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Abstract 

Amino acid bioa v ailability impacts mRNA translation in a codon-dependent manner. Here, w e report that the anti-cancer MAPK inhibitors (MAPKi) 
decrease the intracellular concentration of aspartate and glutamate in melanoma cells. This coincides with the accumulation of ribosomes on 
codons corresponding to these amino acids and triggers the translation-dependent degradation of mRNAs encoding aspartate- and glutamate- 
rich proteins, in v olv ed in DNA metabolism such as DNA replication and repair . Consequently , cells that survive MAPKi degrade aspartate and 
glutamate likely to generate energy, which simultaneously decreases their requirement for amino acids due to the downregulation of aspartate- 
and glutamate-rich proteins in v olv ed in cell proliferation. Concomitantly, the downregulation of aspartate- and glutamate-rich proteins in v olv ed 
in DNA repair increases DNA damage loads. Thus, DNA repair defects, and therefore mutations, are at least in part a secondary effect of the 
met abolic adapt ation of cells exposed to MAPKi. 
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ntroduction 

ome amino acids correspond to several codons, bringing a
edundancy into the genetic code, which plays a role in gene
roduct expression level. Indeed, the nature of mRNA codons
ffects the dynamics of ribosomes, through the time required
o ‘decode’ each codon, with consequences on translation ef-
ciency, protein folding and mRNA co-translational degrada-
ion through the translation-dependent mRNA decay (TDD)
athway ( 1–7 ). For instance, sub-optimal codons or clusters
f rare codons modulate gene product expression levels in
 gene- and species-selective manner ( 1 , 3 , 4 , 7–9 ). At least in
umans, sub-optimal and rare codons are more frequently
 / T-ending codons, while optimal codons are more frequently
eceived: August 10, 2023. Revised: March 8, 2024. Editorial Decision: April 9, 
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G / C-ending codons likely because of the more unstable inter-
actions between A / T-ending codons with their cognate anti-
codons as compared to G / C-ending codons ( 4 ,10–14 ). 

While codon usage is an intrinsic parameter of gene prod-
ucts with respect to their translatability and stability, there are
many extrinsic parameters that modulate codon-depending ef-
fects in a cell type- and context-dependent manner. Among the
extrinsic parameters, enzyme-dependent biochemical modifi-
cations of anti-codons have been reported to modulate the in-
teractions between codons and anti-codons ( 15 ,16 ). For ex-
ample, the cytosolic thiouridylase 2 (CTU2) enzyme that bio-
chemically modifies the tRNA wobble uridine – thereby affect-
ing the decoding of some A-ending codons, such as the AAA
2024. Accepted: April 29, 2024 
ancer. 
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and GAA codons – is required for the efficient translation of a
subset of mRNAs that promote survival and resistance to ther-
apy of BRAF-mutated melanoma cells ( 17 ,18 ). In addition,
variation in the expression levels of different classes of tR-
NAs can change the codon-dependent effect on gene product
expression level in a cell type- and context-dependent man-
ner ( 19 ,20 ). For instance, proliferative cells express higher
levels of tRNAs corresponding to A / T-ending codons than
differentiated cells, leading to the differential expression lev-
els of gene products enriched in either A / T- or G / C-ending
codons ( 21 ,22 ). Along the same line, the expression levels of
aminoacyl transferases, which load amino acids onto tRNAs,
can modulate the codon-dependent effects on gene product
expression levels ( 23 ,24 ). An example is given by the leucyl-
tRNA synthetase (LARS), which increases the selective load-
ing of tRNA-Leu 

CAG isoacceptor and thereby affects the trans-
latability of mRNAs containing the CAG codon ( 25 ). 

The bioavailability of amino acids is of particular interest
as an extrinsic parameter that modulates codon-dependent ef-
fects on gene product expression levels. Indeed, the dynamics
of ribosomes depend in part on the intracellular concentration
of loaded-tRNAs, which itself depends on the intracellular
concentration of amino acids. Thus, the translation of mRNAs
requiring an amino acid whose bioavailability decreases can
be impacted as shown for numerous amino acids, including
non-essential ones such as glutamine ( 5 , 7 , 26–29 ). As a con-
sequence of the link between amino acid bioavailability and
translation, the synthesis of proteins with amino acid compo-
sition biases depends on the cell metabolism ( 23 , 25 , 28 , 30 , 31 ).
For example, a large amount of proline can be produced only
under certain metabolic conditions, which therefore deter-
mines whether some proline-rich proteins of the extracellular
matrix (e.g. collagen) are produced ( 29 , 32 , 33 ). This illustrates
how the cellular metabolism – through amino acid bioavail-
ability – is coupled to the nature of cell-expressed proteins on
which the cell phenotype depends. 

The coupling between cell metabolism and the protein-
dependent cell phenotype can be illustrated by the competi-
tion between energy production and gene product biogenesis
on which depends cell proliferation because some amino acids
like glutamine (Gln), glutamate (Glu) and aspartate (Asp) are
at the crossroads between several metabolic pathways and the
gene expression process. Indeed, the carbon skeleton of these
amino acids can either be degraded and end up in the produc-
tion of energy, or ‘recycled’ to synthesize other amino acids
and nucleotides (and therefore gene products) ( 34–39 ). As a
consequence, some amino acids may either be used by the cells
to produce energy through their complete degradation or be
used for the synthesis of large amount of gene products as
during cell proliferation. This may explain why such amino
acids play a particularly important role in cancer cells, which
have a high proliferation rate that requires gene product syn-
thesis but are in a resource-impoverished micro-environment
as a consequence of cell proliferation ( 35 , 37 , 40–45 ). Accord-
ingly, cancers cells are often addicted to certain amino acids,
such as Gln in melanoma cells ( 37 , 41 , 44 , 45 ). The link be-
tween cell metabolism and gene expression–dependent cell
phenotypes could have consequences in cancer cells exposed
to anti-cancer agents, such as MAPK-inhibitors (MAPKi) used
to treat melanoma, since these molecules modify the cancer
cell metabolism ( 46–51 ). In other words, anticancer thera-
pies may impact cellular phenotypes because of metabolic-
dependent effects on gene product expression levels. 
Here, we report that MAPKi treatment of a melanoma cell 
line downregulated mRNAs that encode proteins enriched for 
certain amino acids, including Glu and Asp, whose intracel- 
lular concentration decreased in MAPKi-treated cells. Inter- 
estingly, MAPKi-downregulated mRNAs encoded proteins in- 
volved in cell proliferation and DNA repair, two classes of pro- 
teins that are globally enriched in Glu and Asp residues. In line 
with this observation, MAPKi-treated cells show DNA repair 
defects. Our results support a model in which the metabolic- 
dependent effects of MAPKi therapy combined with modifica- 
tion of the expression level of tRNA-charging enzymes could 

result in secondary defects of DNA repair, which could in- 
crease the probability of genetically-adapted cancer cells to 

emerge after MAPKi therapy. 

Materials and methods 

Cell culture and persister cells 

The human melanoma A375 cell line (ATCC) was cultured at 
37 

◦C and 5% CO 2 in Dulbecco’s modified Eagle’s medium 

(DMEM; Gibco) supplemented with 10% FBS, 2 mM glu- 
tamine and penicillin–streptomycin. Cells were split at 80% 

confluence, three times a week. MAPKi-treated cells were cul- 
tured in a medium containing 1 μM vemurafenib / cobimetinib 

(with 500 nM vemurafenib and 500 nM cobimetinib) (Eu- 
romedex) for 24 h. Glutamine-depleted cells were cultured in a 
glutamine-free medium for 24 h. Persister cells were obtained 

after being cultured for 72 h in a medium containing 1 μM 

vemurafenib / cobimetinib in three experimental batches (A–
C). Batch A was harvested after three days and batches B and 

C were cultured in drug-free DMEM for two and nine addi- 
tional days. The human M249 cells were cultured in Roswell 
Park Memorial Institute medium (RPMI 1640 Eurobio Sci- 
entific) supplemented with 10% FBS, 2 mM glutamine and 

penicillin–streptomycin. 

siRNA transfections, cell harvesting, RNA 

extraction and qRT-PCR 

Two different siRNAs (Merck, Supplementary Table S2 ) 
that target constitutive exons with minimum predicted off- 
targets were designed and pooled together. Cells were reverse- 
transfected with lipofectamine RNAiMAX (ThermoFisher),
following the manufacturer’s instructions. After transfection 

of 6 well plates (200 000 cells / well), cells were washed twice 
with ice-cold PBS, scraped with 1 ml of PBS and pelleted by 
centrifugation (500 × g for 1 min at 4 

◦C). Cells were then 

suspended in 1 ml lysis buffer (10 mM Tris–HCl pH 7.5, 5 

mM MgCl 2 , 100 mM KCl, 1% Triton X-100) and incubated 

on ice for 10 min. Cellular lysates were centrifuged (1000 × g 
for 10 min, 4 

◦C), and RNA was extracted using TRI Reagent 
(Sigma), following the manufacturer’s instructions. For RT- 
qPCR, 1 μg of extracted RNA was retro-transcribed using 
the Maxima First Strand cDNA Synthesis Kit (ThermoFis- 
cher), following the manufacturer’s instructions. qPCR reac- 
tions were run in triplicate on a LightCycler 480 (Roche) in 

10 μl reactions (see Supplementary Table S2 for primer se- 
quences). The absence of siRNA off-target effects was tested 

by transfecting individual siRNAs; effects on mRNA targets 
were then compared by RT-qPCR to the effects of the mixed 

siRNAs ( Supplementary Figure S4 e and g). The amino acid 

intracellular concentration was measured using cytoplasmic 
extracts of the A375 cell line from 5 × 10 

7 cells and was per- 

https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcae019#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcae019#supplementary-data
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ormed by the AltaBioscience and Xell companies. The intra-
ellular concentration of Glu in the M249 cell line was per-
ormed using the glutamate assay kit from Abcam (ab83389).

ene annotation 

ioinformatics analyses were performed using the
RCh38.p13 assembly and NCBI’s annotation. Only genes
ith at least one coding sequence (CDS) and one start and

top codon were kept. Merged genes, and CDS that overlap
everal exons or an ambiguous coding frame were filtered
ut. A total of 19 143 coding genes and 196 652 CDS were
elected. In the following analyses, the mRNAs are the con-
atenation of the CDS of a gene and a gene was associated
ith only one mRNA. 

