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Abstract—This work presents a proactive distributed model
for power system frequency stability. High-level penetration of
renewable energy sources into the grid have introduced un-
foreseen and unmodeled system dynamics. Underfrequency load
shedding state-of-the-art solutions are reactive in design, with
efficiency constrained by the modeling error. Being able to detect
unstable conditions early makes it possible to generate optimized
corrective actions. In this work, phasor measurement units are
used to predict frequency values. When a disturbance is detected,
the state of frequency is predicted a few seconds into the future
via a particle filter algorithm. Corrective actions are modeled
through a mixed integer linear programming algorithm within
system areas established through spectral clustering. The solution
is implemented on Matlab, considering IEEE test systems. The
proactive design of the method combined with its multiple
layers of optimization deliver results that outperform state-of-
the-art solutions. Easy-to-implement model, without hard-to-
derive parameters, highlights potential aspects towards real-life
implementation.

Index Terms—phasor measurement units, spectral clustering,
dynamic state estimation, mixed-integer linear programming,
particle filter, frequency stability.

I. INTRODUCTION

As the electric grid transitions to a smaller carbon footprint,
it has also become increasingly complex to operate, protect
and control. These complexities are testing the limits of
traditional solutions based on quasi-static models. The electric
grid of today requires that protection and control solutions
deliver satisfactory levels of performance under a wide-range
of operating conditions unforeseen and unmodeled. Another
limitation of state-of-the-art protection and control solutions
is that they are reactive by design. In most cases corrective
actions are taken only after the system has already entered a
critical condition. With this in mind, the goal of this work is
put forth a method that overcomes some of the limitations of
quasi-static models in the area of power systems protection.

The specific contributions of this work are:
• The application of Bayesian filters in the context of

frequency stability.
• The development of an adaptive distributed model for

optimized corrective actions.
The remaining of the paper is organized as follows. A

review of relevant works is presented in Section II. Section III
presents a theoretical background. Proactive distributed model
is presented in section IV. Case studies and their results are

discussed in Section V. Finally, concluding remarks and future
work are presented in Section VII.

II. LITERATURE REVIEW

In order to address the limitations of traditional under-
frequency load-shedding (UFLS) schemes such as delayed
responses and over-shedding [1], [2], research efforts have
investigated the use of adaptive and proactive schemes. For
instance in [3] measurements captured by phasor measurement
units (PMUs) are used to generate autoregressive models
and produce predictions. In [4] a technique based on model
predictive control is developed to optimize the operation of
microgrids. In [5] PMUs are used monitor power flows and
predictions are made via linearized models. The work in [6]
makes predictions based on the power output of synchronous
condensers. Finally, [7] uses polynomial curve-fitting to pre-
dict future frequency values.

These techniques deliver interesting results and have cer-
tainly inspired this work, however, most of them lack gener-
ality. Some of them rely on high PMU sampling rates, while
others are based on specialized equipment such as synchronous
condensers. Several of them base their decision-making on
complex calculations, which require long computation periods
to find potential solutions, alongside the challenge of detecting
real-time threats due to the substantial volume of measured
data. These factors place constraints on the accessibility and
the applicability of these solutions, effectively limiting them
to niche scenarios. For example, [8] may be inadequate since
areas for load shedding are kept fixed for all operating con-
ditions. These areas are predetermined for deterministic sce-
narios through offline analysis or by the power grid operator’s
knowledge of the system.

To address these issues, graph-theory-based network cluster-
ing algorithms such as spectral clustering have made it possible
to determine areas (clusters) for load shedding in PMU time
[9].

Spectral clustering algorithms are renowned for their deter-
ministic and polynomial-time solutions, distinguishing them
from traditional clustering algorithms like k-means [10], [11]
and k-means++ [12], and are equivalent to graph min-cut
problems [13], [14].

Traditionally, the process of decomposing large intercon-
nected networks into loosely connected areas, for easier man-



agement, has relied on the concept of electrical cohesiveness.
This cohesion is often quantified by the electrical distance
between network nodes [15].

