



Wednesday July 19th 2023, Spatial Statistics 2023 Boulder, Colorado

## What geostatistical model

## for uncertainly geolocated

## **Energy Performance Certificates (EPC)?**

### Marc Grossouvre<sup>1</sup>, supervised by Didier Rullière<sup>2</sup> and Jonathan Villot<sup>3</sup>

<sup>1</sup>U.R.B.S. SAS, marcgrossouvre@urbs.fr <sup>2</sup>Mines Saint-Etienne - LIMOS - Univ Clermont Auvergne <sup>3</sup>Mines Saint-Etienne - U.R.B.S. SAS What geostatistical model for uncertainly geolocated Energy Performance Certificates (EPC)?

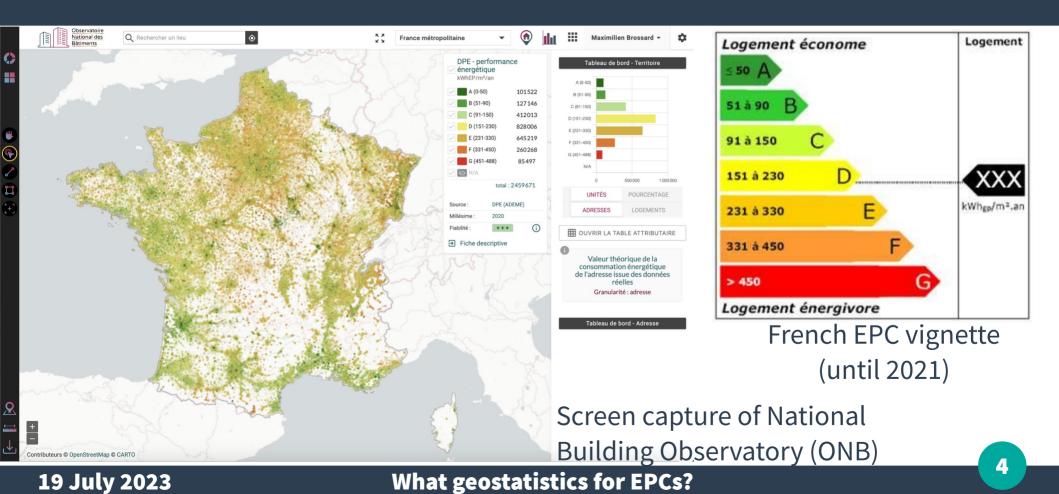
1. Uncertain label, uncertain geolocation

2. Integrate these uncertainties into a geostatistical model

3. Data processing and model implementation in R

19 July 2023

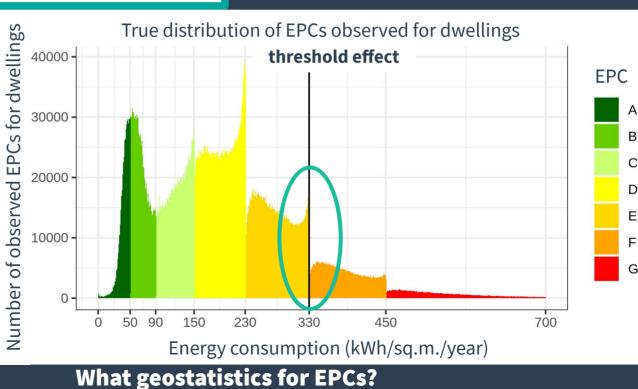
What geostatistical model for uncertainly geolocated Energy Performance Certificates (EPC)?




1. Uncertain label, uncertain geolocation

2. Integrate these uncertainties into a geostatistical model

3. Data processing and model implementation in R


## ~2 millions EPCs are collected each year



# Uncertain label: human error, threshold, missing values

A threshold is a regulatory value bounding the domain associated with an EPC label. **The threshold effect encompasses phenomena that occur around this value.** 

Moreover... EPC changes over time, EPC of a dwelling ≠ EPC of a building



**19 July 2023** 

# Uncertain geolocation: address, building, land plot

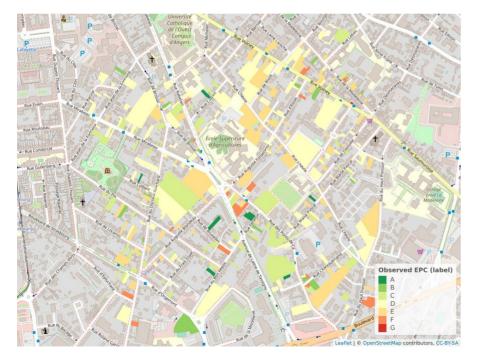
street\_name 28 & 30 Rue Gabriel Vicaire \nRue Prosper Convert

