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A Study in Specification and Hardware Runtime
Verification of Critical Embedded Software

Dimitry Solet , Jean-Luc Béchennec , Mikaël Briday , Sébastien Faucou , Sébastien Pillement

Abstract—We evaluate HARVEST (Hardware Accelerated Runtime Verification for Embedded SofTware), a runtime error detection
mechanism for embedded software running on standard SoPC architectures, i.e., one (or more) processor(s) and an FPGA on a single
chip. The program under monitoring runs on the processor(s), while a trace analysis module running on the FPGA detects errors in its
execution. The hardware implementation of trace analysis minimizes the performance impact and achieves a very low error reporting
latency (a few processor cycles). In this article, we evaluate the suitability of using HARVEST to detect errors resulting from transient
physical faults.
We explain how HARVEST is used to monitor a complex software component (Trampoline RTOS) on a commercially available
hardware platform (Microchip SmartFusion2). We measure the overhead of the resulting instrumentation on system resources. We
then evaluate its performance in detecting silent data corruptions, based on a systematic simulation of bit flips at the instruction set
architecture level. We report a detection rate of up to 90.2 % for a fairly low system resource overhead, suggesting an interesting
trade-off for designers of highly constrained critical systems.

✦

1 Introduction

W ith the evolution of technologies, and in particular in-
creased transistor density, the sensitivity of integrated

circuits to physical phenomena such as cosmic rays increase.
Increasing the susceptibility of embedded systems to single-
event effect (SEE) leads to an increase of faults such as bit flip
at runtime. This motivates the use of runtime detection and
mitigation techniques.

Existing error detection techniques rely on some form of
redundancy at the hardware and/or at the software levels.
They try to find a trade-off between efficiency (ability to
detect errors), accuracy (false positive rate), impact on design
cost, impact on production cost, and impact on system per-
formance. In this context, System-on-a-Programmable-Chip
(SoPC), i.e., architectures that integrate on the same chip
one (or more) processor(s) and FPGA fabric, offer interesting
opportunities in hardware accelerated runtime monitoring.

In this work we propose a runtime error detection mecha-
nism that exploits the possibilities offered by such platforms.
The proposed mechanism detects errors that appear during
the execution of the embedded software running on the proces-
sor(s) of the SoPC. To minimize the impact on performance,
the trace analysis is performed on the FPGA of the SoPC. To
do so, dedicated monitors are automatically generated from a
formal specification capturing the expected properties of the
embedded software. Thanks to the hardware acceleration of
the analysis, the achieved error signalling latency amounts to
a few processor cycles.
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For this study, the software under verification is Tram-
poline [1] Real Time Operating System (RTOS), an open
source implementation of the AUTOSAR Classic Platform
Operating System standard. It is a relatively complex software
component that is typically found in real-time embedded
control systems. The kernel is the most critical part of the
system, it runs in supervisor mode, with access to all RAM -
an error can affect all application tasks.

We specified its behavior using a set of properties ex-
pressed in temporal logic. These properties are used to gen-
erate the monitors needed for the error detection mecha-
nism. We slightly instrumented the code of Trampoline and
adapted the link scripts to make it easier for the detection
mechanism to observe the execution. We implemented the
system on the SmartFusion2 off-the-shelf SoPC1. We then
exposed the resulting system to a systematic fault injection
campaign simulating single event upsets that result in bit
inversions at ISA register level2. The results obtained indicate
that the detection mechanism offers an interesting balance
between efficiency (between 75.2 % and up to 90.2 % of silent
data corruptions are detected) and performance impact (in a
configuration offering a detection rate of 84.8 %, the maximum
impact measured on RTOS latency is 38.1 %). The result also
show that the FPGA resources required by the RTOS applica-
tion fit within the scale provided by commercial SoPCs. This
allows the remaining hardware resources to be used either
for runtime verification of the application part or for a more
traditional use, e.g. accelerators.

: In Section 2, we provide context and present related
work. In Section 3, we describe the design and architecture of
HARVEST. In Section 4, we explain how we used HARVEST

1. Microchip Smartfusion2:
https://www.microchip.com/en-us/products/fpgas-and-plds/
system-on-chip-fpgas/smartfusion-2-fpgas

2. NVM and SRAM of the SmartFusion2 already support Single
bit Error Correction and Dual bit Error Detection (SECDED), this is
why fault injection is limited to ISA registers.
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to monitor Trampoline RTOS. In Section 5, we describe the
experimental protocol. In Section 6, we summarize the results
of the fault injection campaign and discuss our main findings.
In Section 7, we draw conclusions from this work and propose
some possible extensions.

2 Context and related works
2.1 Runtime Monitoring
Runtime monitoring aims to check online the correct behavior
of a system. A runtime monitoring framework is usually
composed of four stages:
● An observation stage captures in real-time a set of execu-

tion events.
● A state identification stage processes the events to com-

pute the evolution of the state of the system.
● A verification stage checks that the trace formed by the

sequence of states conforms to the specification.
● A notification stage raises a signal when a violation of the

specification is detected.
The observation stage is always interfaced with the system

during its execution. For the other stages it depends on the
purpose of the monitoring. If the purpose is to debug the
system or to study its performance these stages can appear
offline (post-mortem). But if the purpose is to detect runtime
errors, then all stages must be interfaced with the system at
runtime. In this work we focus on this latter case.

A runtime monitoring framework can be implemented as
software, hardware, or a combination of both. In the software
implementation the code of the framework is typically weaved
with the code of the program under monitoring. This offers
a straightforward observation of program-level entities (e.g.,
threads, or variables) and allows to express complex proper-
ties easily. Unfortunately, the resource consumption of such
implementation scales linearly with the number of properties,
both in memory and time like with Enforcer [2] or Copilot
[3]. This can be a serious problem for systems with a limited
amount of resources and especially for real-time embedded
systems that have stringent memory and timing constraints.
A hardware implementation of the framework capable to
checking multiple monitors in parallel is a possible solution
to this problem.

Hardware implementation can be used to monitor both
hardware components [4], [5] or programs [6], [7]. In this work
we focus on the monitoring of software component running on
top of a possibly faulty hardware. In this case, it is usually
assumed that the program runs on a soft core processor [6],
[7] with probes added to the core design to observe low level
signals (i.e., memory transactions). The main difficulty is then
to rebuild the system state from these signals. One possibility
is to use debugging information as explored in [7] to relate the
memory locations to the program symbols. This is important
to allow the expression of properties at the appropriate level
of abstraction, i.e., most of the time at the source code level.

Other authors have focused on hardware implementations
that do not require modification of the computation core [8],
[9]. The target architecture in that case is a SoPC that inte-
grates a processing core and an FPGA fabric. The processing
core hosts the program under verification and the FPGA
hosts the monitoring framework. The question is now how to
observe the execution of the program and how to transfer this

observation to the monitoring framework. In the literature two
directions have been explored.

