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Abstract 69 

Urban surface albedo is an essential biophysical variable in the surface energy balance across all 70 

scales, from micro-scale (materials) to global scale, changing with land cover and three-71 

dimensional (3-D) structure over urban areas. Urban albedos are dynamics over space and time 72 

but have not yet been quantified over global scales due to the lack of high-resolution albedo 73 

datasets. Here, we combined the direct estimation approach and Landsat surface reflectance 74 

product to generate a 30-m-resolution annual surface albedo dataset for 3037 major cities (area > 75 

50 km2) worldwide for the period from 1986 to 2020, allowing spatial patterns and long-term 76 

temporal trends to be explored with possible causal drivers, and quantification of the surface 77 

radiative forcing from these albedo changes. Evaluation of this new albedo dataset using global 78 

urban flux tower-based measurements demonstrates its high accuracy with an overall bias and 79 

root-mean-square-error (RMSE) of 0.005 and 0.025, respectively. Analysis of the dataset reveals 80 

an overall trend of decreasing albedo for the 35-year evaluation period (1986-2020), which is 81 

robust accounting for a series of uncertainties from training sample representativeness, Landsat 82 

data uncertainty, seasonal variation, and snow-cover confounding impacts. Our results reveal that 83 

urban greening (measured by the Normalized Difference Vegetation Index (NDVI) trend) can well 84 

explain the total variances in the albedo trend for the 35-year period through two different 85 

pathways of tree planting and urban warming-enhanced vegetation growth. The decrease in urban 86 

albedo caused a warming effect indicated by positive surface radiative forcing, with a global city-87 

level average surface radiative forcing of 2.76 W·m-2. These findings enhance our understanding 88 

of urbanization’s impacts on albedo-related biophysical processes and can provide information to 89 

quantify urban surface radiation energy and design effective mitigation strategies to reduce urban 90 

warming (e.g., urban heat islands).  91 

Keywords: Biophysical process; NDVI; Radiative forcing; Landsat; MODIS; Surface albedo 92 

 93 
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 97 

1. Introduction  98 

Urban areas represent the principal land cover that is most affected by intensive anthropogenic 99 

activities from replacing agricultural, forested or natural landscapes with impervious surfaces 100 

(Seto et al. 2012). Urbanization modifies the carbon exchange between the surface and atmosphere 101 

(e.g., anthropogenic emissions of carbon dioxide (CO2) from domestic heating, transport, industry 102 

and services, and electricity generation; Ribeiro et al. 2019; Wang et al. 2015), as well as changes 103 

surface radiative properties and energy partitioning (e.g., albedo and evapotranspiration; Cao et al. 104 

2016; Schwaab et al. 2021), and thus modifies biophysical variables (e.g., air temperature). This 105 

can result in nocturnal canopy air temperatures being warmer in urban areas than the surrounding 106 

non-urban areas, known as the canopy layer urban heat island (CL-UHI) (Estoque et al. 2020; Oke, 107 

1982). With a global urban population of 4.2 billion (around 55% of the total population in 2018) 108 

projected to increase to 9.7 billion (about 68% of the total population) by 2050 (UNDESA, 2019), 109 

the well-being of urban residents is at critical risk and simultaneously impact by urban-climate 110 

phenomena, such as the CL-UHI (Huang et al. 2020; Hsu et al. 2021). Improving our 111 

understanding of biophysical processes in cities can help to create more livable environments.  112 

 113 

Surface albedo change can directly alter the biophysical processes of surface energy balance from 114 

micro (materials) to local and to global scales. Urbanization causes albedo changes by modifying 115 

surface materials and three-dimensional (3-D) structures (Shen et al. 2021). For example, 116 

anthropogenic land cover changes between 1700 and 2005 are estimated to have caused a 0.00106 117 

increase in global mean albedo, that is linked to a negative radiative forcing of -0.15 ± 0.10 W·m-118 

2 (Ghimire et al. 2014; Myhre et al. 2014). For a long time, the use of highly reflective urban 119 

materials (e.g., white rooftops and light-colored pavements) has been actively encouraged as 120 

method to mitigate the surface-UHI (S-UHI) effect and improve human comfort (Morini et al. 121 

2016; Rosso et al. 2018). Numerous regional and global climate simulations have shown albedo-122 

related impacts. A 0.1 increase in albedo in urban areas (e.g., rooftops and pavements) has been 123 

estimated to be able to reduce the global average surface temperature by 0.01-0.07 K, which is 124 

equivalent to a 25-150 billion ton offset in CO2 emissions (Akbari et al. 2012; Menon et al. 2010; 125 

Xu et al. 2020). 126 
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 127 

Urbanization impacts on surface albedo are multifaceted. Initial urbanization, changing a natural 128 

vegetated surface (e.g., forest and grassland) to light colored short building may increase surface 129 

albedo (Kuang et al. 2019), but the same materials with denser 3-D urban morphology will 130 

generate more shadows, reducing the bulk surface albedo (Christen and Vogt, 2004; Groleau and 131 

Mestayer, 2013). The net surface albedo change depends on both urban cover materials and 132 

building arrangements (Falasca et al. 2019; Qin, 2015; Santamouris and Fiorito, 2021; Yang and 133 

Li, 2015). Satellite remote sensing can quantify these net effects with global coverage. Coarse-134 

resolution satellites in previous studies based on the 500-m-resolution Moderate-Resolution 135 

Imaging Spectroradiometer (MODIS) and Global LAnd Surface Satellite (GLASS) albedo 136 

products were not able to accurately detect the fine-scale heterogeneity of urban albedo 137 

(Chrysoulakis et al. 2018; Hu et al. 2016; Tang et al. 2018). Use of higher-resolution satellite 138 

observations (e.g., 30-m Landsat and 10-m Sentinel-2) demonstrated their potential to monitor 139 

fine-scale urban albedo (Bonafoni and Sekertekin, 2020; Guo et al. 2022; Trlica et al. 2017). 140 

 141 

However, our spatiotemporal knowledge of urban albedo is limited for several reasons. First, 142 

existing satellite-based albedo studies are restricted to very few (≤ 11) cities (Guo et al. 2022; 143 

Trlica et al. 2017), so the spatiotemporal trends may be city-specific. Second, the underlying 144 

drivers controlling the spatiotemporal patterns of surface albedo and their resulting climatic effects 145 

remain largely unclear. Urbanization are complex physical, socioeconomic, and cultural processes 146 

in 3-D space, involving extent expansion of new impervious areas (Liu et al. 2020; Zhang and Seto, 147 

2011) and increase in human modification on mature urban areas, such as building construction 148 

and greening activity (Theobald et al. 2020; Zhou et al. 2022). Previous studies attributed urban 149 

albedo variations to land cover change from natural lands to new urban structure by making the 150 

use of two-baseline-year datasets, without accounting for human modification activities (Ouyang 151 

et al. 2022). For example, large-scale tree planting in cities is a global agreement and effort to 152 

mitigate urban heat stress from climate warming and CL-UHI effects (Schwaab et al. 2021). 153 

Around 70% of cities worldwide witness urban greening phenomenon with increasing vegetation 154 

coverage (Sun et al. 2020; Zhang et al. 2021) and enhanced vegetation growth due to CO2 155 

fertilization and longer growing seasons (Hwang et al. 2022; Meng et al. 2020; Wang et al. 2019). 156 
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These actions have substantially reshaped urban landscapes, but to what extent urban greening 157 

impacts the change of surface albedo and albedo-related climatic effects remains unknown.  158 