NA-seq and QuantSeq 

rom 6-well plates, 10 

6 cells were used to prepare total
NA, and 500 ng of RNA were used for RNA-seq libraries

hat were prepared and sequenced by Novogene (rRNA
epletion library preparations and sequencing was per-
ormed on Novaseq 6000 2 × 150). QuantSeq libraries were
repared using the QuantSeq 3 

′ mRNA-Seq Library Prep
it (Lexogen). 500 ng of RNA was spiked-in with 1 μl of
 1:100 dilution of ERCC Spike-In Mix (ThermoFisher)
rior to library preparation. QuantSeq libraries were then
uantified, pooled and sent for sequencing at Novogene
Novaseq 6000 2 × 150). Only fastq files containing forward
eads were used for QuantSeq analyses, while the entire
air of fastq files were used for RNA-seq analyses. Adapters
ere removed from raw reads and trimmed using fastp

ersion 0.20.1 ( 52 ) with the following parameters: quali-
ed_quality_phred 30 -l 25 –detect_adapter_for_pe) (RNA-
eq) and qualified_quality_phred 20 -3 –cut_tail_window_size
0 –adapter_sequence = A GATCGGAA GA GCA CA CGTCT-
AA CTCCA GTCA –adapter_sequence = AAAAAA

QuantSeq). Reads were mapped against the human genome
RCh38.p13 with HISAT2 version 2.2.1. Reads were counted
n exons with htseq-count version 0.13.5. Unexpressed genes
genes with raw read counts < 2 across all conditions) were
ltered out only for RNA-seq data. Differential expression
nalysis was performed with the DESeq2 package version
.34.0 using the option lfcThreshold = 0.585 (only RNA-
eq data). mRNAs in the RNA-seq dataset with a DESeq2
orrected P -value ≤0.05 and an average DESeq2 normalized
xpression ≥10 across conditions (basemean ≥ 10) were
onsidered to be significantly differentially regulated. 

DD experiments and analysis 

DD monitoring was performed as previously described in
 53 ). Briefly, 2 × 10 

5 cells were plated into 6-well plates, and
he culture medium was removed after 24 h and replaced with
resh medium containing 1 μM vemurafenib / cobimetinib
with 500 nM of each) or DMSO. After another 18 h, cells
ere treated with fresh cycloheximide (100 μg / ml) or DMSO

or 5 min and then treated with tryptolide (25 μM) or DMSO.
his was prepared in four identical batches (A–D): batch A
as harvested immediately upon ± tryptolide treatment (T0

amples), and the batches B, C and D were harvested after 3
T3) and 5 (T5) hours of treatment, respectively. Computation
f the TDD index was performed using pre-processed reads,
apped and counted with htseq-count (see above). From the

aw count tables obtained with htseq-count, the CPM was
computed for each gene. Then, we searched for genes with a
stable expression in MAPKi and DMSO conditions for nor-
malization. A gene was considered as stable if (i) its CPM
count was > 0.2 in initial condition, (ii) its CPM count after 3
or 5 h of transcription inhibitor treatment was at least 10%
greater than its CPM at initial condition and (iii) its CPM at
initial condition was greater than 10% of its CPM after 3 or
5 h of transcription inhibitor treatment. Only ‘stable genes’
in all replicates were kept. Stable genes were used as normal-
ization factors in DESeq2 package to normalize reads counts.
The TDD index was next computed for an mRNA produced
by a gene G using the following formula: 

T T Dindex = 

R Tci + T li,t − R Tci,t 

R 0 

where R 0 is the normalized number of G reads at 0 h (initial
condition), R Tci + T li,t is the normalized number of G reads after
t hour of exposition to a transcription (Tci) and a translation
inhibitor (Tli) and R Tci,t is the normalized number of G reads
after t hour of exposition to a Tci. The TDD index was com-
puted, for each replicate, at T3 and T5 for cells treated with
MAPKi and DMSO. The TDD index according to the condi-
tion (MAPKi or DMSO), the time (T3 or T5) and the replicate
was modeled using a linear model (in R function lm) for each
mRNA. With these models, a Student’s test was computed to
determine if the TDD index of a mRNA was significantly af-
fected ( P -value ≤ 0.05) in response to MAPKi as compared
to the DMSO control condition. Finally, mRNAs with a sig-
nificant TDD index variation were classified as having an in-
creased or decreased TDD index, according to whether their
average TDD index (across replicates and T3 and T5 treat-
ment times) was higher or lower, respectively, in the MAPKi
condition compared to the DMSO condition. 

Ribosome profiling and analysis 

Ribosome profiling samples were prepared as described in
( 54 ). Briefly, 5 × 10 

7 cells were harvested with PBS and lysis
buffer supplemented with 100 μg / ml cycloheximide (Sigma)
and 2 mM DTT. The lysate (500 μl) was analysed at 260
nm absorbance to estimate the total quantity of material and
then treated with nucleases. For every 5 units of A260 ab-
sorbance, 6 μl of MNase (1 mg / ml; Nuclease S7, Roche)
was added to the lysate, along with CaCl 2 to a final con-
centration of 10 mM. Lysates were then incubated at 25 

◦C
for 30 min, transferred to ice and then applied to 10–50%
sucrose gradients containing cycloheximide (100 μg / ml). Af-
ter ultra-centrifugation at 35000 rpm for 2h and 40 min at
4 

◦C, gradients were fractionated using a fraction collector,
and the fractions containing the digested monosome frag-
ments (80S) were kept. Fractions were supplemented with SDS
(to a final concentration of 1%) and then digested with pro-
teinase K (Roche, final concentration of 2 μg / ml) for 45 min
at 42 

◦C. Protected RNA fragments were then purified using
an acidic phenol–chloroform extraction (Fischer, BP1753I)
and precipitated overnight at –20 

◦C with 0.1 × volume of
sodium acetate (3 M, pH 5.2), 1 × vol isopropanol, 1 μl
GlycoBlue and 10 mM MgCl 2 (to help recover smaller nu-
cleic acids) . Purified RNA fragments were then 3 

′ -end de-
phosphorylated using PNK and fractionated on a 10% acry-
lamide denaturing gel, and the smears of interest (26–32 bp)
were cut from the gel and purified. Size-selected fragments
were rRNA-depleted by hybridization using RNA probes ( 55 ),
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successively RNAse H- and DNAse-treated and then purified
again with a phenol–chloroform extraction before proceed-
ing to cDNA library preparation following the Omniprep Li-
brary preparation protocol ( 56 ). An adaptator sequence was
ligated to RNA, which was then retrotranscribed with bar-
coded primers. The barcoded cDNAs were size-selected on a
10% denaturing acrylamide gel, purified and then circularized
(CircLigase, Lucigen). Amplification with barcoded primers
was performed with a few numbers of PCR cycles (5–8) and a
high-fidelity polymerase (Q5, NEB). Amplified libraries were
size-selected on a non-denaturing 8% acrylamide gel and pu-
rified, and their quality and concentrations were assessed us-
ing the TapeStation DNA 1000 ScreenTapes. Ribosome profil-
ing OmniPrep libraries were sequenced by GenomEast (HiSeq
4000 1 × 50bp). After removing adapter sequences from
raw reads using cutadapt version 2.1 with the parameters -
a A GATCGGAA GA GCA CA CGTCTGAA CTCCA GTCA C -u
13 –maximum-length = 40 –minimum-length = 20 -q 28,28
for Ribo-seq data, and the parameters -a A GATCGGAA GA G
-g CTCTTCCGA TCT -A AGA TCGGAAGAG -G CTCTTC-
CGATCT for RNA-seq data (raw reads, see ‘Total RNA-seq
and QuantSeq’ section). A trimming step was then performed
using UrQt version 1.0.18 ( 57 ), and reads were mapped to
GRCh38.p13 genes sequences using HISAT2 version 2.2.1
( 58 ) with parameters –rna-strandness ‘F’ –norc for Ribo-Seq
data. Next, alignment files were converted, using deepTools
version 3.0.2 ( 59 ), to bigWig files containing a count per mil-
lion (CPM) mapped reads normalized coverage at one nu-
cleotide resolution. A peak calling step was then performed as
described hereafter. For a replicate i and a gene G, a normal-
ized coverage cNorm was computed for a test T and a control
C condition using the following formula: 

cNo rm = 

co verag e ribo ( G i ) 
co verag e rna ( G i ) 

where coverage ribo was obtained from Ribo-seq data, and
coverage rna from RNA-seq data. Nucleotide positions at
which no coverage was detected from RNA-seq data were
skipped. The difference cDiff i between normalized coverage
in T and C condition was then computed for each replicate i .
Thus, for a number N of replicates, a set of coverage CDIFF
per replicates was obtained as follows: 

CDIF F = 

{
cDi f f 1 , . . . , cDi f f i , . . . , cDi f f N 

}
The average coverage cMean =

{ cMea n 0 , . . . , cMea n p , . . . , cMea n L −1 } at each CDS posi-
tion p of a gene G of length L was computed between
replicates, where cMean p was computed as follows: 

cMea n p = 

∑ N 

i =1 cDi f f i,p 
N 

, ∀ 0 ≤ p < L ; p ∈ CDS 

Next, the average coverage MeanCov and standard error
StdMean were computed for the gene G , and a coverage
threshold T was defined with T = MeanCov + ( StdMean ) ×
3 , where MeanCov and StdMean were computed using the
formulas: 

MeanCov = 

∑ L −1 
p=0 cMea n p 

L 

StdMean = 

√ ∑ L −1 
p=0 

(
cMea n p − MeanCov 

)2 

L 
Each region at which cMean was above T was considered 

as a peak. Peaks inside CDS with an average coverage below 

3 across RNA-seq replicates, were removed. Peaks defined by 
a region where the average RNA-seq coverage was below 3 

were discarded. A score was given for each peak, beginning at 
a position s and ending at a position e in a gene. Only peaks 
position with a score above 3 in two replicates were kept. The 
score was computed using the formula below: 

Score = 

( ∑ e 
p= s cMea n p 

( e − s ) T 

− 1 

) 

× 100 

The first analysis was done by taking the MAPKi or 
glutamine-deprived conditions as the test condition, and the 
DMSO or untreated condition as the control condition, re- 
spectively. For each analysis performed with this method,
another was carried out by reversing the control and test 
conditions. 

