
HAL Id: hal-04891718
https://hal.science/hal-04891718v1

Submitted on 16 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Public Domain

Can Ants Build Urban Street Networks ?
Xavier Marsault

To cite this version:
Xavier Marsault. Can Ants Build Urban Street Networks ?. CIE, Jul 2009, TROYES, France. �hal-
04891718�

https://hal.science/hal-04891718v1
https://hal.archives-ouvertes.fr

Can Ants Build Urban Street Networks ?

Xavier Marsault 1

1MAP-ARIA Lab, Architecture School of Lyon, 69512, France (xavier.marsault@aria.archi.fr)

ABSTRACT

Our paper deals with the detection and automatic extraction of a hierarchical network of urban streets from maps
containing only building footprint data. We develop a new approach for extracting, locating and labelling plausible
street networks in a given city, based on geometrical an functional considerations. Using some basic tools from the
« Mathematical Morphology » field, we propose simple, robust and efficient techniques for extracting homotopic
skeletons of the ground zones and a street-width map. Our method leads to the construction of open or closed connex
graphs that we encode and save. Finally, we develop some ant-based techniques to identify plausible elements (streets,
boulevards, avenues, lanes, water streams) in this graph.

Keywords: street network, skeleton, periphery, path, mathematical morphology, ant colony optimization (ACO)
1

 978-1-4244-4136-5/09/$25.00 ©2009 IEEE

1. INTRODUCTION

Due to the rising number of applications in urban
development and entertainment industries (video games,
animation), automatic generation of complex urban
scenes is a fundamental challenge. Modelling complex
and realistic cities is still an important research field in
urban planning and computer graphics, well covered by
recent international publications [2, 3, 8, 10, 11, 14].
There is virtually no semi-automated system to support
or help modelling and planning in very large
metroplitan areas [1]. Particularly, there is a need for
original techniques producing complex 3D cities with
automatically generated hierarchical street - and even
underground - networks. Taking this into account has
received very little attention [5], mainly because of the
high complexity of the arrangement and organization
that need to be computed.
We can define a city as a set of disparate objects
(buildings, furniture, miscellaneous roads), whose
coupling can be modelled by networks [2, 9]. The
relationship between street network and buildings
usually results from a nested rationale. On one hand, for
historical reasons, and in the vast majority of cases, the
structure of the streets and its extensions define the city
shape and govern the filling of the plots and parcels.
Such a configuration naturally accepts an underlying
graph description, which is the very purpose of the latest
research. On the other hand, some recent research [7, 10]
give priority to the buildings implementation. Indeed,
whenever we have to study the design or simulate urban
planning, we have to rely on real data. And buildings are
robust ones, better than streets. In such a context,
automated generation of street networks from urban
footprint maps is an interesting research topic. This
“raster approach” of the problem - rather new
comparing to the vectorial one [5] - avoids the difficult
task of shape vectorization in noisy environments.
The framework of our paper, therefore, exceeds given

existing road data in order to run simulations, traffic
calculation, maintenance and adaptation of existing
routes, and thus requires in any case the computation of
a multi-potential graph, which justifies the approach of
section 3. The next section explores some recognition
techniques and automatic classification of road elements.
Designed to run on the resulting graph from section 3, it
can be used on any existing urban graph. Finally, we
suggest a reinterpretation of our work under the theory
of ant stigmergic behavior, followed by an opening
towards more ambitious optimization computations.

2. RELATED WORK AND GENERAL APPROACH

Our work is similar to the vectorial approach of Decoret
[5], which computes a non-hierarchical road network
from a city map of building outlines by calculating the
Voronoï diagram of the ground. This allows to get a
wired network of roads for which there is always a path
between any couple of buildings. This purely geometric
approach is insufficient in our view, because it lacks a
road classification, certainly difficult to obtain, which
forbids its use for simulating dynamic problems of the
real world (traffic, transport, urban planning).
Instead, we propose a dual raster approach, where the
the Voronoï diagram is replaced by a morphological
skeleton computation. The unique input data is the the
building footprint image I (Figure 1). The ground is in
white and the buildings are in grey levels which may be
used to encode various properties, such as building
height or housing density. This approach let us link our
work to the stigmergic behavior of social insects (see
section 5.3), although this is not evident in a purely
vectorial approach like [5]. We expect this metaphor to
be further exploited to automatically produce an urban
hierarchical network, using "ant colony optimization
(ACO)” [6, 13], a recent metaheuristic which provides
very good results for graph optimization problems.