 159 

In such a context, the main objective of this study is to explore the spatiotemporal characteristics 160 

of albedo in cities globally and to decipher the underlying drivers of albedo change. By applying 161 

our previously developed direct estimation approach on the Google Earth Engine (GEE) cloud-162 

computing platform, we construct an annual mean albedo dataset covering 35 years (1986-2020) 163 

for 3037 major global cities. Based on the novel dataset, we analyze the spatial and temporal 164 

patterns of urban albedo and assess the causes of albedo change linked to vegetation greening 165 

observed in Landsat-derived normalized difference vegetation index (NDVI) data. Lastly, we 166 

quantify the albedo-induced surface radiative forcing to model climatic responses from urban 167 

surface albedo change.  168 

 169 

2. Study area and materials 170 

2.1. City areas  171 

The city areas were extracted from the 2018 Global Urban Boundary (GUB) product, which is 172 

based on 30-m-resolution global artificial impervious area product (GAIA; Li et al. 2020), using 173 

two criteria (Chen et al. 2022): (1) a spatial extent larger than 50 km2; and (2) availability of at 174 

least 30-year valid Landsat observations during the 35 evaluated years (1986-2020). A total of 175 

3037 urban areas globally (hereafter referred to as cities) satisfied these criteria and were selected 176 

(Fig. 1). Almost all cities have over 20 available Landsat images for each one-year cycle, with the 177 

annual average observation number ranging from 21 to 40 and a mean value of 30, indicating the 178 

capability to capture inter- and intra-year variations of urban surface albedo (Figs. S1 and S2). 179 

 180 
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 181 

Fig. 1. Urban areas (cities) used in this study. (a) City location globally (red dots), urban flux 182 

towers (yellow pentagrams), and example of nine cities with boundaries (red polygons) as defined 183 

by the Global Urban Boundary (GUB) product in 2018: (b) Edmonton, (c) Seattle, (d) Belo 184 

Horizonte, (e) Paris, (f) Berlin, (g) Karachi, (h) Melbourne, (i) Tokyo, and (j) Beijing. The 3037 185 

global cities are selected with an area extent larger than 50 km2. 21 worldwide urban flux tower 186 

sites come from two collaborative projects: 19 flux sites from the Urban-PLUMBER multi-site 187 

model evaluation project (Lipson et al. 2022a, 2022b) and 2 flux sites from the URBANFLUXES 188 

project (Chrysoulakis et al. 2018; Feigenwinter et al. 2018). Background and city pictures are 189 

extracted from the Basemap of Google Earth (Google. Inc). 190 

 191 

2.2. Datasets 192 

Five multi-source datasets are used in this study for different purposes: (1) surface reflectance data 193 

(i.e., Landsat-5, Landsat-7, and Landsat-8 surface reflectance products; Gorelick et al. 2017); (2) 194 

surface Bidirectional Reflectance Distribution Function (BRDF) data (i.e., MCD43A1; Wang et 195 

al. 2018); (3) surface albedo data, (i.e., flux tower-based measurements and MCD43A3; 196 

Feigenwinter et al. 2018; Lipson et al. 2022a, 2022b; Wang et al. 2018); (4) land cover type data 197 

(i.e., European Space Agency (ESA) WorldCover and MCD12Q1; Sulla-Menashe et al. 2018; 198 

Zanaga et al. 2021); and (5) downward solar radiation data, (i.e., the Bias-adjusted RAdiation 199 

Dataset (BaRAD) product; Chakraborty and Lee, 2021). Table 1 summarizes the ancillary 200 

information of these datasets, including data category, dataset name, spatial coverage, ground 201 
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resolution, observation period, usage description, and related references. Table 2 provides detailed 202 

information for the 21 urban flux towers used for albedo validation.  203 

 204 

2.2.1. Landsat surface reflectance product 205 

We used 35-years (1986-2020) of the Landsat Level-2 surface reflectance (Collection 2, Tier 1) 206 

product with a 30-m spatial resolution derived from three Landsat satellites (i.e., Landsat-5 TM, 207 

Landsat-7 ETM+, and Landsat-8 OLI; Gorelick et al. 2017, Table 1). Landsat provides the longest 208 

high-quality global surface reflectance record available (Wulder et al. 2022). Landsat-5 TM and 209 

Landsat-7 ETM+ sensors have six spectral bands spanning three visible (i.e., blue, green, and red), 210 

one near-infrared (NIR), and two shortwave infrared (SWIR) bands, whereas Landsat-8 OLI has 211 

one additional ultra-blue spectral band. The pixel-level quality assurance (QA) auxiliary data for 212 

each surface reflectance dataset gives a bitmask metric indicating cloud, cloud shadow, snow, and 213 

ice conditions. To minimize the uncertainty caused by the Landsat-7 scan line off failure on albedo 214 

estimation (Qiu et al. 2021; Zhang and Roy, 2016), we primarily focused on the use of Landsat-5 215 

and Landsat-8 satellite data, with data availabilities of 26-year (1986-2011) Landsat-5 TM, 2-year 216 

(2012-2013) Landsat-7 ETM+, and 7-year (2014-2020) Landsat-8 OLI.  217 

 218 

2.2.2. MODIS BRDF/albedo product  219 

We used the 500-m spatial resolution MODIS BRDF product (MCD43A1, Collection 6; Table 1) 220 

in 2000-2020 to provide a high-quality surface BRDF/albedo training library (Wang et al. 2018). 221 

MCD41A1 is the most accurate satellite BRDF/albedo product and has been widely used for the 222 

training and calibration of the direct estimation approaches (Guo et al. 2022; Qu et al. 2013). In 223 

addition, the MCD43A3 albedo product was used for the spatiotemporal analysis of urban surface 224 

albedo for comparisons with Landsat albedo. MCD43A3 is derived from MCD43A1 and provides 225 

black-sky albedo (BSA) and white-sky albedo (WSA) data at local solar noon for MODIS seven 226 

spectral bands and three broadbands (i.e., visible, NIR, and shortwave).  227 

 228 

2.2.3. Land cover type products 229 

Two land cover type products are used (Table 1): 10-m ESA WorldCover for 2020, and 500-m 230 

MCD12Q1 products (Collection 6) from 2001 to 2020, for selecting training samples. WorldCover 231 

is generated from Sentinel-1 and Sentinel-2 data, with a similar algorithm framework for the 232 
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annual Copernicus Global Land Service Land Cover (CGLS-LC) product (Buchhorn et al., 2020). 233 

This dataset provides 11 land cover classes (i.e., tree cover, shrubland, grassland, cropland, built-234 

up, bare/sparse vegetation, snow and ice, open water, herbaceous wetland, mangroves, and moss 235 

and lichen) with an overall global accuracy of 74.4% (Zanaga et al. 2020). It is freely accessible 236 

to the academic community (Zanaga et al. 2020). MCD12Q1 is generated by a supervised 237 

classification approach from MODIS reflectance with five legacy classification schemes (Sulla-238 

Menashe and Friedl, 2018). We selected the International Geosphere-Biosphere Programme 239 

(IGBP) classification scheme for data analysis. The “built-up” definitions in these two land cover 240 

products have a slight difference. For WorldCover, “built-up” is defined as land covered by 241 

buildings, roads and other man-made structures, which excludes urban green areas (Zanaga et al. 242 

2020). For MCD12Q1, “urban and built-up lands” is defined as surface covered by at least 30% 243 

of impervious area, such as building materials, asphalt, and vehicles (Sulla-Menashe and Friedl, 244 

2018). 245 

 246 

2.2.4. Surface downward solar radiation data 247 

We used the 40-year (1980-2019) 0.5° × 0.625° monthly BaRAD solar radiation dataset (Table 1) 248 

owing to its temporal window overlapping with Landsat. BaRAD is generated from the Modern-249 

Era Retrospective analysis for Research and Applications, version 2 (MERRA-2) global reanalysis 250 

dataset using a bias-correction random forest algorithm, trained with Global Energy Balance 251 

Archive (GEBA) observations from 2500 worldwide ground stations (Wild et al. 2017). BaRAD 252 

is bias-adjusted (cf. MERRA-2) thus has high accuracy (Chakraborty and Lee, 2021). BaRAD 253 

provides three radiation components: total incoming shortwave, incoming direct beam, and 254 

incoming diffuse radiation. BaRAD data are used here to determine: (1) the fraction of diffuse 255 

radiation relative to the total incoming shortwave radiation, for the blue-sky albedo calculation 256 