Randomization tests were performed to test whether a set 
of peaks P had a codon compositional bias, or whether pep- 
tides encoded in peak regions had an amino acid bias. For this,
10 000 sets of control peaks C similar to P (same peak number 
and peak size) located in CDS were sampled. For each peak 

of P and C , the frequency of a given feature X ( i.e. codon 

or encoded amino acid) was computed using the formula: 
F req (X) = Count(X) /s , where Count(X) is the number of X 

in a peak and s is the total number of codons in this peak. The 
average frequency of X, Mean X 

, was then computed for P and 

the 10 000 sets of C MEA N C = { Mea n C1 , . . . , Mea n C10000 } . To 

calculate an empirical p-value, the number of control frequen- 
cies Mean Ci upper or equal or lower or equal than the fre- 
quency Mean X 

was determined. The smaller number between 

these two was then divided by the number of control peak 

sets (i.e. 10 000). Note that the p-value cannot be lower than 

1 / 10 000 to avoid multiple testing caveats. The P -value was 
then corrected using the Benjamini–Hochberg procedure. Fig- 
ure 3 E was generated with codons inside coding sequences 
(CDS) of genes producing transcripts that have at least one 
ribosome peak. Codons overlapping two different CDS were 
discarded from the analysis. The frequency of a given codon 

was computed in the CDS region overlapped by a peak. Start- 
ing from the central coordinate of the peak ((end – start) / 2 

rounded up), the frequency of codons was then computed up 

to 50 windows of 10 codons with a step of 1 upstream and 

downstream the peak. 

Compositional bias analyses 

To test whether the codon content of different sets of genes 
was different, the frequencies of each codon in genes ac- 
cording to their size and set was modeled with a general- 
ized linear model for the beta distribution with zero inflation 

(with R glmmTMB function of the glmmTMB package using 
beta_family(link = ‘logit’) parameter). Then, a Tukey’s test 
(pairwise comparison) for the ‘set’ factor was done (with R 

emmeans and pairs functions of the emmeans package). Con- 
trol sets of genes correspond to expressed genes having a mean 

DESEQ2 normalized expression greater than 10 and not be- 
ing in other tested sets. The same procedure was applied to 

test whether the amino acid content of different sets of pro- 
teins was different. When several codons or amino acids are 
displayed in a figure, an additional Benjamini–Hotchberg cor- 
rection is performed. The relative frequency of a feature X was 
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omputed as follows: 

Re f req ( X ) = 

F req ( X ) t − F req ( X ) c 
F req ( X ) c 

where Freq ( X ) t is the average frequency of a codon or
mino acid X in a test set of mRNAs or proteins and Freq( X ) c
s the average frequency of a codon or amino acid X in the set
f mRNAs expressed in A375 cells or their encoded proteins.

unctional enrichment analysis and heatmap 

ene ontology (GO) enrichment analysis was performed us-
ng DAVID Ontology ( 60 ). An annotation file containing
O terms and a gene association file (that links proteins

o their most specific GO terms) were downloaded from
ttp:// geneontology.org/ . A homemade tool was developed to
xtract all proteins associated with GO:0051301 (cell divi-
ion) and GO:000628 (DNA repair). Proteins associated with
hild terms of these GO terms were also treated as belong-
ng to these terms. Only child terms linked to their parents
ith the qualifiers ‘involved_in’, ‘located_in’, ‘is_active_in’ or

part_of’ were considered. In addition, proteins associated
ith the Uniprot keywords KW-0131 (cell cycle) and KW-
227 (DNA damage) were downloaded from https://www.
niprot.org/ keywords/ . Only reviewed human proteins were
ept. The average frequency of each amino acid in these lists
f proteins was calculated using FasterDB ( http://fasterdb.ens- 
yon.fr/ faster/ home.pl ). Overall, 10 000 sets of proteins were
andomly sampled for each list of proteins, and the average
requency of each amino acid for each set was computed. Fi-
ally, an empirical p-value was computed for an amino acid
 in a given protein list P as: 

P emp = 

min 

(
k, l 

) + 1 

10 000 + 1 

here k is the number of controls sets with an average fre-
uency of X higher or equal to P , and l is the number of con-
rols sets with an average frequency of X lower or equal to
. For each list of proteins, the P -values were corrected using
he Benjamini–Hochberg procedure and then transformed us-
ng the following formula: T = 1 − P adj × s , where P adj is the
orrected p-value and s = 1 if k > l; otherwise , s = − 1 . 

ranscriptional mutagenesis 

apped reads files (see ‘RNA-seq and QuantSeq’ section)
ere recovered and duplicated reads were removed using

he program MarkDuplicates from picard toolkit version
.18.11 (Picard Toolkit 2019. Broad Institute, GitHub Repos-
tory. https:// broadinstitute.github.io/ picard/ ) with the pa-
ameters VALIDATION_STRINGENCY = LENIENT RE-

O VE_DUPLICA TES = true. Then, the number of mapped
eads within each files were recovered using idxstats com-
ands of samtools v1.11. Each bam file was sub-sampled, us-

ng samtools v1.11, to have approximately the same number
f mapped reads as in the smallest bam file. The command
pileup of the program bcftools v1.16 was used to produce
cf files using the following options: -I -d 10000 -O b -a AD.
he mpileup was only performed on human exonic regions.
NP and unchanging nucleotide positions were next called us-
ng the command call from bcftools and the parameters -A -V
ndels -m -O b. The resulting positions were filtered by depth
nd quality with the command filter from bcftools and the pa-
ameters -i ‘QUAL > = 10 && DP > = 700’ -O b. Finally, these
bcf files were again filtered using a homemade Python script to
keep only positions that have at least 700 nucleotides of cover-
age depth and an alternative allele frequency lower than 5%.
A transcriptional SNP was identified by REF > ALT, where
REF is the nucleotide found in the reference genome at a par-
ticular position, and ALT is the nucleotide found on mapped
reads at this position with REF � = ALT. The number X of nu-
cleotide positions with a coverage depth greater than 700 and
containing a SNP REF > ALT was recovered. This number
X was then divided by the total number of nucleotide REF
with a coverage greater than 700 to obtain a proportion of
sites REF with a SNP REF > ALT. Then, we tested whether
the proportions of the same SNP across different conditions
were different by using a logistic regression. We used the same
procedure to test whether the proportion of SNP REF > * are
different between conditions. A SNP REF > * corresponds to
any SNP located on a given nucleotide REF with a coverage
above 700 in the genome. The relative SNP frequency of a
given condition compared to DMSO-treated cells was com-
puted using the same formula as defined in ‘Compositional
bias analyses section’. 

Mutagenesis reporter experiments 

A stable clonal A375 cell line expressing GFP and a mu-
tated and non-fluorescent version of mCherry (Cherry-
OFF) was obtained from retro-viral particles, prepared
from the pQC-CherryOFF-GFP plasmid according to
Birnbaum et al. ( 61 ). pQC-CherryOFF-GFP was a gift
from Fangliang Zhang (Addgene plasmid #129101;
http:// n2t.net/ addgene:129101; RRID:A ddgene_129101). 
Between 5 × 10 

6 and 2 × 10 

7 genetically-modified
cells were treated for 72 h with DMSO (CTRL), 1 mM
ENU (+ENU, N3385, Merck), or 1 mM ENU + 1 μM
vemurafenib / cobimetinib (+ENU + MAPKi). Alternatively,
cells were treated with DMSO (CTRL), 1 mM ENU (+ENU),
or 1 μM vemurafenib / cobimetinib (MAPKi) for 72 h before
to be cultured in a drug-free medium for 6 days before to be
treated with 1 mM ENU (+MAPKi + ENU) for 72 h. 

Immunofluorescence 

Cells were seeded into 6-well plates with coverslips
and treated the following day with DMSO or 500 nM
vemurafenib / 500 nM cobimetinib (Euromedex) for 48 h. At
the end of the treatment, cells were fixed with 4% PFA at
room temperature for 20 min and then washed five times
with PBS. Cells were permeabilized in 0.5% PBS-Triton,
washed three times with PBS for 5 min, and then blocked in
PBS containing 0.1% Tween® 20 Detergent (Sigma) and 5%
bovine serum albumin (BSA) for 1 h at room temperature.
Primary antibodies were diluted in blocking solution, and
anti-gH2AX antibody (1 :750) (Abcam, ab26350) was incu-
bated at room temperature for 1 h, while anti-RAD51 (1:400;
Abcam, ab176459) and anti-RAD18 (1:400; Proteintech,
18333–1-AP) were incubated at room temperature for 2.5
h. Cells were then washed five times using PBS with 0.1%
Tween® 20, and Alexa Fluor™ 594 (Invitrogen, A21203) or
Alexa Fluor™ 488 (Invitrogen, A21206) secondary antibod-
ies (1:1000) were incubated for 1 h at room temperature. Cells
were then washed five times with PBS with 0.1% Tween®
20, and coverslips were mounted on glass slides with 20 μl
of ProLong™ Diamond with DAPI (Thermo Fisher, P36962)
mounting medium. Slides were imaged using Leica 3D upright

http://geneontology.org/
https://www.uniprot.org/keywords/
http://fasterdb.ens-lyon.fr/faster/home.pl
https://broadinstitute.github.io/picard/
http://n2t.net/addgene:129101;
https://scicrunch.org/resolver/RRID:A
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deconvolution microscope with a CoolSNAP HQ camera,
at the PICT-IBiSA Imaging Facility in Orsay, and analysed
using a semi-automatic macro on Fiji software. Nuclei con-
taining ≥10 distinct foci were defined as foci-positive, and
the percentage of positive nuclei was calculated as [(number
of foci positive nuclei) / (number of nuclei scored)] × 100. A
minimum of 100 nuclei per sample were scored, and the data
shown were collected from at least three biological replicates.
The statistical significance of the experimental data was
determined using paired T -test in GraphPad (Prism10). 

