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Abstract—Decentralized learning enables collaborative ma-
chine learning with enhanced privacy by allowing participants to
train models locally and share updates for aggregation instead
of sharing raw data. However, such systems are vulnerable to
poisoning attacks that may compromise the learning process.
This threat becomes even more severe when combined with sybil
attacks, where adversaries contribute numerous malicious up-
dates with minimal effort, amplifying their impact. To overcome
these challenges, particularly in the permissionless setup, we
propose SyDeLP, a blockchain-enabled protocol for decentralized
learning. SyDeLP integrates byzantine tolerant aggregation for
poisoning mitigation with a novel Verifiable Delay Puzzle to
counter sybil attacks requiring Proofs of Work to participate.
Honest behavior is incentivized by dynamically reducing puzzle
difficulty, decreasing the computational burden for honest nodes
over time. Empirical evaluations conducted on two benchmark
datasets across four types of poisoning attack demonstrate that
SyDeLP consistently outperforms existing solutions in terms of
poisoning resilience.

Index Terms—Decentralized Learning, Permissionless,
Blockchain, Adaptive Difficulty, Verifiable Delay Function,
Verifiable Delay Puzzle

I. INTRODUCTION

Federated learning enables multiple devices to collabo-
ratively train a machine learning model without having to
share raw data. Instead, the model is iteratively refined by
exchanging and aggregating model updates [1]. However, this
process relies on a central server to orchestrate communi-
cation among participants, introducing limitations such as
single point of failure and various security risks [2], [3].
To remove the dependency on a central server, decentralized
learning has emerged as a more autonomous alternative. In this
paradigm, the participants operate in a peer-to-peer network,
sharing updates with a subset of neighbors. The models are
locally combined and disseminated through a gossip protocol
guaranteeing the convergence of the model [4].

Despite its advantages, the decentralized nature of these sys-
tems increases vulnerability to malicious behavior. A signifi-
cant threat is the poisoning attack, where adversaries produce
and share erroneous models, negatively impacting the aggre-
gated models. Although there has been substantial progress
in decentralized learning to mitigate known threats [2], [5],
existing solutions often rely on trusted parties. However, this
reliance re-introduces a central point of failure and creates new

vulnerabilities, as trusted entities can be compromised or act
maliciously [6].

In a permissionless setting, where no centralized entity gov-
erns access control, additional challenges arise. For example,
in the absence of such centralized authority, the alternative
access mechanism has to prevent disproportionate influence
of participants by creating multiple fake entities under their
control, a phenomenon known as sybil attack [7]. Poisoning
attacks, when combined with sybil attacks, can become severe
threats, allowing attackers to gain full control of the aggrega-
tion phase and its outcomes [8].

In this paper, we address the problem of mitigating sybil-
based poisoning attacks in decentralized learning under a
permissionless setup. Our proposal eliminates the centralized
entities while providing robust security guarantees against such
attacks.

A. Contributions

The main contributions of this paper are summarized as
follows:

1) We propose the first protocol, to the best of our
knowledge, that addresses Sybil-based Poisoning At-
tacks (SPAs) in the permissionless setting of decentral-
ized learning. Unlike existing solutions, our protocol
provides security guarantees against a wider range of
poisoning attacks without relying on trusted parties.
To prevent the disproportionate creation of sybils, we
enforce individual Proofs of Work for each participant,
integrated with blockchain technology and a Byzantine
Tolerant Aggregation (BTA) function.

2) We introduce a novel Adaptive Proof of Work (APoW)
mechanism that dynamically adjusts the difficulty of
required Proofs of Work, rewarding honest clients by
reducing their computational overhead while penalizing
possible poisoning attempts with increased difficulty.
This is achieved through combining the BTA function,
a Verifiable Delay Function (VDF), and our custom
difficulty adjustment function.

3) We conduct extensive experiments on two distinct learn-
ing tasks, evaluating our protocol against four types of
poisoning attacks, three of which are sybil-based. Our
solution outperforms state-of-the-art protocols in terms



of resilience to these attacks. The code will be made
available as an open-source project for reproducibility.

B. Outline

The rest of the paper is structured as follows: Section II
introduces the background, Section III discusses the related
work, Section IV presents SyDeLP, the proposed protocol,
Section V analyzes the security of the proposal, Section VI
details the conducted experiments, Section VII discusses the
results, and, Section VIII presents the conclusions.

II. BACKGROUND

A. Decentralized Learning

Decentralized learning [4] is a distributed framework in
which a set of nodes collaboratively train a machine learning
model by iteratively exchanging model parameters. Each node
optimizes its local model with respect to its individual data
set and, through aggregated updates, aims to approximate a
globally optimal model. Formally, a set of clients C solve the
following stochastic optimization problem:

argmin
w

1

|C|
∑
c∈C

Lc(Xc, w) (1)

where w represents the model parameters, Lc is the local
loss function of client c (e.g., cross-entropy loss or negative
log likelihood loss), and Xc is its local dataset. In each round,
every client trains its local model on its private dataset for a
number of epochs and then shares it with neighboring nodes.
Upon receiving the models from its neighbors, each client
aggregates both its model and the received models to form an
updated model, which is used for the next round of training.
This process repeats for a predetermined number of iterations
allowing the model to converge.

B. Poisoning attacks

The poisoning attack involves the active manipulation of
data or model parameters to produce incorrect models that
achieve a secondary goal. We distinguish four types of poi-
soning attacks:

1) Targeted: The goal is to induce the global model to
misclassify specific inputs into incorrect categories by
introducing a backdoor [9]. A common approach, as
described by Lin et al. [10], involves collecting normal
training data and then modifying the elements of a target
class to align with the desired class. The resulting model
can accurately classify normal data but misclassifies
instances of the target class.

2) Untargeted: The objective is to decrease the accuracy
of the global model, hindering its convergence [11].
This is accomplished by deliberately modifying the
local model contributions so that, when aggregated with
honest models, they deviate from the optimal solution.
For instance, Lin et al. [12] propose the Zero-grad attack,
where a malicious client submits models that cancel out
the honest updates during aggregation, resulting in a zero
vector.