However, in spectral clustering the electrical cohesiveness
is treated as a static edge weight function, see Section III-F,
as the clustering solution remains unchanged regardless of
operating conditions due to the fixed parameter. To be able
to capture significant variations and fast dynamics introduced
by renewable generation, dynamic edge weight functions can
be utilized instead. These edge weight functions incorporate
variable parameters such as power flows, generator synchro-
nizing coefficients, distribution factors, and line ratings.

For the purpose of this study, it is essential to employ
an electrical parameter capable of capturing actual operating
conditions, particularly to account for the fast dynamics in-
troduced by renewable generation in modern power systems.
Therefore, power flow measurements, as discussed in [16]–
[18], are used as dynamic edge weight functions since they
are contingent upon the power system’s current operating
conditions.

In some cases, finding the complete solution space is
unnecessary, so the spectral clustering can be constrained.
In [19], two main types of constrained spectral clustering
techniques are identified based on constraint enforcement.
The first method involves manipulating the graph Laplacian
or affinity matrix based on constraints and then applying
unconstrained spectral clustering to the modified graph. The
second type of method uses constraints to restrict the feasible
solution space by defining centroids with different variations
discussed in [19].

In this work, only unconstrained hierarchical spectral clus-
tering is employed, which will be explained in Section III-F3.

III. THEORETICAL BACKGROUND

A. Particle Filter

The particle filter (PF) is an estimation algorithm that
combines elements from Bayesian estimation with the Monte
Carlo method. The goal is to utilize a set of particles to
approximate the probability distribution driving the behavior
of the system being observed. This is an iterative process with
updates and corrections at each time step, similar to those
seen in popular algorithms such as the Kalman Filter (KF).
An intuitive example is now presented in order to provide a
general understanding of the algorithm. For a problem where
the goal is to track an object moving a cross a 2-D plane, the
PF starts by placing particles around the expected location of
the particle. At this point these particles are simply educated
guesses of where the object could be located. Measurements
are then used to assign weights to the particles. Particles closer
to the measured values are given higher weights. The average
of the weighted particles is then used to estimate the location
of the object being tracked. It should be noted that once
weights are assigned to the particles, the collection or cluster
of particles, effectively becomes a probability distribution, this
is an important feature of the PF which will be discussed
in more detail later in this work. For the following time

Fig. 1. Estimated Probability Distribution

Fig. 2. Particle Based Sampling

step, the entire cluster must be moved according to a system
model. For this example, the system model can be a simple
equation relating the speed of the object to time. Once the
cluster has been moved, particles are redistributed. Particles
that were assigned lower weights during the previous time
step are placed near particles of higher weight. At this point,
measurements are once again used to update the weights of
the particles, and a new estimate is produced. These ideas
are illustrated in figures 1 and 2. The task of tracking the
frequency of a power system is somewhat similar to the
example just described. In this case the object moving across a
2-D is the frequency, with time on the x-axis and the frequency
value (in Hertz) on the y-axis.

As previously mentioned, the ability of the PF to ap-
proximate a probability distribution via particles is an im-
portant feature of the algorithm, and it’s also one of its
main advantages. For instance, in its original formulation,
the application of the KF is limited to data that follows a
Gaussian distribution. This limitation could be problematic
in the context of power systems, as research has shown that
electrical measurements take on a diverse set of distributions
[20]. An in-depth mathematical discussion of the PF can found
in [21]. Comparisons between the PF and other filters can be
found in [22].



B. Predictions

One of the challenges of using a Bayesian filter for predic-
tions is that in their original formulation these filters predict
K+1 time steps into the future. Depending on sampling rates
and processing times, the duration of each time step can be as
fast as a fraction of a second. For the purposes of this work,
a prediction a fraction of a second into the future isn’t very
useful. In order to overcome this limitation an equation was
developed to extend the time horizon of the predictions. The
equation is part of an iterative routine that creates a vector of
artificial data points (ADPs) which are then fed to the particle
filter. The equation is similar to the Taylor series and is defined
as:

ADPi = ADPi−1 + tsf
′ + t2sf

′′ (1)

Here ADPi−1 represents the previous ADP . When i = 1,
ADPi−1 refers to the last measurement. ts represents the
duration of each measurement cycle. f ′ and f ′′ represent the
first and second derivatives of frequency respectively. These
derivatives are included to account for the dynamics of the
system.