PARPi sensitivity 

Cells (4 × 10 

3 ) were seeded into 96-well plates. The follow-
ing day, the media was replaced with 100 μl of olaparib-
containing media, at final concentrations of 0, 10, 20 and 30
μM, together with 500 nM vemurafenib and 500 nM cobime-
tinib (Euromedex), in technical triplicates. Control cells were
treated with olaparib-containing media (at 0, 10, 20 and 30
μM final concentration) together with DMSO. At the end of
the treatment, cell viability was measured by a WST-1 ATP-
based assay (Roche, France) after 48 h of treatment. Briefly,
WST-1 reagent was added to each well (10 μL per 100 μL of
medium) and incubated at 37 

◦C for 1.5 h. The plates were
then read at 450 nm on a TriStar2 LB 942 Multimode Mi-
croplate Reader (Berthold Technologies, Germany). Cell sen-
sitivity is represented relative to 0 μM olaparib-treated cells.
Statistical significance of the experimental data was deter-
mined using two-way ANOVA in GraphPad (Prism10). 

Results 

Compositional biases of MAPKi-regulated gene 

products 

We performed RNA-sequencing after culturing the A375
melanoma cell line for 24h in the absence or presence of
a combination of BRAF- and MEK-inhibitors (hereinafter
termed MAPK inhibitors [MAPKi]). The expression levels of
2010 or 1719 mRNAs were significantly decreased (down-
regulated mRNAs) or increased (upregulated mRNAs), re-
spectively, in MAPKi-treated cells as compared to control
cells (Figure 1 A and Supplementary Table S1 ). Interestingly,
813 and 753 MAPKi-downregulated mRNAs encoded pro-
teins associated with the GO terms ‘nucleoplasm’ and ‘cyto-
plasm’, respectively, and 626 MAPKi-upregulated mRNAs en-
coded proteins associated with the GO term ‘Integral compo-
nent of membrane’ (Figure 1 A). In agreement with the fact
that nucleoplasmic and cytoplasmic proteins are typically hy-
drophilic soluble proteins, while membrane proteins tend to
be hydrophobic proteins, we noticed that the hydrophobic-
ity index of proteins encoded by upregulated-mRNAs was
higher than the hydrophobicity index of proteins encoded
by downregulated-mRNAs ( Supplementary Figure S1 a). This
observation raised the possibility that proteins encoded by
down- or up-regulated mRNAs had different amino acid com-
position biases. 

Accordingly, hydrophilic residues, such as lysine (Lys), Glu,
Asp and asparagine (Asn), were enriched in proteins en-
coded by MAPKi-downregulated mRNAs, while hydropho-
bic amino acids, like tryptophan (Trp), cysteine (Cys), pheny-
lalanine (Phe), and leucine (Leu), were enriched in proteins
encoded by MAPKi-upregulated mRNA (Figure 1 B, C). Thus,
proteins encoded by downregulated mRNAs contained on av-
erage 30%, 12%, 8%, and 7% more Lys, Glu, Asp and Asn 

residues, respectively, than proteins encoded by upregulated 

mRNAs, while the latter contained on average 24%, 11%,
10% and 9% more Trp, Cys, Phe and Leu residues, respec- 
tively. In addition, a larger part of MAPKi-downregulated mR- 
NAs encoded for proteins with a higher frequency of Lys,
Glu, Asp and / or Asn residues, while a larger part of MAPKi- 
upregulated mRNAs encoded for proteins with a higher fre- 
quency of Trp, Cys, Phe and / or Leu residues ( Supplementary 
Figure S1 b). 

We next analysed the codon content of MAPKi-regulated 

mRNAs. Down- and up-regulated mRNAs were enriched 

for different sets of codons (Figure 1 D). Indeed, A / T- 
ending codons were enriched in MAPKi-downregulated mR- 
NAs, while G / C-ending codons were enriched in MAPKi- 
upregulated mRNAs. We also noticed a selective enrichment 
of a subset of synonymous codons since, for example, only the 
GAA (but not the GAG), the GAT (but not the GAC), and the 
AAT (but not the AAC) codons–corresponding to Glu, Asp 

and Asn, respectively–were enriched in downregulated mR- 
NAs but reduced in upregulated mRNAs (Figure 1 D, E and 

Supplementary Figure S1 c). 
In summary, mRNAs that were down- or up-regulated by 

MAPKi treatment contained different codon compositional 
biases and encoded protein sets with different amino acid 

compositional biases. 

Compositional biases of TDD-regulated mRNAs in 

response to MAPKi 

We next tested the possibility that MAPKi treatment could af- 
fect mRNA stability in a translation-dependent manner. For 
this, we first measured the TDD index of mRNAs by com- 
paring the expression level of mRNAs in cells treated or not 
with MAPKi, at initial condition or 3 and 5 h after inhibition 

of transcription alone or after inhibition of both transcrip- 
tion and translation (Figure 2 A). MAPKi treatment increased 

the TDD index of 1390 mRNAs and decreased the TDD in- 
dex of 183 mRNAs (Figure 2 A and Supplementary Table S1 ).
Although not a formal proof, this observation suggested that 
MAPKi could affect mRNA expression levels by modulating 
mRNA stability in a translation-dependent manner. 

Remarkably, the Lys, Glu, Asp and Asn residues were en- 
riched in proteins encoded by mRNAs with an increased TDD 

index in response to MAPKi, while other amino acids, in- 
cluding tryptophan (Trp), glycine (Gly), alanine (Ala), pro- 
line (Pro) and leucine (Leu), were enriched in proteins en- 
coded by mRNAs with a decreased TDD index in response to 

MAPKi treatment (Figure 2 B and Supplementary Figure S2 a).
In addition, the majority of codons that were enriched in mR- 
NAs with an increased TDD index in response to MAPKi 
was reduced in mRNAs whose TDD index decreased (Fig- 
ure 2 C). Furthermore, the majority of codons that was en- 
riched in mRNAs whose TDD index increased in response 
to MAPKi corresponded to A / T-ending codons, while most 
codons enriched in mRNAs whose TDD index decreased in 

response to MAPKi were G / C-ending codons (Figure 2 C and 

Supplementary Figure S2 b). This observation agreed with a 
recent report showing that the MAPK pathway modulates 
codon optimality of A / T-ending codons ( 8 ). 

We noticed that MAPKi treatment increased the TDD index 

of a large number of mRNAs when compared to the num- 
ber of mRNAs whose TDD decreased (i.e. 1390 versus 183,

https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcae019#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcae019#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcae019#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcae019#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcae019#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcae019#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcae019#supplementary-data
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Figure 1. ( A ) A375 cells were cultured for 24h in the absence (CTRL) or in the presence of MAPKi (TC) before RNA-sequencing. Number and GO term 

analysis of MAPKi-regulated genes. This experiment was performed in triplicate (DESeq2 corrected P -value ≤ 0.05 and an average DESeq2 
normalized ≥ 10 across conditions). ( B ) Amino acid relative frequency (%) in proteins encoded by MAPKi-regulated mRNAs. The x-axis and y-axis 
correspond to the relative frequency (%) of each amino acid computed from proteins encoded by MAPKi-upregulated and –downregulated mRNAs, 
respectively in comparison to the amino acid frequency in control proteins, i.e. proteins encoded by mRNAs expressed in untreated A375 cells. * in red 
or in blue means that the frequency of an amino acid is statistically different (beta regression analysis followed by a Tukey’s test (pairwise comparison) 
FDR ≤ 0.05) when comparing control proteins to proteins encoded by MAPKi-upregulated or –downregulated mRNAs, respectively. ( C ) Amino acid 
frequency in proteins encoded by MAPKi-upregulated mRNAs (red) or by MAPKi-downregulated mRNAs (blue). *** indicates that amino acid 
frequencies are statistically different (beta regression analysis followed by a Tukey’s test (pairwise comparison) FDR < 0.001) when comparing proteins 
encoded by MAPKi-downregulated mRNAs or by MAPKi-upregulated mRNAs. ( D ) Codon relative frequency (%) in MAPKi-regulated mRNAs. The x-axis 
and y-axis correspond to the relative frequency (%) of each codon computed in MAPKi-upregulated and -downregulated mRNAs, respectively in 
comparison to all other mRNAs expressed in A375 cells (control mRNAs). * in red or in blue means that the frequency of a codon is statistically different 
(beta regression analysis followed by a Tukey’s test (pairwise comparison) FDR ≤ 0.05) when comparing control mRNAs to mRNAs that were 
upregulated or downregulated, respectively in MAPKi-treated cells. Green, red, orange, and blue dots represent A-, T-, G-, and C-ending codons, 
respectively. ( E ) Codon frequency in MAPKi-upregulated mRNAs (red) or in MAPKi-downregulated mRNAs (blue) mRNAs. *** means that codons 
frequencies are statistically different (beta regression analysis followed by a Tukey’s test (pairwise comparison) FDR < 0.001) when comparing 
MAPKi-downregulated mRNAs and MAPKi-upregulated mRNAs. 
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Figure 2. ( A ) A375 cells were cultured for 18 h in the absence or presence of MAPKi and then exposed to transcription inhibitors (Tci) and / or translation 
inhibitors (Tli) for 3 h or 5 h. The TDD index of each A375-expressed mRNA was computed by subtracting the normalized number of reads obtained in the 
presence of only Tci (R(Tci)) from that of the normalized number of reads (R) obtained in the presence of both Tci and Tli (R(Tci + Tli)). The subtraction 
sum was then divided by the initial normalized-number of reads (R0). This experiment was performed in triplicate. A Student’s test was computed (see 
Materials and Methods) to c hec k if the TDD index of a mRNA was significantly affected (p-value ≤ 0.05) in response to MAPKi as compared to the 
DMSO condition. Only mRNAs with a significant TDD index variation were considered; these were classified as mRNAs with increased or decreased 
TDD index according to whether their average TDD index (across replicates and T3 and T5 treatment times) was higher or lower, respectively, in the 
MAPKi condition as compared to the DMSO condition. ( B ) Amino acid relative frequency (%) in proteins encoded by mRNAs whose TDD was regulated 
by MAPKi. The x-axis and y-axis correspond to the relative frequency (%) of each amino acid computed from proteins encoded by mRNAs whose TDD 