3) Random: This is a specific case of untargeted attacks in
which the model updates are not deliberately crafted to
deviate from the optimal solution. Instead, the adversary
skips the training part and just sends random vectors
drawn from a Gaussian distribution [13]. The larger the
variance of the distribution, the stronger the attack.

4) Sybil-based: This refers to any poisoning attack that
is combined with a Sybil attack [7]. The primary goal
of the attacker is to impersonate multiple users with
different identities to gain disproportionate influence
in the system. This enables the attacker to conduct
more potent poisoning attacks [8]. We distinguish two
subtypes of sybil-based attacks: (1) Uniform: where the
sybil attacker uses identical model parameters for all the
controlled sybils, and (2) Diverse: where sybils generate
completely independent models.

C. Byzantine Tolerant Aggregation (BTA)

Preventing poisoning attacks is challenging because model
updates are generated on remote devices, and access to the
data is intentionally restricted. Although, defense mechanisms
in the form of Byzantine Tolerant Aggregation functions are
proposed in the literature [3], [13]–[16], their purpose is to
ensure that the aggregated model reflects the true state of
the model despite the presence of malicious (a.k.a byzantine)
nodes. They act as poisoning detection mechanisms, aiming
to identify and exclude abnormal models from the aggregation
phase. The predominant approach involves measuring similari-
ties among all models to discard those that are most dissimilar.
For example, Multi-KRUM [13] selects for aggregation the
N − β model updates with the lowest distance scores, where
N is the total number of nodes and β is the expected number
of byzantine nodes. The distance score of client i is given by
score(i) =

∑
i→j∥wi − wj∥2, where i → j denotes all j ̸= i

such that wj belongs to the N − β − 2 closest vectors to wi.
Multi-KRUM can tolerate up to β ≤ N−4

2 byzantine clients
and has theoretical guarantees for convergence.

BTA functions are secure when the number of malicious
(and possibly colluding) parties does not exceed the β thresh-
old. However, a sybil-based approach allows an attacker with
limited computing power to easily surpass this threshold if no
defensive measures are considered, especially in permission-
less settings where the system is open and anyone is allowed
to participate and access information.

D. Blockchain

Introduced by Nakamoto in 2008 for Bitcoin [17],
blockchain is a distributed database where data is stored in the
form of digitally signed transactions. It facilitates interactions
without trust requirements (trustless) by allowing participants
to verify them without a central authority. These transactions
are grouped into blocks, which are identified by unique IDs
generated from the hash of their content. The blocks’ content
include a hash reference to the previous block (except for the
first one), creating a cryptographic chain of blocks. This results
in an immutable data structure where any change in previously



written information would produce a cascade effect on the
hashes of subsequent blocks, thereby ensuring the integrity of
the system.

The blockchain is maintained by a set of distributed nodes
that keep a local copy. They are responsible for validating
incoming transactions and creating new blocks from them.
Node maintainers use consensus mechanisms to decide which
block is included next. Bitcoin’s Proof of Work consensus [17]
and Ethereum’s Proof of Stake [18] are among the most well-
known consensus mechanisms, but there exist numerous alter-
natives in the literature [19]. Blockchains can be categorized
as public (permissionless) or private (permissioned), each with
distinct implications for security and accessibility.

E. Proof of Work (PoW)

Proof of Work (PoW) is a well-established technique where
a prover demonstrates to a verifier that a certain amount
of computational effort has been done within a specified
interval of time [20]. PoW has served as the foundation
for numerous security protocols [21], [22] and it has gained
widespread recognition with the advent of Bitcoin [17], which
employed PoW as a mechanism to mitigate sybil attacks in a
trustless decentralized system. Beyond Bitcoin, PoW has been
effectively utilized in other decentralized protocols for this
same purpose like in [23], a peer-to-peer system for preserving
access to journals, and [24], a scalable distributed name service
resilient to massive byzantine attacks.

The core of PoW is built on the concept of computational
puzzles, which are designed to be computationally difficult to
solve but straightforward to verify once the solution is found.
These puzzles also provide cryptographic security guarantees,
preventing cheating in the proof-generation process or precom-
puting solutions. Various computational puzzle constructions
exist in the literature [21], [22], [25], each with unique
characteristics. Among these, we emphasize the Verifiable
Delay Function (VDF) due to its applicability to this work.
VDFs possess these properties [26]: they require a precise
number of sequential, non-parallelizable steps for evaluation,
have a unique solution, and allow for efficient verification in
poly-logarithmic time.

III. RELATED WORK

In decentralized learning, the Sybil-based Poisoning At-
tack (SPA) has not received sufficient attention. The Sybil
attack is typically discussed only from the perspective of
node maintainers [27]–[29], focusing on maintaining sybil-
tolerant consensus. Other works do not address the SPA at
all, as they assume a centralized trusted third party to manage
access control [30]–[33]. Even in systems that claim to be
permissionless, such as [27], [29], [34], where the SPA is
more critical and easier to implement, this problem is not
considered. BEAS [35] is one of the few examples where,
despite assuming a permissioned protocol, the SPA problem
is addressed. However, their solution relies on FoolsGold [8],
ignoring its limitations in open environments where all clients
have access to individual contributions, as is the case with

BEAS. Other works, like [30], [36], require participants to
provide collateral in the form of stake to take part in the
learning process, but the SPA is not discussed, nor are the
limitations of their solutions that require a fixed number of
participants and a trusted access control authority.