(Section 3.1); and (2) the surface radiative forcing induced by albedo changes (Section 3.5).  257 

 258 

2.2.5. Tower-based radiation flux measurements  259 

To evaluate the accuracy of our algorithm, we used downward and upward solar radiation 260 

measurements from 21 urban flux towers located throughout the world, including cities in Asia, 261 

Australia, Europe, and North America (Fig. 1a). The data collected by these towers were put 262 

together as part of two collaborative projects: Urban-PLUMBER (19 sites; Lipson et al. 2022a, 263 
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2022b) and URBANFLUXES (2 sites; Chrysoulakis et al. 2018; Feigenwinter et al. 2018). The 264 

sensors on these towers are mounted at heights ranging from 2 to 60 meters above the ground, with 265 

viewing footprints where impervious surfaces (i.e., buildings, roads, paved areas) cover between 266 

31% and 97% of the plan area (Fig. 2; Table 2). The radiation flux measurements are used as 267 

ground truths for assessing the accuracy of surface albedo estimates derived from Landsat satellites.  268 

 269 

Fig. 2. Google Earth satellite images of flux sites (red pentagrams) and the associated radiation 270 

footprint areas (red circles) for (a) Amsterdam, (b) Baltimore, (c) Capitole, (d) Escandon, (e) 271 

Heckor, (f) Jungnang, (g) KingsCollege, (h) Klingelbergstrasse, (i) KlingelbstrStr.schlucht, (j) 272 

Kumpula, (k) Lipowa, (l) Narutowicza, (m) Ochang, (n) Preston, (o) Sunset, (p) SurreyHills, (q) 273 

Swindon, (r) TelokKurau, (s) Torni, (t) WestPhoenix, and (u) Yoyogi. The map scales and tower 274 

heights (in meters) are shown at the bottom of each image in white and red, respectively. Note: 275 

Footprint area (with a 25-m diameter) of the KlingelbstrStr.schlucht site in panel (i) is overlapped 276 

by red pentagram symbol.  277 

 278 

3. Methods  279 

3.1. Estimation of annual urban surface albedo from Landsat   280 

We adopted our recently developed direct estimation approach to retrieve surface albedo from 281 

Landsat satellites (Lin et al. 2022), with three key steps summarized as follows (Fig. 3): 282 
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 283 

(1) Selection of high-quality surface BRDF/albedo datasets. High-quality BRDF/albedo 284 

training datasets are the key to the direct estimation approach. To this end, we used the MCD43A1 285 

BRDF/albedo product with ESA WorldCover and MCD12Q1 land covers to screen the 286 

BRDF/albedo library that is representative at 30-m scale (Lin et al. 2022) with four criteria: (i) 287 

high assurance with the pixel-level QA of 0; (ii) homogeneous coverage (with the pixel-level land 288 

cover purity ≥ 95% indicated by the 10-m ESA WorldCover data); (iii) diverse land cover 289 

(including 16 dominant land types following the IGBP classification scheme); and (iv) reasonable 290 

data range (that refers to the pairs of reflectance and albedo within a physical range of 0-1). We 291 

considered this surface BRDF/albedo dataset from mixed land covers as a general scheme and 292 

compared it with the BRDF/albedo dataset from pure urban land cover (referred to as urban scheme) 293 

in the sensitivity analysis of algorithm development (Section 5.1.1), which shows a consistent 294 

performance.   295 

 296 

(2) Generation of training and testing datasets. Based on the selected BRDF/albedo library, we 297 

simulated Landsat-like surface reflectance in two steps. First, we simulated MODIS-like surface 298 

reflectance across its seven spectral bands using the linear RossThick-LiSparseR BRDF model 299 

(Lucht et al. 2000) with optimized angular settings (i.e., a 2° interval for solar zenith, viewing 300 

zenith, and local solar zenith angles; and a 5° interval for relative azimuth angle). Second, we 301 

converted the MODIS-like surface reflectance to the Landsat-like surface reflectance using band 302 

conversion coefficients derived using similar approaches to Qu et al. (2013). Considering the 303 

different spectral configurations for Landsat satellites (Table S1), we simulated surface reflectance 304 

datasets across six spectral bands for Landsat-5 TM and Landsat-7 ETM+, and across seven 305 

spectral bands for Landsat-8 OLI. We also simulated surface shortwave albedo from the MODIS 306 

BRDF/albedo library in two steps. First, we simulated spectral BSA and WSA datasets under clear-307 

sky and perfectly diffuse illumination conditions, respectively. Second, we converted the spectral 308 

BSA and WSA albedo datasets to shortwave albedo using the regression coefficients proposed by 309 

Liang et al. (2002). 310 

 311 

(3) Build-up of reflectance-to-albedo look-up-tables (LUTs). With the pairs of simulated 312 



 

12 

Landsat-like surface reflectance and surface shortwave albedo, we created LUTs of reflectance-313 

to-albedo relations using the linear regression approach for each angular setting (He et al. 2018; 314 

Qu et al. 2013). To minimize the potential impact from Landsat satellite orbital drifts (e.g., 315 

Landsat-5 drifted between 1995-2000 and 2003-2007, Landsat-7 drifted from 2017 to the present; 316 

Qiu et al. 2021; Zhang and Roy, 2016), we trained spectral reflectance and shortwave albedo 317 

relations for local solar noon (e.g., 12:00 p.m.) geometry that is independent from instantaneous 318 

satellite observation time.  319 

 320 

 321 

Fig. 3. Satellite-based direct estimation of surface albedo from Landsat, with two major steps: (a) 322 

direct estimation algorithm development, and (b) surface albedo estimation and evaluation. 323 

 324 

We applied our reflectance-to-albedo LUTs (BSA and WSA; Eq. 1) on the Google Earth Engine 325 

(GEE, Gorelick et al. 2017) cloud-computing platform to estimate urban surface albedo for global 326 

cities using four steps. First, we used the pixel-level QA auxiliary layer to exclude cloud, cloud 327 

shadow, and snow contaminated pixels in Landsat surface reflectance. Second, we estimated BSA 328 

and WSA from the quality-controlled Landsat surface, where the solar geometry is extracted from 329 

metadata and sensor geometry is set as nadir due to small variations in Landsat sensor viewing (< 330 

7.5°; Nagol et al. 2015). Third, we calculated annual blue-sky albedo from BSA and WSA by using 331 

the diffuse fraction (i.e., fraction of diffuse radiation in total illumination radiation) from the 332 
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BaRAD dataset. Based on Landsat spectral reflectance, we also calculated the annual NDVI as an 333 

indicator of vegetation cover. Finally, we stored Landsat-derived blue-sky albedo and NDVI as 334 

two separate data layers for each city over 35 years. To verify the feasibility of the direct estimation 335 

approach with training samples from mixed land covers over urban areas, we also compared the 336 

algorithm with the training samples of pure urban cover in the discussion section.  337 

α = C0 (θs, θv, φ)  +  ΣN
i =1 Ci (θs, θv, φ) × ρL (λi)                                                                           (1) 338 

where α is the surface shortwave albedo (BSA and WSA); ρL (λi) is the Landsat surface reflectance 339 

at spectral band λi (i = 1, 2, 3, …, N; N = 6, 6, and 7 for Landsat-5, Landsat-7, and Landsat-8, 340 

respectively); and Ci (θs, θv, φ) denotes the regression coefficient at spectral band λi for solar zenith 341 

angle θs, view zenith angle θv, and relative azimuth angle φ. 342 

 343 

3.2. Evaluation of urban albedo with radiation data from urban flux towers 344 

We evaluated the accuracy and uncertainty of Landsat blue-sky albedo using observed albedo 345 

calculated from the incoming and outgoing shortwave radiation measured by 21 urban sites (Table 346 

2). To match the Landsat-derived albedo at local solar noon and minimize diurnal variations 347 

