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ABSTRACT 

Our paper deals with the detection and automatic extraction of a hierarchical network of urban streets from maps 
containing only building footprint data. We develop a new approach for extracting, locating and labelling plausible 
street networks in a given city, based on geometrical an functional considerations. Using some basic tools from the 
« Mathematical Morphology » field, we propose simple, robust and efficient techniques for extracting homotopic 
skeletons of the ground zones and a street-width map. Our method leads to the construction of open or closed connex 
graphs that we encode and save. Finally, we develop some ant-based techniques to identify plausible elements (streets, 
boulevards, avenues, lanes, water streams) in this graph. 
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1. INTRODUCTION 
 
Due to the rising number of applications in urban 
development and entertainment industries (video games, 
animation), automatic generation of complex urban 
scenes is a fundamental challenge. Modelling complex 
and realistic cities is still an important research field in 
urban planning and computer graphics, well covered by 
recent international publications [2, 3, 8, 10, 11, 14]. 
There is virtually no semi-automated system to support 
or help modelling and planning in very large 
metroplitan areas [1]. Particularly, there is a need for 
original techniques producing complex 3D cities with 
automatically generated hierarchical street - and even 
underground - networks. Taking this into account has 
received very little attention [5], mainly because of the 
high complexity of the arrangement and organization 
that need to be computed.  
We can define a city as a set of disparate objects 
(buildings, furniture, miscellaneous roads), whose 
coupling can be modelled by networks [2, 9]. The 
relationship between street network and buildings 
usually results from a nested rationale. On one hand, for 
historical reasons, and in the vast majority of cases, the 
structure of the streets and its extensions define the city 
shape and govern the filling of the plots and parcels. 
Such a configuration naturally accepts an underlying 
graph description, which is the very purpose of the latest 
research. On the other hand, some recent research [7, 10] 
give priority to the buildings implementation. Indeed, 
whenever we have to study the design or simulate urban 
planning, we have to rely on real data. And buildings are 
robust ones, better than streets. In such a context, 
automated generation of street networks from urban 
footprint maps is an interesting research topic. This 
“raster approach” of the problem - rather new 
comparing to the vectorial one [5] - avoids the difficult 
task of shape vectorization in noisy environments.  
The framework of our paper, therefore, exceeds given 

existing road data in order to run simulations, traffic 
calculation, maintenance and adaptation of existing 
routes, and thus requires in any case the computation of 
a multi-potential graph, which justifies the approach of 
section 3. The next section explores some recognition 
techniques and automatic classification of road elements. 
Designed to run on the resulting graph from section 3, it 
can be used on any existing urban graph. Finally, we 
suggest a reinterpretation of our work under the theory 
of ant stigmergic behavior, followed by an opening 
towards more ambitious optimization computations. 
 
2. RELATED WORK AND GENERAL APPROACH 
 
Our work is similar to the vectorial approach of Decoret 
[5], which computes a non-hierarchical road network 
from a city map of building outlines by calculating the 
Voronoï diagram of the ground. This allows to get a 
wired network of roads for which there is always a path 
between any couple of buildings. This purely geometric 
approach is insufficient in our view, because it lacks a 
road classification, certainly difficult to obtain, which 
forbids its use for simulating dynamic problems of the 
real world (traffic, transport, urban planning). 
Instead, we propose a dual raster approach, where the 
the Voronoï diagram is replaced by a morphological 
skeleton computation. The unique input data is the the 
building footprint image I (Figure 1). The ground is in 
white and the buildings are in grey levels which may be 
used to encode various properties, such as building 
height or housing density. This approach let us link our 
work to the stigmergic behavior of social insects (see 
section 5.3), although this is not evident in a purely 
vectorial approach like [5]. We expect this metaphor to 
be further exploited to automatically produce an urban 
hierarchical network, using "ant colony optimization 
(ACO)” [6, 13], a recent metaheuristic which provides 
very good results for graph optimization problems. 



 

  
Figure.1 – Building footprints in Vénissieux (France) 

 
3. COMPUTING A GOOD STREET SKELETON 

 
3.1 Morphological skeleton of the non-built area 
 
Our first objective is to identify plausible routes in a city, 
given the image I of its building footprints. Considering 
that everything which is not a building has the potential 
to become a road, we define the set Is as I amputated of 
its buildings. This gives a new connex object, which can 
be considered as the skeleton of all potential roads at 
first approximation. That we choose to calculate is 
obtained by a homotopic process which simply consists 
in sequentially applying the Golay thinning masks of 
Figure 2 up to image stabilization [6]. In order to 
improve the morphological processing quality which 
highly influences the skeleton precision, we first 
super-scan original images by a factor of 4. 