One is to use the built-in debugging/tracking module such
as the ARM CoreSight technology that allows to send low-
level execution events to a dedicated memory or over a bus.
This is the case of ARMHeX [8], a dynamic information flow
tracking (DIFT) framework. The use of ARMHeX requires
to slightly instrument the source code of the program under
monitoring and to set restrictions on the compiler back-end to
avoid constructs that impair observability. As in the case of in-
strumented softcore, the use of low-level events makes it more
difficult to express properties at the correct abstraction level.
Moreover, built-in debugging/tracking modules can usually
observe many execution events but not all of them. Monitoring
frameworks built using this approach need to overcome these
limitations.

The second direction is to integrate the monitoring frame-
work as a classic peripheral device [9]. In this case the program
has to explicitly send data or events over a bus to request a
verification. This second approach is generally more intrusive
and has a higher overhead on the execution time but it is
also more flexible as it is not restricted to observe low-level
execution events and is less dependent to a specific technology.
This is the approach used in HARVEST.

2.2 Runtime Verification
Runtime verification (RV) is the branch of formal methods
dealing with the synthesis of monitors from formal speci-
fications [10]. Looking at the architecture of a monitoring
system, it quickly becomes apparent that monitors are the
most functionally complex part. The ability to use compo-
nents that have been synthesized using a tool chain based on
formal methods is therefore a way to significantly improve the
reliability of the system.

RV techiques use various formalisms to specify the prop-
erties of the system under verification: (extended) regular
expressions [11], temporal logics (LTL [12], ptLTL [13]), real-
time logics (TLTL [12], Mission Time-LTL [14]), and specifica-
tion languages such as PSL [15] which brings together several
of the previous formalisms. For each of these formalisms,
one or more synthesis algorithms have been proposed that
automatically construct a monitor for the specifications. This
monitor usually takes the form of a state machine or a Boolean
circuit. For HARVEST, we adopt ptLTL as the specification
language and Boolean circuits as the target of synthesis.

2.3 Robust RTOS
In a real-time system, applications run on top of an RTOS,
which arbitrates the allocation of system resources to tasks so
that all deadlines are met. Failure of the RTOS can result in
a deadline violation, which in turn can lead to a system-level
failure. The central role of the RTOS justifies the interest in
monitoring and enforcing its runtime behavior.

In [16] Rodriguez et al. introduce the idea of robust RTOS.
In their work, the key concept is to wrap the RTOS kernel with
a runtime verification layer that checks properties whenever a
system call returns. These wrappers are automatically gener-
ated from temporal logic formulas that specify the expected
behavior of the kernel as observed from the application level.
Since the wrappers are in user space, errors are only detected
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when they propagate through the kernel/application inter-
face, which may already be too late to trigger a fine-grained
recovery mechanism. In general, detecting and isolating errors
as early as possible facilitates the recovery process. We pick
up the idea of automatically generating monitors from a
formal specification of RTOS behavior. The use of an open
source RTOS allows us to integrate the runtime verification
mechanism in the kernel. This enables us to express properties
at a finer grain, and to minimize the error signaling latency.

In [17] Hoffman et al. investigate the design of a fail-safe
RTOS called dOSEK, a dependability-oriented static RTOS.
Static analysis of the application is used to specialize the code
of the kernel in order to minimize the amount of memory and
registers exposed to transient hardware faults. Then, specific
coding practices are used together with a fine-grained arith-
metic encoding of kernel data structures to minimize the rate
of residual errors. The results show a sharp reduction of silent
data corruptions down to four orders of magnitude, at the
cost of a significant overhead on key performance indicators
such as the kernel latency (up to ×6.3). Our approach has
less impact on the RTOS code. Moreover, we offload the most
expensive part of the computation to a hardware accelerator.
As a result, the impact on the kernel latency is much lower.
On the other hand, the detection rate is lower. The Hoffman et
al. and HARVEST approaches are incomparable, each making
very different tradeoffs between detection rate and overhead.

3 HARVEST
3.1 Overview
HARVEST [9] is a hardware-accelerated runtime monitor-
ing framework for embedded software. It has been initially
designed to overcome the scalability issues of a software
monitoring framework [2] that was designed to verify high-
level properties, for instance complex communication patterns
between threads. This software framework has to verify the
monitors sequentially, which results in a linear increase of
the traversal of the verification stage as a function of the
number of monitors. The promise of the hardware approach
is that all monitors can be checked in parallel, keeping the
verification step traversal time low and error-reporting latency
independent of the number of monitors.

Since offloading verification to an accelerator solves scal-
ability problems “by design”, the question we investigate
here is whether this also allows us to handle finer-grained
properties expressed at the source code level, or even at the
machine code level. Working at this level would allow, for
example, extending the fault model covered by the framework
to hardware faults. One of the goals of this work is therefore
to precisely define the type of property for which HARVEST
provides a relevant monitoring mechanism.

3.2 Specification of the properties to be monitored
The first step in using HARVEST is to identify and specify the
expected behavior of the program under monitoring as a set of
ptLTL formulas. It is possible to monitor both coarse-grained
and fine-grained properties. An example of a coarse-grained
property is: “Any data produced by thread A is consumed
by thread B”. An example of a fine-grained property is: “In
function f, variable X must always have a value in the interval
[0, 10]”.

3.3 Architecture

Program
under

verification
(instrumented

for
observation)

Processing core FPGA fabric

Bus
data registers

verdict registers

Fabric Memory Fabric Logic

State
identification

VerificationVerificationVerification

Error
Notification

state

error
IRQ

Fig. 1. Architecture of HARVEST. Monitors are located in the FPGA
and consist of 3 steps in a row: state identification, verification and error
notification.

Figure 1 is an overview of the architecture of HARVEST.
The program under monitoring and the observation stage run
on the processor unit. The following stages of the monitoring
framework run on the FPGA fabric. The memory area of the
FPGA acts as an interface between the observation stage and
the following stages. Arrows between these stages indicate the
data flow.

The following paragraphs provide details on each stage,
using the following (fined-grained) property as a running
example:

variable foo must be set to 1 during the function func

3.4 Observation stage
Once the properties are specified, it becomes possible to de-
duce the information that the monitoring framework needs to
observe: this is the information needed to evaluate the atomic
propositions used in the ptLTL formulas corresponding to the
properties. The program under monitoring must be instru-
mented to extract this information and send it to the following
stages. As illustrated in figure 1, this is done by writing
data to memory locations in the FPGA. Two complementary
approaches are used to extract the information, one for control
flow monitoring and the other for data flow monitoring.

A control flow monitoring event (e.g., function call or func-
tion return) requires the insertion of a write instruction into
the program. This instruction sets a certain bit of a certain
data register. This bit is statically assigned to this particular
control flow event. This same bit is reset by hardware when
the event is acknowledged.