(Minnis et al. 1997), we used observations from 11:00 a.m. to 1:00 p.m. local standard time. As 348 

the diffuse fraction (d) is not recorded by these flux tower datasets  and the BaRAD dataset  is too 349 

coarse for site-scale albedo calculation, we thus adopted a two-step strategy: (1) if the MODIS 350 

Aerosol product (MOD08) has high-quality Aerosol Optical Depth (AOD) observation over the 351 

target flux site, the radiative transfer simulation approach was applied (Wang et al. 2018); and (ii) 352 

otherwise, we adopted an empirical approach shown in Eq. 2 to calculate diffuse fraction d (Stokes 353 

and Schwartz, 1994): 354 

 355 

d  = 0.122 + 0.85 × exp (-4.8 × cos (θs))   (2) 356 

 357 

We used the radiation flux footprint estimated from sensor height (Table 2; Román et al. 2009) to 358 

crop the pixel-level Landsat blue-sky albedo image and calculate the corresponding albedo average, 359 

and then compared this Landsat blue-sky albedo average with the tower-based albedo measured 360 

on the same dates. For the accuracy assessment, four commonly used metrics were used: bias 361 

(mean difference between Landsat-derived and tower-based albedo), root-mean-square-error 362 

(RMSE), relative root-mean-square-error (rRMSE, the ratio between RMSE and the measured 363 
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albedo mean), and coefficient of determination (R2), with equations as follows: 364 

 365 

𝐵𝑖𝑎𝑠 =  
1

𝑁
∑ (𝛼𝐿𝑎𝑛𝑑𝑠𝑎𝑡,𝑖 − 𝛼𝑔𝑟𝑜𝑢𝑛𝑑,𝑖)𝑁

𝑖=1     (3) 366 

𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑ (𝛼𝐿𝑎𝑛𝑑𝑠𝑎𝑡,𝑖 − 𝛼𝑔𝑟𝑜𝑢𝑛𝑑,𝑖)

2𝑁
𝑖=1      (4) 367 

𝑟𝑅𝑀𝑆𝐸 =  
𝑅𝑀𝑆𝐸 

𝛼𝑔𝑟𝑜𝑢𝑛𝑑̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 × 100%     (5) 368 

𝑅2  =  
∑ (𝛼𝐿𝑎𝑛𝑑𝑠𝑎𝑡,𝑖−𝛼𝐿𝑎𝑛𝑑𝑠𝑎𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)(𝛼𝑔𝑟𝑜𝑢𝑛𝑑,𝑖−𝛼𝑔𝑟𝑜𝑢𝑛𝑑̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )𝑁

𝑖=1  

∑ (𝛼𝐿𝑎𝑛𝑑𝑠𝑎𝑡,𝑖−𝛼𝐿𝑎𝑛𝑑𝑠𝑎𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)
2𝑁

𝑖=1
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

∑ (𝛼𝑔𝑟𝑜𝑢𝑛𝑑,𝑖−𝛼𝑔𝑟𝑜𝑢𝑛𝑑̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )
2𝑁

𝑖=1

     (6) 369 

 370 

where 𝛼𝐿𝑎𝑛𝑑𝑠𝑎𝑡,𝑖  and 𝛼𝑔𝑟𝑜𝑢𝑛𝑑,𝑖 are ith Landsat-derived and ground-measured albedo; 𝛼𝐿𝑎𝑛𝑑𝑠𝑎𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ and 371 

𝛼𝑔𝑟𝑜𝑢𝑛𝑑̅̅ ̅̅ ̅̅ ̅̅ ̅̅  are the average values of Landsat-derived and ground-measured albedo; N is the number 372 

of observations.  373 

 374 

3.3. Spatiotemporal characteristic analysis of surface albedo in global cities 375 

We calculated the 35-year city-scale blue-sky albedo mean from Landsat albedo time series to 376 

explore its spatial patterns. To further examine the temporal trends, we used the non-parametric 377 

Mann-Kendall statistic (Mann, 1945) and the non-parametric Theil–Sen slope estimator (Theil, 378 

1950) approaches, which do not require specific data distribution and are robust to outliers (Wang 379 

et al. 2019), to calculate the magnitude and direction of the pixel-level monotonic albedo trend at 380 

a statistical significance level of 0.05 (i.e., p-value < 0.05). The city-scale albedo trend is calculated 381 

as the aggregation mean of all pixels that passed the significance test within the city area. The 382 

spatiotemporal patterns of Landsat blue-sky albedo are undertaken for two periods (1986-2020 383 

and 2001-2020). For comparison, we extracted 35-year city-scale spatiotemporal patterns of 384 

MODIS blue-sky albedo in 2001-2020, which is calculated from the integration of MODIS BSA, 385 

WSA, and BaRAD-derived diffuse fraction. 386 

 387 

3.4. Associations between urban greening and albedo change 388 

We explored the multifaceted associations between urban greening and albedo change in several 389 

steps. First, the spatiotemporal patterns of Landsat NDVI in the 1986-2020 and 2001-2020 time 390 
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periods were calculated and aggregated to city-level means. Second, the intra- and inter-city 391 

associations between urban albedo and NDVI trends were analyzed. Local examples in four typical 392 

cities: two rapid-urbanized Shenzhen city (22° 32′ 29.4″ N, 114° 3′ 34.56″ E), China and 393 

Birmingham city (52° 29' 10.47"N, 1° 53' 25.44"W), United Kingdom, together with two well-394 

urbanized Milton city (30°37'49.0"N 87°02'47.0"W), Florida, and Pinehurst city (36° 41' 43" N, 395 

119° 0' 57" W), North Carolina, United States, were selected to showcase different pathways by 396 

which urban greening modulates surface albedo during the urbanization process. Lastly, the 397 

associations between urban albedo and vegetation in 2-D (measured by NDVI) and 3-D (measured 398 

by vegetation height from 10-m-resolution Sentinel-2; Lang et al. 2023) were investigated to 399 

elucidate the effects of urban greenery on surface albedo using data at the baseline year 2020. 400 

 401 

3.5. Urban surface radiative forcing induced by albedo change 402 

Changes in radiative forcing can be caused by natural and/or anthropogenic drivers (Shindell et al. 403 

2013). A positive radiative forcing occurs when there is more incoming than outgoing energy (i.e., 404 

warming), whereas a negative radiative forcing (outgoing > incoming energy) results in a cooling 405 

effect. We quantified the urban surface radiative forcing (RF) from albedo changes (Chen et al. 406 

2015) using the following equation:  407 

 408 

RF  =  - K↓ × (αt2 – αt1)   (7) 409 

 410 

where K↓ is the mean incoming or downward shortwave solar radiation between years t1 and year 411 

t2; and αt2 – αt1 is the surface albedo difference between those years. We used BaRAD and Landsat-412 

derived blue-sky albedo to derive pixel-scale RF (Eq. 7) and then calculated the city-scale RF from 413 

pixel-scale data. To minimize the impact of fluctuations in annual albedo, we used a 5-year average 414 

annual albedo for the RF calculation in 1986-2020. Namely, the mean surface albedo (αt1) was 415 

estimated for the 1986-1990 period, and αt2 for the 2016-2020 period, and K↓ was estimated as the 416 

mean downward shortwave solar radiation between 1991 and 2015.  417 

 418 

4. Results 419 

4.1. Accuracy assessment of Landsat urban albedo  420 
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We assessed the accuracy of Landsat-derived surface albedo using the flux tower-based 421 

observations (Table 2). Across the 21 flux tower sites, Landsat satellites individually achieve a 422 

high albedo accuracy (bias = -0.011 - 0.005, RMSE = 0.019 - 0.026, rRMSE = 15.4% - 20.1%, R2 423 

= 0.58 - 0.71; Fig. 4b-d). For all three Landsat satellites, the overall accuracy is also reliable (bias 424 

= 0.005, RMSE = 0.025, rRMSE = 19.5%, R2 = 0.66; Fig. 4a). Temporal validation for individual 425 