The number of ADPs required or NADP , is a function
of the measurement periods, and how far into the future the
prediction is set to be.

NADP = tpfs (2)

Here fs is the reporting rate of the measurements, which
corresponds to the inverse of the measurement period. tp is
the time horizon of the prediction in seconds. As an example,
if a prediction 3 seconds into the future is required with a
reporting rate of 30 fps, then 90 ADPs will be needed. The
process that generates the ADP vector that is then processed
by the PF is summarized below.

Algorithm 1 ADP Generation

Initialisation:
ADPi−1 = Last measurement
f ′ = Average first derivative in last 10 measurements
f ′′ = Average second derivative in last 10 measurements
NADP = Number of ADPs required

1: for i = 1 to NADP do
2: ADPi = ADPi−1 + tsf

′

f ′ = f ′ + tsf
′′

3: end for

C. Detection

These predictions are triggered by changes in the frequency
that surpass rate-of-change-of-frequency (RoCoF) thresholds.
The RoCoF, R in the equation that follows, is the change in
frequency over a period of time.

R =
f2 − f1

dt
(3)

Here f1 and f2 are the frequency values at the beginning and
at the end of the measurement period respectively. The time
window of this measurement is represented by dt.

D. Load Excess Calculations

After the predictions are made, the predicted values are used
to estimate the amount of compensation needed to bring the
system back into stability. Load excess values are produced by
equations derived from the swing equation. These equations
were modified to be compatible with predicted values. The
predicted load excess, Lp, is defined as:

Lp =
RpHest(1−

f2
p

f2
1
)

p(fp − f1)
(4)

Where the frequency value at the start of the estimation
period is represented by f1. In most cases this is the current
frequency value. Meanwhile fp represents the predicted fre-
quency value produced by the PF. p is the power factor of
the system. Rp is the RoCoF from f1 to fp. Finally Hest

is the estimated inertia constant. Hest is calculated through
an algorithm presented in [8], which is based on the work
presented in [23].

E. Optimizing the Response

Being able to foresee an unstable condition a couple of
seconds before it occurs makes it possible to deliver an
optimized response. This solution includes an optimization
module that finds a combination of compensation agents that
counters the excess loading found via eq. 4. The goal is to
meet the needs of the system while adhering to the constraints
set by the user. In this work three types of compensation
agents are used: critical loads, sensitive loads, and non-critical
loads. Each load type carries a different penalty if shed, with
critical loads having the highest penalty, while non-critical
loads have the lowest. A mixed integer linear programming
(MILP) algorithm is used to scan the feeders in the area to
find a suitable combinations of feeders. These ideas can be
summarized as follows:

Algorithm 2 Load Balance Optimization

Initialisation:
A = Critical loads available for shedding (feeder level)
B = Sensitive loads available for shedding (feeder level)
C = Non-critical loads available for shedding (feeder
level)
cT1 = Cost of shedding critical loads
cT2 = Cost of shedding sensitive loads
cT3 = Cost of shedding non-critical loads
b = Calculated load excess

1: Minimize J = ct1x+ ct2y + ct3z
s.t. Ax+By + Cz ≥ b

2: Return Selected agents in A, B, and C

Additional constraints can be added to the optimization
routine to meet the operating standard defined by the user.



F. Spectral Clustering in Power Systems

Spectral clustering techniques make use of the spectrum
(eigenvalues and corresponding eigenvectors) of the similarity
matrix of the data to perform dimensionality reduction before
clustering in fewer dimensions. The similarity matrix is pro-
vided as an input and consist of a quantitative assessment of
the relative similarity of each pair of points in the data set.

In this work, we employ a spectral clustering methodology
to assess the optimal regions within the power grid for
preemptive load shedding, depending on varying operating
conditions such as high, moderate, and low demand.

The identification and ongoing updates of these regions
occur swiftly, within a time frame of less than t < 90 ms,
aligning with the specified range of PMU processing times [9].
To mitigate communication challenges during fault events, the
model relies on the latest complete set of PMU measurements
preceding a disturbance to construct the graph representation
of the network, a crucial step for determining the relevant
regions.