 
Figure.2 – The Golay thinning masks on a square grid 

(0 = ground ; 1 = building ; * = 0 or 1) 
 
We can see the results of the algorithm in Figure 3. We 
obtain two types of graph, depending on the possibility 
to connect the city to its environment (opened city), or 
not (secluded city). The obtained skeleton is sparseness 
of barbs because of the noise sensitivity of the 
skeletonization processing. These barbs (Figure 5a) 
consist of small arcs that have a free end (no neighbor), 
and have no major interest in a road network (at most, 
some may be interpreted as small impasses). 
Moreover, as the city is surrounded by an infinite 
ground surface, skeleton (a) is "open". In fact, the used 
homotopic procedure preserves the image topology. The 
"closed" skeleton (b) is obtained by adding a 1 pixel 
"virtual building" around the image before thinning. 
There just remains four barbs linking the city to the 
corners of the image. Therefore, the image closure on its 
edges introduces a kind of artificial suburb that does not 
match enough to the city content. So, at this step, two 
issues remain to be solved: the outskirts of the city (in 
section 3.3, we will provide a much more clever 
solution for this problem) and barb removal. One more 

time, barb elimination is performed using a Golay 
morphological filter (Figure 4). This cleaning step is 
done with 8 other masks applied until idempotence. 

 
Figure.3 – Open (a) and close (b) skeletons 

 
We now have a clean skeleton (Figure 9), made of cells 
containing each one a unique building, as it happens in a 
Voronoï diagram. However, apart from the fact that this 
object represents all the "center lines” of the original 
shape, we have no other information, including the 
width of potential streets. It would be interesting to 
know the maximum space available at each pixel of the 
image, and thus at each pixel of the skeleton. In the 
Mathematical Morphology’s terminology, this is called 
the “maximum-ball map” or “distance-map”. 

 
Figure.4 – The Golay barb-removal masks 

(0 = ground ; 1 = building ; * = 0 or 1) 
 
3.2 Distance map 
 
For each pixel p of I, we wish to calculate the largest 
ball centered in p and which does not intersect any 
building (figure 5b shows several examples). The image 
of the radius for each pixel is called the “distance map”. 
Mathematical Morphology provides a very elegant 
solution for computing the maximum-balls radii with 
the use of neighborhood-based operators. Let B(p) 
denote the ball surrounding p (see next section). The 
algorithm is described in the following pseudo code: 
 

Each building-pixel becomes a full pixel 
Each pixel p is assigned a count variable c(p) 
initialized to zero 
While there remains a ground-surrounded pixel 
 For each pixel p in the image 
  if B(p) does not contain a full pixel 
   c(p)+ 1→ c(p) 
  end if 
  else 
   p becomes a full pixel 
  end else 
  image update with new full pixels 
 end For 
end While 

 



 

  
Figure.5 – Skeleton barbs (a), 
maximum-ball examples (b) 

 
With this simple algorithm, we get the radius of the 
maximum-ball for each pixel of the image. On a square 
grid, the concept of ball (circle / disc) is approximate. 
Two 3x3 masks are available to fit a circle: either the 
cross (called ball V4), or the filled square (called ball V8). 
Experiments showed that the best approximation (in 
terms of euclidian distance) of the circle is to iterate 
alternately V4 and V8 balls. Moreover, the V8V4V8... ball 
(Figure 6b) provides the best results in relation to the 
skeleton valuation. Once this procedure has been 
performed, if we turn the counter variable of each pixel 
into a grey level, we obtain “visual results”, as shown in 
Figure 7. We clearly recognize broad zones: the 
periphery but also some areas within the city. 

 
Figure.6 – Balls V4V8… (a) and V8V4… (b) 

after 5 dilatations 
 
3.3 Computation of a plausible periphery 
 
Figure 3 shows that the raw skeletonization is hard to 
use on the edges. By adding a "virtual building" on the 
edges of the image, the skeleton is enhanced with a 
periphery, but it is a too distant and unrealistic one. An 
improved solution consists in simply setting a virtual 
adaptive frontier all around the city to shape a periphery. 