(Fig. S3) and combined (Fig. S4) years show similar accuracy patterns. These assessment results 426 

suggest that the Landsat-derived albedo dataset is reliable and can be used to analyze the 427 

spatiotemporal characteristics of surface albedo of cities globally.    428 

 429 

Fig. 4. Evaluation of Landsat-derived albedo with flux-tower measurements for (a) all three 430 

Landsat satellites, (b) Landsat-5, (c) Landsat-7, and (d) Landsat-8. The following comparison 431 

statistics are calculated: N (number of Landsat data observed on the same date as flux-tower 432 

measurements), bias (mean difference between Landsat-derived and tower-based albedo), RMSE 433 

(root-mean-square-error), rRMSE (relative RMSE, ratio between RMSE and measured albedo 434 

mean) and R2 (coefficient of determination), 1:1 line (solid line), error lines of -0.05 and 0.05 435 
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(dashed line). 436 

 437 

4.2. Global variations of urban albedo  438 

The 35-year (1986-2020), city-wide mean surface albedos for the 3037 global cities assessed here 439 

have clear spatial patterns (Fig. 5). Cities in temperate climates have the lowest mean albedo (0.143, 440 

N = 1340), followed by those in cold (0.144, N = 1073), tropical (0.145, N = 161), and arid (0.174, 441 

N= 463) regions. Cloud cover limits the number of tropical cities meeting the threshold of having 442 

35-year data. The albedo range for tropical cities (0.115-0.240) is in line with the range reported 443 

by Rechid et al (2009) (0.10-0.20). The urban albedo distribution is skewed, with most cities (2452) 444 

within the range of 0.12-0.16, followed by 462 cities within the range of 0.16-0.20, 87 cities with 445 

albedos > 0.2, and only 36 cities < 0.12. The 20-year (2001-2020) city-level annual mean albedo 446 

from the MODIS and Landsat datasets are close to those of the 35-year Landsat equivalence (Fig. 447 

S5), with the majority of cities within the range of 0.12-0.20 and very few presenting albedos <0.12 448 

or > 0.20.   449 

 450 

 451 

Fig. 5. City-level average annual albedo (lower key) derived from 35-year (1986-2020) Landsat 452 

data for 3037 global cities mapped onto 1-km Köppen-Geiger climate (Beck et al. 2018) (upper 453 

key), with the number of cities (and the associated percentage in parentheses) given above the 454 

inserted histogram.  455 

 456 

4.3. Global variations of urban albedo trend and driver attribution  457 

4.3.1. Global temporal trends of urban albedo  458 
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The 35-year (1986-2020) trend of city-scale annual mean surface albedo depicts a negative slope 459 

of -0.0007 yr-1 (Fig. 6). When cities are subdivided by their mean trend, 2921 shows a decreasing 460 

trend (mean trend = -0.0007 yr-1) and 116 an increasing trend (mean trend = 0.0004 yr-1). Rapid 461 

changes, lower than -0.001 yr-1, were observed in 312 cities across Europe, North America, East 462 

Asia, and the Middle East. Most cities are in the -0.001 – 0.000 yr-1 (2609) and 0.000 to 0.001 yr-463 

1 (107) albedo change rate. Nine cities with a larger increasing albedo trend (> 0.001 yr-1) were 464 

observed in the Southwest region of the United States. 465 

 466 

The 21-year (2000-2020) trends for MODIS and Landsat consistently decrease (Figs. S6), at rates 467 

of -0.0003 yr-1 and -0.0014 yr-1, respectively. Due to its inability to detect fine-scale urban 468 

heterogeneity, the 500-m-resolution MODIS satellite returns a lower decreasing rate than the 30-469 

m-resolution Landsat (Fig. S7), supporting the necessity of using high-resolution satellite data to 470 

monitor urban environments. The 21-year change rate (-0.0014 yr-1) is twice as high as the 35-year 471 

trend (-0.0007 yr-1) for Landsat, indicating that the rate of worldwide urban albedo decrease has 472 

grown. 473 

 474 

 475 

Fig. 6. Spatial patterns of the Landsat-derived city-level albedo trend for 3037 global cities over 476 

35 years (1986-2020), with the albedo trend histogram and the number of cities (with the related 477 

percentage in parentheses) given above the inserted histogram. 478 

 479 

4.3.2. Associations between urban albedo and greenness  480 
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Greening activity is one potential driver influencing urban albedo change. Landsat NDVI has a 481 

mean increase of 0.001 yr-1 for these 3037 cities during the same 35-year period, with 2205 cities 482 

exhibiting an increase (i.e., greening) and 832 experiencing a decrease (i.e., browning, Fig. 7). 483 

Most cities are in the 0.000 to 0.003 yr-1 (1742) and -0.003 to 0.000 yr-1 (642) NDVI change range, 484 

followed by 463 cities with an increasing NDVI trend > 0.003 yr-1 and 190 cities with a decreasing 485 

NDVI trend < -0.003 yr-1. Browning cities are predominantly found in East Asia, South America, 486 

and the Southwest region of the United States. 487 

 488 

 489 

Fig. 7. Spatial patterns of the Landsat-derived city-level normalized difference vegetation index 490 

(NDVI) trend for 3037 global cities over 35 years (1986-2020), with the NDVI trend histogram 491 

and the number of cities (with the related percentage in parentheses) given above the inserted 492 

histogram. 493 

 494 

Intra-city associations (within cities) between urban NDVI and albedo trends show a total of 2564 495 

cities are negatively correlated (Fig. 8), with 583, 1077, and 904 cities presenting correlation 496 

coefficients < -0.6, within the -0.6 to -0.3, and -0.3 to 0 ranges, respectively. Only 291 of 473 cities 497 

have statistically significant positive NDVI-albedo relationships, most of which are distributed in 498 

Europe and East Asia. Inter-city associations (across cities) using the median albedo trends derived 499 

from 10% NDVI bins show that the increase in NDVI trend (with a slope of -0.049) coexists with 500 

the decrease in albedo trend, which explains 92% of the total variance of the albedo binned trend 501 

(Fig. 9a). Moreover, statistical results of NDVI and albedo trend consistency from the raw 502 

observations show a decrease in albedo trend of 2176 (71.65%) cities in the opposite direction 503 
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with respect to the NDVI trend (Fig. 9b). As the greening trend is greater (0.004 yr-1) for the past 504 

21 years (Fig. S8), the intra- and inter-city associations between urban NDVI and albedo trends 505 

become stronger, with more cities exhibiting negative NDVI-albedo correlation coefficients (Figs. 506 

S9 and S10).  These intra- and inter-city dominant negative associations reveal that urban greening 507 

will lead to a decreasing albedo trend.  508 

 509 

 510 

 511 

Fig. 8. Spatial patterns of the intra-city correlation between urban normalized difference vegetation 512 

index (NDVI) and albedo trend for 3037 global cities over 35 years (1986-2020), with the 513 

histogram (correlation coefficient key) of the city-level albedo trend and the number of cities (with 514 

the associated percentage in parentheses) given above the inserted histogram. Large markers 515 

represent a statistical significance level of 0.05 (p-value <0.05) and small markers represent a non-516 

significant trend with p-value >0.05. 517 
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 518 

Fig. 9. Associations between city-level normalized difference vegetation index (NDVI) and 519 
surface albedo trends for 3037 global cities over 35 years (1986-2020), with (a) scatter plot and 520 
(b) statistics of NDVI and albedo trend consistency. In (a), the city-level trends are averaged from 521 

pixel-level trends that are statistically significant at a level of 0.05, using the non-parametric Mann-522 
Kendall and Theil–Sen slope estimator approaches. A zonal analysis is used to refine the 523 

association results by averaging the NDVI and albedo trend pairs (red circles) within each 10% 524 
NDVI interval for the linear regression (red dashed line).   525 
 526 

 527 

Four sample cities provide spatially explicit information on the decreasing trend of surface albedo 528 

caused by different greening pathways: tree planting (Shenzhen, China and Birmingham, United 529 