In Table I, we compare our solution, SyDeLP (see Section
IV), with other SPA protection solutions from the literature.
Notably, only our proposal is designed for permissionless
decentralized learning, where nodes can join or leave at
any time. In contrast, the other four protocols assume a
permissioned system and three of them require a trusted
federated learning server. We also compare them in terms of
the major assumptions they rely on. For instance, FoolsGold,
SybilWall and MAB-RFL, assume that the attacker generates
similar models for the controlled sybils, which make them
ineffective against diverse SPA attacks, where this assumption
does not hold. Other approaches, including ours, assume that
honest nodes will produce similar models instead, which
has been experimentally demonstrated [13], [14], [37]. This
assumption avoids restricting sybil detection to specific types
of attacks, providing broader applicability. On the other hand,
our solution is the only one that imposes a limited time to
submit model contributions each iteration.

TABLE I
COMPARISON OF SPA DEFENSE MECHANISMS IN THE LITERATURE WITH

PROPERTIES, ASSUMPTIONS AND TYPES OF ATTACKS RESILIENCE.
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SybilWall [38] ∞
Jiang et al. [39] N−2

2

MAB-RFL [37] N−2
2

SyDeLP (ours) N−4
2

Finally, we compare the protocols based on the protection
they offer against different poisoning attacks, solitary attacks,
and types of SPAs. Our protocol is the only one covering
all categories. MAB-RFL also provides good coverage, but
it lacks protection against random poisoning and the diverse
sybil-based approach. The other three protocols offer less
coverage.

Under the assumptions outlined in Table I, both FoolsGold
and SybilWall claim to resist an unbounded number of sybils.



However, even an attacker with minimal computational power
could submit an arbitrarily large number of updates at no cost,
while verifiers would need to expend substantial computing
resources to validate them. In contrast, our approach discards
updates before they are even considered for evaluation unless
the attacker has invested significantly more computational
resources.

Our protocol is neither a Byzantine detection nor a sybil
detection mechanism; rather, it is designed to be implemented
on top of existing BTA functions to make SPAs more com-
putationally expensive for attackers, thus providing enhanced
security guarantees.

IV. SYBIL-RESISTANT DECENTRALIZED LEARNING
PROTOCOL (SYDELP)

In this section, we introduce the Sybil-resistant Decen-
tralized Learning Protocol (SyDeLP) that integrates Adaptive
Proof of Work (APoW) to mitigate SPAs.

A. Overview

We identify two sets of nodes: training nodes C and verifier
nodes V . Training nodes own private datasets, train models
locally, and submit model contributions by solving Proofs
of Work. Verifier nodes maintain the network by receiving
model contributions, verifying them, and aggregating them. In
a coupled setup, nodes handle both training and verification,
while in a decoupled setup, these roles are separated. Our
protocol supports both configurations.

We use blockchain technology to provide a secure and
tamper-proof record of the training process. This enables an
open and trustless environment where all activities within the
protocol can be independently verified. Verifier nodes serve as
blockchain maintainers, responsible for recording the training
process. Each block represents a single iteration and includes
the individual model contributions as well as the aggregated
global model. Alternatively, models can be stored off-chain on
decentralized file systems and linked to transactions on-chain
[40], [41] to reduce storage overhead, but for simplicity, we
will assume they are written directly on the blockchain.

APoW is used to limit the influence of sybil attackers.
For each submitted model contribution, training nodes are
required to present a PoW of a target difficulty. This difficulty
is initially the same for any new node but can be individually
reduced or increased over time, this is the adaptive factor.
Difficulty information is also recorded in the blockchain, al-
lowing for global verification. The PoW requirement mitigates
the impact of sybil attackers because, for each new sybil, the
attacker is required to solve a different PoW to be considered.
We will later discuss how this is enforced in the protocol.
However, PoW alone does not prevent poisoning by nodes
presenting proofs, and honest nodes face high computational
demands generating these proofs. To address both issues,
we use a BTA function to filter out suspicious contributions
to assign PoW difficulty reductions for models selected for
aggregation.

Fig. 1. SyDeLP overview in a single iteration t.

Figure 1 shows a step-by-step illustration of a single itera-
tion of SyDeLP. It starts with training nodes fetching the global
model and their current Proof of Work (PoW) difficulties from
the blockchain (step 1). Then, they locally update the global
model using their local datasets (step 2) and produce the PoW
(step 3). The updated model and the PoW are packed into
a transaction and shared with verifier nodes (step 4). Verifier
nodes validate each incoming transaction (step 5), immediately
discarding transactions with invalid Proofs of Work. A BTA
function is used to aggregate the models, filtering out potential
malicious models (step 6). Training nodes whose models are
selected by the BTA function for aggregation receive rewards
in the form of difficulty reductions for the next iteration, while
owners of unselected models are penalized with an increase
in difficulty (step 7). The received transactions, along with the
updated difficulties and the global model update, are packaged
into a block (step 8). Verifier nodes then use a consensus
algorithm to agree on the correct next block (step 9). Finally,
the agreed-upon block is added to the blockchain to be used
in the next iteration (step 10). This process is repeated a
predefined number of times, T , to allow the model to converge.

In Algorithm 1, we present the overall functioning of the
protocol. In the following subsections, we described the details
of each component.

B. Objectives

The protocol is designed to meet the following objectives:
1) Sybil-based poisoning attacks mitigation: By strength-

ening BTA functions, sybil attacks aiming to introduce
poisoning into the global model can be effectively coun-
tered.

2) Permissionless: The protocol is completely decentral-
ized and open, meaning that anyone can join or leave at
any time.

3) Trustlessness: No trusted party is required for any
purpose in the protocol. Operations can be independently
audited and verified with cryptographic guarantees.