Figure.1 – Building footprints in Vénissieux (France)

3. COMPUTING A GOOD STREET SKELETON

3.1 Morphological skeleton of the non-built area

Our first objective is to identify plausible routes in a city,
given the image I of its building footprints. Considering
that everything which is not a building has the potential
to become a road, we define the set Is as I amputated of
its buildings. This gives a new connex object, which can
be considered as the skeleton of all potential roads at
first approximation. That we choose to calculate is
obtained by a homotopic process which simply consists
in sequentially applying the Golay thinning masks of
Figure 2 up to image stabilization [6]. In order to
improve the morphological processing quality which
highly influences the skeleton precision, we first
super-scan original images by a factor of 4.

Figure.2 – The Golay thinning masks on a square grid

(0 = ground ; 1 = building ; * = 0 or 1)

We can see the results of the algorithm in Figure 3. We
obtain two types of graph, depending on the possibility
to connect the city to its environment (opened city), or
not (secluded city). The obtained skeleton is sparseness
of barbs because of the noise sensitivity of the
skeletonization processing. These barbs (Figure 5a)
consist of small arcs that have a free end (no neighbor),
and have no major interest in a road network (at most,
some may be interpreted as small impasses).
Moreover, as the city is surrounded by an infinite
ground surface, skeleton (a) is "open". In fact, the used
homotopic procedure preserves the image topology. The
"closed" skeleton (b) is obtained by adding a 1 pixel
"virtual building" around the image before thinning.
There just remains four barbs linking the city to the
corners of the image. Therefore, the image closure on its
edges introduces a kind of artificial suburb that does not
match enough to the city content. So, at this step, two
issues remain to be solved: the outskirts of the city (in
section 3.3, we will provide a much more clever
solution for this problem) and barb removal. One more

time, barb elimination is performed using a Golay
morphological filter (Figure 4). This cleaning step is
done with 8 other masks applied until idempotence.

Figure.3 – Open (a) and close (b) skeletons

We now have a clean skeleton (Figure 9), made of cells
containing each one a unique building, as it happens in a
Voronoï diagram. However, apart from the fact that this
object represents all the "center lines” of the original
shape, we have no other information, including the
width of potential streets. It would be interesting to
know the maximum space available at each pixel of the
image, and thus at each pixel of the skeleton. In the
Mathematical Morphology’s terminology, this is called
the “maximum-ball map” or “distance-map”.

Figure.4 – The Golay barb-removal masks

(0 = ground ; 1 = building ; * = 0 or 1)

3.2 Distance map

For each pixel p of I, we wish to calculate the largest
ball centered in p and which does not intersect any
building (figure 5b shows several examples). The image
of the radius for each pixel is called the “distance map”.
Mathematical Morphology provides a very elegant
solution for computing the maximum-balls radii with
the use of neighborhood-based operators. Let B(p)
denote the ball surrounding p (see next section). The
algorithm is described in the following pseudo code:

Each building-pixel becomes a full pixel
Each pixel p is assigned a count variable c(p)
initialized to zero
While there remains a ground-surrounded pixel
 For each pixel p in the image
 if B(p) does not contain a full pixel
 c(p)+ 1→ c(p)
 end if
 else
 p becomes a full pixel
 end else
 image update with new full pixels
 end For
end While

Figure.5 – Skeleton barbs (a),
maximum-ball examples (b)

With this simple algorithm, we get the radius of the
maximum-ball for each pixel of the image. On a square
grid, the concept of ball (circle / disc) is approximate.
Two 3x3 masks are available to fit a circle: either the
cross (called ball V4), or the filled square (called ball V8).
Experiments showed that the best approximation (in
terms of euclidian distance) of the circle is to iterate
alternately V4 and V8 balls. Moreover, the V8V4V8... ball
(Figure 6b) provides the best results in relation to the
skeleton valuation. Once this procedure has been
performed, if we turn the counter variable of each pixel
into a grey level, we obtain “visual results”, as shown in
Figure 7. We clearly recognize broad zones: the
periphery but also some areas within the city.

