heterogene-
ity across clients. This approach extends FedAvg by introducing a proximal
term to the local objective function to penalize model drift from the global opti-
mization during local training. The proximal term is controlled by a trade-off
hyperparameter.

• SCAFFOLD19 addresses the limitations of FedAvg in scenarios with hetero-
geneous data by utilizing control variates, which effectively reduces variance and
corrects for client-drift in the local updates. To achieve this, SCAFFOLD main-
tains a state for each client (client control variate) and the server (server control
variate).

• FedAdam, FedYogi, FedAdagrad20 are adaptations of Adam , Yogi , and
Adagrad optimizers, designed to suit the federated optimization setup.

CBL, on the other hand, is a class of machine learning algorithms relying on
the concept of ensembling, a widely-explored approach that consists of obtaining
robust predictions by aggregating decisions obtained by independently trained weak
predictors.

The CBL paradigm is based on a training phase in which M models f(·, θi) are
independently trained on separated data collections Di, by minimizing local objective
functions Li. These models are subsequently collected and, for a given test data z′
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at inference time, the predictions hi(z′) = f(z′, θi) from all the clients’ models are
computed and aggregated by applying an ensembling (or fusion) strategy:

hz′ = ensembling({hi(z′)}|Mi=1). (1)

Typical ensembling methods proposed in the literature are:
Majority voting (Mv)21 is often used in classification tasks, aggregates predic-

tions by selecting the most commonly predicted class among the experts.
Staple22 is an algorithm based on expectation-maximization which, iteratively,

first computes a weighted average of each local prediction, and then assigns a perfor-
mance level to each client’s segmentation, which will be used as weights for the next
step.

Decision averaging (DA)24 is an approach based on probabilistic principles:
given different datasets D1, . . . DM and associated local models f(·, θ1), . . . f(·, θM ),
ensembling is obtained by weighing each local model’s prediction by the probability
of observing the input datapoint in the local model’s data distribution p(z′ ∈ Di).
Different CBL algorithms can be obtained based on the estimation of the probability
p(z′ ∈ Di). In this work, among the possible DA algorithms, we consider the following:
• Average (Avg) approximates p(z′ ∈ Di) as a uniform distribution. This strategy

can be adopted in all tasks, and for classification and segmentation problems we
consider the distribution probability obtained through a softmax function.

• Uncertainty based ensembling (Ube) approximates the probability p(z′ ∈ Di)
as the uncertainty of the local model on the prediction task. Ube defines averag-
ing weights based on the model uncertainty quantified by the total element-wise
variance at inference time.

• Autoencoder based ensembling (Abe) computes a proxy for the probability
p(z′ ∈ Di) by modeling the variability of the local dataset through autoencoders
trained by each client on the respective data. At inference time, weights are defined
as the reconstruction error ei on the testing data point z.

2.3 Datasets and tasks
Table 2 summarizes the datasets used for the benchmark, while further details on
the composition of the datasets, the preprocessing steps, and the training task are
provided in Appendix 5.

FedProstate
For the task of prostate segmentation, we assembled a dataset composed of roughly 300
T2-magnetic resonance imaging (MRI) and segmentation masks of the whole prostate,
obtained from a collection of publicly available datasets and a from a retrospective
cohort acquired at the Guy St. Thomas Hospital of King’s College London. Data
among federated clients was split according to the acquisition protocol (MRI with or
without endorectal coil), and the scanner manufacturer.
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Table 2: Datasets used for the benchmark. For each dataset, we report the number,
the size of clients’ local datasets, the data modality, and the task, along with the
associated metric.

Dataset #Clients Dataset size
per client Data Modality Task

[Metric]

FedProstate 6 [32, 23, 27,
184, 5, 36]

T2 MRI Segmentation
[DiceScore]

FedHeart 4 [303, 261,
46, 130]

Tabular Data Classification
[Accuracy]

FedIXI 3 [311, 181, 74] T1 MRI Segmentation
[DiceScore]

FedISIC 6 [12k, 3.9k, 3.3k,
225, 819, 439]

Dermoscopy
images

Classification
[Accuracy]

FedTCGA
-BRCA

6 [311, 196, 206,
162, 162, 51]

Tabular Data Survival
[C-Index]

FedKiTS 6 [12, 14, 12,
12, 16, 30]

CT Scans Segmentation
[DiceScore]

FeTS 23 4 to 511
Details in Suppl. 5

T1, T1CE, T2
& FLAIR MRIs

Segmentation
[DiceScore]

FedHeart
For the task of diagnosis (binary classification for the presence or absence of heart
disease) we leveraged a publicly available benchmark dataset15 comprising patient
demographics, medical history, and physiological measurements, summarized in 13
tabular features from roughly 700 patients. Data was split according to the referenced
publication.