1) Determining Areas for Load-Shedding: To identify re-
gions for potential load shedding based on current operating
conditions, the initial step involves constructing the graph
Laplacian matrix from the measurement data set W .

The matrix W is derived by representing the power grid as
an undirected graph, denoted as G = (V, E). The set of buses
is represented by V = 1, 2, ..., n, where n corresponds to the
total number of buses. Additionally, the set of edges is defined
as E ⊂ V ×V , where (i, j) ∈ E indicates an edge connecting
buses i and j. These edges may represent transmission lines
or transformers.
The Power Flow Weighted Adjacency Matrix. Since
the topological structure of the graph does not capture the
changing operational conditions of the power grid, we use edge
weights. In this work, power flow measurements are used to
define edge weights. For a network with n buses, the weighted
adjacency matrix of the graph is

W =

 0 ω12 · · · ω1n

...
...

. . .
...

ωn1 ωn2 · · · 0

 (5)

where ωij represents an edge weight as a non-negative func-
tion ω : V × V → ℜ+ such that

• ωi,j = 0 if (i, j) /∈ E, i.e., vertices i and j are not
connected by and edge.

• ωi,j = ωj,i if i ̸= j, i.e, edge directions are ignored since
G is undirected.

Graph Laplacians. In the field of spectral clustering, three
graph Laplacian matrices are well-documented: one is referred
to as the unnormalized Laplacian, denoted as L; and the
other two are recognized as the normalized versions, namely
a symmetric matrix Ln and a rectangular matrix associated
with a random walk Lrw.

In our work, we opt for the normalized symmetric graph
Laplacian matrix Ln, commonly utilized for clustering pur-
poses (refer to [13], [14], [24]–[26] and related literature), to

mitigate the impact of specific weights on clustering accuracy
caused by fluctuating operating conditions, as depicted in
the eigenvalues magnitudes of the unnormalized Laplacian
matrix L shown in Fig. 3 (left) for three operating conditions.
This necessitates the transformation of the resulting weighted
adjacency matrix W into the normalized Laplacian and sym-
metric matrix Ln, which provide more stable and accurate
results (see Fig. 3-right). The interested reader is referred to
[24] for a detailed explanation of the reasons and advantages
of using any of the normalized Laplacian matrices over the
unnormalized version in the power systems area.

Fig. 3. Eigenvalues of both the unnormalized and the normalized Laplacian
matrices for three ranges of system operating conditions with respect to
maximum demand (Dmax): high demand (≥ 80%Dmax); mid-demand
(≥ 50%Dmax); and low demand (≥ 30%Dmax).

The entry-wise definition of the unnormalized graph Lapla-
cian matrix follows:

Lij =


di if i = j

−1 if i is adjacent to j

0 otherwise,
(6)

where di = ω(i, i) =
∑n

j=1 ω(i, j) is the degree of the ith
vertex. This is closely related to the adjacency matrix and is
sometimes written as L = D − W , where D is defined as
the diagonal matrix with weighted vertex degrees d1, · · · , dn
on the diagonal. Then, the normalized and symmetric graph
Laplacian matrix is defined as:

Ln = I −D−1/2 ·W ·D−1/2. (7)

The eigenvalues of Ln satisfy the inequality 0 ≤ λLn
i ≤ 2 for

all i [13], [26], [27].
2) Choice of Dimension for the Spectral Embedding:

A typical heuristic used to determine how many non-zero
eigenvectors of the graph Laplacian matrix (L or Ln) can
be used for clustering purposes is to compute the absolute
value of the ratio between the difference of two consecutive



eigenvalues and their size. In the spectral clustering literature,
this parameter is known as the relative eigengap:

γr,k =
|λk+1 − λk|

λk
(k ≥ 2). (8)

The presence of favorable k-eigenvectors to be used for
clustering purposes is indicated by a small value of the kth
eigenvalue of the graph Laplacian, denoted as λk. Then, a high
value of γr,k means that a minimum of k-eigenvectors can be
used to determine the number of system areas (Ck) we seek
to find.