Algorithm 1 SyDeLP
1: for t ∈ [1, 2, . . . , T ] do
2: // Transactions creation
3: for each c ∈ C in parallel do
4: Get wt

G and Φc from the blockchain.
5: // Use Φc = 0 for new nodes
6: wt+1

c = wt
G − η∇wt

G
L(Xc, w

t
G) // Local update

7: wsig = sign(wt+1
c , pkc, skc)

8: Dc = f(Φc)D
9: (y, π) = V DP (pkc, wsig, H,Dc)

10: txt+1
c = (wt+1

c ,Φc, wsig, pkc, (y, π), H)
11: Send txt+1

c to all v ∈ V
12: end for
13:
14: // Block creation
15: for each v ∈ V in parallel do
16: // Byzantine/honest labeling
17: ξ = A({wt+1

c | c ∈ C, is valid(txt+1
c )})

18: HC = ∅ // Set of honest contributions
19: for each c ∈ C do
20: if ξc == 0 then // If honest
21: txt+1

c (Φc) = txt+1
c (Φc) + 1 // Reward

22: HC = HC ∪ {wt+1
c }

23: else
24: // Penalize
25: txt+1

c (Φc) = max(txt+1
c (Φc)− 1, 0)

26: end if
27: end for
28:
29: wt+1

G = FedAV G(HC)
30: Bt+1

v = ({txt+1
c | c ∈ C}, wt+1

G , H)
31: end for
32:
33: Consensus on block state
34: end for

C. Threat model

Adversary goals. The adversary aims to corrupt the global
model by submitting poisoned model updates through sybil
identities, either introducing a backdoor or preventing the
convergence. Specifically, the attacker’s goal is to introduce
more than β sybils into the protocol to break the security
guarantees of the BTA function A on aggregation. β refers
to the number of byzantine nodes tolerated by A. Privacy
considerations such as data reconstruction attacks [42], [43] on
individual model updates are not addressed in this work due
to the BTA function’s requirement to access individual model
updates for computing similarities. However, privacy can still
be explored by integrating BTA functions with techniques like
Differential Privacy, as demonstrated in [44]. We leave this as
future work.

Adversary capabilities. The adversary can create an un-
limited number of sybils (in the form of pseudo identities),
but has constant and limited computing power P , defined as

the number of Proofs of Work with initial difficulty D that
he can solve in one training iteration, where P ≤ β. The
adversary can also generate honest model updates (indistin-
guishable from other honest updates during validation) and can
shift from honest to malicious behavior at any time. For the
controlled sybils, we consider the case where the attacker may
submit different poisoning contributions for each sybil (even
with different poisoning strategies), which is more realistic
than the state of the art assumptions regarding sybil models
similarities [8], [37], [38].

D. Assumptions

1) In each iteration, training nodes have a limited time
τ to locally update the global model and generate the
required PoW. This constraint prevents the adversary
from computing more than P initial difficulty Proofs of
Work per iteration, but requires synchronization among
verifier nodes. An approach such as the one proposed
by Regnath et al. [45] for trustless date-time synchro-
nization on blockchain may be used to achieve it.

2) Honest nodes have sufficient computing power to meet
Assumption 1, enabling them to solve a PoW with
difficulty D in time τ . This is complementary to the
standard assumption in decentralized learning, where it
is assumed that training nodes have enough computing
resources to locally train the model.

3) Verifier nodes receive the model updates from all honest
training nodes each iteration. This requires that honest
training nodes are connected to all verifiers, or at least to
one honest verifier, which can then broadcast the updates
to the rest of the verifiers via a gossip protocol.

4) Verifier nodes can reach a consensus on the next block
by employing a consensus mechanism such as Proof
of Work [17], Proof of Stake [18], etc. This implicitly
involves the assumptions of the respective consensus
mechanisms, such as a majority of honest computing
power in the case of PoW.

5) Honest training nodes produce similar model updates
to other honest nodes. This assumption is necessary for
BTA functions and has been experimentally observed
[8], [13]. Our conducted experiments have also con-
firmed this behavior (see Section VI).

E. Initialization

The protocol begins with the initialization phase where
a set of nodes launches the learning task by determining
the initial learning hyperparameters, such as neural network
architecture, the number of layers, the learning rate, and the
protocol parameters. This can be achieved through consensus
algorithms, as in [27].

Once the parameters are decided, the genesis block is
created. It contains the model hyperparameters, initial global
model parameters w1

G, which are typically initialized as a
vector with random values, the initial (and maximum possible)
difficulty D for the individual Proofs of Work, the total number
of iterations T , the security parameter α ≥ 1 (see Section V),



the BTA function to be used, and its β parameter. The difficulty
D is defined as the number of operations required to solve the
puzzle.

Additionally, each training node c generates a key pair
(pkc, skc) to digitally sign messages. The public key will
be used to link nodes to digital identities and to track their
contributions and difficulties in the blockchain. Note that
nodes are free to change their keys at any time, but this will
result in the loss of any difficulty reductions they may have
obtained.

F. Transaction creation

At every iteration t, each training node c fetches the current
global model wt

G from the last block to locally update it by
computing the gradient with respect to its private dataset Xc

such that: wt+1
c = wt

G−η∇wt
G
L(Xc, w

t
G), where L is the loss

function and η is the learning rate. Then, the updated model
is signed as wsig = sign(wt+1

c , pkc, skc) with the node’s key
pair to prevent tampering and repudiation when sharing it.

To have the model contribution considered, node c must
present a PoW that meets its current target difficulty. Nodes’
difficulties are individually updated each iteration depending
on their model updates, specifically whether they are selected
for aggregation by A or not. Honest nodes continuously
selected will accumulate reductions over time, while a sybil
attacker incurs high computational costs to maintain the sybils
in the system.

To compute its current difficulty, node c can obtain its con-
tribution score, Φc, from its most recent transaction submitted
to the blockchain. Nodes contributing for the first time will not
have any transaction reference, in this case they use Φc = 0.
The contribution score Φc is then used to compute the current
target difficulty as explained in Section IV-G.

The next step involves solving a Verifiable Delay Puzzle
(VDP), expressed as (y, π) = V DP (pkc, wsig, H,Dc), where
y is the result of the puzzle and π the proof that allows
efficient verification of correctness. This function requires Dc

sequential (non parallelizable) operations to solve. The puzzle
is generated using as input the public key pkc, the digital
signature of the current model wsig , and the hash reference
to the last block H . Including the public key watermarks the
puzzle, preventing the adversary from reusing proofs across
different sybils, as only one model contribution is considered
per public key each iteration. Additionally, including the hash
reference of the last block prevents the precomputation of
proofs since this value cannot be known in advance.