FedIXI
For the task of brain segmentation we used a publicly available benchmark dataset15

composed of T1-MRI images from roughly 500 patients. Data was split according to
the partitions considered in the original publication.

FedISIC
For the task of skin disease subtyping we consiered a publicly available benchmark
dataset25 composed of roughly 20000 dermoscopy images. Data was split according
to the imaging acquisition system.

FedTCGA-BRCA
For the task of survival probability prediction, we used a publicly available benchmark
dataset15 including 39 clinical and genomic tabular features extracted from roughly
1000 breast cancer patients. Data was split according to the acquisition site.
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FedKITS
For the task of segmenting CT images, we used a publicly available benchmark
dataset15 containing CT scans and segmentation masks for both the kidney and the
tumor for roughly 100 patients. Data was split according to acquisition site.

FeTS
For the brain tumor segmentation task, we considered a publicly available dataset26

consisting of multiple-modality MRI (T1, T2, T1CE, FLAIR) for roughly 2000 brain
tumor patients. Data was split according to the acquisition site.

2.4 Experimental Setting
We split each dataset in the benchmark into training and testing partitions. For FeTS
and FedProstate, we used respectively a 4-fold and a 5-fold cross-validation while for
the other datasets, following du Terrail et al. 15 , we ran all the experiments three times
with different seeds. The obtained results are the average among the runs.

For FL, a federated infrastructure was simulated using the software FedBioMed
version 4.11 . For each FL method, the final global model was collected along with
the local models independently trained by each client. The local models were used to
estimate the local model performance and for generating the predictions subsequently
aggregated with the CBL methods. As upper-bound for the comparison, a centralized
model was trained by pooling together all the local training sets.

To ensure fairness of the comparison, for each dataset we calibrated the total
number of training steps to be executed in each experiment. Specifically, a number E of
epochs was defined a priori, corresponding to the number of training epochs executed
by the centralized model. For the local training, each client executes E

M epochs, being
M the number of clients in that configuration. For the federated strategies, we fine-
tuned the number of local SGD steps s executed at each round, while the number of
rounds was defined as follows: R = E · NT /M/B/s, where B is the batch size and NT

is the total number of samples in the training set.

3 Results
3.1 Benchmark results
3.1.1 Performance evaluation
Figure 2 shows the distribution of testing performances across datasets.

Considering the CL methods altogether, we found that collaborative approaches
yielded a better average performance than the locally trained models in five out of
seven benchmarks, with the best and worst performance ratios achieved respectively
for ISIC (1 ·42× performance increase) and Heart (0 ·88× performance decrease). Fur-
thermore, CL methods had on average a poorer performance compared to the pooling
of all the data in a centralized training scenario (average performance decrease of
0·83×). This result is in line with those reported in the literature on the effectiveness of

1https://fedbiomed.org/
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(a) FedProstate (b) FedHeart

(c) FedIsic (d) FedTGCA-BRCA

(e) FedIXI (f) FedKiTS

(g) FETS

Fig. 2: Results obtained by centralized learning (green), local learning (blue), feder-
ated learning (orange), and consensus-based learning (brown) methods. The boxplot
represents the accuracy among test sets for centralized learning, local models, and CL
methods. For FeTS, local accuracy results are aggregated due to the large number of
clients.
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Table 3: Summary results for multiple Mann-Whitney U-tests used to assess dif-
ferences between the performance of consensus-based learning (CBL) and federated
learning (FL) for different types of ML task. CBL outperforms FL across all tasks,
however no difference was statistically significant.