For data flow monitoring, we currently rely on mapping
the variable of interest directly to the FPGA memory. This
solution has the advantage that no additional instructions are
introduced into the program, only the variable declaration and
the link script have to be adapted. However, it is reserved for
a subset of variables because the number of data registers is
limited. Also, to keep track of all updates, every write must
be done in memory. This behavior is obtained by using the C
language keyword volatile.

The overhead of instrumentation depends on the number
of observation points. For control flow, the insertion of new
instructions increases both code size and execution time. For
data flow, only the execution time is increased. The increase in
execution time is mainly due to the fact that memory-mapped
IOs are usually slightly slower than regular memory accesses,
especially on systems with a data cache. Also, the use of the



4

volatile keyword prohibits compile-time optimizations that
promote a variable to a CPU register. Both the timing and
memory overheads of full instrumentation of the Trampoline
RTOS are evaluated in Section 4.4.

In our running example, we need to observe variable foo,
and the control flow events linked to function func. At the
time of declaration, variable foo variable must be mapped in a
memory section of the FPGA. Assuming that the .fabricMem
is declared in the link script, the declaration with GCC C
compiler syntax would be:

volatile int foo
__attribute__ (( section (". fabricMem "))) = 0;

To observe the entry of control flow into the function
func, we simply place a write operation at the beginning of
the function. Conversely, to observe the exit of control flow
from the function, we place a write operation at the end. The
targets of these writes are different bits of a volatile variable,
also mapped in the .fabricMem section.

3.5 State identification stage
State evaluation consists of processing the information avail-
able in the data registers to extract a symbolic state that can
be more easily used in the next stages. Most of the time it
consists of a combinatorial expression that outputs a Boolean
information.

For now, this step must be written by hand using a hard-
ware description language (VHDL in our case). Nevertheless,
HARVEST provides a library of circuits corresponding to the
basic comparators and arithmetic operations. In practice, on
a real system, this step remains very simple.

For our running example, three Booleans are sent to the
next stage: values of bits funcin and funcout, and the output
of the comparison foo = 1, where funcin, funcout and foo are
the data written in the observation stage.

3.6 Verification stage
The verification stage implements the monitors which are au-
tomatically synthesized from the ptLTL formulas. Currently,
HARVEST implements the synthesis algorithm of Havelund
and Rosu [13]. Each monitor evaluates one ptLTL property,
and all monitors are evaluated in parallel. Each monitor takes
as input a set of Boolean values associated to the atomic
proposition present in the formula. All these Boolean values
form the symbolic state of the system as computed by the
previous stage.

An elementary ptLTL operator is a sequential circuit.
Beside the Boolean values associated to atomic propositions,
this circuit also takes as input its output of the previous cycle.
It is typically composed of a few logic gates and a D flip-
flop to store the output. These elementary operators are then
connected according to the syntax tree of the formula. Each
output of a formula is associated with a bit in one of the
verdict registers of the FPGA. If a formula is not valid the
verdict register is no longer zero and an error signal is sent to
the notification circuit (see error in Figure 1). The VHDL
code for this stage is entirely generated from the system
specification, thanks to a Python script.

When the latency of the critical path through the identi-
fication and verification stages is greater than the period of

the system clock, HARVEST allows to pipeline the execution
of these stages. This feature has not been required so far,
including in the monitoring of a real system presented in the
next sections.

In our running example, the property is expressed by
formula 1.

⊡(↑ (foo = 1)→ [funcin, funcout)s) (1)

The ⊡ character means that the property is always true,
i.e. throughout the execution trace. The ↑ character indicates
that the Boolean expression is true, but was false in the
previous cycle. In other words, the expression becomes true.
The expression [a, b)s becomes true when we observe an
occurrence of a and remains true until we have an occurrence
of b. So, the corresponding ptLTL formula is: Whenever the
variable foo takes the value 1, we must have seen an occur-
rence of funcin but no corresponding occurrence of funcout.

3.7 Error notification stage

The error notifier is the simplest component. It simply gener-
ates an interrupt when the error signal becomes true (i.e.,
the property becomes false). This notifier depends on the
underlying architecture, this is why it is separated from the
verification stage.

When the CPU handles the interrupt (at the software
level), it can read the verdict registers (memory area in the
FPGA) to determine which formula(s) failed and trigger an
appropriate recovery action.

3.8 Implementation on SmartFusion2 SoPC

The HARVEST architecture is implemented on top of the
SmartFusion2 SoPC that integrates an ARM Cortex M3
micro-controller and an FPGA with 60K logic elements (each
4-LUT with DFF). An AMBA bus interconnects the mi-
crocontroller and the FPGA. This bus supports the AHB
mode for high performance operations (bursts, pipelines) and
the APB bus for common operations (reading and writing
registers). The implementation uses APB as it is sufficient
regarding the requirements.

In the following experiments, the detection latency is
limited to 5 clock cycles: 2 cycles are required for the write
transaction on the APB bus, 1 cycle for the traversal of
the state identification stage, 1 cycle for the traversal of the
verification stage, and 1 cycle for interrupt generation. In
practice, the microcontroller is only stalled when writing to
the registers. Thus, by default, the IRQ signaling an error is
generated 3 cycles after the commit of the instruction used
to send the data to the FPGA. For some systems, it may
be necessary to ensure that no instruction is executed before
the verification verdict is reported. A first simple software-
only solution is to add NOP instructions after each write
instruction to the FPGA data registers. A second solution
uses the APB protocol acknowledgement signal to block the
microcontroller until the end of the verification cycle. This
is a more efficient way to implement the solution, but it is
hardware dependent.
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4 Runtime verification of Trampoline RTOS
We used Trampoline RTOS, a free and open source3 RTOS
compliant with the AUTOSAR OS 4.2 standard [18]. Tram-
poline RTOS is dedicated to deeply embedded systems in
the automotive industry where dependability is a key factor.
This type of RTOS is called static because the kernel does
not provide services to dynamically create system objects:
each object must be declared at compile time. This approach
allows to tailor the kernel according to the static requirements
of the system by eliminating useless services and enabling
static allocation of kernel data structures. A static approach
inherently increases dependability [17] with the reduction of
vulnerable run-time states which limits the exposition to SEU.

4.1 Basic behavior of a system service
The scheduling part of the Trampoline kernel uses essentially
three data structures. The first is the set of task descriptors.
The second is the list of ready tasks. The third is named
tpl kern. It gathers information about the running task and
the elected task, i.e. the task chosen by the scheduler to
replace the running task. This information is composed of the
identifier of the task, a pointer to its static descriptor and
a pointer to its dynamic descriptor. tpl kern also contains 3
flags: need schedule (a rescheduling is required), need switch
(a context switch is required) and need save (the context of
the preempted task shall be saved).