3) Determining the Number of Areas (Ck): Authors in [16],
[28], suggest that the number of regions can be determined
by knowing the number of groups of coherent generators
in the system. However, in situations where such informa-
tion is limited, two other approaches are recommended in
the technical literature. One involves calculating the relative
eigengap (see Section III-F2) as discussed in [17], [24], where
the highest one determines the number of areas for load
shedding. The other approach involves using agglomerative
hierarchical clustering algorithms [29], where a dendrogram
helps determine the number of areas that can be built based
on the hierarchy of the similarity matrix. In this work, we
consider the latter approach following the work of [25].

The dendrogram. A dendrogram is a tree diagram (see
Fig. 4) that encodes the hierarchical structure in the spec-
tral embedding. The bottom ‘leaves’ represent the individual
vertices (buses), each considered as an initial cluster of unit
size. At each step up the tree, the closest clusters are merged
together, with the distance between clusters measured as the
shortest pairwise distance between points in different clusters.

The dendrogram represents the hierarchical structure of
the network at all levels simultaneously, and a specific k-
partition, for some Ck areas, can be recovered by ‘cutting’
the dendrogram at level k from the root.

Figure 4 illustrates the number of areas identified in the
IEEE 39-bus system, determined from the hierarchy of the
similarity graph obtained using the k-eigenvectors of the
normalized Laplacian matrices corresponding to three sets of
power flow measurements under different operating condi-
tions. For instance, under high demand (left), Ck = 2 regions
are naturally visible, while under mid and low demand (center
and right, respectively), Ck = 3 regions can be observed. It is
important to note that the elements within these clusters vary
based on the operating condition.

4) The Algorithm: In this work, we utilize the normalized
spectral clustering algorithm proposed in [24], [30] to identify
the most effective areas for load shedding based on the actual
operating conditions of the IEEE 39-bus system.

Algorithm 3 The Spectral Clustering Algorithm.

INPUT: Matrix W ∈ ℜn×n; parameter Ck.
Compute the normalized Laplacian Lsym.
Compute the eigenvectors v1, · · · , vk
of the generalized eigenproblem Lsymv = λDv
and take the first k − eigenvectors.
Let V ∈ ℜn×k be the matrix containing the vectors
v1, · · · , vk as columns.
For i = 1, · · · , n let yi ∈ ℜk be the vector
corresponding to the ith row of V .
Cluster the points (yi)i=1,··· ,n in ℜk using a
dendrogram into regions C1, · · · , Ck.

OUTPUT: Regions A1, · · · , Ak with Ai = {j|yj ∈ Ci}

IV. PROACTIVE DISTRIBUTED MODEL

The goal of this section is to illustrate how the modules and
techniques described in the previous sections come together.
Figure 5 presents a data-flow chart of the model. Frequency
and other relevant measurements are acquired through PMUs
at a sampling rate of 30fps. Using this information inertia and
areas of stability are created and updated periodically. The
RoCoF is monitored in real time to identify disturbances re-
quiring corrective actions. If RoCoF thresholds are surpassed,
a prediction is made. The time horizon of the prediction is
adjustable, but this work has found that 1 second offers a
balance between the reliability of the predictions and having
enough time to react. If the prediction suggests that frequency
will continue to decline then corrective actions are taken based
on these predicted values. First the load excess is computed
per eq. 4, then a mixed integer linear programming (MILP)
algorithm scans the feeders within its area to find a suitable
combination of feeders to drop. Compensation is carried out
in stages. The number of stages is an adjustable parameter
defined by the user. In this work four stages are used, however
in order to avoid unnecessary loss of load, provisions are made
to stop pending stages of compensation when they are no
longer necessary. This is done by producing a new prediction
immediately after a stage of compensation is completed. This
new prediction is compared with real-time RoCoF and rotor
angle measurements. If the prediction suggests that frequency
will be returning to normal, the RoCoF is positive, and rotor
angles are stable level then further stages of compensation
are not carried out. The ability to leverage to dynamics of
the system allows the PF based solution to outperform other
predictive techniques found in literature. This is explored in
[8].