inde x w as decreased or increased, respectiv ely in comparison to control proteins, i.e. all other proteins encoded b y mRNAs e xpressed in the A375 cells 
(control proteins). * in red or in blue means that the frequency of an amino acid is statistically different (beta regression analysis followed by a Tukey’s 
test (pairwise comparison) FDR ≤ 0.05) when comparing control proteins to proteins encoded by mRNAs whose TDD was decreased or increased, 
respectively in MAPKi-treated cells. ( C ) Codon relative frequency (%) in mRNAs whose TDD was regulated by MAPKi. The x-axis and y-axis correspond 
to the relative frequency (%) of each codon computed from mRNAs whose TDD decreased or increased, respectively in comparison to control mRNAs, 
i.e. all other mRNAs expressed in A375 cells. * in red or in blue means that the frequency of a codon is statistically different (beta regression analysis 
f ollo w ed b y a Tuk e y’s test (pairwise comparison) FDR ≤ 0.05) when comparing control mRNA s to mRNA s whose TDD was decreased or increased, 
respectively in MAPKi-treated cells. Green, red, orange, and blue dots represent A-, T-, G- and C-ending codons, respectively. ( D ) Comparison of the TDD 

index of mRNAs calculated in control cells or in cells treated for 24h by MAPKi. On the left, the TDD index measured in control cells of each 
MAPKi-downregulated mRNA (x-axis) was plotted against their TDD index measured in MAPKi-treated cells (y-axis). On the right, the TDD index 
measured in control cells of each MAPKi-upregulated mRNAs (x-axis) was plotted against their TDD index measured in MAPKi-treated cells (y-axis). Grey 
dots represent mRNAs whose TDD index was not statistically different (NS) when comparing treated cells to control cells. Black dots represent mRNAs 
whose TDD index was statistically different (S, linear regression analysis t wo-t ailed t -test p-value ≤ 0.05) when comparing treated cells to control cells. 
T he gra y line indicates when the TDD v alues are identical under the compared conditions. ( E ) Frequency (%) of codons (on the bottom panel) and amino 
acids (on the top panel) in three different mRNA populations and the three different protein sets that they produce. On the top, amino acid frequency in 
proteins encoded by control (CTRL) mRNAs (i.e. expressed mRNAs without those downregulated by MAPKi), MAPKi-downregulated mRNAs whose 
TDD was not increased, and MAPKi-downregulated mRNAs whose TDD increased. On the bottom, codon frequency in control (CTRL) mRNAs, 
MAPKi-downregulated mRNAs whose TDD was not increased, and MAPKi-downregulated mRNAs whose TDD increased. *** FDR < 0.001 and * 
FDR ≤ 0.05 in beta regression analysis followed by a Tukey’s test (pairwise comparison). NS, not statistically significant. 
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igure 2 A). In addition, a large number of MAPKi-
ownregulated mRNAs had a significantly increased TDD in-
ex in response to MAPKi, while the TDD index of MAPKi-
pregulated mRNAs was either increased or decreased (Fig-
re 2 D). This suggested that the TDD increase could con-
ribute to the downregulation of a large subset of mRNAs
n response to MAPKi. On the contrary, TDD does not ap-
ear to explain MAPKi-induced mRNA upregulation. Based
n these considerations, we decided to focus our analyses on
APKi-downregulated mRNAs whose TDD index increased

n response to MAPKi. 
Proteins encoded by MAPKi-downregulated mRNAs

hose TDD increased had a higher frequency of Lys, Glu,
sp and Asn as compared to proteins encoded by MAPKi-
ownregulated mRNAs whose TDD was not affected
y MAPKi (Figure 2 E, upper panel). Likewise, MAPKi-
ownregulated mRNAs whose TDD increased had a higher
requency of AAA (Lys), GAA (Glu), GAT (Asp) and AAT
Asn) codons, as compared to MAPKi-downregulated mR-
As with a non-affected TDD (Figure 2 E, lower panel). 
Collectively, these observations suggested that MAPKi de-

rease the expression level of a subset of compositionally bi-
sed mRNAs by triggering their co-translational degradation
hrough TDD. 

ompositional biases of MAPKi-regulated 

ibosomal peaks 

o analyse the dynamics of ribosomes on mRNAs in re-
ponse to MAPKi, we performed ribosome profiling experi-
ents and then computed mRNA ribosomal peaks (Figure 3 A

nd Supplementary Figure S3 a). mRNA regions in which the
ocal density of ribosomes was higher in control cells than in
reated cells are referred to as CC peaks, and mRNA regions
n which the local density of ribosomes was higher in treated
ells than in control cells, are referred to as TC peaks. In total,
281 CC peaks were detected in 984 mRNAs in control cells,
nd 1974 TC peaks were detected in 1509 mRNAs in treated
ells (Figure 3 A and Supplementary Table S1 ). 

We next analysed the amino acid- and codon-composition
f CC peaks and TC peaks. Some amino acids were enriched
n TC peaks but reduced in CC peaks and conversely some
mino acids were enriched in CC peaks but reduced in TC
eaks (Figure 3 B and Supplementary Figure S3 b). For exam-
le, TC peaks contained more frequently at least one Lys, Asp,
lu and / or Asn residue than CC peaks, and the latter con-

ained more frequently at least one Ala and / or Gly residue
Figure 3 C). Furthermore, some codons were more frequent
n TC peaks than in CC peaks, while other were more fre-
uent in CC peaks (Figure 3 D and Supplementary Figure S3 b).
nterestingly, most codons enriched in TC peaks were A / T-
nding codons, while most codons enriched in CC peaks were
 / C-ending codons (Figure 3 D). This observation suggested

hat ribosomes could spend more time on A / T-ending codons
n MAPKi-treated cells compared to control cells in agree-
ent with a recent report showing that the MAPK path-
ay modulates codon optimality of A / T-ending codons ( 8 ).

n addition, a higher enrichment of TC peaks in the A / T-
nding codons, like GAA (Glu), GAT (Asp), AAT (Asn) and
AA (Lys) was observed in contrast to the corresponding
 / C-ending codons (Figure 3 E and Supplementary Figure 

3 c). Finally, in agreement with a relationship between lo-
al density of ribosomes and translation-dependent mRNA
decay, we observed that the TDD index of most MAPKi-
downregulated mRNAs containing TC peaks increased in re-
sponse to MAPKi ( Supplementary Figure S3 d). Of note as
well, ∼30% of MAPKi-downregulated mRNAs contained
MAPKi-induced TC peaks and / or had their TDD increased
in response to MAPKi ( Supplementary Figure S3 e). 

To summarize, codons encoding amino acids such as Lys,
Glu, Asp and Asn were enriched in (i) MAPKi-downregulated
mRNAs, (ii) mRNAs whose TDD increased in response to
MAPKi and (iii) MAPKi-induced ribosomal peaks (Figure 3 F).
Furthermore, only the A / T-ending codons (AAA, GAA, GAT,
AAT) corresponding to these amino acids were enriched at
the expense of the corresponding G / C-ending codons, with
the exception of the AAG (Lys) codon (Figure 3 G). These
data support a model in which MAPKi treatment affects
the dynamics of ribosomes when going through A / T-ending
codons corresponding to certain amino acids (e.g. Glu and
Asp), which could trigger a selective-mRNA TDD-dependant
degradation. 

Amino acid bioavailability and codon-dependent 
selective effects 

As the decrease in the intracellular concentration of certain
amino acids can induce ribosome pauses and as the MAPK
pathway in melanoma cells can affect amino acid metabolism
(see Introduction), we next measured the intracellular concen-
tration of Lys, Glu, Asp, Asn, Gln and Arg in the absence or
presence of MAPKi. While the intracellular concentration of
Lys, Gln and Arg was not affected, the intracellular concen-
trations of Glu, Asp and Asn decreased in response to MAPKi
(Figure 4 A). Of note, similar results were obtained using an-
other BRAF-mutated melanoma cell line (the M249 cell line),
in which MAPKi led also to a decrease in Glu intracellular
concentration (Figure 4 B). This result raised the possibility
that MAPKi could have a selective effect on mRNAs whose
translation requires a relatively large amount of specific amino
acids like Glu and Asp. 

To challenge this possibility, we cultured melanoma cells in
the absence of Asp and / or Glu. However, we did not observe
any significant effect on neither Asp- and Glu-intracellular
concentration, nor on cell viability ( Supplementary Figure S4 a
and b). One possible explanation is that Glu and Asp are pro-
duced from Gln provided by the growth medium. Supporting
this possibility, Gln depletion from the growth medium de-
creased the intracellular concentration of Gln as well as Glu
and Asp (Figure 4 C). 