Task Average performance ratio CBL
FL U statistic p-value

Classification 1 · 11 18 0 · 26
Segmentation 1 · 02 17 0 · 79
Survival 1 · 06 16 0 · 10

both FL and CBL methods for improving the performance of individual learners while
maintaining a comparable performance compared to pooled datasets [CITAZIONE].

On average, CBL approaches outperformed FL in four benchmarks (average factor
1 · 18×), had comparable performance in the FeTS (factor 1 · 03×) and ISIC (factor
0 · 97×) benchmarks, and had poorer performance in the KITS benchmark (factor
0 · 70×). However, tests for the difference in the mean performance across all bench-
marks between CBL and FL methods did not achieve statistical significance (Wilcoxon
signed-rank test p = 0 · 2).

We then checked whether there could be differences at the level of task types and
of individual benchmarks. CBL outperformed FL in all three task categories (classi-
fication, segmentation, survival), however none of these differences were statistically
significant (see Table 3). Averaging the performance over all client test sets for a given
learning method, we used seven parallel statistical tests (one per benchmark) to test
whether CBL methods performed worse than FL on average (see Table 4). The only
two statistically significant outcomes were in the IXI and KITS benchmarks: CBL
had better performance for IXI (factor 1 ·18×, Mann-Whitney p = 0 ·009), but poorer
performance for KITS (factor 0 · 70×, Mann-Whitney p = 0 · 017). It is important
to note that neither result maintains statistical significance after Bonferroni correc-
tion. The ensemble of these results show that overall no single collaborative learning
paradigm consistently outperforms the others across all benchmarks. For example, as
already pointed out in du Terrail et al. 15 , FL performs worse than local learning in
the FedIXI benchmark, whereas CBL achieves higher accuracy. Conversely, for Fed-
KiTS, FL methods had better performance compared to the local models, while CBL
methods had poorer one.

Furthermore, to reflect the scenario where large amounts of resources can be ded-
icated to identifying the best approach tailored to one’s dataset, we identified the
best-performing CBL and FL method separately for each benchmark and compared
their performances. The best CBL method had a better performance than the best
FL method in the FedHeart (factor 1 · 09×) and FedIXI (factor 1 · 06×) benchmarks,
while the best CBL and FL methods had comparable performances in four bench-
marks, and the best CBL method performed worse than the best FL method only in
the FedKITS benchmark (factor 0 · 77×). When instead comparing the basic methods
for each CL category, i.e. FedAVG for FL and AVG for CBL, we found that CBL had
better performance than FedAVG in three out of seven benchmarks (average factor
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Table 4: Summary results for multiple Mann-Whitney U-tests used to assess dif-
ferences between the performance of consensus-based learning (CBL) and federated
learning (FL) across benchmarks. The only significant differences are observed in
FedIXI, where CBL is associated with better performances than FL, and FedKITS,
where CBL is associated with poorer performances than FL. The statistical signif-
icance does not survive after Bonferroni correction for multiple comparisons across
tasks.

Experiment Average performance ratio ( CBL
FL ) U statistic p-value

FedProstate 1 · 12× 22 · 5 0 · 20
FedHeart 1 · 36× 19 0 · 16
FedIxi 1 · 18× 29 0 · 01
FedIsic 0 · 97× 5 0 · 17
FedTGCA-BRCA 1 · 06× 10 0 · 10
FedKiTS 0 · 70× 2 0 · 02
FeTS 1 · 03× 19 0 · 54

1 · 37×), had comparable performance in the FeTS (factor 1 · 01×) and ISIC (factor
1 · 00×) benchmarks, and had worse performance in the Prostate (factor 0 · 94×) and
KiTS (factor 0 · 55×) benchmarks (see Table 5).

The average performance across all client test sets, for both commonly-used and
best-performing methods, is summarized in Table 5.

Having assessed that no paradigm outperforms the other in terms of task-specific
performance metrics, we now look at their cost-effectiveness. The numerical evaluation
of the cost-effectiveness of CBL and FL, presented in Table 6, shows that the training
of CBL methods is 8−30 times faster than the one required by the federated methods
(avg. 15× decrease, p < 0 · 05, Wilcoxon Signed-Rank Test for log-differences). For
the same reason, the usage of bandwidth of CBL is from 35 to 120 times lower than
for FL (avg. 60× decrease, p < 0 ·05, Wilcoxon Signed-Rank Test for log-differences).