V. CASE STUDY

Simulations are conducted in Matlab and Simulink with a
HP i7-1355U 32 GB RAM. In this case study, the spectral
clustering technique described in Section III-F is applied to
the IEEE 39-bus system to determine Ck- areas using power
flow (PF) measurements for three operating conditions with
respect to maximum demand (Dmax):

• High demand: PF ≥ 80%Dmax.



Fig. 4. A dendrogram for the similarity graph of Ln for three operating conditions: high (left), mid (center), and low demand (right). Two natural clusters
are evident for high demand, while three clusters emerge for mid and low demand conditions based on the hierarchy established from the similarity graph of
Ln.

Fig. 5. Solution Overview

• Mid demand: PF ≥ 50%Dmax.
• Low demand: PF ≥ 30%Dmax.

Obtaining k-Eigenvectors for the Spectral Embedding. The
power flows in the system are used to update the weighted
adjacency matrix W described in Section III-F1. The dendro-
grams of Fig. 4 show that at least Ck = 2, 3 areas can be
found based on the natural hierarchy of the similarity graphs
for high, mid, and low demand operating conditions of the
39-bus system.

The relative eigengaps of L, and Ln are computed to
determine how many eigenvectors are needed for clustering
purposes as described in Section III-F2. Figure 6 shows the
relative eigengaps of L (left) and Ln (right) for the power
flow-based Laplacians for all operating conditions considered.

It can be observed that the maximum values of γr,k for
the unnormalized and normalized Laplacians among operating

Fig. 6. The relative eigengap, γk,rel, of L (left) and Ln (right).

conditions are approximately γL
r,k ≈ 1, and γLn

r,k ≈ 2, re-
spectively. After several simulations performed, the clustering
solutions using only k = 1 eigenvector of L yield spurious
results. In contrast, when using k ≥ 2 eigenvectors of Ln,
consistent results were obtained, aligning with findings in [13],
[17], [24], [25]. Then, γLn

r,k ≥ 2 suggests that a minimum of
k = 2 eigenvectors are needed to effectively cluster the power
network into Ck-areas.

Determining the Number of Areas. As explained in Sec-



tion III-F3, at least Ck = 2, 3 areas can be found when
employing the hierarchical spectral clustering approach (see
the dendrogram of Fig. 4).

Determining the Buses by Area. By knowing the number
of eigenvectors needed to determine the Ck-areas we seek
to find, then the spectral clustering algorithm described in
Section III-F4 can be implemented to determine the system
buses that belong to each of the Ck-areas.

1) Clustering Solution for Ck = 2: The resulting areas to
shed load for high, mid, and low demand are depicted in Fig. 7
and specified in Table I.

Fig. 7. For high, mid, and low demand operating conditions (left, center, and
right, respectively), Ck = 2 regions are identified in the IEEE 39-bus system
with the hierarchical spectral clustering technique.

It can be observed from Fig. 7 that Ck = 2 regions (A1 =
blue, and A2 = red) for high and mid demand conditions can
be effectively determined. Nevertheless, the solution obtained
for the low demand condition is not consistent. Notice that its
blue region A1 (right) has buses B20, B34 disconnected from
the rest of the buses in the region.

TABLE I
SPECTRAL CLUSTERING SOLUTION FOR Ck = 2 REGIONS FOR

HIGH, MID, AND LOW DEMAND CONDITIONS.
Operating Condition A1 A2

PF ≥ 80%Dmax
1− 14, 18, 25,
30− 32, 37, 39

15− 17, 19− 24,
26− 29, 33− 36, 38

PF ≥ 50%Dmax
1− 14, 17, 18,

25− 32, 37− 39
15, 16, 19− 24,

33− 36

PF ≥ 30%Dmax
1− 14, 20, 25− 32,

34, 37− 39
15− 19, 21− 24,

33, 35, 36

2) Clustering Solution for Ck = 3: The resulting load
shedding areas for all operating conditions are depicted in
Fig. 8 and specified in Table II.