In Trampoline, the execution of a service is basically
divided into four main phases. The first phase is service
specific. It updates the kernel data structures (adding a task
in the ready list, changing the state of the running task, . . . ).
The second phase depends on the value of the need schedule
flag. It calls the scheduler which selects the highest priority
task and modifies the associated data structures (elected task,
need save and need switch flags). The third phase depends
on the value of the need save flag. It saves the context of the
current task. The fourth and final phase depends on the value
of the need switch flag. It performs the context switch.

4.2 Specification of the expected behavior
The first step in the monitoring of the kernel of a RTOS is
to capture its expected behavior as a set of ptLTL formulas.
Of course, it is neither possible nor desirable to capture the
whole behavior of the kernel. The main goal is to increase the
robustness of the kernel against SEU and, in particular, to
detect errors that could lead to incorrect scheduling decisions.
The kernel is monitored at two complementary levels: 1) The
state of tpl kern; 2) The phases of the execution of a service;
3) The control flow inside the kernel.

4.2.1 Monitoring the state of tpl kern
Let us define the state S of the tpl kern data structure:
S{need schedule,need save,need switch} (concatenation of the
three flags). Thus, S001 is the state in which only need switch
is true. The analysis of the source code of the RTOS allows to
model the evolution of the states of the kernel as illustrated in
Fig. 2.

3. https://github.com/TrampolineRTOS/trampoline,
instrumented version for Harvest is available in branch
cortex-instrumented.

S000

S100S101 S111S001 S011

S010 S110

Fig. 2. Possible evolution of the flags of the kernel states. The state iden-
tification is the concatenation of the 3 flags need schedule, need save
and need switch.

Some properties can be extracted from the evolution of the
kernel state:
Safety property: Checking that the kernel is not in an

unreachable state. As shown in Fig. 2, states S010 and
S110 are unreachable. This is explained by the fact that
in the absence of a context switch, the context does not
need to be saved.

Reachability property: Check the consistency of the state
sequence taken by the kernel. This means that when
the kernel enters a state it was previously in an allowed
predecessor state. For instance, if the current state is
S001, the previous state was either S000 or S101.

Invariant property: When the kernel enters in state S100, it
means that the scheduler should be running. The pointers
to both the running process and the elected process have
not yet been updated (they are identical) and should
point to the same object.

4.2.2 Monitoring the execution phases of a service
When the running task emits a system call, the system
switches to kernel mode and executes the System Call Handler
(SCH). As explained in section 4.1, the SCH has to (1) call
the required service, (2) call the scheduler if needed, (3) save
the context of the running process if needed, (4) perform the
context switch if needed.

To monitor the execution of the SCH execution, we define
the following atomic propositions:
● run elec: pointers to the running task and the elected

task have the same value.
● call handler: SCH is being executed.
● service OS: service is running.
● context switch: context switch is required.
● save context: context save is required.
The requirements to be checked are:
● run elec is always true except during the execution of

the SCH. Its value is therefore tested at the beginning
and at the exit of the SCH:
⊡(↑ call handler → run elec)
⊡(↓ call handler → run elec)

● At the start of the service call, the kernel must be in S000.
At the end, need schedule shall be equal to 0. Therefore
the kernel cannot be in S101 or S111:
⊡(↑ service OS → S000)
⊡(↓ service OS → (¬(S101 ∨ S111)))

● Context switch is performed if need switch is set. There-
fore the kernel should be either in S001 or S011. At the
end of the context switch, run elec must be true:

https://github.com/TrampolineRTOS/trampoline
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⊡(↑ context switch→ (S001 ∨ S011)
⊡(↓ context switch→ run elec)

● The context of the previous running task is saved
if need save is set and context switch is true:
⊡(↑ save context→ (S111 ∧ context switch)

An atomic proposition is associated with each service and
is set when it is executed. It allows to define service-specific
properties. For example, the ActivateTask service allows to
activate a new instance of a task (add a job to the ready
list). When it is run, only 4 states are reachable: S000, S100,
S111, and S011. The initial state is S000 as set by the SCH.
If the activation is illegal, the service stops and terminates at
S000. Otherwise need schedule is set (S100) and a schedule is
executed. If the running task still has the highest priority,
no context switch is required and the service will stop at
S100. Otherwise, the context of the running task should be
saved, state S111. Since the need schedule bit is reset after
the elected process is updated, the final state is S011. This
analysis is then translated into two ptLTL properties.

The same analysis is performed for all services that can
modify the state of the kernel.

4.2.3 Monitoring of kernel control flow
A set of properties is used to check that the control flow within
the kernel is valid with respect to the call graph. Each internal
function is associated with an atomic proposition, which is
set at function entry and reset at function exit. For each
function that is not a top-level function in the call graph,
a property states that whenever it is running, then one of
its parents in the call graph is also running. This approach
assumes that there are no recursive calls, which is a relatively
safe assumption in the context of critical embedded systems.

4.3 Instrumentation of kernel code
The principles described in Section 3.4 form the basis of the
instrumentation of Trampoline RTOS. Kernel data structures
are mapped to data registers into the FPGA. Since FPGA
mapped memories are only accessible in 32-bit words, the
relevant kernel data structures have been redesigned so that
all elements are 32 bits wide. These mappings allow to track
the state of the kernel and the associated atomic propositions.
For the atomic propositions corresponding to control flow
events, instructions are added to set the bits assigned to each
event.

4.4 Overhead evaluation
The instrumentation of the kernel increases the execution time
of system calls (temporal overhead) and increases the memory
footprint of the code (memory overhead).

4.4.1 Temporal overhead
The measurement of the temporal overhead is obtained from
the execution time of each service with and without instru-
mentation. The execution time of each service is measured on
a SmartFusion2 running at 142MHz with a code optimization
level -O0 and a standard configuration of Trampoline.

Results presented in Table 1 highlights an overhead be-
tween 15.2 % and 38.1 % depending on the service. Consid-
ering that the execution time of a system call is usually

Execution time
OS service vanilla instrumented Overhead
ActivateTask † 4.9 µs 6.5 µs 32.6%
ActivateTask 17.2 µs 22.6 µs 31.4%
TerminateTask 5.4 µs 7.4 µs 37.0%
ChainTask 12.8 µs 16.7 µs 30.4%
Schedule † 3.4 µs 4.6 µs 35.3%
Schedule 13.5 µs 17.7 µs 31.1%
SetEvent † 3.3 µs 3.8 µs 15.2%
SetEvent 11.8 µs 15.6 µs 32.2%
WaitEvent † 2.1 µs 2.5 µs 19.0%
WaitEvent 6.9 µs 9.3 µs 34.8%
GetResource 2.1 µs 2.9 µs 38.1%
ReleaseResource † 1.9 µs 2.6 µs 36.8%
ReleaseResource 8.4 µs 11.5 µs 36.9%

TABLE 1
Temporal overhead for each service. Some services may trigger a

context switch. These services are thus presented twice: once without
context switch (suffixed with †) and once with context switch.

negligible compared to the application execution time, the
measured overhead can be considered negligible too. This
limited overhead is required to observe the software execution
and is not related to the evaluation of the monitor: i.e. it does
not depend on the number of monitors, but on the number
of observation points. In comparison, a pure software solution
applied to a comparable RTOS [17] results in a time overhead
between 60 % and 630 %.