Figure.6 – Balls V4V8… (a) and V8V4… (b)

after 5 dilatations

3.3 Computation of a plausible periphery

Figure 3 shows that the raw skeletonization is hard to
use on the edges. By adding a "virtual building" on the
edges of the image, the skeleton is enhanced with a
periphery, but it is a too distant and unrealistic one. An
improved solution consists in simply setting a virtual
adaptive frontier all around the city to shape a periphery.

Figure.7 – “Maximum-ball map” or “distance map”

Thanks to the distance-map, we can calculate it by
specifying the minimum distance D to the closest
buildings. This "pseudo-expansion" of the city edges is
not a new mathematical morphology tool, and its
process is rather simple. The distance-map is used to

draw in the image all the maximum-balls whose centers
are located on the image borders, respecting the distance
D. The first iteration already provides a rather fine
periphery. We can iterate the process by considering all
the pixels located in the demarcation line resulting from
previous drawn circles, and so on until satisfaction.
Figure 8 illustrates this process, where each color
corresponds to an algorithm iteration. Finally, starting
from the city image completed with a periphery, we get
a closed, cleanned and manageable skeleton (Figure 9).
This is achieved by combining a topological
information provided by the skeleton with a measure
information given by the maximum-balls radii, and also
by filtering out small sections that can not correspond to
any road element. The next step introduces some image
analysis in order to extract a graph from the skeleton.

Figure.8 – Computed iterative peripheries 1(a),2(b),4(c)

4. GRAPH COMPUTATION FROM SKELETON

By construction, the skeleton object has a planar graph
structure with junctions (edges) and nodes. We use
image analysis to convert it into a graph, and proceed in
two steps: nodes detection and junctions extraction.

4.1 Node detection

Let’s define a node as the intersection point of at least
three junctions. To detect a “node pixel”, we may test at
most 33 masks coding 3x3 neighborhood configurations
represented in Figure 10. We sequentially apply these
filters to each pixel until one of them meets one of the
above configurations. If so, corresponding pixels are
marked as nodes. Once all the nodes have been
recognized and stored, we can proceed with junctions.

Figure.9 – Homotopic close skeleton (cleaned, filtered)

4.2 Extracting junctions

In order to follow the junctions from node to node, we
use the Pavlidis algorithm, whose description can be

found in [6]. The existence of a path from a given pixel
is determined using a neighborhood configuration, as
the calculation of the new direction. Once junctions are
extracted, we also store meaningful statistics, such as:
– the number of pixels of junction j : Nj
– the distance between extrem nodes : Lj
– minimal, maximal and mean values (R_MINj, R_MAXj,
R_AVGj) for the ball radius along the junction
– a straightness coefficient: Rectj = Lj / Nj

Figure.10 – All types of nodes in a 3x3 neighborhood

in a square grid

4.3 Formatting the graph

Once the entire skeleton has been stored both in a
node-list and in a junction-list, we can build the
associated graph. On the skeleton of a city like
Vénissieux, there are about 5700 nodes and 8500
junctions. This is generally a 1-graph (there is at most
one edge between any arbitrary two nodes), whose
density (ratio of the number of edges on the high
number of nodes raised to a power of two) is very low.
Encoding it by an adjacency matrix is very effective in
memory. If we denote by N the number of nodes of the
graph, and M the number of edges, it consumes at least
N2 memory locations. The encoding scheme using
adjacency list is better in the case of low-density graphs,
because it requires only (M + N + 1) memory locations.
The advantage of a matrix representation is the
simplicity for the construction of predecessors and
successors, while the representation list does not include
immediate test for the presence of an arc - a test that we
may need. A compromise was made with a matrix
structure using C++ map and vector<bool> types,
whose size is N2. The standard C++ ensures that the
vector template for Boolean types uses only one bit per
element. The graph is rebuilt from the skeleton data
stored in an XML file using the TinyXML library; and
any application can use this data file thereafter. Reading
and formatting the graph does not take more than 0.4 s
on our computer (dual Core2, 2.93 GHz).