Since Gln deprivation somehow mimics the decrease of Glu
and Asp intracellular concentration as observed in response
to MAPKi (compared Figure 4 A and C), we analyzed the ef-
fect of Gln deprivation on gene expression and ribosome pro-
file ( Supplementary Table S1 , Supplementary Figure S4 c). The
decrease in the intracellular concentration of Gln, Glu and
Asp that was induced by Gln deprivation was associated with
an enrichment of some codons corresponding to these amino
acids in downregulated mRNAs and in ribosome peaks in-
duced by Gln depletion (Figure 4 D). However, in contrast to
what we observed in MAPKi-treated cells, the decrease in the
intracellular concentration of Glu and Asp that was induced
by Gln depletion was associated with an enrichment of the
G / C-ending codons (i.e. GAG and GAC) and not the A / T-
ending codons (i.e. GAA and GAT) (Figure 4 D). These results
suggested that the decrease in amino acid bioavailability is

https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcae019#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcae019#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcae019#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcae019#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcae019#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcae019#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcae019#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcae019#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcae019#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcae019#supplementary-data
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Figure 3. ( A ) A375 cells were cultured for 24h in the absence (CTRL) or in the presence of MAPKi (TC) before performing ribosome profiling and 
identifying ribosomal peaks in control cells compared to treated cells (CC peaks) or in treated cells compared to control cells (TC peaks). This experiment 
w as perf ormed in triplicate, and ribosome peaks w ere defined when the differences in the a v erage co v erage cMean p betw een replicates f or a giv en 
gene at a given CDS position p between MAPKi and DMSO treatment was above a threshold T , computed as [ T = MeanCov + |StdMean | × 3] where 
MeanCov and StdMean corresponds to the average and standard error, respectively, of the cMean p across all nucleotide positions p for a given gene 
(see Materials and Methods). ( B ) Amino acid relative frequency (%) in peptides encoded by ribosome peaks in control (CC peaks) or MAPKi-treated (TC 

peaks) cells. The x-axis and y-axis correspond to the relative frequency (%) of each amino acid computed from CC peaks or TC peaks, respectively 
compared to random control peaks. * in red or in blue means that the frequency of an amino acid is statistically different (one-tailed randomization test 
FDR ≤ 0.05) when comparing CC peaks or TC peaks, respectively to control peaks. ( C ) Percentage of TC peaks (blue) and CC peaks (red) that contain 
different numbers (#) of Lys, Glu, Asp, Asn, Ala or Gly residues.*Binomial proportion test FDR ≤ 0.05. ( D ) Codon relative frequency (%) in mRNA regions 
with a ribosome peak in control (CC peaks) or MAPKi-treated (TC peaks) cells. The x-axis or y-axis correspond to the relative frequency (%) of each 
codon computed from CC peaks or TC peaks, respectively compared to random control peaks. * in red or in blue means that the frequency of a codon is 
statistically different (one-tailed randomization test FDR ≤ 0.05) when comparing CC peaks or TC peaks, respectively to control peaks. Green, red, 
orange, and blue dots represent A-, T-, G-, and C-ending codons, respectively. ( E ) Frequencies of codons within and around ribosome peaks. The average 
frequencies of codons at bin 0 was computed in ribosome protected mRNA regions. The same procedure was applied for other bins (windows of 10 
codons) starting from the central coordinate of each peak. The red curve corresponds to the values computed from CC peaks and the red shadow 

reflects the standard deviation of the values. The blue curve corresponds to the values computed from TC peaks and the blue shadow reflects the 
standard deviation of the values. ( F ) Amino acid relative frequency (%) in proteins encoded by MAPKi-downregulated mRNAs, mRNAs whose TDD 

increased in response to MAPKi, and in peptides encoded by regions with ribosomal peaks induced by MAPKi (TC peaks) as described in Figures 1 B, 
2 B, and 3 B respectively. ***FDR ≤ 0.05 (beta regression analysis followed by a Tukey’s test (pairwise comparison) and ** FDR ≤ 0.05 (one tailed 
randomization test). ( G ) Codon relative frequency (%) in MAPKi-downregulated mRNAs, mRNAs whose TDD increased in response to MAPKi, and in 
mRNAs regions with ribosomal peaks induced by MAPKi (TC peaks) as described in Figures 1 D, 2 C, and 3 D respectively. ***FDR ≤ 0.05 (beta 
regression analysis followed by a Tukey’s test (pairwise comparison) and ** FDR ≤ 0.05 (one-tailed randomization test). 
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Figure 4. ( A ) Ratio of the intracellular concentration of Lys, Glu, Asp, Asn, Gln and Arg in cells exposed 24 h to MAPKi as compared to control cells. 
* P ≤ 0.05 (t wo-t ailed paired t -test, n = 4). ( B ) Ratio of the intracellular concentration of Glu in M249 cells exposed to MAPKi for 24 or 48 h as compared 
to control cells ( n = 3). ( C ) Ratio of the intracellular concentration of Lys, Glu, Asp, Asn, Gln, and Arg in cells grown for 24h in the absence of Gln 
compared to control cells. * P ≤ 0.05 (t wo-t ailed paired t -test, n = 3). ( D ) Relative frequency of G / C-ending codons (GAG, GAC and CAG) and A / T-ending 
codons (GAA, GAT and CAA) corresponding to Glu, Asp and Gln in mRNAs whose expression level was downregulated in glutamine-depleted cells (-Gln) 
compared to all other expressed mRNAs and in ribosomal peaks induced by Gln-depletion compared to random control peaks. ** corresponds to a 
Tuk e y’s test (pairwise comparison, FDR ≤ 0.01) and *corresponds to a one-tailed randomization test (FDR ≤ 0.01). ( E ) R elativ e frequency of the GAG and 
GAA codons corresponding to Glu in mRNAs whose expression level was downregulated in Gln-depleted cells (–Gln) and in mRNAs whose expression 
le v el w as do wnregulated in Gln-depleted cells transfected with an siRNA targeting EPR S1 (–Gln + siEPR S1). R elativ e frequencies w ere computed 
against all other expressed mRNAs. Beta regression analysis followed by a Tukey’s test (pairwise comparison) FDR ≤ 0.01 (**) or < 0.001 (***). ( F ) The 
log 2 fold change of the expression level of each MAPKi-downregulated mRNAs (x-axis) was plotted against the log 2 fold change of their expression level 
in siCTU2-transfected cells compared to control cells (y-axis). Black dots represent mRNAs whose expression level was significantly (DESeq2 adjusted 
P -values ≤ 0.05, n = 3) decreased by at least 50% (while still having an average normalized expression level > 10) when comparing siCTU2-transfected 
cells to control cells. ( G ) R elativ e frequency of the A / T-ending codons (AAA and GAA) corresponding to Lys and Glu in mRNAs whose expression level 
w as do wnregulated and in mRNAs whose TDD increased in siCTU2-transfected cells. *** beta regression analy sis f ollo w ed b y a Tuk e y’s test (pairwise 
comparison, FDR < 0.001). 
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ot sufficient to explain synonymous codon-selective effects
n agreement with previous reports (see Introduction). 

Since aminoacyl-tRNA synthetases contribute to codon-
elective effects, we inspected our RNA-seq datasets and we
ound that the expression level of several aminoacyl-tRNA
ynthetases varied in response to MAPKi treatment or in re-
ponse to Gln depletion. Among these, we focused on the
EPRS1 aminoacyl-tRNA synthetase, which loads Glu onto the
corresponding tRNAs, because the expression level of EPRS1
was repressed in response to MAPKi but increased in response
to Gln depletion, as validated by RT-qPCR ( Supplementary 
Figure S4 d). To test the potential role of EPRS1 on codon-
selective effects, A375 cells were cultured in the absence or
presence of Gln and in the absence or presence of EPRS1

https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcae019#supplementary-data
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( Supplementary Table S1 ). EPRS1 depletion abolished the
codon-selective effect of Gln depletion with respect to the en-
richment of the GAG codon to the advantage of the GAA
codon suggesting that EPRS1 could at least in part partici-
pate to the codon-selective effect observed after Gln depletion
(Figure 4 E). 

We also observed in our datasets that some enzymes
that can modulate codon-selective effects by biochemically
modifying tRNAs (see Introduction) were differentially ex-
pressed in MAPKi-treated cells as compared to control cells.
Among these, CTU2 caught our attention for three reasons:
(i) CTU2 expression was decreased in MAPKi-treated cells
( Supplementary Figure S4 f); (ii) an important role of CTU2
in melanoma cells has already been reported ( 18 ) and (iii)
CTU2, which modifies uracil on position 34 of some tR-
NAs, modulates the interactions between anti-codons and
some A-ending codons, in particular the AAA (Lys) and
GAA (Glu) codons ( 18 ). Since we observed an enrichment
of these codons in MAPKi-downregulated mRNAs, TDD-
induced mRNAs, and MAPKi-induced ribosomal peaks (Fig-
ure 3 G), we tested whether the CTU2 depletion could mimic
the selective MAPKi-effect. Supporting such a possibility, we
first observed that CTU2 depletion resulted in the downregu-
lation of a subset of mRNAs that were also downregulated in
response to MAPKi (Figure 4 F and Supplementary Table S1 ).
In addition, the AAA (Lys) and GAA (Glu) codons were en-
riched in mRNAs whose TDD was increased in CTU2 de-
pleted cells, as expected ( 18 ) and as observed in MAPKi
treated cells (compare Figure 4 G to Figure 3 G). 

In sum, our observations support a model in which the de-
creases in Glu and Asp bioavailability in MAPKi-treated cells
resulted in an increase in the local density of ribosomes go-
ing through mRNA regions that require these amino acids
to be translated (Figure 3 ), which could result in translation-
dependent mRNA degradation (Figure 2 ), and consequently in
the decrease of the expression levels of mRNAs encoding for
compositionally biased proteins (Figure 1 ). However, selective
effects of synonymous codons–notably A / T-ending codons
corresponding to Asp and Glu–probably depend on several
parameters, such as the expression of aminoacyl transferases
or tRNA-modifying enzymes (Figure 4 , see Discussion). 

Protein amino acid composition biases and cellular 
functions 

Since MAPKi treatment triggers TDD of a subset of mRNAs
(Figure 2 ) and since TDD is likely to be dynamic and re-
versible, we next wondered whether the MAPKi-dependent
mRNA downregulation persists after MAPKi removal, i.e.
in the so-called persister cell population. To address this
question, we performed RNA-seq on persister cells (Figure
5 A and Supplementary Table S1 ). A large number of TDD-
downregulated mRNAs that we identified in cells exposed to
MAPKi (Figure 2 ) was still significantly downregulated in per-
sister cells (Figure 5 A). In addition, the MAPKi-dependent de-
crease in Glu-, Asp- and Asn-intracellular concentration ob-
served in MAPKi-exposed cells was also observed in persis-
ter cells (compare Figures 4 A and 5 B). Furthermore, proteins
encoded by MAPKi-downregulated mRNAs that were still
downregulated in persister cells were enriched in Lys, Glu,
Asp and Asn (Figure 5 C, left panel) and these mRNAs were
enriched in the AAA (Lys), GAA (Glu), GAT (Asp) and AAT
(Asn) codons (Figure 5 C, right panel). In sum, at least some
composition biases observed in mRNAs that were downregu- 
lated in the presence of MAPKi were also observed in persister 
cells after MAPKi removal. 