4.4.2 Memory overhead
To measure the impact of the instrumentation on memory
footprint, we added the size of the section containing kernel
code with constants for an application that calls all of the
services listed in Table 1. It increases from 6436 bytes to 7079
bytes with instrumentation (less than 10 % increase). This is
quite a small overhead even for a small RTOS.

5 Evaluation framework
This section introduces the evaluation framework, it includes
a description of the fault injection environment and the re-
quirements for the application under test.

5.1 Fault injection environment
Fault injection techniques for integrated circuits are generally
classified into 3 categories: hardware-based, emulation-based,
and simulation-based fault injection approaches [19]. The
hardware-based approach faithfully reproduces the physical
phenomena that cause faults. However, this technique is diffi-
cult to use and provides poor controllability and observability.
Emulation and simulation-based techniques require a low-
level model of the hardware architecture, usually FPGA-based
for the former and software-based for the latter. They allow
injections anywhere in the circuit. These two approaches are
not appropriate in our case because we don’t have a detailed
model of the hardware platform.

For programmable embedded systems, in contrast to many
simulation approaches based on QEMU [20] or GEM5 [21],
a hybrid approach based directly on the real hardware is
feasible. In this case, the error is injected through the software,
either by instrumenting the code [22], [23] or by using a de-
bugging probe [24]. The main drawback of such an approach is
that fault injection is limited by design to resources accessible
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by software, i.e. it is not possible for instance to inject a fault
into a CPU pipeline register.

This approach is temporally intrusive, but is fairly easy
to implement and allows reproducibility of the fault injection
campaign. As the test application does not interact with the
environment, temporal intrusiveness is not a problem and this
approach seems to be the best in our case.

5.1.1 Classification of the results

The results of the fault injection campaign are classically
defined in 4 categories [25], [26]:
No impact. The fault does not affect the program execution

and the program terminates normally and the output is
correct.

Exception. The fault produces an error detected by the
hardware mechanisms which raises an exception.

Timeout. The fault produces an error that prevents the
program from completing. A watchdog is required to
detect this type of error.

Silent Data Corruption (SDC). The program terminates
but the output is incorrect. The consequence of a SDC is
a deviation from the expected behavior of the system.

The detection of the SDC is the main objective as a
category 1 fault has no impact and category 2 and 3 are
already detected by hardware mechanisms.

5.1.2 Fault model

When a particle beam hits the memory or a register, several
contiguous bits may be affected by a bit flip. However, the
authors of [26] show that the results obtained with the single
bit flip model and the double bit flip model are close. In [23],
a model that allows multiple bit inversions shows that, in a
limited number of cases (8%), the number of SDC is increased.
Therefore, we assume that the use of the single-bit flip model
is still relevant and limits the explosion of the fault space.

In the single bit-flip fault injection model, the fault space
is defined by a set of time-location tuples where time is the
date of the fault injection and location is a specific bit in a
register or a memory word.

We use the inject-on-read [25] technique to reduce the
number of fault injections. Intuitively, a fault injection on a
memory location is performed only during a read access. This
injection produces the same result as any fault injection that
occurred in the same memory location between the previous
access (read or write) and the current read. At the analysis
level, the access is weighted according to the exposure time,
i.e. the time the data is stored between the 2 accesses.

In our case, the platform considered (SmartFusion 2)
targets safety-critical systems and both embedded SRAM and
non-volatile memory support a single-bit error correction and
dual-bit error detection code (SECDED). As a result, the
faults considered are limited to the CPU registers and the
fault space is significantly reduced.

Note that SmartFusion 2 embeds an SEU immune Zero
FIT (Failure In Time) Flash FPGA configuration, and the
D-flip-flops used by the monitors are protected by Triple
Modular Redundancy (TMR). As a result, runtime monitor
failures are not taken into account.

5.1.3 Fault Injection Implementation
The fault injection platform is based on a host machine that
controls the target (i.e. the SoPC) through a GDB debugger
interface. A custom script controls the debug probe (J-Link)
to interact with the SmartFusion2 board using a JTAG link.

The fault injection campaign is performed in two steps.
First, the application is executed instruction by instruction
(at the assembly level) to determine the reference trace
(named golden trace or gt). This implementation approxi-
mates the time spent by the number of assembler instructions
executed along the trace, noted Lgt. This trace is analyzed to
determine the read/write accesses for each register (required
to implement the inject-on-read technique).

The second step is fault injection. If we consider an ex-
haustive fault injection campaign on 1 32-bit register, then
there are Lgt × 1 × 32 time-location tuples to evaluate. For
each of these cases, simply 1) execute the application up to the
moment of injection (insert a breakpoint along the execution
trace corresponding to the time of the tuple) 2) perform a fault
injection, using the debug probe, to flip a bit of the target
register, corresponding to the location of the tuple 3) resume
the application. The execution trace of this run is collected
and compared to the golden trace gt.

5.2 Application
The constraints of functional fault injection with a debug
probe require that the application be reproducible (not depen-
dent on external phenomena) and not time sensitive (injection
takes a long time and can interfere with the timing of the
application). In addition, the analysis is performed by com-
parison with a reference trace and this trace must be finite;
the application must therefore have a beginning and an end.

The main goal is to make the kernel services more robust,
especially the scheduler. This leads to designing an appli-
cation that makes most of the kernel system calls that are
not related to interrupts. It is unrealistic to evaluate every
possible control flow for every service. However, we distinguish
between services that can perform rescheduling. For example,
the ActivateTask service inserts a task into the ready list.
If the inserted task has a higher priority than the current
task and the current task is preemptible, then a rescheduling
is performed. In the other case, the current task resumes
its execution. For each system call that is likely to cause a
context switch, the application implements the 2 options. The
set of service calls is summarized in Table 1. The application
requires 6 tasks, each of which performs 1 job4. There are 7
preemptions in total.

After each system call, a checkpoint verifies that the
scheduler’s behavior conforms to the expected result, thus
preventing 2 consecutive errors from leading to an apparently
correct result. There are 21 checkpoints, and a scheduling
error changes the order in which these checkpoints are called.
In this way, “no impact” and SDC results can be distinguished
by comparing the order in which the application passes
through the various checkpoints to the reference trace.