With all the generated data, node c creates a new transaction
txt+1

c = (wt+1
c ,Φc, wsig, pkc, (y, π), H) that is sent to the

connected verifiers, who are assumed to broadcast the received
transactions to all their verifier peers.

G. Adaptive Proof of Work (APoW)

To enforce the second assumption outlined in Section IV-D,
which requires honest nodes to update the model and generate
a PoW of difficulty D in time τ , we adopt a Verifiable Delay
Function puzzle construction. VDFs do not suffer from high

variance in the expected number of operations needed to solve
the puzzle, unlike other computational puzzles like SHA-256
based Bitcoin’s PoW. This allows honest nodes to solve the
puzzle in approximately the same time. We use the VDF
proposed by Wesolowski [46]:

Let h be a cryptographic hash function, D the difficulty
(number of required operations), int a function that maps
binary strings to its non-negative integer representation, bin
a function that maps non-negative integers to its binary repre-
sentation, N the modulus of an RSA group G, hprime a hash
function that maps any input to a random large prime number
and x some data. The non-interactive VDF evaluation works
as follows:

1) The prover computes g = int(h(“residue”||x)) mod N ,
where || denotes concatenation, and y = g2

D

mod N .
Using the Fiat-Shamir heuristic, a non-interactive proof
is generated by computing l = hprime(bin(g)||bin(y))
and π = g⌊2

D/l⌋ mod N . Once finished, the prover
sends (x, y, π) to the verifier.

2) The verifier computes the same g and l using x and y.
Additionally, he computes r = 2D mod l. He accepts
the proof if g, y, π ∈ G and πlgr mod N = y, which
confirms that the prover correctly computed both π and
y.

This VDF construction relies on the sequential-squaring
conjecture that computing g2

D

mod N for a uniform g
requires at least D sequential steps [47]. The verification
of correctness requires essentially two exponentiations and
one product (πlgr mod N) in the group G which can be
efficiently computed guaranteeing that the prover has done D
operations.

Note that in this construction, knowing the factorization
of N would enable a node to solve the puzzle significantly
faster. However, we refer the reader to the original paper [46]
where a construction based on the class group of the imaginary
quadratic field of unknown order is proposed for scenarios
where the private key (the factorization of N ) should remain
undisclosed.

In our protocol, the data x used to generate the puzzle
includes the node’s public key, the digital signature of the
current model update, and the hash reference of the last block.
We refer to this puzzle construction as a Verifiable Delay
Puzzle (VDP). The difficulty of the puzzle is individually
computed as Dc = ⌈Df(Φc)⌉, for a node c, where f is the
difficulty adjustment function given by:

f(Φ) =

(
T − α

T − 1

)Φ

(2)

f takes as input the contribution score and outputs a value in
the range [0, 1], which serves as adjustment coefficient of the
initial difficulty D. Consequently, Φ = 0 produces f(0) = 1,
as new nodes always face the maximum difficulty. Note that
f(0) ≥ f(1) ≥ f(2) ≥ · · · ≥ f(n).

Here, α ≥ 1 denotes the security parameter that adjusts
the trade-off between security and difficulty reduction. Specif-



ically, α scales the tolerance threshold of A as 1
αβ, against a

sybil attacker. This implies that a sybil attacker would need
at least P = 1

αβ + 1 computational power to compromise the
system in a worst-case attack, but the system is still tolerant
to β total malicious nodes. We present a formal discussion on
the worst-case attack and the security of f in Section V.

Setting α = 1 yields f(Φ) =
(

T−1
T−1

)Φ
= 1Φ = 1,

resulting in a constant maximum difficulty. This case provides
optimal security because β is not scaled but requires all
nodes to perform proofs of maximum difficulty each time,
with no possible reductions. Figure 2 illustrates the evolution
of difficulty for a consistently honest-labeled node over 100
iterations with different values of α. Lower values of α (closer
to 1) enhance security but limit difficulty reduction. With
α = 2, there is a balanced trade-off: the protocol can tolerate a
sybil attacker with P = 1

2β computing power, while allowing
difficulty reductions for honest nodes. By iteration 70, the
difficulty would halve and continue to decrease to less than
0.4.
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Fig. 2. Difficulty reduction over time for different values of α with T = 100

H. Transaction verification

Each time a verifier receives a new transaction, it checks
whether the transaction adheres to the protocol rules. In the
event of any inconsistency, the transaction is immediately
discarded. The verification process consists of: (1) checking
that the transaction is within the valid time frame τ for
receiving transactions; (2) ensuring that no other valid model
contribution has been previously submitted in the current
iteration using the provided public key; (3) verifying the digital
signature against both the public key and the signed data;
and (4) verifying the correctness of the solution y and the
proof π of the VDP, which requires verifying that the correct
Φc was used to calculate the target difficulty for the sending
node. Only transactions that satisfy these four conditions are
considered and included in the new block. These verification
steps were included in line 17 of Algorithm 1 as a high-
level function is valid, ensuring that only valid transactions
are considered during block creation (from line 15 to 27).

I. Block creation

When the time frame for receiving updates ends, verifier
nodes run A to detect potentially poisoned contributions. We
will use Multi-KRUM to implement SyDeLP, but note that
any BTA function can be used instead. With Multi-KRUM,
the N − β − 2 models with the lowest distance scores are
labeled as honest (with 0), and the rest as byzantine (with 1).

False positives may occur when honest contributions are
incorrectly labeled as byzantine due to the nature of BTA
functions, which discard the most dissimilar updates even in
the absence of attacks. In such cases, these honest nodes
will be penalized and they will have to present proofs with
higher difficulties in the next iteration. This reflects the secu-
rity/efficiency trade-off in our protocol. By employing APoW,
we strengthen the BTA functions at the cost of increasing
computational demands on all participants. The computational
burden for securing the protocol does not lie with a single
entity but is distributed among all the training clients.