We next questioned the biological functions of the proteins 
encoded by the different mRNA populations. Some terms,
like cell division, cell cycle, DNA repair and DNA damage,
were enriched among the biological functions associated with 

MAPKi-downregulated gene products (Figure 5 D). Very in- 
terestingly, we noticed that the proportion of gene products 
associated with the proliferation and DNA repair biologi- 
cal functions increased among MAPKi-downregulated gene 
products whose TDD increased in response to MAPKi and 

that were still downregulated in persister cells (Figure 5 D, E).
For example, ∼11% of MAPKi-downregulated gene prod- 
ucts were involved in cell proliferation and this proportion 

reached ∼33% in MAPKi-downregulated gene products with 

an increased TDD and that were still downregulated in persis- 
ter cells (Figure 5 D, E). Consequently, > 40% of the MAPKi- 
downregulated gene products with an increased TDD that 
were still downregulated in persister cells were involved in 

DNA metabolism (i.e. proliferation and / or DNA repair; Fig- 
ure 5 D, E). This result was validated by RT-qPCR and Western 

blot analysis since the expression level of genes involved in 

cell proliferation was higher in control cells (CC) compared 

to MAPKi-treated cells (TC) and persister cells (PC) (Figure 
5 F). Of note, the expression level of pro-proliferative genes 
increased after nine days of MAPKi-removal (RC, Figure 5 F),
a time at which persister cells gave rise to a proliferative cell 
population similar to the initial one. Of note, similar results 
were obtained using the M249 melanoma cell line, in which 

MAPKi led also to a decrease in the mRNA and protein levels 
of a subset of tested genes (Figure 5 G). 

Because of these observations, we analyzed the composi- 
tion biases of mRNAs encoding proteins involved in prolifer- 
ation and DNA repair. Proteins involved in proliferation and 

DNA repair were enriched in a subset of amino acids, includ- 
ing Lys, Glu, Asp and Asn, as compared to the human pro- 
teome (Figure 6 A, B). In addition, mRNAs encoding proteins 
involved in proliferation and DNA repair were enriched in the 
AAA (Lys), GAA (Glu), GAT (Asp) and AAT (Asn) codons 
(Figure 6 B, left panel). Worth noting, the AAA (Lys), GAA 

(Glu), GA T (Asp) and AA T (Asn) codons were more enriched 

in MAPKi-downregulated gene products involved in prolifera- 
tion and / or DNA repair when compared to the other MAPKi- 
downregulated gene products (Figure 6 C). 

Since the expression level of mRNAs encoding proteins in- 
volved in DNA repair decreased in MAPKi-treated cells and 

in persister cells, as validated by RT-qPCR and Western blot 
analysis, while γ-H2AX–a marker of DNA damage–was sig- 
nificantly increased in MAPKi-exposed cells (Figure 6 D and 

E), one hypothesis is that MAPKi-exposed cells may have a 
higher probability of accumulating DNA damage that could 

increase the probability of genetic mutations to appear in de- 
scendant cells. However, measuring the genetic mutational 
rate of MAPKi-exposed cells is challenging, as genetic muta- 
tions can only be quantified after several rounds of replica- 
tion cycles, while MAPKi represses cell proliferation. In or- 
der to circumvent this difficulty, we used two complementary 
approaches. 

First, we decided to look for nucleotide variations within 

mRNAs. Indeed, genetic mutations are notably the con- 
sequence of nucleotide mismatches during replication that 
themselves are the consequence of nucleotide chemical 

https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcae019#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcae019#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcae019#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcae019#supplementary-data
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Figure 5. ( A ) A375 cells were cultured for 72h in the absence of MAPKi (CTRL) or in the presence of MAPKi (TC). Some treated cells were next grown 
for a supplementary 48h in the absence of MAPKi (persister cells, PC). The log 2 fold change of each MAPKi-downregulated and TDD-induced mRNAs 
(x-axis) was plotted against the log2 fold change of their expression level when comparing persister cells (PC) to control cells (y-axis). Black dots 
represent mRNAs whose expression level was significantly (DESeq2 adjusted P -values ≤ 0.05, n = 3) decreased by at least 50% (while still having an 
a v erage normaliz ed e xpression le v el greater than 1 0) when comparing persister cells to control cells. ( B ) Ratio of the intracellular concentration of L ys, 
Glu, Asp, Asn, Gln and Arg in persister cells (PC) as compared to control cells (CTRL). * P < 0.05 (t wo-t ailed paired t -test, n = 3). ( C ) Relative frequency 
(%) of Lys, Glu, Asp and Asn (left panel) computed from proteins encoded by mRNAs downregulated in both MAPKi treatment and persister cells when 
compared to proteins encoded by all other expressed mRNAs. Relative Frequency (%) of the AAA, GAA, GAT and AAT codons (right panel) of mRNAs 
downregulated in both MAPKi treatment and persister cells when compared to all other expressed mRNAs. ***FDR < 0.001, **FDR ≤ 0.01, 
*FDR ≤ 0.05 (beta regression analysis followed by a Tukey’s test (pairwise comparison)). ( D ) Number and functional term analysis of genes whose (i) 
mRNAs were downregulated in response to MAPKi, (ii) mRNAs were downregulated in response to MAPKi and whose TDD was increased and (iii) 
mRNAs were downregulated in response to MAPKi and whose TDD was increased and that were downregulated in persister cells. ( E ) Percentage of 
genes that are associated with the proliferation and / or DNA repair cellular functions. The black line indicates the % obtained from the 
MAPKi-downregulated mRNA population. ( F ) RT-qPCR and western blot analysis in control cells (CC), cells treated for three days with MAPKi (TC), cells 
treated for three days with MAPKi before being cultured in drug-free medium for two days (PC) or for 9 days (RC). * P < 0.05 (t wo-t ailed paired t -test, 
n = 3). ( G ) RT-qPCR analysis of the expression level of a set of mRNAs in M249 control cells, M249 cells treated with MAPKi for 24 or 48 h. The values 
w ere normaliz ed b y G APDH and the v alues obtained in untreated control cells ( n = 3, left panel). Western blot analy sis, representativ e of three 
independent experiments (right panel). 
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Figure 6. ( A ) Heat map representing the amino acid relative frequency in proteins involved in different cellular functions as indicated when compared to 
amino acid a v erage frequency in the human proteome. ( B ) Frequency of amino acids (left panel) and codons (right panel) computed from control genes 
(CTRL) or genes in v olv ed in proliferation or in DNA repair. The black line indicates the CTRL mean value. ***FDR < 0.001 and **FDR ≤ 0.01 (beta 
regression analysis followed by a Tukey’s test (pairwise comparison). NS: not statistically significant. ( C ) Frequency of codons computed from control 
(CTRL) mRNAs, MAPKi-downregulated mRNAs encoding proteins not in v olv ed in proliferation or replication (MAPKi-downregulated mRNAs#), 
MAPKi-downregulated mRNAs encoding proteins involved in proliferation (MAPKi-downregulated mRNA_Proliferation), or MAPKi-downregulated 
mRNAs encoding proteins in v olv ed in DNA repair (MAPKi-downregulated mRNA_DNA Repair). The black line indicates the CTRL mean value. 
***FDR < 0.001, **FDR ≤ 0.01, *FDR ≤ 0.05 (beta regression analysis followed by a Tukey’s test (pairwise comparison)). NS: not statistically significant. 
( D ) RT-qPCR and western blot analysis in control cells (CC), cells treated for 3 days with MAPKi (TC), cells treated for 3 days with MAPKi before to be 
grown in drug-free medium for 2 days (PC) or for 9 days (RC). * P < 0.05 (t wo-t ailed paired t -test, n = 3). ( E ) RT-qPCR analysis of the expression levels of 
a set of mRNAs in M249 control cells or in M249 cells treated with MAPKi for 24 or 48 h (MAPKi). The values were normalized by the GAPDH values 
obtained in untreated control cells ( n = 3, left panel). Western blot analysis, representative of three independent experiments (right panel). 
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odifications (i.e. DNA damage such as nucleotide oxida-
ion). In this setting, nucleotide chemical modifications can
lso lead to nucleotide mismatches during transcription, giv-
ng rise to the so-called transcriptional mutations ( 62–68 ).
n other words, unrepaired DNA damage–such as nucleotide
hemical modifications–can lead to transcriptional mutations
n neo-synthetized mRNAs. By comparing the transcriptome
f MAPKi-exposed and persister cells to control cells at
he nucleotide level, we observed that the relative frequency
f transcriptional mutations affecting each of the four nu-
leotides increased both in MAPKi-treated cells (TC) and in
ersister cells (PC) (Figure 7 A, upper panel). For example,
here was between 5% to 20% more transcriptional muta-
ions changing a G nucleotide into A, C or T in MAPKi-treated
ells (TC) or persister cells (PC) when compared to control
ells (Figure 7 A, lower panel). 