The application is run 3 times in a row to ensure that
an injection that disrupts the scheduling later is covered

4. The full code of the application is available at https://github.
com/TrampolineRTOS/trampoline/tree/cortex-instrumented/
examples/cortex/armv7m/SmartFusion2/starterKit/FI appli

https://github.com/TrampolineRTOS/trampoline/tree/cortex-instrumented/examples/cortex/armv7m/SmartFusion2/starterKit/FI_appli
https://github.com/TrampolineRTOS/trampoline/tree/cortex-instrumented/examples/cortex/armv7m/SmartFusion2/starterKit/FI_appli
https://github.com/TrampolineRTOS/trampoline/tree/cortex-instrumented/examples/cortex/armv7m/SmartFusion2/starterKit/FI_appli
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(error propagation latency). We have limited our experiments
to 3 runs because in our experiments, 92.4% of the SDC
occurs during the first run, 7.6% during the second run, and
none during the third run. The checkpoint order is stored in
an array that is tripled. This prevents fault injection from
corrupting this array, even if the scheduling is correct.

A first fault injection campaign has been published in [27].
The monitors were constructed from 49 ptLTL formulas for
the runtime verification of the RTOS scheduler behavior. This
first evaluation resulted in an SDC detection rate of 48.4%.
In this work, we extend the set of formulas to cover a broader
range of the RTOS behavior in order to increase the detection
rate.

6 Evaluation of the Runtime Verification strategy
using Fault Injection
This section provides a detailed analysis of the results of the
fault injection and the results of the verification mechanism.
Based on these results, an iterative process is introduced to
improve the detection mechanism in order to take into account
a larger set of cases. This analysis evaluates the potential and
limitations of a hardware verification mechanism associated
with an off-the-shelf SOPC-based architecture.

6.1 Overview of the evaluation process
6.1.1 Configurations
Fault injection is performed on 4 different configurations of
the application to find an appropriate trade-off between the
detection rate of the SDCs and the instrumentation code
overhead required to achieve the monitoring. These 4 con-
figurations are detailed in the following sections.

For each configuration the golden trace Lgt is related to
the execution of the reference application defined in Section
5.2. As this trace includes the instrumentation code, it might
differ from one configuration to another, as explained below.

All the configurations are compiled with gcc
(arm-none-eabi-gcc) version 4.9.3 without any optimization
(-O0).

6.1.2 ARM registers analysis
The Cortex M3 architecture uses the ARMv7 Thumb2 in-
struction set architecture based on 16 32-bits registers r0 to
r15. Registers r13 to r15 are reserved for the stack pointer
(sp), the link register (lr) and the program counter (pc)
respectively. The link register is used to store the return
address during a function call. For nested calls, it is necessary
to save the link register on the stack. The r7 register is the
stack frame pointer and is used locally as a stack pointer
within a function.

The stack is used when a function is called. It hosts
the frame of the function where local variables are allocated
and callee-saved registers are saved. Function parameters are
passed in registers r0-r3 and possibly on the stack if their
number or size is too large. In our case, the internal kernel
functions take a maximum of 3 parameters and use only the
registers.

The general registers r0 through r5 are used for both
function parameter storage and general program execution.
The registers r6 and r8-r12 are not used by the compiler in

the kernel code. They are only saved/restored during context
switches. All injections into these registers will have no impact
on the scheduling.

Considering a time resolution at the assembly instruction
level (Lgt instructions), sixteen 32-bit registers, the number
of 1-bit flip fault injections required for an exhaustive study
increases to 16 × 32 ×Lgt.

6.2 Results of the fault injection campaign
6.2.1 Injection without activating the monitoring
First, a fault injection campaign is performed without activat-
ing the monitoring but with the instrumentation code to work
on the same golden trace. The results of this first reference
injection are detailed in Table 2.

details for some registers
Global r7 sp lr pc

No impact 79.7% 23.5% 67.6% 14.3% 12.3%
Exception 18.7% 75.3% 31.6% 80.3% 83.4%
Time out 0.2% 0.6% 0.4% 1.9% 0.5%
SDC 1.4% 0.6% 0.5% 3.4% 3.9%

99,573 2,514 2,062 14,940 17,172

TABLE 2
Distribution of the faults for each category. The number of faults is
given in addition to percentages for Silent Data Corruption category.

These results show that the majority of fault injections
have no impact or are detected by a hardware mechanism that
raised an exception. Only 1.4 % of faults lead to an SDC. In
our case this means that 1.4 % of the injections in the kernel
corrupt the behavior of the scheduler without any exceptions
or timeouts.

These general results can be refined by looking at the
register types. Injections on pc or lr generally lead to an
exception. For pc, there is always a hardware exception when
injecting faults on bit 14 and above. Injections on bit 0 have
no impact (instruction codes are on 16 or 32 bits, and the pc
value is expected to be even). This is the same for lr as it
stores the return address of the calling function. Injections on
sp (stack pointer) lead to a large number of non-impact faults.
Since compiler optimizations are disabled, addressing of local
variables is based on the frame pointer instead of the stack
pointer. The register r7 is used to host the frame pointer.
The results show that injections on r7 lead to an exception in
75.3% of the cases.

6.2.2 Working with the control flow - Configuration 1
Configuration 1 includes the monitoring presented in [27] (i.e.
with only the application independent code of the RTOS),
with an extension of the control flow verification properties to
2 aspects:
● The possible states of the scheduler can be specialized ac-

cording to the considered system call. This specialization
reduces the acceptable states and increases the detection
rate.

● The control flow check is also refined: in addition to
checking the input/output parameters of functions it also
verifies that the caller of the function is valid.

The Table 3 shows the results of the online monitoring
error detection for this first configuration.
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r7 sp lr pc Other All
registers

No impact 0.2% 0.1% 6.9% 10.5% 0.4% 0.6 %
Exception 8.5% 7.4% 13.9% 15.4% 35.6% 14.3%
Time out 0.0% 62.9% 20.0% 42.0% 5.6% 24.0%
SDC 73.3% 61.4% 84.3% 76.2% 73.3% 75.2%

1,843 1,266 12,599 13,087 46,085 74880

TABLE 3
Fault injection campaign on Configuration 1: Monitor detection rate as

a function of register type.

Only the kernel of the RTOS has been instrumented and
this makes it possible to use the monitors for any application
(i.e. no need to update the FPGA configuration). We can
notice that 75.2 % of SDCs are detected directly which is a
good trade-off considering the low hardware overhead of this
solution (the rate was 48.4 % in the initial version without any
control flow).

As seen in the previous section, some faults are already
detected by the hardware (exceptions, timeouts) and the
detection is complementary to the runtime verification mech-
anism. It can be noticed that faults that lead to a timeout
are detected much more quickly with monitors, allowing for
faster recovery. If a monitor detects an error during the
fault injection phase, an interrupt is raised, but no recovery
mechanism is set up. The program resumes its execution, and
we can determine if a hardware mechanism later detects it
as well. Thus, even if the goal is to detect SDCs, detecting
non-silent faults is still useful because it allows the latency of
detection to be reduced.