Kingdom) and urban warming-induced vegetation growth (Milton, Florida and Pinehurst, North 530 

Carolina, United States). Shenzhen and Birmingham have experienced tremendous urbanization 531 

during the past three decades, but they have also implemented tree planting programs in central 532 

areas, as it can be observed through the NDVI trend maps and high-resolution Google Earth 533 

satellite images (Fig. 10a-c and Fig. 11a-c). Two local sites in both Shenzhen and Birmingham 534 

clearly show the opposite trends for the NDVI and albedo time series (Fig. 10d-e and Fig. 11d-e). 535 

In comparison, Milton and Pinehurst are two well-urbanized cities without substantial impervious 536 

area expansion in the urban fringe areas. Despite the absence of large-area tree planting activities, 537 

greenness continues to increase in these two cities due to enhanced vegetation growth induced by 538 

urban warming (Figs. 12 and 13). The significant negative correlation between surface albedo and 539 

2-D (NDVI as vegetation coverage) and 3-D (vegetation height) vegetation structure metrics in the 540 

baseline year 2020 further explains the multifaceted controls of urban greening on surface albedo 541 

(Fig. 14). Besides urban greening, the other anthropogenic practices might influence surface 542 
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albedo variations. For example, as shown in Figs. S11 and S12, building construction and rooftop 543 

renewal with new light-color materials increase surface albedo. Nevertheless, the frequency and 544 

intensity of building construction is lower than urban vegetation growth, which results in the 545 

greening-dominated declining trend of urban surface albedo worldwide.  546 

 547 

 548 

Fig. 10. Examples showing the close association between surface albedo and urban greening in 549 

the Shenzhen city, China, based on the maps of (a) Google Earth satellite image, (b) albedo trend, 550 

(c) NDVI trend, (d) time series of urban NDVI and albedo for S1 area in (a), and (e) time series 551 

of urban NDVI and albedo for S2 area in (a). 552 

 553 

 554 
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Fig. 11. Examples showing the close association between surface albedo and urban greening in the 555 

Birmingham city, United Kingdom, based on the maps of (a) Google Earth satellite image, (b) 556 

albedo trend, (c) NDVI trend, (d) time series of urban NDVI and albedo for S1 area in (a), and (e) 557 

time series of urban NDVI and albedo for S2 area in (a). 558 

 559 

 560 

Fig. 12. Examples of close association between surface albedo and urban greening in the Milton 561 

city, Florida, United States, based on the maps of (a) Google Earth satellite image, (b) albedo trend, 562 

(c) NDVI trend, (d) time series of urban NDVI and albedo for the S1 area in (a), and (e) time series 563 

of urban NDVI and albedo for the S2 area in (a). 564 

 565 
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Fig. 13. Examples of close association between surface albedo and urban greening in the Pinehurst 566 

city, North Carolina, based on the maps of (a) Google Earth satellite image, (b) albedo trend, (c) 567 

NDVI trend, (d) time series of urban NDVI and albedo for the S1 area in (a), and (e) time series 568 

of urban NDVI and albedo for the S2 area in (a). 569 

 570 

 571 

Fig. 14. Correlation between surface albedo and (a) 30-m-resolution Landsat normalized 572 

difference vegetation index (NDVI, Gorelick et al. 2017), and (b) 10-m-resolution vegetation 573 

height (Lang et al. 2023) of the baseline year 2020 for 3037 global cities. 574 

 575 

4.4. Global variations of albedo-induced urban surface radiative forcing  576 

The 35-year change in surface albedo has caused a mean positive surface radiative forcing of 2.76 577 

± 1.92 W·m-2 for the 3037 global cities assessed in this study (Fig. 15), suggesting a net increase 578 

in absorbed incoming solar energy at the urban surface. Large inter-city spatial variabilities are 579 

observed, with values ranging from -10.75 to 23.34 W·m-2. The 2936 cities with positive radiative 580 

forcing (i.e., warming) have a mean value of 2.92 W·m-2, while the 101 cities with negative 581 

radiative forcing have a mean value of -1.97 W·m-2. The mean magnitude of albedo-induced 582 

radiative forcing also varies by regions: 3.14 W·m-2 for 1073 Asian cities; 3.09 W·m-2 for 92 583 

African cities; 2.72 W·m-2 for 933 European cities; 2.60 W·m-2 for 789 North American cities; 1.23 584 

W·m-2 for 31 Australian cities; and 0.85 W·m-2 for 119 South American cities. 585 

 586 
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 587 

Fig. 15. Spatial patterns of surface radiative forcing (RF, W•m-2) from albedo change for 3037 588 

global cities over 35 years (1986-2020), with the number of cities (and the associated percentage 589 

in parentheses) given above the inserted histogram. 590 

 591 

 592 

5. Discussion 593 

 594 

5.1. Uncertainty analysis    595 

Some influencing factors such as training sample representativeness, Landsat data uncertainty, 596 

seasonal variation, building footprint, and snow event may mislead our findings. To examine their 597 

impacts, we conducted sensitivity analyses and discussed the potential uncertainties associated 598 

with each of these factors.  599 

 600 

5.1.1. Training sample representativeness 601 

The representativeness of training samples, angular-bin size, and regression relationship between 602 

reflectance and albedo are three factors that need to be considered for the successful application 603 

of the direct estimation approach. Recent studies have thoroughly investigated the sensitivity to 604 

the angular-bin size and the regression relationship between reflectance and albedo, verifying their 605 

applicability to both natural and urban surfaces (Chen et al. 2023; Lin et al. 2022). Therefore, 606 

training dataset representativeness has been highlighted as a key component for the application of 607 

the direct estimation approach over urban areas. We conducted two sensitivity analyses using 608 
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BRDF/albedo over mixed land covers (16 IGBP land covers used in this study, referred to as 609 

general scheme) and pure urban cover (referred to as urban scheme) to test the theoretical accuracy 610 

of this approach over urban areas. Results show that these two schemes have almost the same 611 

theoretical accuracy (0.0161 vs. 0.0156, Fig. S13), which is very close to the MODIS 612 

BRDF/albedo product accuracy (Wang et al. 2018). Based on the optimized BRDF/albedo training 613 

samples for the general scheme (7200 samples for 16 land covers with 450 samples per type) and 614 

urban scheme (3000 urban cover samples), we constructed one general and one urban reflectance-615 

to-albedo LUT and validated their accuracy with global flux tower-based measurements. 616 

Validation results reveal that these two algorithms are highly accurate, suggesting that the direct 617 

estimation approach used in this study with the general training sample scheme is stable (Fig. 4 vs. 618 

Fig. S14).  619 

 620 

5.1.2. Landsat data uncertainty  621 

The uncertainty of Landsat data quality mainly stems from Landsat satellite orbital drifts and scan 622 

line corrector (SLC) failure in Landsat-7. On the one hand, Landsat satellite orbital drifts (e.g., 623 

Landsat-5 drifted between 1995-2000 and 2003-2007, Landsat-7 drifted from 2017 to the present; 624 

Qiu et al. 2021; Zhang and Roy, 2016) alter local acquisition time, affecting solar-viewing 625 

geometry and surface reflectance, resulting in artificial impacts on surface albedo. To minimize 626 

such impacts, we trained the spectral reflectance with shortwave albedo at local solar noon (e.g., 627 

12:00 p.m.) to construct reflectance-to-albedo LUTs, allowing us to compare predicted surface 628 

albedo across years (Guo et al. 2022). On the other hand, since Landsat-7 data covers only two 629 

years (2012-2013), the data gap impacts from this satellite on the main findings of this study are 630 

minor. Sensitivity analysis shows that the yearly mean and long-term temporal trend of global 631 

urban albedo are nearly the same, whether or not Landsat-7 satellite data are used (Figs. 5-6 vs. 632 