After byzantine/honest labeling, the contribution score of
each client is updated accordingly by verifier nodes, increasing
by 1 for honest-labeled models and decreasing by 1 for the
others. Contribution scores are lower-bounded at 0, which
yields the initial difficulty D. This bound prevents nodes from
bypassing higher difficulties by rejoining with a new identity
to reset their difficulty back to the initial value D.

Then, the set of honest-labeled models HC is aggregated us-
ing element-wise averaging (FedAVG [1]) into a global model
wt+1

G = FedAV G(HC). Finally, the set of all transactions
{txt+1

c | c ∈ C} (with the updated contribution scores), the
new global model wt+1

G , and the hash reference of the previous
block H , are bundled into a new block Bt+1

v to be added into
the blockchain.

If the verifier nodes follow the protocol rules and correctly
compute the protocol’s functions, they should arrive at a
similar block. However, they will use a consensus mechanism
to agree on the next block. Since the choice of consensus
mechanism does not directly impact the problem under inves-
tigation, any existing consensus mechanism can be employed.

V. SECURITY ANALYSIS

In this section we present a formal security analysis of the
difficulty adjustment function f used in SyDeLP to mitigate
SPAs. We describe a worst-case attack that will naturally lead
to the definition of f , previously introduced in Equation 2,
that maintains the resilience to poisoning on aggregation in
the presence of a sybil attacker.

A. Worst-case attack

Assume that any poisoning attempt, when the total number
of malicious nodes in the system is lower or equal than β can
be effectively identified by A. Similarly, assume that honest
models generated by the attacker are always labeled as honest
by A, producing difficulty reductions for those sybils.

Let P < β, in the first iteration, an attacker can introduce
S1 = P sybils into the protocol, by definition of P . Then,
the attacker generates honest models for all of them, which



will produce difficulty reductions in the next iteration. In the
second iteration, the attacker would need to expend work
equivalent to S1f(1) to keep the initial sybils, where f(1) <
f(0) = 1 is the reduction coefficient. Since S1f(1) < P ,
the attacker could introduce S2 = P − S1f(1) new sybils in
this iteration. The attacker can continue doing this until the
number of sybils under his control exceeds β, breaking the
security guarantee on aggregation of A.

B. Difficulty adjustment function

With a constant maximum difficulty on the PoW, the se-
curity of the protocol is guaranteed against a sybil attacker
with computing power P ≤ β. When difficulty reduction is
considered, we can express this same condition as αP ≤ β, for
some α > 1, because the attacker would be able to introduce
more than P sybils as described in the worst-case attack.

Let Si be the number of sybils introduced at iteration i, with
S1 = P . The goal of the difficulty function f is to bound the
total number of sybils introduced after T iterations to at most
αP , that is:

T∑
i=1

Si ≤ αP (3)

Suppose that after the first iteration, f can effectively limit
the number of new introduced sybils to a constant sP , in each
subsequent iteration, where 0 < s < 1. Then, we can set
Equation 3 to the maximum possible value, αP , and express
it as:

T∑
i=1

Si = P + (T − 1)sP = αP (4)

Solving for s we have:

s =
α− 1

T − 1
(5)

Considering this value of s, we will show that the difficulty
adjustment function f , meets the desired security constraint of
Equation 3 in the presence of a worst-case attack. First, note
that for an always-honest labeled node c, his contribution score
at iteration j is Φc = j− i, where i is the iteration it started to
contribute. Suppose a sybil attacker is following the strategy
of the worst-case attack, then the computing power required
at iteration j to keep the Si sybils introduced at iteration i
is Sif(j − i). Given that the attacker’s computing power is
limited and constant, the following constraint must be met at
every iteration j for the work required for all the introduced
sybils so far:

j∑
i=1

Sif(j − i) ≤ P (6)

Considering that S1 = P , and Si = sP,∀i > 1, we can
rewrite Equation 6 as:

Pf(j − 1) +

j∑
i=2

sPf(j − i) ≤ P (7)

Solving for f(j − 1) we have:

f(j − 1) + s

j∑
i=2

f(j − i) ≤ 1

f(j − 1) ≤ 1− s

j−2∑
i=0

f(j − i− 2)

(8)

Treating this inequality as an equality gives the highest
possible value for f(j − 1), allowing us to derive a recursive
definition for f . To derive a non-recursive definition, we
rewrite Equation 8 as a function with parameter Φ as:

f(Φ) = 1− s

Φ−1∑
i=0

f(i) (9)

We will show by induction that this expression follows the
binomial expansion (x+y)n =

∑n
k=0

(
n
k

)
xn−kyk, with x = 1

and y = −s.

Theorem 1. The closed-form expression of Equation 9 is
f(Φ) = (1− s)

Φ.

Proof. We verify the base case for Φ = 0, so f(0) =
(1− s)

0
= 1. Now, assume the statement holds for some

Φ = k, we get: f(k) = (1− s)
k. Finally, we show that it

is also true for Φ = k+ 1. From the recursive definition of f
(Equation 9) and the induction hypothesis we have:

f(k + 1) = 1− s

k∑
i=0

f(i) = 1− s

k∑
i=0

(1− s)
i (10)

The summation
∑k

i=0 (1− s)
i is the well known geometric

series
∑n

i=0 a0r
i = a0

1−rn+1

1−r with initial value a0 = 1 and
common ratio r = 1− s, so it is equivalent to:

k∑
i=0

(1− s)
i
=

1− (1− s)
k+1

1− (1− s)
=

1− (1− s)
k+1

s
(11)

substituting in 10 we have:

f(k + 1) = 1− s

(
1− (1− s)

k+1

s

)
= 1−

(
1− (1− s)

k+1
)

= (1− s)
k+1

(12)

which is what we aimed to prove. Therefore, our initial
hypothesis f(Φ) = (1− s)

Φ is correct.