5. CAN ANTS BUILD STREET NETWORKS ?

5.1 Methodology

We suggest a clever exploration of the multi-potential
graph that we have extracted to provide a qualitatively

and quantitatively relevant solution to the problem of
automatic road element recognition. First let’s consider
that in real life, the most often used roads are the widest.
Our goal is to perform some graph simplifications, by
extracting a hierarchical classification of the longest,
widest and as possible the most uniform road parts that
have an identity within the body made up of small alleys,
streets, avenues, boulevards, roads and rivers. In a
comprehensive manner, we wish to minimize as
possible the number of such elements. However, they
are composed with connex junctions of the graph, and
the first difficulty is to find their most relevant extrem
nodes, from a geometric and functional point of view.
Of course, the node valence is small (≤ 4), but the
skeleton is very sensitive to noise, and many nodes are
connected with very short junctions, which may imply a
merging task, increasing the resulting node valence. In
addition, any graph junction is not necessarily a
plausible way: those resulting from the skeletonization
of vast open areas (wasteland interstitial spaces,
underserved ones) are such examples.
A first step to determine the most traversed roads uses a
variant of the Dijkstra’s shortest path algorithm [8]
which is applied to all graph junctions and coupled with
an ant-marking technique. We analyze this procedure
and its limitations in details, before seeing how we
could simulate street network emergence with ACO.

5.2 Automatic determination of major axes

By following the widest junctions of the graph, it is
already possible to identify rivers running completely
through a city, if any, and provide bridges at
intersections with the possible streets. But this strategy
can only be applied for rivers. For other road type, the
computation is done in three steps. First, we borrow
from graph theory the "shortest path algorithm" of
Dijkstra, whose junction valuation is modified to take
account for R_MINj and Nj parameters. It can exhibit a
best path between any pair of nodes, according to those
parameters (Figure 11). Then, results from the first step
are used to automatically obtain the classification of the
main and secondary roads, which is only affected by
parameters S and α (see next section). The underlying
idea is based on “pheromone deposit” made by ants,
only in order to mark the most traversed axes. In this
purpose, we attach a counter to each junction and launch
an overall calculation of shortest paths between all pairs
of nodes. We obtain a traversal frequency which is a
pre-classification of all junctions (Figure 12). In a last
step, which is already under development, we
statistically process this map with a rectitude criteria in
order to connect junctions belonging to the same axes,
and then classify all recognized axes (rivers, boulevards,
avenues, streets, lanes,...).

5.2.1 Results in interactive mode

To calibrate different graph junction valuation types, an
interactive tool was developed. It allows the user to

select with the mouse arbitrary couples of nodes in the
skeleton, and display the shortest path joining them. The
algorithm used is that of Dijkstra with a heap data
structure [4], whose complexity is O(n.log(n)). In such a
minimization problem, the native valuation V1, which is
the length of the junctions, provides the optimal
pedestrian path, which is not concerned with the street
radius and can go through narrow places.
So, we introduce a new valuation to take radius values
into account. Remember that R_MINj junction value is
the maximum width of a candidate-road linking the two
extrem nodes. Suppose we pre-compute the largest
minimum-balls max { R_MINi } for all graph junctions.
From there, we valuate each junction j as the difference
of this value and the R_MINj value. Thus, the lowest
valuation is given to the junction whose R_MINj value is
highest. And this gives more chance to the shortest path
to be found where there is more space.
In figure 11, green dots represent departure and arrival
nodes chosen with the mouse. The red path corresponds
to the pedestrian one, and the blue one is for V2
valuation. A large majority of blue and red paths are the
same when the path is short. If we select some
appropriate distant nodes, the algorithm quickly
retrieves paths visually matching those of reality. The
blue route tends to avoid places with a multitude of
small branches (where the space between buildings is
small), which validates our tool. Two parameters are
introduced in order to control the algorithm behavior: a
threshold S, which prohibits going through a junction
with a radius less than S, and a coefficient α to balance
the weight of R_MINj. This leads to the following
valuation V2j :