Figure 8 shows that Ck = 3 areas (A1 = blue, A2 =
red, and A3 = green) can be effectively determined for mid-
demand conditions only. The solutions obtained for both the
high and the low-demand conditions are not consistent. Notice
that their red regions A3 (left and right) have buses B20, B34

disconnected from the rest of buses within the corresponding
regions.

Fig. 8. For high, mid, and low demand operating conditions (left, center, and
right, respectively), Ck = 3 regions are identified in the IEEE 39-bus system
with the spectral clustering technique

TABLE II
SPECTRAL CLUSTERING SOLUTION FOR Ck = 3 REGIONS FOR

HIGH, MID, AND LOW DEMAND CONDITIONS.
Operating Condition A1 A2 A3

PF ≥ 80%Dmax
1− 14, 18, 25,
30− 32, 37, 39

15− 17, 19, 21− 24,
33, 35, 36

20, 26− 29
34, 38

PF ≥ 50%Dmax
1− 3, 9, 17, 18,
25− 30, 37− 39

15, 16, 19− 24, 33− 36
4− 8, 10− 14,

31, 32

PF ≥ 30%Dmax 1− 14, 30− 32, 39
15− 19, 21− 24,

33, 35, 36
20, 25− 29,
34, 37, 38

3) Clustering Solution for Ck = 4: The resulting areas to
shed load for all operating conditions are depicted in Fig. 9
and specified in Table III. Figure 9 shows that Ck = 4 areas
(A1 = blue, A2 = red, A3 = green, and A4 = black) can be
effectively determined for all operating conditions.

Although the solution is consistent for both high and low-
demand conditions, buses B20, B34 seem to be unnecessarily
clustered into different regions as they appear to be part of
their neighboring black regions. Notice that the bus B20 has

Fig. 9. For high, mid, and low demand operating conditions (left, center, and
right, respectively), Ck = 4 regions are identified in the IEEE 39-bus system
with the spectral clustering technique.



a big load, which is served by the generator connected to bus
B34. However, the clustering solution is considered consistent.

TABLE III
SPECTRAL CLUSTERING SOLUTION FOR Ck = 4 REGIONS FOR

HIGH, MID, AND LOW DEMAND CONDITIONS.
Operating Condition A1 A2 A3 A4

PF ≥ 80%Dmax
1− 14, 18, 25,
30− 32, 37, 39

15− 17, 19, 21− 24,
33, 35, 36

26− 29, 38 20, 34

PF ≥ 50%Dmax
1− 3, 9, 18, 25,

30, 37, 39
15, 16, 19− 24,

33− 36
17, 26− 29,

38
4− 8, 10− 14,

31, 32

PF ≥ 30%Dmax 1− 14, 30− 32, 39
15− 19, 21− 24,

33, 35, 36
25− 29,
37, 38

20, 34

In the next section, we will test the proactive load-shedding
methodology for frequency stability enhancement using parti-
cle filters with the clustering solution for Ck = 4 areas.

A delay of half a second is included from the moment a
prediction is made to the moment a stage of compensation
is executed. This is consistent with similar techniques found
in literature [7]. It is assumed that the corresponding H
parameters have been estimated shortly before the start of
the test. In order to showcase the capabilities of the PF
based compensation technique and also the robustness of the
clustering solution, the selected area in each test case is
overloaded by 15% over the maximum capacity of the area.

A. Compensation for PF≥ 80%Dmax

Area A2 is selected for this test. The complete response of
the area is illustrated in fig. 10. The disturbance is applied
1 second into the simulation. As frequency starts to decline,
RoCoF thresholds are surpassed and this triggers the prediction
shown in fig. 11.

Fig. 10. Complete System Response

Fig. 11. Initial Prediction

Since the prediction suggests frequency will continue de-
clining and the RoCoF is negative, compensation calculations
are carried out. The predicted values shown in fig. 11, are used
with eq. 4 to estimate the amount of compensation required.
These values are then processed by the optimization algorithm
described in Section III-E. The first stage of compensation
takes place at 1.5 seconds as shown in fig. 12.

Fig. 12. Second Prediction

Shortly after the stage of compensation is completed, a new
prediction is made. In this case the predicted values indicate
that frequency is still on the decline, and therefore a new stage
of compensation is performed. This is illustrated in fig. 13.