The runtime verification engine also detects faults that
have no impact on the execution. This happens because an
error has actually occurred, even if it has no impact on the
scheduling. This type of detection should never be interpreted
as a false positive.

At the binary level, the code instrumentation leads to
an increase of 9.6 % of the size of the kernel code (memory
overhead from 6436 to 7056 bytes). This instrumentation is
very lightweight and compares very favorably to software-only
verification techniques, such as [2].

Focusing more specifically on the SDCs, we can see that
lr-related SDCs are very well detected (84.3 %) because the
control flow is checked at both the beginning and at the end
of each function. The detection rate for pc is lower (76.2 %).
This register is modified after every instruction. If a bit flip
in pc results in a sufficient offset, it will be detected by the
control flow monitoring. However, an error that only causes
a jump within a basic block may result in either re-execution
or non-execution of few instructions. These alterations cannot
be detected by the technique presented in this paper and are
the result of a trade-off between execution performance and
detection granularity.

The results for the stack register sp and the stack frame
pointer r7 are slightly below average: 61.4 % and 73.3 % of
detected SDCs, respectively. The stack is used both for the
control flow to save function return addresses of non-leaf
functions (lr register backup) and for local variables. One
solution to improve the robustness may be to limit the use of
the stack especially for local variables.

6.2.3 Monitoring Application Dependent Kernel Code and
Data - Configuration 2
Trampoline is a static RTOS, meaning that kernel data struc-
tures are tailored and defined at compile time. To fully exploit
this approach, part of the kernel source code is generated
from a static description of the application layer. Thus, we
can distinguish two parts in the kernel code: the core kernel,
which is constant on all systems, and the application-specific
part, which is generated specifically for each system.

In configuration 1, we have focused on the monitoring
of the core kernel. In configuration 2, in order to improve
the detection rate of SDCs, the application-specific part of
the kernel is taken into account. This includes descriptors
of objects handled by the kernel, such as tasks or resources,
and internal kernel data structures, such as the ready list,
whose size is tailored according to static system requirements.
Among the new properties are a property that ensures that
the state of a task can only be set to RUNNING in the
run_elected function, or a property that ensures that the
size of the list of ready tasks can only be increased in the
put_preempted_proc and put_new_proc functions. In the
end, the number of ptLTL properties increases from 100 to
251.

Note that these monitors do not use any additional instru-
mentation: the binary is the same for both configurations. In
this approach, monitors associated with application-specific
kernel structures are also application-specific. Thus, they are
automatically synthesized from the static description of the
application layer along with the application-specific part of
the kernel source code.

r7 sp lr pc Other All
registers

No impact 0.6% 0.1% 0.6% 10.8% 0.6% 0.8%
Exception 9.9% 8.5% 3.3% 13.6% 39.6% 15.4%
Time out 0.3% 62.9% 12.6% 80.6% 5.6% 24.1%
SDC 81.3% 64.1% 90.9% 81.8% 85.0% 84.8%

2,043 1,322 13,578 14,047 53,421 84,411

TABLE 4
Fault injection on configuration 2: Monitor detection rate when

application dependent kernel code is included.

Table 4 shows the detection rate of this new configuration.
Since the number of properties has increased, the improve-
ment affects all types of registers. Compared to configuration
1 (Table 3), the overall percentage of SDC detection is in-
creased by almost 10 points, from 75.2 % to 84.8 %. These
values are directly comparable because, since configuration 2
requires no additional instrumentation, so the binary code of
the system is the same in both cases, as is the fault space.

6.3 Detailed analysis by register and areas for improve-
ment
So far, when analyzing the results of fault injection cam-
paigns, the focus has been on registers that control execution,
while general-purpose registers have been aggregated into
the “other registers” category. In table 5, the results for
configuration 2 are given by registers for registers r0 through
r5. Registers r6 and r8-r12 are not used by the compiler for
the kernel code, so no SDCs are associated with them.
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The fault injections targeting r3 have a significant impact:
they are responsible for almost half of the SDCs. One way to
improve this might be to create monitors dedicated to faults
triggered via r3.

SDC SDC detected detection rate remaining SDC
r0 8079 6144 76,0% 1935
r1 7995 7612 95,2% 383
r2 13592 11424 84,0% 2168
r3 31662 26712 84,4% 4950
r4 1410 1382 98,0% 28
r5 147 147 100,0% 0

total 9464
TABLE 5

Detection of SDCs related to GPR r0 to r5 for configuration 2.

In the following, and based on the results already pre-
sented above, two new configurations are evaluated. In con-
figuration 3, the goal is to limit the impact of faults injected
through sp by modifying the use of the stack. Indeed, table 4
shows that the detection rate of faults injected via this register
is 20 % lower than the average. In configuration 4, the goal is
to limit the impact of faults injected through register r3.

These two new configurations require changes to the kernel
source code. Thus, the fault space targeted by the fault
injection campaign is different. In addition, configuration 4
uses new monitors. The comparison of the results obtained
between these new configurations and configurations 1 and 2
is therefore not direct.

6.3.1 Limiting the stack usage - Configuration 3
To reduce the stack usage of the kernel, we have modified
all the RTOS functions to convert local variables to global
ones (type static volatile). This is made possible because
the kernel is not reentrant. This modification is software-only,
so the monitors are the same as configuration 2. However,
the kernel code is modified and so is the fault space. The
application trace totals Lgt =17 837 assembly instructions, an
increase of 29.4 % over the previous version. The results of the
fault injection campaign on configuration 3 are shown in Table
6.

r7 sp lr pc Other All
registers

No impact 0.7% 0.1% 0.5% 14.8% 0.6% 0.8%
Exception 7.5% 7.1% 2.8% 13.0% 27.1% 14.4%
Time out 1.1% 5.0% 53.2% 9.7% 3.1% 35.5%
SDC 89.2% 71.9% 87.9% 86.0% 91.6% 90.2%

2652 1581 22,148 25,707 145,511 197,599

TABLE 6
Fault injection on configuration 3: Monitor detection rate with stack

usage limitation feature.

With this configuration, the detection rate of SDCs is
90.2 %, which is an improvement over configurations 1 and
2. However, this figure must be put into perspective with
the significant increase in the size of the binary code and,
consequently, the size of the fault space. To illustrate this
growth between configuration 2 and 3, the number of SDCs
triggered by the fault injection campaign increased from
99,573 to 219,129. In practice, this means that even though
the detection rate has increased (from 84.8 % to 90.2 %),

the number of undetected SDCs has also increased (from
15 562 to 21 530 ). We observe that this configuration 3 leads
to mitigated results whose interpretation is not obvious. We
reach a limit of the approach.