The second approach we used was to generate a cellular
lone expressing a reporter gene that contains a TGA stop
odon preventing the synthesis of the mCherry protein, that
an only be expressed if nucleotide biochemical modifica-
ions – induced for example by mutagenic agents, such as
NU – result in nucleotide mismatches that change the TGA
top codon into the TGG codon coding for tryptophan ( 61 ).
s expected, the number of mCherry-positive cells was in-
reased after ENU treatment regardless of the filters used in
ytometry to count positive cells (Figure 7 B, upper panel). Im-
ortantly, the ENU effect was increased when cells were si-
ultaneously exposed to MAPKi (Figure 7 B, upper panel) or
hen cells were first exposed to MAPKi before to be exposed

o the ENU (Figure 7 B, lower panel). Collectively, our results
oint to a link between the downregulation of DNA repair
enes in MAPKi-exposed cells and a higher rate of nucleotide
ismatches. 
In line with the MAPKi-dependent increase of γH2AX pro-

ein level (Figure 6 D), we observed a MAPKi-dependent in-
rease in the number of cells containing at least 10 γH2AX
oci, which also coincided with a decrease in the number of
ells containing at least 10 foci of RAD51 or RAD18, two
roteins involved in homologous recombination (Figure 7 C
nd D) ( 69–71 ). This suggested that MAPKi decreased the
xpression level of proteins involved in DNA repair (Fig-
re 6 ), which in turn impaired homologous recombination-
ependent DNA repair. In agreement with this possibility,
APKi decreased the number of cells that survived in re-

ponse to the PARP-inhibitor olaparib, a common assay used
o study homologous recombination defects ( 72 ) (Figure 7 E).
ollectively, our results point to a link between the metabolic-
ependent downregulation of DNA repair genes in MAPKi-
xposed cells and MAPKi-dependent defects in homologous
ecombination-dependent DNA repair. 

iscussion 

he compositional biases of MAPKi-downregulated gene
roducts that we observed (Figure 1 ) could be explained at
east in two ways. First, from a gene centric point of view,
he MAPK pathway could have evolved to repress the tran-
cription of genes that are involved in DNA metabolism
uch as DNA replication. As gene products involved in DNA
etabolism bear compositional biases (Figure 6 A, B; see be-

ow), then the MAPKi-downregulated gene products would
ear these function-related compositional biases. The second
ossible explanation, which we term a metabolic centric point
f view, is that the MAPKi-dependent decrease of the bioavail-
ability of some amino acids (e.g. Asp and Glu) results in the
translation-dependent expression level decrease of Asp- and
Glu-enriched gene products. Since proteins involved in DNA
metabolism are enriched in Asp and Glu, then MAPKi treat-
ment induces the expression level decrease of gene products in-
volved in DNA metabolism in a metabolism-depending man-
ner. As discussed below, our results and those from previous
publications support this metabolic centric point of view with-
out excluding the well-established effects of MAPKi on the
transcriptional activity of genes involved in cell proliferation.

The BRAF 

V600E mutation-dependent hyper-activation of
the MAPK pathway in melanoma cells triggers not only
cell proliferation but also the cellular addiction to some
non-essential amino acids, such as Gln. Indeed, in mutated
melanoma cells, the carbon skeleton of Gln fuels both non-
oxidative energetic metabolism and amino acid and nu-
cleotide biosynthetic pathways on which growing cell de-
pends ( 35 , 45 , 51 , 73–76 ). Accordingly, growth medium deple-
tion of Gln induced Glu- and Asp-intracellular concentra-
tion decrease, while Glu- and / or Asp-depletion did not result
in their intracellular concentration decrease (Figure 4 C and
Supplementary Figure S4 b), probably because Glu and Asp
can be generated from Gln from the growth medium ( 45 ,76 ).
Importantly, the use of Gln, Glu and Asp in the oxidative
phosphorylation (OXPHOS) pathway, which produces energy
from the complete degradation of their carbon skeleton, is
reactivated by MAPKi ( 46–51 ,73 ). This may explain the ob-
served Glu- and Asp-intracellular concentration decrease in
MAPKi-exposed cells (Figures 4 A and 5 B). This together with
the observed enrichment of these amino acids in (i) MAPKi-
downregulated mRNAs (Figure 1 B), (ii) MAPKi-induced TDD
mRNAs (Figure 2 B) and (iii) MAPKi-induced ribosomal peaks
(Figure 3 B) support a model where MAPKi-dependent effects
on the cellular metabolism impacts the translation-dependent
mRNA expression level through the bioavailability of amino
acids. 

The precise codon composition biases of MAPKi-
downregulated gene products likely depend on several
parameters (Figure 4 , and see Introduction) that could be
regulated by different mechanisms (including the MAPK-
dependent phosphorylation cascade). Notably, the observed
amino acid composition biases of MAPKi-downregulated
gene products are particularly interesting, as they may ex-
plain how cells ‘coordinate’ their metabolic activity and their
phenotype. Indeed, we observed that gene products involved
in DNA metabolism (e.g. DNA replication) are enriched in
charged amino acids such as Glu and Asp, consistent with
the fact that these proteins are enriched in hydrophilic and
charged amino acids that play a role their DNA binding- and
enzymatic-activities ( 77–79 ) ( 80 ). Since charged-amino acids
like Glu and Asp are at the crossroad between energetic and
gene product synthesis pathways, cells that survive MAPKi
treatment could correspond to cells that consume these amino
acids through the OXPHOS pathway, thereby decreasing the
biogenesis of Glu- and Asp-rich proteins involved in cell
proliferation and in turn reducing the energetic cellular needs.
Accordingly, persister cells (i.e. non-genetically modified cells
that survive anti-MAPK therapy) (i) have a lower intracellular
concentration of Glu and Asp as compared to the initial cell
population (Figure 5 B), in agreement with the OXPHOS
pathway re-activation reported in these cells and (ii) express
a low level of gene products involved in DNA metabolism
(Figure 5 D–F), in agreement with their reported slow growing
rate ( 46–48 ,81–86 ). 

https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcae019#supplementary-data
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Figure 7. ( A ) The schematic representation on the left describes how DNA damages (grey asterisk, e.g. DNA chemical modifications) can lead, in the 
absence of DNA repair, to transcriptional mutations (grey triangle) owing to nucleotide mispairing. Transcriptional mutations were quantified by 
comparing at the nucleotide le v el the transcriptome of control cells to the transcriptome of MAPKi-treated cells (TC) or persister cells (PC). The top panel 
represents the relative % of A, C, G and T nucleotides that are more frequently mutated to another nucleotide in MAPKi-treated cells (TC) or persister 
cells (PCs) compared to control cells. The bottom panel represents the relative % of G nucleotides that are more frequently mutated to another 
nucleotide in MAPKi-treated cells (TC) or in persister cells (PC) when compared to control cells. *** Logistic regression analysis FDR < 0.001 ( n = 3). ( B ) 
The schematic representation on the left describes how DNA damages (grey asterisk, e.g. DNA chemical modifications induced by ENU) can lead, in the 
absence of DNA repair, to nucleotide mispairing that transforms a stop codon (preventing mCherry synthesis) into a tryptophan codon (allowing mCherry 
synthesis). The top panel represents the quantification of the number of cells expressing mCherry either under control conditions (CTRL), after exposure 
to ENU (+ENU), or after exposure to ENU in the presence of MAPKi (+ENU + MAPKi) ( n = 4). The bottom panel represents the quantification of the 
number of cells expressing mCherry either under control conditions (CTRL), after exposure to ENU (+ENU), or after exposure to MAPKi for 72h before 
being exposed to ENU (+MAPKi + ENU) ( n = 5). Low, high, and very high correspond to different filters used in cytometric analysis to detect positive 
cells (i.e. cells expressing mCherry). * P < 0.05 and ** P < 0.01 (one-tailed paired t -test). ( C ) Top: Representative immunofluorescence images of A375 
control cells (CC) and cells treated for 48 h with MAPKi (TC) and stained with the indicated antibodies. Nuclei are stained with DAPI (blue), anti- γH2AX 
(red), anti-RAD51 (magenta) and anti-RAD18 (y ello w). Scale bar: 10 μm. Bottom: Quantification of nuclear γH2AX, RAD51 and RAD18 foci in control and 
MAPKi treated cells ( n = 3). Results represent means ± SEM (* P < 0.05; paired t -test). ( D ) Quantification of nuclear RAD51 and RAD18 foci in control 
and MAPKi treated M249 cells (n = 3). Results represent means ± SEM (* P < 0.05; paired t -test). ( E ) Sensitivity of A375 control (CC) or MAPKi-treated 
cells (TC) to olaparib. A375 cells were treated with DMSO or MAPKi together with the indicated concentration of olaparib for 48 h ( n = 3). Results 
represent means ± SEM (* P < 0.05; tw o-w a y ANO V A). ( F ) By switching the cell metabolism and decreasing the bioa v ailabilit y of cert ain amino acids 
such as glutamate and aspartate, MAPKi could trigger ribosome pause sites on some mRNA regions enriched for codons corresponding to glutamate 
and aspartate, which in turn could trigger the selective degradation of a subset of mRNAs according to their compositional biases in certain codons and 
corresponding amino acids. Since the biological functions of proteins depend on their composition in certain amino acids, the selective degradation of 
mRNAs according to their compositional bias would affect a selective set of functions such as proliferation and DNA repair. Since, the downregulation of 
compositionally-biased gene products persists in cells after MAPKi withdrawal, the selective degradation of compositionally-biased mRNAs could 
simultaneously contribute to the appearance of slow -prolif erative cells that would have a higher probability to generate mutated daughter cells. 
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While favoring survival versus proliferation, the MAPKi-
ependent decrease in the intracellular concentration of Glu
nd Asp could have a secondary effect because of the ex-
ression level decrease of gene products involved in DNA re-
air (Figures 5 D, E and 6 D), that share the same composition
iases with genes involved in cell proliferation (Figure 6 A–
). The expression level decrease of gene products involved

n DNA repair may seem to be of no consequence in non-
ividing cells since genetic mutations can only occur during
eplication. However, the fact that unrepaired DNA damage
an induce base-pairing mismatches during transcription –
eading to transcriptional mutations ( 62–68 ) – could explain
he observed larger number of nucleotides variations in the
ranscriptome of cells exposed to MAPKi compared to control
ells (Figure 7 A). Interestingly, it has been proposed that tran-
criptional mutations could be a ‘pre-selection step’ toward
he emergence of genetically-modified and –adapted cells ( 62–
8 ). Indeed, if unrepaired DNA damage leads to the synthesis
f mutated gene products that contribute to the survival of
 cell, this cell may have a higher probability of generating
enetically-modified and -adapted descendant cells because
he same unrepaired DNA damage could trigger a genetic mu-
ation. Although this model is speculative with respect to the
ata we provided, persister cells have been proposed to be
 reservoir of genetically modified and therapy-resistant cells
 82 ). 

In conclusion, we propose that MAPKi-induced metabolic
hanges result in the bioavailability decrease of amino acids
uch as Glu and Asp, which contributes to the expression level
ecrease of proteins enriched in these amino acids, includ-
ng proteins involved in proliferation and DNA repair (Figure
 F). The coupling between metabolism and gene expression
ould, as a side effect, results in the accumulation of DNA
amage – owing to the expression level decrease of DNA re-
air enzymes – leading first in transcriptional mutations and
hen in genetic mutations, increasing therefore the probabil-
ty of genetically-mutated and -adapted clones to emerge in
esponse to MAPKi. 
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