 
Figure.7 – “Maximum-ball map” or “distance map” 

 
Thanks to the distance-map, we can calculate it by 
specifying the minimum distance D to the closest 
buildings. This "pseudo-expansion" of the city edges is 
not a new mathematical morphology tool, and its 
process is rather simple. The distance-map is used to 

draw in the image all the maximum-balls whose centers 
are located on the image borders, respecting the distance 
D. The first iteration already provides a rather fine 
periphery. We can iterate the process by considering all 
the pixels located in the demarcation line resulting from 
previous drawn circles, and so on until satisfaction. 
Figure 8 illustrates this process, where each color 
corresponds to an algorithm iteration. Finally, starting 
from the city image completed with a periphery, we get 
a closed, cleanned and manageable skeleton (Figure 9). 
This is achieved by combining a topological 
information provided by the skeleton with a measure 
information given by the maximum-balls radii, and also 
by filtering out small sections that can not correspond to 
any road element. The next step introduces some image 
analysis in order to extract a graph from the skeleton. 

 
Figure.8 – Computed iterative peripheries 1(a),2(b),4(c) 
 

4. GRAPH COMPUTATION FROM SKELETON 
 
By construction, the skeleton object has a planar graph 
structure with junctions (edges) and nodes. We use 
image analysis to convert it into a graph, and proceed in 
two steps: nodes detection and junctions extraction. 
 
4.1 Node detection 
 
Let’s define a node as the intersection point of at least 
three junctions. To detect a “node pixel”, we may test at 
most 33 masks coding 3x3 neighborhood configurations 
represented in Figure 10. We sequentially apply these 
filters to each pixel until one of them meets one of the 
above configurations. If so, corresponding pixels are 
marked as nodes. Once all the nodes have been 
recognized and stored, we can proceed with junctions. 

 
Figure.9 – Homotopic close skeleton (cleaned, filtered) 

 
4.2 Extracting junctions 
 
In order to follow the junctions from node to node, we 
use the Pavlidis algorithm, whose description can be 



 

found in [6]. The existence of a path from a given pixel 
is determined using a neighborhood configuration, as 
the calculation of the new direction. Once junctions are 
extracted, we also store meaningful statistics, such as: 
– the number of pixels of junction j : Nj 
– the distance between extrem nodes : Lj 
– minimal, maximal and mean values (R_MINj, R_MAXj, 
R_AVGj ) for the ball radius along the junction 
– a straightness coefficient: Rectj = Lj / Nj 

 
Figure.10 – All types of nodes in a 3x3 neighborhood 

in a square grid 
 
4.3 Formatting the graph 
 
Once the entire skeleton has been stored both in a 
node-list and in a junction-list, we can build the 
associated graph. On the skeleton of a city like 
Vénissieux, there are about 5700 nodes and 8500 
junctions. This is generally a 1-graph (there is at most 
one edge between any arbitrary two nodes), whose 
density (ratio of the number of edges on the high 
number of nodes raised to a power of two) is very low. 
Encoding it by an adjacency matrix is very effective in 
memory. If we denote by N the number of nodes of the 
graph, and M the number of edges, it consumes at least 
N2 memory locations. The encoding scheme using 
adjacency list is better in the case of low-density graphs, 
because it requires only (M + N + 1) memory locations. 
The advantage of a matrix representation is the 
simplicity for the construction of predecessors and 
successors, while the representation list does not include 
immediate test for the presence of an arc - a test that we 
may need. A compromise was made with a matrix 
structure using C++ map and vector<bool> types, 
whose size is N2. The standard C++ ensures that the 
vector template for Boolean types uses only one bit per 
element. The graph is rebuilt from the skeleton data 
stored in an XML file using the TinyXML library; and 
any application can use this data file thereafter. Reading 
and formatting the graph does not take more than 0.4 s 
on our computer (dual Core2, 2.93 GHz). 
 

5. CAN ANTS BUILD STREET NETWORKS ? 
 
5.1 Methodology 
 
We suggest a clever exploration of the multi-potential 
graph that we have extracted to provide a qualitatively 

and quantitatively relevant solution to the problem of 
automatic road element recognition. First let’s consider 
that in real life, the most often used roads are the widest. 
Our goal is to perform some graph simplifications, by 
extracting a hierarchical classification of the longest, 
widest and as possible the most uniform road parts that 
have an identity within the body made up of small alleys, 
streets, avenues, boulevards, roads and rivers. In a 
comprehensive manner, we wish to minimize as 
possible the number of such elements. However, they 
are composed with connex junctions of the graph, and 
the first difficulty is to find their most relevant extrem 
nodes, from a geometric and functional point of view. 
Of course, the node valence is small (≤ 4), but the 
skeleton is very sensitive to noise, and many nodes are 
connected with very short junctions, which may imply a 
merging task, increasing the resulting node valence. In 
addition, any graph junction is not necessarily a 
plausible way: those resulting from the skeletonization 
of vast open areas (wasteland interstitial spaces, 
underserved ones) are such examples.  
A first step to determine the most traversed roads uses a 
variant of the Dijkstra’s shortest path algorithm [8] 
which is applied to all graph junctions and coupled with 
an ant-marking technique. We analyze this procedure 
and its limitations in details, before seeing how we 
could simulate street network emergence with ACO. 
 