Substituting the value of s from Equation 5, f becomes:



f(Φ) =

(
1− α− 1

T − 1

)Φ

=

(
T − α

T − 1

)Φ

(13)

which is the same expression presented in Equation 2.
Note that this definition of f meets the security requirements,
allowing an attacker with computing power P to introduce at
most αP ≤ β sybils after T iterations.

VI. EVALUATION

In this section, we describe the experiments conducted to
compare SyDeLP with two state-of-the-art SPA mitigation pro-
tocols. The objective of this comparison is to assess resilience
against different types of poisoning attacks and their impact
on model utility. We evaluated a fixed setup with one-third
of the network nodes being malicious. The implementation
of the blockchain component and the evaluation of SyDeLP
under worst-case attack scenarios are left for future work. The
code to reproduce the experiments can be found on Github at
https://github.com/brandon-mosqueda/sydelp.

A. Datasets and models

MNIST [48]: A widely used dataset for evaluating decen-
tralized learning, consisting of 70,000 images of handwritten
digits, with 60,000 designated for the training set and 10,000
for the testing set. Each image is a grayscale, 28 x 28-pixel
square, resulting in a total of 784 pixels per image. This
dataset is used for multi-class classification, where each class
corresponds to a decimal digit from 0 to 9. We employ a
well-known deep learning multilayer perceptron architecture
[1], which includes one hidden layer with 100 units using the
ReLU activation function and an output layer of 10 units using
the softmax activation function. For all the experiments, we
set the learning rate to 0.001, the batch size to 16, and the
local epochs to 10.

UCI SMS Spam Collection [49]: Similar to the the ex-
periments conducted in [50], we adopt this dataset for binary
classification on text data. The SMS Spam dataset comprises
5,572 english SMS messages categorized as spam (13%) or not
spam (87%). We randomly split the dataset into training and
testing sets, allocating 80% and 20% of the data, respectively,
while preserving the original labels proportions (spam and
not spam). The model used is a Long-Short Term Memory
(LSTM) with an embedding dimension of 64 and an LSTM
layer with 64 units. The output layer consists of a single unit
with sigmoid activation function. For all the experiments we
set the learning rate to 0.001, the batch size to 8 and the local
epochs to 5.

B. Data distribution

We conducted experiments exclusively under the non-
independent and identically distributed (non-IID) data parti-
tioning scenario, as it is the most realistic setting. The training
sets in both datasets were divided into partitions using the
Dirichlet distribution, which has been used for generating
non-IID data partitions on decentralized learning simulations
[16], [35], [38]. This approach provides a flexible mechanism

to control the degree of data heterogeneity among clients
through the concentration parameter σ ∈ R+. Lower values
of σ results in higher degree of non-IID partitions, while
higher values approach the uniform distribution. The Dirichlet
distribution naturally creates imbalanced partitions, affecting
both the number of samples and the class distribution within
each partition. We set σ = 0.1 to achieve a high degree of
non-IID in the partitions.

C. Attacks

We evaluated three sybil-based and one non sybil-based
poisoning attack to assess the effectiveness of the defense
mechanisms. All the attacks were carried out under both
scenarios, uniform and diverse (see Section II-B).

Label flipping [51]: In this attack, the malicious nodes
change all the labels of a source class to a target class in their
local datasets. The goal is to induce the model to misclassify
samples of the source class as the target class. For the MNIST
dataset, we set the source class to 1 and the target class to 9.
For the SMS Spam dataset, the source class is 1 (spam) and
the target class is 0 (not spam).

Sign flipping [52]: This is an untargeted attack where the
malicious clients normally train their models but then they
multiply their updates by a negative constant σ, inverting the
direction of the actual gradients. We set σ = −3 for the
experiments.

Random [13]: As detailed in Section II-B, in the random
attack, malicious nodes generate and share random vectors
drawn from the Gaussian distribution. For our experiments,
we use Gaussian distribution parameters µ = 3 and σ = 2.

Solitary random: This is the only non-sybil based attack. It
is similar to the random attack but involves only four malicious
nodes.

D. Evaluated protocols

No defense: This refers to the baseline setup where no
defense mechanism is employed. For consistency and better
comparison, we assume that, at each iteration, all the models
are aggregated into a global model to compute the metrics,
similar to SyDeLP and MAB-RFL.

MAB-RFL [37]: Proposed for federated learning, in MAB-
RFL, the model selection process for aggregation is modeled
as an extended multi-armed bandit (MAB) problem, where
high quality updates are more likely to be selected. A sybil
detection mechanism based on a graph constructed from cosine
similarities is proposed, while non sybil-based attacks are
addressed using an approach based on Principal Component
Analysis and agglomerative clustering. For the SMS Spam
dataset we set the protocol parameters α = 0.1, cmax = 0.93
and cmin = 0.93, while for the MNIST dataset, we used
α = −0.1, cmax = 0.7 and cmin = 0.3. For further details
about these parameters, we refer the reader to the original
paper [37].

SybilWall [38]: This system adapts the core concepts of
FoolsGold [8] for decentralized learning, removing the need
for a central server. In SybilWall, contributions are locally

https://github.com/brandon-mosqueda/sydelp
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Fig. 3. Model accuracy of SMS Spam dataset.
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Fig. 4. F1 score on SMS Spam dataset.

weighted based on their cosine similarity with other received
contributions. Updates with high similarity are assumed to
originate from sybil attackers and are assigned lower weights.
A probabilistic gossip mechanism is introduced to incorporate
information from farther nodes, increasing the likelihood of
detecting sybil updates. We evaluated this system on a random
regular graph with degree 8 and a distant propagation relevance
parameter λ = 0.8. As this is the only system where aggre-
gation does not occur globally, we report metrics aggregated
solely from honest nodes.

SyDeLP: We evaluated our proposal using Multi-KRUM
as BTA function with β = 40. No simulations on the
actual blockchain and PoW implementation were conducted,
so setting a value for α is not required here.