Understand: 28 & 30 rue Gabriel Vicaire, at the corner of rue Prosper Convert




#### 19 July 2023

# An address can be associated with a land plot but it is difficult to differentiate addresses on the same land plot


- 14, 22, 30, 40, 52 impasse des Acacias
- 5 row houses,
- 1 land plot,

- Observations : 3 labels E, 2 labels D.
- We do not know where are the observed dwellings on the land plot.



# A lot of missing values

### An urban neighbourhood



- About 15% of addresses have at least 1 observed dwelling
- What can we say about unobserved addresses?
- Can we detect "energy sieves" (labels F and G)?

#### 19 July 2023

What geostatistical model for uncertainly geolocated Energy Performance Certificates (EPC)?

1. Uncertain label, uncertain geolocation

2. Integrate these uncertainties into a geostatistical model

3. Data processing and model implementation in R

2. Integrate these uncertainties into a geostatistical model

**Issue:** How to predict EPCs at the address level without physical inspection?

**Hypothesis:** EPCs can be modelled and predicted as geospatial data rather than relying on thermal engineering.

**Scientific challenge:** We need to handle uncertainty of both the positioning of observations and their values.

2. Integrate these uncertainties into a geostatistical model

**Issue:** How to predict EPCs at the address level without physical inspection?

**Hypothesis:** EPCs can be modelled and predicted as geospatial data rather than relying on thermal engineering.

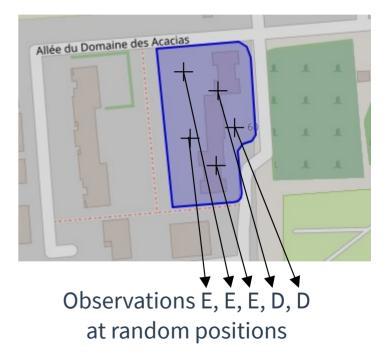
**Scientific challenge:** We need to handle uncertainty of both the positioning of observations and their values.

19 July 2023

# Observations are <u>mixture distributions</u> of energy consumptions

### Each dwelling has a random energy consumption

### AND


Each observed EPC is associated with a random dwelling among the dwellings on the land plot.

### THEREFORE

Each observed EPC is

a <u>random</u> value associated with a <u>random</u> position.

What can we do with that?





# Modelling EPCs as a mixture distribution.

### Let:

x a point on the territory

Y(x) the energy consumption per square meter of living space at x g a land plot

 $X_g$  a random position on g

Then  $Y(g) = Y(X_g)$  is the energy consumption per square meter of living space associated with the land plot g.

Observed consumptions make an observation vector

$$\underline{\mathbf{Y}} = (Y(g_1), \dots, Y(g_n))^T.$$

## **Covariance between 2 mixture distributions**

#### Denote:

 $\begin{aligned} k(x, x') &= \operatorname{Cov}\left[Y(x), Y(x')\right] \\ \mu(x) &= \mathbb{E}\left[Y(x)\right]. \end{aligned}$ 

$$\operatorname{Cov}\left[Y(g), Y(g')\right] = \mathbb{E}\left[k(X_g, X_{g'})\right] + \operatorname{Cov}\left[\mu(X_g), \mu(X_{g'})\right]$$

 $\operatorname{Var}\left[Y(g)\right] = \mathbb{E}\left[k(X_g, X_g)\right] + \operatorname{Var}\left[\mu(X_g)\right]$ 

Notations: x point g land plot Y(x) random energy consumption at x  $X_g$  random position on g  $Y(X_g) = Y(g)$  random energy consumption at g $\underline{Y}$  observations