V2j = Nj * (max { R_MINi } + 1 − R_MINj)
α (1)

with 0 ≤ α ≤ 2
We add 1 to avoid a zero valuation for the junction. The
more α decreases, the more we get closer to the
pedestrian path if there is no minimum threshold. If α =
0, then V2j = V1j. Otherwise the path is forced to go
through junctions with higher radius values. In our
experiment, 2 appears to be a sufficient limit for α
values. We must now find an automatic method to
extract the main routes, then medium and small ones.

5.2.2 Parsing the graph with virtual ants

We start by filtering the junctions whose maximum
width is less than a threshold set by the user. Then we
provide each junction with an ant crossing counter.
Depositing pheromone is only used to increment the
counter, and does not influence the shortest path
algorithm behavior. Then, we launch an overall process
computing the minimal paths for any couple of nodes
within the graph. These paths are not saved, but each
time a connection is used, its counter is incremented.
With an elaborate implementation, the whole
computation takes 30 seconds on our computer, for the
graph shown in Figure 9.
Paths that appear in dark blue are the most visited, and
those that are pale blue the least visited. Some major

axes of the city appear very clearly, others less. There
are very few routes heavily marked in the dense
residential areas, which means that the algorithm gives
priority to the broader zones.

Figure.11 – Search path simulation in the graph

The last step, currently in progress, is to take into
account a directional pheromone, by creating for each
node a routing table (storing conditional statistics of
order 1). Each table records the probability for ants to
follow the junctions connected to this node, when they
arrive from a given junction. Local statistics on the flow
should enable us to improve the monitoring of junctions
(using the maximum values of the routing table) and the
detection of extreme nodes (when routing is equivalent
in several directions). Once both extremities are found
for a path, we replace all the R_MINj junction values by
their minimum value computed along the path. This
results in lines of constant width, easy to classify
according to the characteristics of the “road body” used.
Starting and ending nodes are either street intersections,
or place centers, or bridge extremities.

Figure.12 – Automatic results (most visited axes are in

dark blue)

5.3 Reinterpreting Mathematical Morphology (MM)

MM is based on neighborhood transformations (erosion,
dilation, thinning, barb removal...) repeatedly applied on
a form. Selected size for neighborhood always being
limited and small, we can interpret the MM operators as
virtual ants performing stigmergic and uncoordinated
actions, ie local and only guided by previous work
configurations (the state of the form). So, it can be
legitimately argued that virtual ants should be able to
extract the non built urban space skeleton.

5.4 Simulating street network emergence with ACO

We are undoubtedly facing a combinatory graph
problem, with multiple local and global constraints, as
mentioned in previous sections. If we can exhibit some
"objective functions”, we will be able to use
metaheuristic techniques to solve this problem [13]. In
this case, ACO is likely to help us finding good
solutions, as it has been demonstrated in the context of
automatic generation of architectural plans [7].
It has been studied for some years that ants perform all
their work using two strategies: stigmergy and
recruitment. Stigmergy is a “whole communication”
using a collective memory: pheromone deposit. When
ants choose their path, they tend to select the one which
has the highest pheromone concentration. In this way,
they are ensured to find their way back to their nest.
Each ant is heading by following the pheromone tracks
which are left by other members of the colony. Ants
choose their path in a probabilistic way. As pheromones
gradually evaporate, the probability that takes an ant to
choose its path is changing over time.This strategy has
inspired researchers and given birth to metaheuristics to
solve problems known to be difficult (NP-complete),
ranging from graph exploration to task planning [4, 8].
Readers are invited to consult reference book [13] for
more details.
Simulating street network emergence with ACO is the
next step of our work, which is still in progress and
cannot be currently presented in this paper. The idea we
follow is to let ants deposit a second type of pheromone
at the starting or ending nodes of potential paths, while
maintaining the shortest path approach described above.