4 Discussion
Our results show that for typical medical data analysis tasks, CBL leads to model
performance on par with FL, while requiring a fraction of computational costs and
bandwidth usage. This result entails profound implications for the real-world adoption
of AI in healthcare.

The key advantage of CBL relies on its asynchronous training approach, thus
simplifying the collaboration among partners as hospitals simply need to train their
models locally to join the collaboration. Moreover, the withdrawal (or introduction)
of a participant can be simply achieved by removing (or adding) their local model
without the need for complex procedures or re-training. The complexity of local models
can also be adapted to the availability of local resources, thus mitigating the problem
of hardware heterogeneity in federated setups, and promoting the adoption of AI in
healthcare. In FL, besides tuning the hyperparameters of the local models, it is also
often necessary to tune method-specific hyperparameters, which increases the task

11



Table 5: Summary performance metrics for commonly-used (FedAVG and AVG) and
best-performing training methods within the CBL and FL groups, computed sepa-
rately for each benchmark. Neither of the two paradigms yields better performance
in a consistent and statistically significant way.

Experiment Paradigm Best
method Metric Common

method Metric

FeTS - Stats CBL MV 0 · 67 AVG 0 · 66
FL Scaffold 0 · 67 FedAVG 0 · 66

Heart CBL UBE 0 · 78 AVG 0 · 64
FL FedAdam 0 · 72 FedAVG 0 · 36

ISIC CBL AVG 0 · 62 AVG 0 · 62
FL FedYogi 0 · 65 FedAVG 0 · 62

IXI CBL MV 0 · 96 AVG 0 · 90
FL FedAdagrad 0 · 90 FedAVG 0 · 75

KITS CBL MV 0 · 42 AVG 0 · 29
FL FedProx 0 · 54 FedAVG 0 · 52

Prostate CBL UBE 0 · 81 AVG 0 · 75
FL Scaffold 0 · 82 FedAVG 0 · 80

TGCA-BRCA CBL AVG 0 · 79 AVG 0 · 79
FL FedAdagrad 0 · 78 FedAVG 0 · 70

Table 6: Comparison of training time and bandwidth usage between federated learn-
ing (FL) and consensus-based learning (CBL). For both metrics, CBL is far less costly
than FL.

Training Time [min] Bandwidth [MB]
FL CBL FL Increment FL CBL FL Increment

FedProstate 1 · 2 × 103 1 · 1 × 102 ×8 4 · 0 × 103 1 · 4 × 102 ×35
FedHeart 0 · 1 2 · 0 × 10−2 ×9 3 · 2 × 101 9 · 0 × 10−2 ×38

FedIxI 5 · 5 6 · 4 × 10−1 ×8 1 · 5 × 102 3 · 0 ×50
FedIsic 1 · 9 × 102 1 · 0 × 101 ×18 6 · 8 × 103 1 · 9 × 102 ×58

FedTCGA 4 · 5 × 10−1 2 × 10−2 ×26 0 · 9 5 · 42 ×36
FedKiTS 5 · 4 × 101 6 · 4 × 1 · 5 × 102 ×30 8 · 8 × 104 7 · 4 × 102 ×120

FeTS 3 · 4 × 104 2 · 9 × 103 ×12 3 · 7 × 104 4 · 5 × 102 ×83

complexity compared to CBL. Using the same hyperparameters on all FL methods
can lead to variability in the accuracy across methods. In contrast, CBL methods
exhibit lower variance among results.

Data heterogeneity, a common issue in healthcare data, may also play a role in the
choice of CBL over FL approaches. Indeed, while the generalization properties of CBL
may improve when ensembling models trained on heterogeneous datasets, it is known
that the distributed optimization procedure of FL suffers from data heterogeneity,
which causes degradation in convergence and accuracy. Such difference suggests that
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adopting CBL could be beneficial in collaborations among hospitals with heteroge-
neous data, reflecting for example varying geographical location or image acquisition
techniques.