5.2 Automatic determination of major axes 
 
By following the widest junctions of the graph, it is 
already possible to identify rivers running completely 
through a city, if any, and provide bridges at 
intersections with the possible streets. But this strategy 
can only be applied for rivers. For other road type, the 
computation is done in three steps. First, we borrow 
from graph theory the "shortest path algorithm" of 
Dijkstra, whose junction valuation is modified to take 
account for R_MINj and Nj parameters. It can exhibit a 
best path between any pair of nodes, according to those 
parameters (Figure 11). Then, results from the first step 
are used to automatically obtain the classification of the 
main and secondary roads, which is only affected by 
parameters S and α (see next section). The underlying 
idea is based on “pheromone deposit” made by ants, 
only in order to mark the most traversed axes. In this 
purpose, we attach a counter to each junction and launch 
an overall calculation of shortest paths between all pairs 
of nodes. We obtain a traversal frequency which is a 
pre-classification of all junctions (Figure 12). In a last 
step, which is already under development, we 
statistically process this map with a rectitude criteria in 
order to connect junctions belonging to the same axes, 
and then classify all recognized axes (rivers, boulevards, 
avenues, streets, lanes,...). 
 
5.2.1 Results in interactive mode 
 
To calibrate different graph junction valuation types, an 
interactive tool was developed. It allows the user to 



 

select with the mouse arbitrary couples of nodes in the 
skeleton, and display the shortest path joining them. The 
algorithm used is that of Dijkstra with a heap data 
structure [4], whose complexity is O(n.log(n)). In such a 
minimization problem, the native valuation V1, which is 
the length of the junctions, provides the optimal 
pedestrian path, which is not concerned with the street 
radius and can go through narrow places. 
So, we introduce a new valuation to take radius values 
into account. Remember that R_MINj junction value is 
the maximum width of a candidate-road linking the two 
extrem nodes. Suppose we pre-compute the largest 
minimum-balls max { R_MINi }  for all graph junctions. 
From there, we valuate each junction j as the difference 
of this value and the R_MINj value. Thus, the lowest 
valuation is given to the junction whose R_MINj value is 
highest. And this gives more chance to the shortest path 
to be found where there is more space. 
In figure 11, green dots represent departure and arrival 
nodes chosen with the mouse. The red path corresponds 
to the pedestrian one, and the blue one is for V2 
valuation. A large majority of blue and red paths are the 
same when the path is short. If we select some 
appropriate distant nodes, the algorithm quickly 
retrieves paths visually matching those of reality. The 
blue route tends to avoid places with a multitude of 
small branches (where the space between buildings is 
small), which validates our tool. Two parameters are 
introduced in order to control the algorithm behavior: a 
threshold S, which prohibits going through a junction 
with a radius less than S, and a coefficient α to balance 
the weight of R_MINj. This leads to the following 
valuation V2j : 

V2j = Nj * (max { R_MINi }  + 1 − R_MINj )
α   (1) 

with 0 ≤ α ≤ 2   
We add 1 to avoid a zero valuation for the junction. The 
more α decreases, the more we get closer to the 
pedestrian path if there is no minimum threshold. If α = 
0, then V2j = V1j. Otherwise the path is forced to go 
through junctions with higher radius values. In our 
experiment, 2 appears to be a sufficient limit for α 
values. We must now find an automatic method to 
extract the main routes, then medium and small ones. 
 
5.2.2 Parsing the graph with virtual ants 
 
We start by filtering the junctions whose maximum 
width is less than a threshold set by the user. Then we 
provide each junction with an ant crossing counter. 
Depositing pheromone is only used to increment the 
counter, and does not influence the shortest path 
algorithm behavior. Then, we launch an overall process 
computing the minimal paths for any couple of nodes 
within the graph. These paths are not saved, but each 
time a connection is used, its counter is incremented. 
With an elaborate implementation, the whole 
computation takes 30 seconds on our computer, for the 
graph shown in Figure 9. 
Paths that appear in dark blue are the most visited, and 
those that are pale blue the least visited. Some major 

axes of the city appear very clearly, others less. There 
are very few routes heavily marked in the dense 
residential areas, which means that the algorithm gives 
priority to the broader zones. 