#### 19 July 2023

### **Covariance between 2 mixture distributions**

#### Denote:

$$k(x, x') = \operatorname{Cov} [Y(x), Y(x')]$$
  

$$\mu(x) = \mathbb{E} [Y(x)].$$
  

$$\operatorname{Cov} [Y(g), Y(g')] = \mathbb{E} [k(X_g, X_{g'})] + \operatorname{Cov} [\mu(X_g), \mu(X_{g'})]$$
  

$$\operatorname{Var} [Y(g)] = \mathbb{E} [k(X_g, X_g)] + \operatorname{Var} [\mu(X_g)]$$

Notations: x point g land plot Y(x) random energy consumption at x  $X_g$  random position on g  $Y(X_g) = Y(g)$  random energy consumption at g $\underline{Y}$  observations

#### 19 July 2023

# The best linear unbiased predictor (BLUP): Kriging of mixture distributions

For an unobserved plot g, a predictor is:  $\hat{Y}(g) = \sum_{i=1}^{n} \alpha_i Y(g_i) = \boldsymbol{\alpha}^T \underline{\mathbf{Y}}.$ 

Denote:

**K** the covariance matrix of  $\underline{\mathbf{Y}}$ 

 $\mathbf{h}_g$  the covariance vector between  $\underline{\mathbf{Y}}$  et Y(g).

If 
$$\mathbb{E}[\underline{\mathbf{Y}}] = 0$$
, the predictor is:  $\boldsymbol{\alpha}^* = \mathbf{K}^{-1}\mathbf{h}_g$ 

Also possible if  $\mathbb{E}[\underline{\mathbf{Y}}] \neq 0$ . The prediction error can be estimated too.

Grossouvre M., Rullière D., Villot J., Spatial interpolation using mixture distributions: A Best Linear Unbiased Predictor, 2023, preprint https://hal.science/hal-03276127/

#### 19 July 2023

What geostatistical model for uncertainly geolocated Energy Performance Certificates (EPC)?

1. Uncertain label, uncertain geolocation

2. Integrate these uncertainties into a geostatistical model

3. Data processing and model implementation in R

19 July 2023

# Implementing mixture Kriging raises technical questions (1/2)

$$\operatorname{Cov}\left[Y(g), Y(g')\right] = \mathbb{E}\left[k(X_g, X_{g'})\right] + \operatorname{Cov}\left[\mu(X_g), \mu(X_{g'})\right]$$

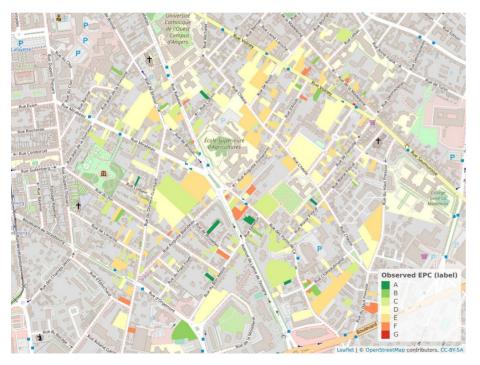
If  $X_g, X_{g'}$  are discrete uniform:

$$\operatorname{Cov}[Y(g), Y(g')] = \frac{1}{[g][g']} \sum_{(x,x') \in g \times g'} k(x, x')$$

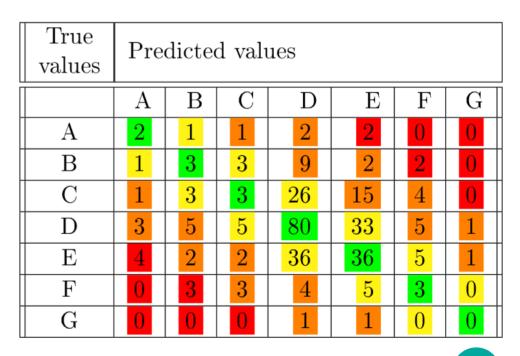
⇒ Number of point to point covariances to compute  $\propto$  (density of points)<sup>2</sup>. + The covariance kernel has an exponential term which is costly. ⇒ Covariance kernels are implemented in C++, RcppArmadillo.

#### 19 July 2023

# Implementing mixture Kriging raises technical questions (1/2)


The observations' covariance matrix must be inverted.