The analysis addressed in this paper focuses on the cost-effectiveness of CBL to
boost the deployment of AI in real-life healthcare applications. However, CBL does not
necessarily provide quantifiable privacy guarantees. While cryptographic approaches
such as secure aggregation, multi-party computation, and differential privacy are
widely investigated in FL, the analysis of CBL from a privacy-preserving perspective
is less explored, with some studies showing that privacy-preserving techniques can be
adopted for CBL, with a potentially smaller impact on the final model accuracy when
compared to FL13.

With this work, we hope to raise awareness of the importance of cost-effective
collaborative learning paradigms in the real-world deployment of AI models on medical
tasks. Starting from the empirical results presented here, additional work should be
devoted to developing quantitative measures of a collaborative system’s effectiveness
before deploying its infrastructure. Such a theory would allow the identification of
optimal collaborative paradigms based on accounting for several aspects, such as client
availability, data heterogeneity, and security requirements. Moreover, in evaluating
the cost-effectiveness, estimation of the CO2 emissions and energy cost of the training
would bring added value to the analysis.

Acknowledgements. LI and ML are supported by the 3IA Côte d’Azur Invest-
ments in the Future project managed by the National Research Agency (ref.n
ANR-15-IDEX-01 and ANR-19-P3IA-0002). ML is funded by the grants (TRAIN -
ANR-22-FAI1-0003) and (Fed-BioMed - ANR-19-CE45-0006).

Supplementary Information

5 Details on Federated Datasets, Architectures, and
Hyperparameters

5.1 FedProstate
The FedProstate dataset is the federated version of the 3 major publicly available
datasets on prostate cancer imaging analysis, and of 1 private dataset:
• Medical Segmentation Decathlon - Prostate27 provides 32 prostate MRIs for

training.
• Promise1228 consists of 50 training cases obtained with different scanners. Of

those, 27 cases were acquired by using an endorectal coil.
• ProstateX29 contains prostate MRIs acquired by using two different scanners

(Skyra and Triotim, both from Siemens). Segmentations of 194 cases are available30.
• Guy St. Thomas Hospital dataset (King’s College London). This dataset is

composed by 36 MRIs acquired during the clinical routine for patients with prostate
cancer under active surveillance treatment. Images were acquired with a Siemens
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Fig. 3: Examples of images from the FedProstate dataset showing the heterogeneity
among different clients.

Aera scanner and an expert radiologist produced masks of the whole prostate gland.
This dataset is used as an independent test set.

Datasets were split as in Table 7, to define centers characterized by specific image
acquisition properties, thus allowing to obtain heterogeneous image distributions
among centers. The common preprocessing pipeline applied to all the data comprised
of flipping, cropping/padding to the same dimension, and intensity normalization. N4-
bias-correction has also been applied to the data from Promise12 to compensate for
the intensity artifacts introduced by the endorectal coil. Figure 3 shows an example

Table 7: FedProstate Description of the different centers here consid-
ered for the distributed learning scenario, derived by partitioning the
four datasets Decathlon, ProstateX, Promise12, and PrivateDS.

ID #Samples Dataset Subset Selection Splitting Strategy

Local0 32 Decathlon Full Dataset 5-fold CV
Local1 23 Promise12 No Endorectal Coil 5-fold CV
Local2 27 Promise12 Only Endorectal Coil 5-fold CV
Local3 184 ProstateX Only Scanner Skyra 5-fold CV
Local4 5 ProstateX Only Scanner Triotim External test set
Local5 36 PrivateDS Full Dataset External test set

of the resulting splits.
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Architectures and Parameters
The segmentation problem for this dataset was addressed by training a 3D UNet
architecture with residual connections31. The training was based on optimizing the
DSC, by using the AdamW optimizer for all experiments32 but for SCAFFOLD,
for which we used an SGD optimizer. The UNet implementation is available in the
MONAI library2. The hyperparameters used for the training phase are available in
the Table 8

Table 8: FedProstate Hyperparameters and respective values explored during the
tuning phase. Selected value in bold. The selection of dropout value was driven by
the need to use it for the UBE method. In red, the values selected for FedAdam,
FedYogi and FedAdagrad, for which a different tuning was required.