6.3.2 Enhanced protection of kernel structure tpl_kern (r3)
- Configuration 4
The tpl_kern data structure is important because it contains
3 bits that control scheduling behavior. Therefore, a more
detailed analysis was performed on this data structure. We
found the location in the binary code where the tpl_kern
structure is accessed and intersected with the addresses of
fault injections that lead to undetected SDCs. The analysis of
these 124 different addresses shows that the SDC is always as-
sociated with the processing of a read operation. For instance:
123e: ldr r3 , [pc , #36] ; r3 <- @tpl_kern
1240: ldrb r3 , [r3 , #28] ; r3 <- need_schedule
1242: cmp r3 , #0 ; re - schedule ?
1244: beq.n 124a ; branch if no ..

In this code snippet, the address of the structure tpl_kern
is loaded into r3 (instruction address is 123e)5 Then, r3
is loaded with the value of the need_schedule field which
is at offset 28 of the tpl_kern structure. The last two in-
structions allow to select a branch according to the value of
need_schedule. A fault injection in r3 at any of the first 3
instructions of the snippet may yield a wrong outcome for the
comparison, resulting in the selection of the wrong branch and
thus a false scheduling decision at the application level. This
fault remains invisible to the monitors because the value of
need_schedule in memory is not altered.

In configuration 4, we take this kind of situation into ac-
count, if possible, by instrumenting each conditional branch.
It is then sufficient for the monitor to check, when the condi-
tional block is reached, that the structure is in a coherent
state, i.e. that the field tpl_kern that allows to establish
the condition is correctly positioned. However, this does not
apply if there is dynamic data that is not stored in the data
structures (located in the FPGA). This happens for example
when using function input parameters.

The size of the golden trace of the application is slightly
increased to Lgt =13 839 % instructions (+0.41 % compared to
configuration 1 and 2) due to the code instrumentation. The
results of the detection rate using configuration 4 are reported
in Table 7. Note that the first column now shows r3 instead of
r7. The column “other registers” is the same as in the previous
experiments and refers to registers r0-r6 and r8-r12.

r3 sp lr pc Other All
registers

no impact 5,0% 0.1% 0.6% 11.6% 0.6% 0.8%
Exception 41,3% 8.8% 3.5% 13.2% 39.5% 15.4%
Time out 6,7% 63.5% 13.8% 26.4% 8.7% 18.8%
SDC 84,7% 60.5% 87.9% 82.6% 85.3% 84.6%

26903 1,190 12,760 14,426 54,202 84,655

TABLE 7
Fault injection on configuration 4: Monitor detection rate with

enhanced protection of the tpl_kern structure.

5. On ARM architecture (here arm-v7m), the statically defined
addresses used in the code are stored just after the function code.
A fault injection on pc at this point will result in both an incorrect
pointer to the structure and a change in control flow.
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The results are very similar to those obtained with config-
uration 2. As for configuration 3, the fault space is larger due
to the modification of the source code and the overall results
are mitigated.

The number of SDCs detected on r3 increases from
26 712 in configuration 2 to 26 903 here, which is 84.7 % of the
total number of SDCs without runtime verification. However,
if we consider all the registers, the number of possible SDCs in-
creases with this new instrumentation and is not compensated
by the higher number of detections, causing the detection rate
to drop very slightly from 84.8 % to 84.6 %.

In conclusion, as with configuration 3, the instrumentation
overhead and the modification of the fault space are not
favorable compared to the benefit in detection rate.

6.4 Resource Consumption Analysis
Configurations 1 and 2 use the same binary, but configuration
2 has more monitors. Configuration 2 and 3 have different
binaries, but use the same set of monitors. Finally, config-
uration 4 is different in both binary and monitor set. The
implementation costs in terms of FPGA resources (4-LUT and
flip-flops) of these different configurations are given in table 8
along with the golden trace size (instruction count), which is
an indicator of the instrumentation overhead. Note: To harden
the verification unit, the FPGA synthesis is performed using
the Triplication Strategy (TMR) offered by the synthesis tool.

Lgt ptLTL hardware resources
(inst.) formulas 4-LUT flip-flop

config. 1 13782 100 2456 2794
config. 2 253 6907 7800
config. 3 17837
config. 4 13839 264 7327 7964

TABLE 8
Characteristics of the studied configurations. The hardware resources

include the extra cost related to the TMR.

6.5 Lessons learnt from fault injection campaigns
In configuration 1, the addition of control flow monitors at
the function level resulted in a doubling of the number of
monitored properties (100 versus 49 in the original injection),
but also a significant improvement in the SDC detection rate.

In configuration 2, the addition of monitors that target
the application-specific part of the kernel further increases
the number of monitored properties. Among these properties
are some target objects that are managed by the kernel.
They must therefore be instantiated multiple times: once for
each instance of the object in the system. In the case of the
reference application used for the fault injection campaign
it includes 6 tasks and 3 synchronization objects (2 events
and 1 resource), and the number of properties is 253 (vs. 100
in configuration 2). The consumption of FPGA resources by
monitors associated with kernel objects is relatively small:
each task requires about 500 flip-flops and 426 4-LUTs, and
each resource requires 370 flip-flops and 322 4-LUTs with
TMR enabled. Our reference application uses a total of 6907 4-
LUTs and 7800 flip-flops (with TMR enabled).

Configuration 4, which uses additional monitors, is barely
more consuming than configurations 2 and 3. From an error

detection point of view the results obtained for configurations
3 and 4 are mixed: they improve the detection rate but also
lead to an increase in the number of undetected SDCs. As it
is, configuration 2 is probably close to the best performance
achievable with the approach developed here.

7 Conclusion
In this paper, we have evaluated hardware accelerated run-
time verification to detect silent data corruptions resulting
from runtime physical faults. We have applied the proposed
technique to monitor the execution of Trampoline, a small
RTOS for deeply embedded systems.

The system is built on top of a SmartFusion2 SoPC: The
software under verification runs on the micro-controller while
the verification unit is implemented as hardware blocks on the
FPGA and runs in parallel. The software is instrumented to
provide information to the verification unit.

On the software side the instrumentation causes an over-
head between 15.2 % and 38.1 % on the execution time of
services and an increase of less than 10 % of the size of the
code of the kernel. On the hardware side the verification unit
consumes less than 13 % of the FPGA resources leaving the
possibility to use the remaining resources for accelerators.

Four different configurations of monitors and instrumenta-
tion have been evaluated through software-implemented fault
injection campaigns. The configuration that appears to be the
most balanced at the end of the evaluation phase detects
84.8 % of SDCs. We believe this detection rate is close to
what can be achieved with this approach without otherwise
degrading other performance metrics. Overall, the technique
provides partial SDC detection for a very reasonable overhead
in terms of time, memory and FPGA resources.
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