 
Figure.11 – Search path simulation in the graph 

 
The last step, currently in progress, is to take into 
account a directional pheromone, by creating for each 
node a routing table (storing conditional statistics of 
order 1). Each table records the probability for ants to 
follow the junctions connected to this node, when they 
arrive from a given junction. Local statistics on the flow 
should enable us to improve the monitoring of junctions 
(using the maximum values of the routing table) and the 
detection of extreme nodes (when routing is equivalent 
in several directions). Once both extremities are found 
for a path, we replace all the R_MINj junction values by 
their minimum value computed along the path. This 
results in lines of constant width, easy to classify 
according to the characteristics of the “road body” used. 
Starting and ending nodes are either street intersections, 
or place centers, or bridge extremities. 

 
Figure.12 – Automatic results (most visited axes are in 

dark blue) 
 
5.3 Reinterpreting Mathematical Morphology (MM) 
 
MM is based on neighborhood transformations (erosion, 
dilation, thinning, barb removal...) repeatedly applied on 
a form. Selected size for neighborhood always being 
limited and small, we can interpret the MM operators as 
virtual ants performing stigmergic and uncoordinated 
actions, ie local and only guided by previous work 
configurations (the state of the form). So, it can be 
legitimately argued that virtual ants should be able to 
extract the non built urban space skeleton. 



 

5.4 Simulating street network emergence with ACO 
 
We are undoubtedly facing a combinatory graph 
problem, with multiple local and global constraints, as 
mentioned in previous sections. If we can exhibit some 
"objective functions”, we will be able to use 
metaheuristic techniques to solve this problem [13]. In 
this case, ACO is likely to help us finding good 
solutions, as it has been demonstrated in the context of 
automatic generation of architectural plans [7]. 
It has been studied for some years that ants perform all 
their work using two strategies: stigmergy and 
recruitment. Stigmergy is a “whole communication” 
using a collective memory: pheromone deposit. When 
ants choose their path, they tend to select the one which 
has the highest pheromone concentration. In this way, 
they are ensured to find their way back to their nest. 
Each ant is heading by following the pheromone tracks 
which are left by other members of the colony. Ants 
choose their path in a probabilistic way. As pheromones 
gradually evaporate, the probability that takes an ant to 
choose its path is changing over time.This strategy has 
inspired researchers and given birth to metaheuristics to 
solve problems known to be difficult (NP-complete), 
ranging from graph exploration to task planning [4, 8]. 
Readers are invited to consult reference book [13] for 
more details. 
Simulating street network emergence with ACO is the 
next step of our work, which is still in progress and 
cannot be currently presented in this paper. The idea we 
follow is to let ants deposit a second type of pheromone 
at the starting or ending nodes of potential paths, while 
maintaining the shortest path approach described above. 
 

6. CONCLUSION AND FUTURE WORK 
 
We have put forward the first steps of a modular and 
robust protocol for extracting a hierarchical network of 
urban roads, drawing on Mathematical Morphology 
tools, graph exploration and ant behavior. Our 
contribution includes:  
- automatic and parameterizable periphery calculation, 
- skeleton calculation that represents a set of potential 
routes that can be used to connect a city to its neighbors, 
- a good heuristic injected in the shortest path algorithm 
suited to search for wider and regular streets. 
We have suggested a reinterpretation of Mathematical 
Morphology as a result of a stigmergic process 
achievable by an ant colony. This allows us to unify our 
work and to positively respond to the question: « Can 
ants build urban street networks ? ». 
From a modelization point of view, the geometric aspect 
of road generation has not been addressed. We could 
have simply created road sections for each junction of 
the skeleton, but the whole result would not have looked 
like a real urban fabric. In addition, our work raises 
interesting detection and modeling questions about 
automatic placement of urban squares. Furthermore, the 
skeletonization process should be adapted in the future 

in order to allow roads to be closer to buildings, as it 
often happens in a real city. 
Thus, after many experiments, our work leads to the 
production of innovative solutions able to consider soon:  
- the development of a visualization tool for our street 
network 3D models, gathering all extracted objects 
(roads, rivers, intersections) and their fittings. We will 
use geometric primitives employed by civil engineers 
for road construction (line, circle, clothoid). 
- the extension of our algorithm to deal with other 
decision-making problems, including urban planning. 
Our generic approach is very open. 
- the design of specific algorithms to generate road and 
underground networks, adapted to terrains with relief. 
- the integration as an overall constraint of the fractal 
"inverse power law", often called “the human range of 
scales” [12], which characterizes man-made structures 
that exhibit a network of "living connections”. 
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