Parameter Values
Learning Rate 0.0001; 0.001; 0.01; 0.1; 1

Batch Size 4, 8, 16
Dropout 0.1,0.3,0.5

Local Steps 10, 15, 20, 25

5.2 FedHeart
The dataset is a collection of tabular data, and the task consists of binary classification
to recognize heart disease. In FLamby15, a federated version has been proposed by
using as subset selection criteria the hospital that provided the data. There are four
hospitals (Cleveland’s, Hungarian, Switzerland, and Long Beach), so four clients. The
preprocessing in FLamby has been done by removing missing values and encoding
non-binary categorical variables as dummy variables.

Architectures and Parameters
A fully connected ReLU network with one hidden layer was used as a classification
model. The training was based on optimizing the cross-entropy loss, with an AdamW
optimizer. The details on the hyperparameters used for the centralized and local
training are available in Table 9.

5.3 FedIXI
The dataset contains T1 and T2 brain MRIs, as well as brain segmentation masks. In
FLamby, the federation is obtained by using the hospital as a subset selection criteria,
comprising three clients. Pre-processing pipeline comprehends volume resizing to 48
× 60 × 48 voxels, and sample-wise intensity normalization.

2https://monai.io/index.html
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Table 9: FedHeart Hyperparameters and respective values explored during the tun-
ing phase. Selected value in bold. The selection of dropout value was driven by the
need to use it for the UBE method.

Parameter Values
Learning Rate 0.0001; 0.001; 0.01; 0.1; 1

Batch Size 8; 16; 32; 64
Dropout 0.1; 0.2; 0.3

Local Steps 5; 10; 20
Centralized epochs 10; 50; 100

Architectures and Parameters
The network used as a baseline model for this problem was a 3D UNet31. The training
was based on optimizing the DICE Loss, by using the AdamW optimizer. The details
on the hyperparameters used for the centralized and local training are available in
Table 10.

Table 10: FedIXI Hyperparameters and respective values explored during the tuning
phase. Selected value in bold. The selection of dropout value was driven by the need
to use it for the UBE method.

Parameter Values
Learning Rate 0.0001; 0.001; 0.01; 0.1; 1

Batch Size 2; 4; 6
Dropout 0.1; 0.2; 0.3

Local Steps 5; 10; 20
Centralized epochs 10; 20; 30

5.4 FedISIC
This dataset represents a skin cancer detection problem through image classification
of CT scans. There are 8 different classes, with high distribution imbalance. Starting
from the data available in the ISIC2019 dataset33 the authors of FLamby obtained a
federated dataset by allocating to a different client data obtained by using a different
scan, so obtaining 6 different clients for the federation. The applied preprocessing is
described in34.

Architectures and Parameters
The network used as a baseline model for this problem was EfficientNet25, as in
FLamby. The training was based on optimizing the weighted focal loss, by using the
AdamW optimizer. The details on the hyperparameters used for the centralized and
local training are available in Table 11. When choosing the batch size, we applied

16



different values for different local clients to account for the high variance in dataset
dimensions. The final values are Local 0 and Local 1: 128, Local 2: 64, Local 3, Local
4 and Local 5: 32.

Table 11: FedISIC Hyperparameters and respective values explored during the tun-
ing phase. Selected value in bold. The selection of dropout value was driven by the
need to use it for the UBE method.

Parameter Values
Learning Rate 0.0005; 0.005 0.001;

Batch Size 32; 64; 128; 256
Dropout 0.1; 0.2; 0.3

Local Steps 5; 10; 20
Centralized epochs 50; 100; 150

5.5 FedTCGA-BRCA
This dataset is composed of data from the TCGA-GDC portal, specifically those
belonging to the breast cancer study, which includes features gathered from 1066
patients. The federated version is obtained by splitting the original dataset into 6
subsets, one for each extraction site, grouped into geographic regions. The task consists
of predicting survival outcomes based on the patients’ tabular data, with the event to
predict death. Each patient is defined by 38 features.

Architectures and Parameters
As a baseline, we used a fully connected LeakyReLU network. The training was based
on optimizing the weighted focal loss, by using the AdamW optimizer. The details on
the hyperparameters used for the centralized and local training are available in Table
12.