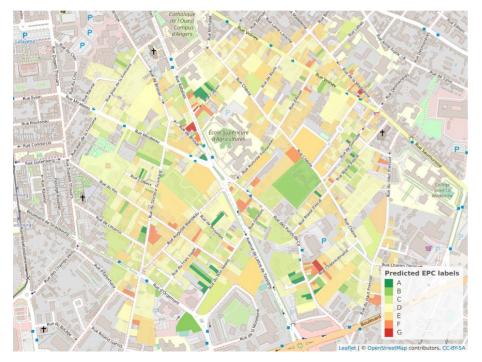
 $\implies$  Difficult to learn from a large number of observations


We are trying to combine a family of sub-models giving the same predictions as a large model using compact support kernels (under research).

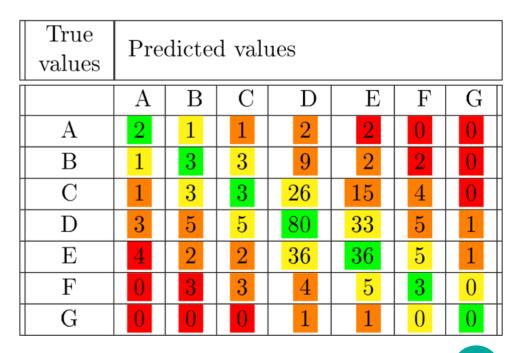
## Results of a first test on an urban area

### **Observations**




### **Confusion matrix**




#### 19 July 2023

## Results of a first test on an urban area

### Predictions

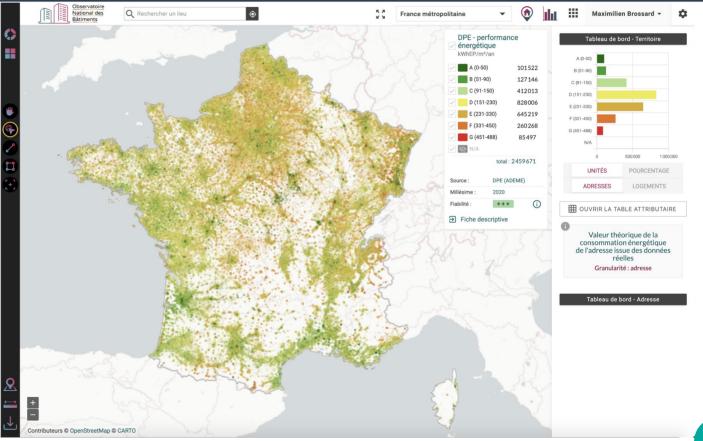


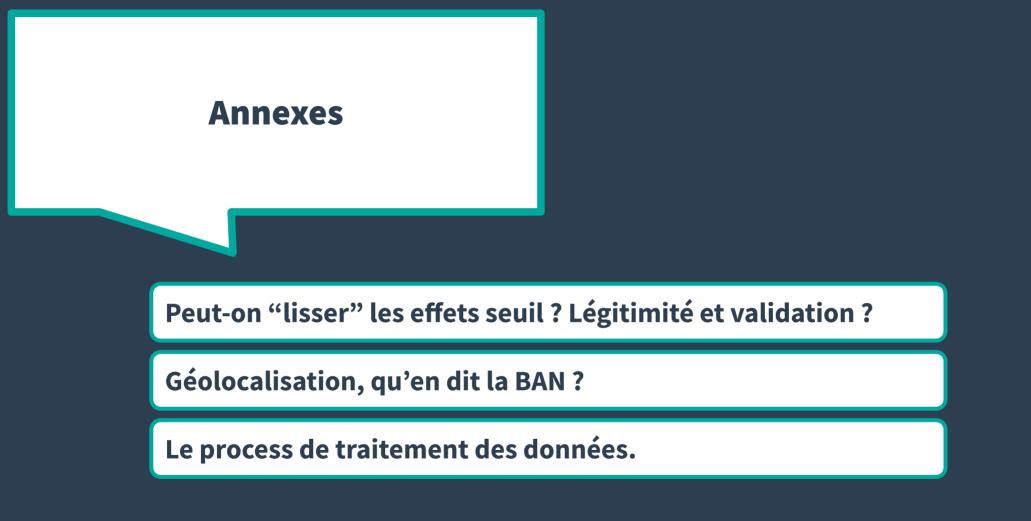
### **Confusion matrix**



#### 19 July 2023

# Conclusion EPC can be regarded as a geolocated data


- It is possible to construct a geostatistical model instead of attempting to estimate physical variables.
- The Mixture Kriging model accommodates both the uncertainties of observed locations and values.
- With 3 variables (latitude, longitude, age), we achieve as good results as KNN with 40 variables.