Fig. S15). 633 

 634 

5.1.3. Seasonal variation 635 

Seasonal impacts on urban albedo estimation and analysis come from two sources: seasonal 636 

vegetation growth and seasonal solar geometry change. On the one hand, Landsat satellite has a 637 

regular 16-day revisit cycle, which allows at least two observations per month to capture seasonal 638 
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vegetation growth dynamics. On the other hand, our algorithm has normalized surface albedo to 639 

local solar noon and the solar position is relatively stable within a month, minimizing the 640 

interference from seasonal change of solar geometry. Sensitivity analysis results of the Landsat-641 

derived albedo trends using time series from different seasons are very similar to those of the 642 

annual mean time series (Fig. S16), supporting the minor seasonal variation effects on the observed 643 

decreasing albedo trend of global urban cities in this study. 644 

5.1.4. Building footprint 645 

Building footprint changes, such as those related to new construction or building renovations using 646 

different materials, might increase urban albedo (Figs. S11 and S12). To explore building footprint 647 

impacts on surface albedo, we used 30-m-resolution rasterized building footprint (i.e., total, 648 

average, minimum, and maximum building areas within a 30-m-resolution pixel) dataset for 242 649 

cities in the United States (Heris et al. 2020), and three building height datasets for China (120 650 

cities; Yang and Zhao et al. 2022), Germany (18 cities; Frantz et al. 2021), and the United States 651 

(372 cities; Falcone, 2016) to provide the horizontal and vertical building footprint metrics (Table 652 

S2). By conducting a bivariate relationship analysis between building footprint metrics and albedo, 653 

we found a positive correlation with mean correlation coefficients of 0.21, 0.21, 0.21, and 0.16 for 654 

maximum (i.e., area of the largest building intersecting each 30-m pixel), minimum (i.e., area of 655 

the smallest building intersecting each 30-m pixel), average (i.e., number of buildings that intersect 656 

each 30-m pixel), and total (i.e., total building footprint coverage per 30-m pixel) building areas, 657 

respectively (Fig. S17).  We also observed a negative correlation between albedo and building 658 

height, with a mean correlation coefficient of -0.22 (Fig. S18), as shadowing and radiative trapping 659 

in canyons increase with building height. However, quantifying the contribution of the building 660 

landscape to albedo change remains a challenging task due to the lack of high-resolution urban 661 

building time-series products, which requires future investigation.  662 

 663 

5.1.5. Snow cover impact 664 

Snow cover is another important confounding factor for the spatiotemporal analysis of global 665 

urban albedo due to its much higher reflectance than other urban materials. On one hand, because 666 

regular snow events only occur for short periods in the winter for high-latitude cities, they will 667 

have little impact on the general diminishing patterns of global urban albedo. Snow episodes, on 668 
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the other hand, are rather regular across time, and their influence on long-term urban albedo is 669 

likely to be systematically linear, which will not modify the spatiotemporal trend analysis. Our 670 

sensitivity analysis results demonstrate that, with the exception of a few high-latitude Northern 671 

hemisphere cities, the overall decreasing trends of worldwide urban albedo are nearly the same 672 

whether snowy satellite pixels are excluded or not (Fig. 6 and S19). 673 

 674 

5.2. Novelty and implication of this study  675 

This study makes several advances over past similar studies on methodological development. First, 676 

we investigated the direct estimation approach and validated its theoretical capability for retrieving 677 

surface albedo from Landsat over global urban areas. Our training sample representativeness 678 

sensitivity analyses indicate that more accurate urban BRDF/albedo training datasets beyond 679 

MODIS are one potential way to improve the algorithm accuracy, which should include fine-680 

resolution 3-D radiative transfer model parameterization and global 3-D urban morphology 681 

datasets. Second, the absolute accuracy of the direct estimation approach for estimating urban 682 

albedo had not yet been properly evaluated. For the first time, this study used albedo data from 683 

incoming and outgoing shortwave radiation measured by synthesized global urban flux towers 684 

around the world as ground truth to assess the accuracy of the proposed algorithm. The results 685 

demonstrated that Landsat-derived urban albedo is reliable (Fig. 4).  686 

 687 

The global 35-year, 30-m-resolution urban surface albedo dataset generated in this study is unique 688 

and valuable. Although many previous efforts have attempted to estimate surface albedo from 689 

high-resolution Sentinel-2 and Landsat satellite data (Guo et al. 2022; He et al. 2018; Lin et al. 690 

2022; Shuai et al. 2011; 2014), most of them were limited to individual locations, cities, or specific 691 

regions, and years, which hampered our understanding of the spatiotemporal patterns of global 692 

urban albedo throughout the past three decades of urbanization.  Our albedo dataset of 3037 cities 693 

from around the world, including cities in the Global North and Global South, provides us a 694 

thorough picture of the dynamic spatiotemporal evolution of global urban albedo. This dataset can 695 

be incorporated as input data into urban canopy models (Ryu et al. 2016) for the monitoring and 696 

estimation of urban energy balance and other albedo-related studies. 697 

 698 
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By comparing the results of the previous three decades with those of the previous two decades 699 

using the global 30-m resolution Landsat albedo dataset developed here, we found that global 700 

urban albedo is decreasing at an increasing rate, implying that the albedo-induced warming has 701 

been exacerbated. We also observed that the urban greening phenomenon is expanding around the 702 

globe. Since 1985, 72.60% of global cities (2205) have increased greening, and this proportion has 703 

increased to 89.20% (2709 cities) since 2001. This proportion is higher than the 70% reported in 704 

a previous study using coarse-resolution MODIS data (Zhang et al. 2021). Finally, our study 705 

demonstrates that urban greening regulates the decreasing trend of urban albedo through two 706 

different pathways: tree planting and urban warming-enhanced vegetation growth. These findings 707 

help to clarify recent controversial conclusions about worldwide urban albedo trend patterns (Guo 708 

et al. 2022; Ouyang et al. 2022). Guo et al. (2022) reported an increasing trend of urban albedo 709 

based on 30-m resolution Landsat-derived summer albedo across 11 Chinese megacities, without 710 

taking into account the various urbanization trends in other Chinese cities or around the world, as 711 

well as seasonal changes. By comparing the 1°-resolution albedo estimated from MODIS land 712 

cover types across two baseline years, 2018 and 2001, Ouyang et al. (2022) found a decreasing 713 

pattern in urban areas. This coarse-resolution and short-term data (since 2001) cannot detect fine-714 

scale heterogeneity in the urbanization processes during the past three decades, such as tree 715 

planting and construction of new buildings and roads, as well as changes in existing artificial 716 

impervious surfaces. Using our 30-m resolution surface albedo and NDVI dataset covering 3037 717 

cities around the world, we determined that greening is the key controlling factor for the downward 718 

trend of urban albedo using multidimensional association analysis and further evidence from local 719 

cases. 720 

 721 

The strong relationship between urban greening and albedo has important implications. Planting 722 

trees, in conjunction with artificial albedo alterations (e.g., the use of high-reflective materials), 723 

have been recognized as two critical approaches to mitigate urban warming (Chen et al. 2022; 724 

Wong et al. 2021). However, albedo-induced warming effects of urban greening have received 725 

little attention. Recent vegetation greening research at regional and global scales have found that 726 

albedo is a key component in the greening-induced change in the Earth's energy budget and might 727 

potentially offset cooling benefits, causing local and global warming (Lian et al. 2022; Piao et al. 728 

2020). This study provides empirical evidence of the warming effect triggered by changes in urban 729 
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albedo caused by increased vegetation, a phenomenon that must be taken into account when 730 

evaluating the effectiveness of greening-based cooling solutions by incorporating such fine-scale 731 

datasets with 3-D microclimate models (e.g., SOLWEIG; Lindberg et al. 2008). 732 

 733 

5.3. Limitations and future perspectives 734 

It is important to recognize and resolve various limitations and uncertainties in this study for future 735 

research. Topography is an essential factor in estimating albedo, although it has seldom been taken 736 

into account when mapping surface albedo on a wide scale using satellite data. In this study, we 737 

do not include topography, as the majority of the cities investigated exhibit minimal variations in 738 

elevation (mean slope = 3.3°, Fig. S20). But some cities have large slopes, and their surface albedo 739 

retrieval may still require accounting for topographic impacts (Wu et al. 2018, 2019). 740 