Table 12: FedTCGA-BRCA Hyperparameters and respective values explored dur-
ing the tuning phase. Selected value in bold. The selection of dropout value was
driven by the need to use it for the UBE method.

Parameter Values
Learning Rate 0.1; 0.01; 0.001;

Batch Size 4, 8, 16
Dropout 0.1, 0.2, 0.3

Local Steps 5, 10, 15
Centralized epochs 20, 50, 60
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5.6 FedKiTS
The KiTS19 dataset is part of the Kidney Tumor Segmentation Challenge 2019 and
contains CT scans of 210 patients along with the segmentation masks from 79 hospi-
tals. In FLamby, the federated dataset is defined by splitting scans among different
clients based on the providing hospital; they extracted a 6-client federated version
by removing hospitals with less than 10 training samples. The preprocessing pipeline
comprises intensity clipping followed by intensity normalization and resampling of all
the cases to a common voxel spacing.

Architectures and Parameters
As a baseline, following FLamby implementation, a nnUNet35 was used. The training
was based on the optimization of the DICE Losse, by using the AdamW optimizer.
The details on the hyperparameters used for the centralized and local training are
available in Table 13.

Table 13: FedKiTS Hyperparameters and respective values explored during the
tuning phase. Selected value in bold.

Parameter Values
Learning Rate 0.1; 0.01; 0.001;

Batch Size 2, 4
Dropout 0.1, 0.2, 0.3

Local Steps 30, 50, 100
Centralized epochs 2000, 5000, 8000

Optimizer Adam, AdamW, SGD

5.7 FeTS
The data are gathered from the FeTS 2022 Challenge. A more specific data description
is available at the url 3. The dataset contains 1251 instances. Following the guidelines,
we used a natural partitioning by the institution, obtaining a federation with 23
clients, for which the dataset size is available in Figure 4.

For each patient in the study, the following data modalities are available: native
(T1), post-contrast T1-weighted (T1Gd), T2-weighted, and Fluid Attenuated Inver-
sion Recovery (T2-FLAIR) volumes. An example of data for one patient is available
in Figure 5.

Data in this FD are very heterogeneous, being acquired with different clinical
protocols and various scanners from multiple data-contributing institutions.

The task is multi-class 3D image segmentation, and the labels are the GD-
enhancing tumor (ET — label 4), the peritumoral edematous/invaded tissue (ED
— label 2), and the necrotic tumor core (NCR — label 1). We segmented single
sub-regions, not into intersections as was proposed in the FeTS challenge.

3https://www.synapse.org/#!Synapse:syn28546456/wiki/617246
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Fig. 4: Distributions of dataset size among all the clients in the FeTS dataset

Architectures and Parameters
The network used is a SegResNet36, which takes as input the multi-modal data and
produces a segmentation mask. The model was trained by optimizing a DICE loss
by an AdamW optimizer. As a preprocessing step, each data has been cropped to
a common shape of 240x240x128 and intensity normalization has been applied. The
details on the hyperparameters used for the centralized and local training are available
in Table 14.

Results on local clients
Figure 6 shows the average DSC across splits and runs for the FeTS dataset. This
figure completes Figure 2g.

6 Additional results
The Friedman test is a nonparametric method for evaluating the significance of differ-
ences between multiple classification algorithms against multiple datasets, comparing
how well each model ranks (in terms of accuracy) across different datasets. In Section
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Fig. 5: Examples of different modalities for one patient in the FeTS dataset. MASK
represents the segmentation mask, which is used as ground truth for our segmentation
problem.

Table 14: FeTS Hyperparameters and respective values explored during the tuning
phase. Selected value in bold.

Parameter Values
Learning Rate 0.1; 0.01; 0.001;

Batch Size 1, 2, 4
Dropout 0.1, 0.2, 0.3

Local Steps 1, 6, 20
Centralized epochs 15, 30, 50

3.1 we have shown the numerical results of the Friedman test, while in Figure 7 we
show an analysis of the rankings on the various methods. We can read the figure as
the representation of the probability of each method of ranking at a given position
when tested on a dataset. The sparsity of the heatmap qualitatively suggests that
no method emerges above the others to be systematically the best. These results are
consistent with those of the statistical analysis of the p-values.
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