6. CONCLUSION AND FUTURE WORK

We have put forward the first steps of a modular and
robust protocol for extracting a hierarchical network of
urban roads, drawing on Mathematical Morphology
tools, graph exploration and ant behavior. Our
contribution includes:
- automatic and parameterizable periphery calculation,
- skeleton calculation that represents a set of potential
routes that can be used to connect a city to its neighbors,
- a good heuristic injected in the shortest path algorithm
suited to search for wider and regular streets.
We have suggested a reinterpretation of Mathematical
Morphology as a result of a stigmergic process
achievable by an ant colony. This allows us to unify our
work and to positively respond to the question: « Can
ants build urban street networks ? ».
From a modelization point of view, the geometric aspect
of road generation has not been addressed. We could
have simply created road sections for each junction of
the skeleton, but the whole result would not have looked
like a real urban fabric. In addition, our work raises
interesting detection and modeling questions about
automatic placement of urban squares. Furthermore, the
skeletonization process should be adapted in the future

in order to allow roads to be closer to buildings, as it
often happens in a real city.
Thus, after many experiments, our work leads to the
production of innovative solutions able to consider soon:
- the development of a visualization tool for our street
network 3D models, gathering all extracted objects
(roads, rivers, intersections) and their fittings. We will
use geometric primitives employed by civil engineers
for road construction (line, circle, clothoid).
- the extension of our algorithm to deal with other
decision-making problems, including urban planning.
Our generic approach is very open.
- the design of specific algorithms to generate road and
underground networks, adapted to terrains with relief.
- the integration as an overall constraint of the fractal
"inverse power law", often called “the human range of
scales” [12], which characterizes man-made structures
that exhibit a network of "living connections”.

REFERENCES

[1] Batty M, “Model Cities”, Center for Advanced
Spatial Analysis, paper 113, 2007.

[2] Batty M, Longley P.A., “Fractal Cities: a Geometry
of Form and Function”, Academic Press, London
and San Diego, 2004.

[3] Chen G, Esch G, Wonka P, Muller P, Zhang E,
“Interactive Procedural Street Modeling”, TOG Vol
27, Issue 3, Siggraph 2008.

[4] Cormen T, Leiserson E, Rivest R, Stein C,
“Introduction à l’algorithmique”, Ed.Dunod, 2004.

[5] Decoret X, Sillion F, “Street Generation for City
Modelling”, ARTIS - GRAVIR – INRIA, 2002.

[6] Graffigne C., Zerubia J., “Analyse d’images :
filtrage et segmentation”, Masson, 1995.

[7] Ireland T, “Sniffing Space”, 11th Generative Art
Conference, 2008.

[8] Larive M, Gaildrat V, Dupuy Y, “Génération
Automatique de Zones Urbaines: un Etat de l’Art”,
AFIG, 2004.

[9] Mangin D, Panerai P, “Projet urbain”, Editions
parenthèses, 1999.

[10] Marsault X, “ Generation of textures and geometric
pseudo-urban models with the aid of IFS” , in
"Chaos in Art and Architecture", Int. Journal of
Dynamical System Research, vol I, number 3, 2005.

[11] Muller P, Wonka P, Haegler S, Ulmer A, Van Gool
L, “Procedural Modeling of Buildings”, TOG Vol 25,
Issue 3, Siggraph 2006.

[12] Salingaros N, “A universal rule for the distribution
of sizes”, Environment and Planning B : planning
and Design, 26:909-923, Pion Publications, 1999.

[13] Solnon C, “Optimisation par colonies de fourmis”,
Hermès, 2008.

[14] Yoav I, Parish H, Müller P, “Procedural modeling

of cities”, SIGGRAPH, ACM Press New York 2001.