Fig. 13. Third Prediction

This second stage of compensation is completed at around
2 seconds. Once again, a new prediction is made. This time,
however, frequency is expected to increase. This prediction
combined with a positive RoCoF and stage rotor angles
indicate that the system is returning to stable conditions, and
as a result further stages of compensation are canceled. The
rotor angles in this area are displayed in fig. 14 where the
machine at bus 33 is used as reference.

Fig. 14. Rotor Angle Deviation

B. Compensation for PF≥ 50%Dmax

Area A1 is selected for this test. The complete response of
the area is illustrated in fig. 15. The disturbance is applied
1 second into the simulation. As frequency starts to decline,
RoCoF thresholds are surpassed and this triggers the prediction
shown in fig. 16.

Fig. 15. Complete System Response



Fig. 16. Initial Prediction

Following the steps described in the previous test, the
prediction leads to the stage of compensation illustrated in
fig. 17.

Fig. 17. Second Prediction

A new prediction is made immediately after the stage of
compensation is completed. Since the prediction suggests that
frequency will be returning to normal ranges, the algorithm
stops after only one stage of compensation. Rotor angles with
the machine at bus 30 used as reference are shown in fig. 18.

Fig. 18. Rotor Angle Deviation

C. Compensation for PF≥ 30%Dmax

Area A3 is selected for this test. The complete response of
the area is illustrated in fig. 19. The disturbance is applied
1 second into the simulation. As frequency starts to decline,
RoCoF thresholds are surpassed and this triggers the prediction
shown in fig. 20. This is followed by a series of stages of
compensations and new predictions until a rise in frequency
is predicted in fig. 22.

Fig. 19. Complete System Response

Fig. 20. Initial Prediction

Fig. 21. Second Prediction

Fig. 22. Third Prediction

Rotor angles are depicted in fig. 23. The machine located
at bus 37 is used as reference.

Fig. 23. Rotor Angle Deviation

VI. CONCLUSIONS AND FUTURE WORK

This work presented a proactive load-shedding model based
on PMUs, Bayesian filters, and spectral clustering. Being able
to predict an unstable condition before the system enters
a critical state makes it possible to deliver an optimized
response that mitigates the impact of disturbances. Bayesian
filters were used to track the system’s frequency via PMU
measurements. As disturbances are detected predictions are
made, and these predicted quantities are then used to formulate
an optimized response. This work found that early correc-
tive actions carried out in stages often overcome challenges
presented by inaccuracies and uncertainty. The solution was
tested via simulations that involve severe operating conditions.
The scheme was able to successfully stabilize the system in
all of these cases highlighting the robustness and flexibility
of the solution. This work also addresses the limitations of
communication networks by developing a solution based on



a distributed architecture. This alleviates concerns related to
the transmission of large amounts of data. Additional case
studies and comparisons with contemporary solutions found
in literature can be found in [8]. On the one hand, the hierar-
chical spectral clustering method swiftly identifies clustering
solutions within a short time frame of 9ms, which aligns
with previous research findings [16], [24], [25], [30]. The
results illustrated in Figures 7 to 9 suggest that fewer areas are
consistently determined under high-demand conditions, while
more areas need to be identified under low-demand conditions,
which underscores the importance of avoiding fixed areas, as
it could lead to instability issues as highlighted in [31]. Special
attention should be given to low-inertia power systems [32].
This observation aligns with reliability assessments of power
systems, where systems tend to exhibit higher reliability during
periods of elevated demand due to the increased availability of
generating units, compared to periods of low demand, which
often rely on fewer and more dispersed generators to meet
power requirements. While the areas identified for proactive
load shedding are clearly delineated through the natural hi-
erarchy of the similarity matrix, it may be computationally
intensive for real-world power systems. Consequently, one of
the future challenges of this research is to develop methods
to accelerate the computation of the similarity matrix when
employing hierarchical spectral clustering. Future research will
also concentrate on validating the approach on larger systems
and enhancing the efficiency and cohesiveness of the scheme
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