E. Metrics

We evaluate the model accuracy for both datasets, as both
are classification tasks (Figures 3 and 5). For the MNIST
dataset, under the label flipping attack, we also report the
attack success rate in Figure 6, defined as the proportion of
source class samples in the testing misclassified as the target
class [8]. On the other hand, for the SMS Spam dataset, we use
the F1 score to evaluate the balance between the precision and
recall (Figure 4). Note that the F1 score also captures the attack
success rate in this case as it involves binary classification.
Metrics are reported for the models in the final iteration on
the testing set to assess the overall effectiveness of the learning
process.

F. Setup

For all the experiments, we use 100 nodes and 100 itera-
tions. In the three sybil-based attacks, the number of malicious
nodes is set to 33, while in the solitary attack, only 4 malicious
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Fig. 5. Model accuracy of MNIST dataset.
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Fig. 6. Attack success rate on MNIST dataset.

nodes are used. We implemented the experiments in Python
3.9 using the Keras 3.6 [53] library with Tensorflow 2.17 [54]
as backend for the deep learning models.

The experiments were conducted on a computer running
Ubuntu 22.04, equipped with an Intel i9-13950HX 13th Gen
processor featuring 22 cores and clock speeds of up to 5.3
GHz.

G. Experimental results

UCI SMS Spam Collection: As shown in Figure 3,
the three evaluated defense mechanisms produce a simi-
lar accuracy in the absence of attacks. However, accuracy
significantly decreases under attacks when no defense or
SybilWall is employed. Given the unbalanced nature of this
dataset, accuracy alone cannot capture the effectiveness of
the protocols against poisoning attacks. Therefore, in Figure
4, we present the results in terms of F1 score, which better
reflects the impact of attacks on the underrepresented label
(spam). Without attacking, MAB-RFL outperforms the other
defenses. However, under diverse poisoning attacks, MAB-
RFL exhibits a noticeable performance reduction. This is
expected as both MAB-RFL and SybilWall were designed for
uniform attacks, assuming that sybil attackers produce similar
updates. Notably, even in a uniform attack, the random attack
is only mitigated by SyDeLP. Finally, none of the defense
mechanism could mitigate the label flipping attack on the
diverse scenario. This failure is reflected with the almost zero
F1 score, as all the spam samples were incorrectly classified as
non-spam. We hypothesize that label flipping identification on
binary classification tasks (or text data) cannot be captured by
similarity measures. Further investigation is needed to address
this case.



MNIST: This dataset exhibits more stable results across
the evaluated cases. Figure 5 shows the accuracy results. The
model’s accuracy is not significantly impacted under any attack
when using SyDeLP and MAB-RFL. In contrast, SybilWall
presents an abrupt reduction when facing the attacks. It is
noteworthy that the label-flipping attack is entirely unsuc-
cessful in this dataset. Even without defense mechanism, the
model’s accuracy remains unaffected and the attack success
rate remains low, as shown in Figure 6. Among the evaluated
protocols, SyDeLP shows the highest attack success rate for
the diverse case, but it is negligible since the attack success
rate is less than 1%.

VII. DISCUSSION

For the experimental evaluation on the robustness of
SyDeLP against SPAs, we performed extensive experiments
and compare it with two solutions in the literature. Our results
demonstrate that SyDeLP maintains performance similar to the
no-attack scenario across a broader range of attacks. MAB-
RFL also performs comparably, except under diverse SPAs
on the SMS Spam dataset. However, a critical limitation of
MAB-RFL is the lack of practical guidelines for setting its key
parameters, cmin and cmax, which define the cosine similarity
thresholds for identifying sybils.

For the MNIST dataset, we used the parameters provided
in the original work. However, for the SMS Spam dataset,
which was not part of the original evaluation, determining
appropriate values required several exploratory experiments
that were not trivial. We observed high cosine similarity
among honest updates through the learning process, requiring
cmax = cmin = 0.93. Lower values disrupted the training
process entirely. Finding such parameters is not a practical task
in a real-world scenario without incurring significant costs.

In contrast, SyDeLP’s parameters, β and α, are easier
to define as they directly control the security-cost trade-off.
β represents the total number of tolerated malicious nodes,
while 1

αβ represents the computational resources required to
compromise the system under the worst-case attack.

Addressing privacy concerns is essential, as privacy leak-
age remains a significant challenge in decentralized learning.
Although studies have suggested that BTA functions are
compatible with differential privacy [29], [30], [35], other
approaches, such as cryptographic-based methods, should also
be investigated.

Finally, we would like to explore additional reward mecha-
nisms for incentivizing honest participation beyond difficulty
reductions. A natural extension would be incorporating mone-
tary incentives, similar to cryptocurrency systems like Bitcoin.
For instance, nodes could be rewarded with digital assets based
on the frequency with which their models are selected for
aggregation. These rewards could be distributed iteratively or
at the conclusion of the learning process, fostering continued
and honest participation.

VIII. CONCLUSION

We proposed SyDeLP, a decentralized learning protocol
designed to mitigate Sybil-based poisoning attacks (SPAs)

in permissionless settings. By combining Byzantine Tolerant
Aggregation functions for poisoning detection with Adaptive
Proof of Work to counter sybil attacks, SyDeLP introduces a
robust framework for securing decentralized learning systems.
The protocol’s security is governed by two comprehensive
parameters, β and α, which enable a practical balance between
resilience and computational efficiency.

Through experimental evaluation on two benchmark
datasets, we compared SyDeLP with two baseline protocols
across ten attack scenarios. The results demonstrate that
SyDeLP consistently outperforms alternatives in terms of
robustness and overall model utility.

While we are optimistic that this work represents a signifi-
cant step toward trustless decentralized learning systems with
verifiable operations, further research is needed. Specifically,
trustless initialization and efficient verification methods for
training correctness remain open challenges. Additionally,
relaxing current assumptions, such as the need for synchro-
nization and access to global aggregation, could expand the
applicability of SyDeLP to peer-to-peer settings where only
local aggregation is feasible.
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