 741 

Another critical issue to address is 3-D urban morphology, which requires significantly higher 742 

resolution data (e.g., ~1 m) for both the satellite surface reflectance and morphology datasets. The 743 

impact of urban geometry, such as the density of buildings, the sky view factor, and the aspect 744 

ratio of buildings, on surface albedo, and in turn on air temperature close to the surface is widely 745 

recognized (Xu et al. 2020; Yang and Li, 2015). The increasing availability of high-resolution 746 

Digital Surface Model data (e.g., Scott et al. 2022) and 3-D building data (e.g., Zhou et al. 2022) 747 

will strengthen interpretation of higher-resolution satellite observations beyond Landsat (e.g., 10-748 

m Sentinel-2 with ~5-day revisit; 3-m PlanetScope with daily revisit; Drusch et al. 2012; Planet 749 

Team, 2022) to improve albedo estimates at urban facet scale (e.g., road, roof, and wall). 750 

 751 

Although fine-scale albedo trends have been studied, Landsat data remains a mixed signal that 752 

cannot effectively segregate individual contributions from different urban elements (e.g., building, 753 

tree, and grassland) to the overall spatiotemporal trend of urban albedo. Furthermore, the 754 

individual contributions of tree planting and urban warming-enhanced vegetation growth to 755 

greening-induced urban albedo modification are still unknown. An integration of fine-resolution 756 

land-cover datasets of different urban elements and high-resolution albedo datasets are expected 757 

to be used for isolating and assessing the individual contributions of particular urban features. 758 

Finally, this study did not take into account the detailed spatial and temporal variations associated 759 

with land cover changes, which can be analyzed by combining our Landsat albedo data with the 760 
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appropriate high-resolution annual land cover map data. This will be helpful for city climate 761 

change management to address mitigation, adaptation, and forecasting because it directly affects 762 

surface energy balance (Duveiller et al. 2018; Oke 1982). 763 

 764 

6. Conclusions 765 

The spatial and temporal features of urban surface albedo in cities around the world and their 766 

underlying drivers are still not well understood due to a lack of high-resolution albedo observations. 767 

In this study, we generated a 35-year, 30-m resolution annual albedo dataset for 3037 worldwide 768 

cities. We demonstrated the accuracy and reliability of the albedo dataset by comparing it to albedo 769 

data derived from flux tower-based measurements. We investigated the spatial and temporal 770 

patterns and trends of urban albedo using this dataset and found that most cities had a decreasing 771 

albedo trend as a consequence of increased greenness. Cities with this decrease in albedo are 772 

expected to experience more (positive) surface radiative forcing.  773 
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Table 1. Datasets used in this study by type. 1089 

 1090 

Usage type Dataset 
Spatial 

extent 

Resolution 

(m) 
Frequency Period Purpose description Reference 

Surface 

reflectance 

Landsat-5 SR 
Global 

cities 
30 16-day 

1986-

2011 

Surface albedo & 

vegetation cover 

Gorelick et al. 

2017 

Landsat-7 SR 
Global 

cities 
30 16-day 

2012-

2013 

Surface albedo & 

vegetation cover 

Gorelick et al. 

2017 

Landsat-8 SR 
Global 

cities 
30 16-day 

2014-

2020 

Surface albedo & 

vegetation cover 

Gorelick et al. 

2017 

Surface 

BRDF 
MCD43A1 Global 500 Daily 

2000-

2020 

BRDF database for 

LUT training 

Gorelick et al. 

2017; Wang et 

al. 2018 

Surface 

albedo 

Tower-based 

measurements 
Table 2 - 10-30 min Table 2 Albedo evaluation 

Lipson et al. 

2022a,b 

MCD43A3 Global 500 Daily 
2000-

2020 

Albedo spatiotemporal 

analysis 

 

Wang et al. 

2018 

Land cover 

type 

ESA 

WorldCover 
Global 10 Annual 2020 

BRDF training sample 

selection 

Zanaga et al. 

2021 

MCD12Q1 Global 500 Annual 
2001-

2020 

BRDF training sample 

selection 

Gorelick et al. 

2017; Wang et 

al. 2018 

Solar 

radiation 
BaRAD Global 

0.5° x 

0.625° 
Monthly 

1980-

2019 

1) Diffuse skylight ratio 

estimate 

2) Surface radiative 

forcing estimate 

Chakraborty 

and Lee, 2021 
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 1111 

Table 2. Flux sites used for albedo evaluation, Tower height and impervious area fraction are 1112 
available from Lipson et al.(2022a) and https://mcr.unibas.ch/dev/sqldb/index.php?nav=dbplot. 1113 
Footprint diameter (D) of tower measurement (D = 2H • tan (FOV/2)) is calculated from tower 1114 
height (H) and sensor’s field of view (FOV) according to Román et al. 2009.  1115 

 1116 

Site name City Country 
Latitude 

(°) 

Longitude 

(°) 

Tower 

height 

(m) 

Footprint 

diameter 

(m) 

Impervious 

area 

fraction 

Observation 

year (s) 
Reference 

Amsterdam Amsterdam The 
Netherlands 

52.367 4.893 40 505 0.68 2019-2020 - 

Baltimore Baltimore United States 39.413 -76.522 37 467 0.31 2002-2006 Crawford et al. 2011 

Capitole Toulouse France 43.604 1.445 48 606 0.90 2004-2005 Goret et al. 2019 

Escandon Mexico Mexico 19.404 -99.176 37 467 0.94 2011-2012 Velasco et al. 2014 

Heckor Heraklion Greece 35.336 25.133 27 341 0.92 2019-2020 Stagakis et al. 2019 

Jungnang Seoul South Korea 37.591 127.079 42 524 0.97 2017-2019 Hong et al. 2020 

KingsCollege London United 
Kingdom 

51.512 -0.117 50 631 0.79 2012-2013 Bjorkegren et al. 2015 

Klingelbergstrasse Basel Switzerland 47.562 7.581 40 505 0.79 2003-2021 Feigenwinter et al. 
2018 

KlingelbstrStr.sch
lucht 

Basel Switzerland 47.561 7.581 2 25 0.79 2014-2020 Feigenwinter et al. 
2018 

Kumpula Helsinki Finland 60.203 24.961 31 391 0.46 2011-2021 Karsisto et al. 2016 

Lipowa Łódź Poland 51.763 19.445 37 467 0.76 2008-2012 Fortuniak et al. 2013 

Narutowicza Łódź Poland 51.773 19.481 42 530 0.65 2008-2012 Fortuniak et al. 2013 

Ochang Ochang South Korea 36.720 127.434 19 240 0.47 2015-2017 Hong et al. 2020 

Preston Melbourne Australia -37.731 145.015 40 505 0.62 2003-2004 Coutts et al. 2007 

Sunset Vancouver Canada 49.226 -123.078 24 303 0.68 2012-2016 Crawford and Christen, 
2015 

SurreyHills Melbourne Australia -37.827 145.099 38 480 0.54 2004-2004 Coutts et al. 2007 

 Swindon Swindon United 
Kingdom 

51.585 -1.798 13 158 0.49 2011-2013 Ward et al. 2013 

TelokKurau Singapore Singapore 1.314 103.911 21 253 0.85 2006-2007 Roth et al. 2017 

Torni Helsinki Finland 60.168 24.939 60 758 0.77 2011-2013 Järvi et al. 2018 

WestPhoenix Arizona United States 33.484 -112.143 22 278 0.48 2011-2012 Chow, 2017 

Yoyogi Tokyo Japan 35.665 139.685 52 657 0.92 2016-2020 Ishidoya et al. 2020 

Note: The KlingelbstrStr.schlucht site with a 2-m tower height observes the fluxes of grassland in urban 1117 
environment.  1118 
 1119 