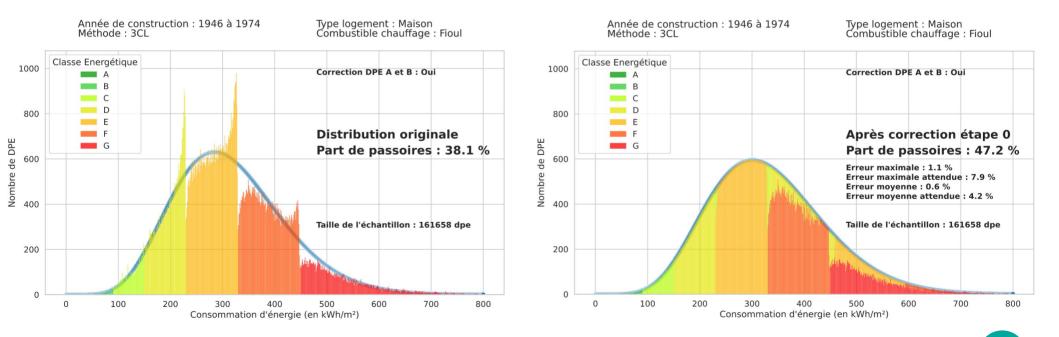

## Thanks for listening. Merci de votre attention.

Access all open data that have been discussed in this presentation with the Observatoire National des Bâtiments

www.imope.fr/onb.html

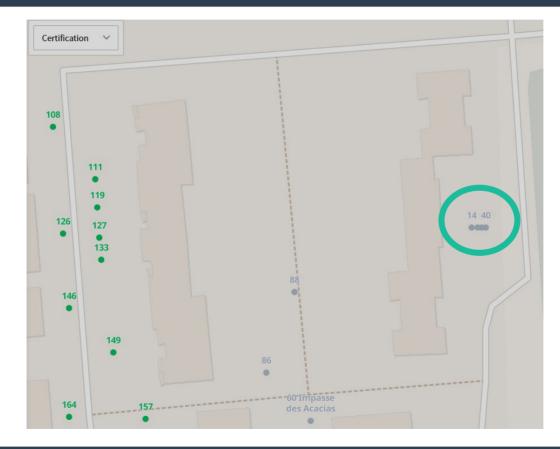
**19 July 2023** 





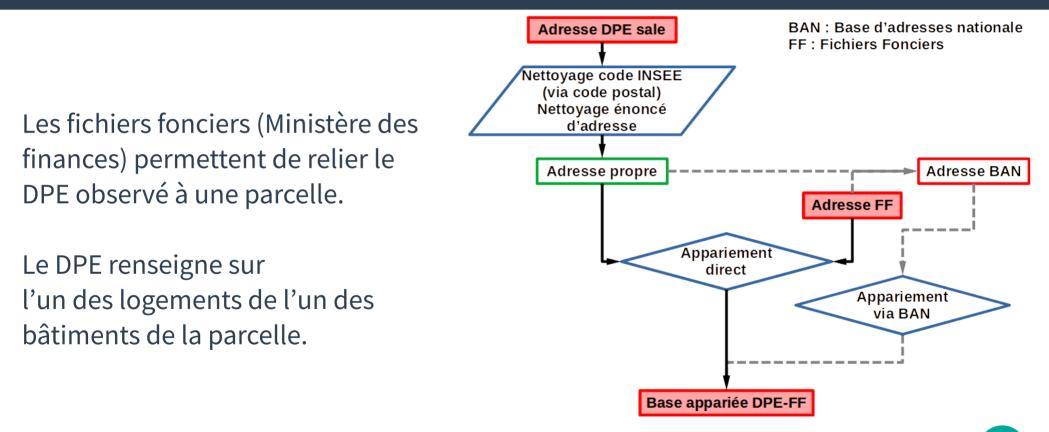

19 July 2023

# Peut-on "lisser" les effets seuil ? Légitimité et validation ?


#### Source : Alternatives énergétiques, Yassine Abdelouadoud

#### Que mesure-t-on?




#### 19 July 2023

# Géolocalisation, qu'en dit la Base d'Adresses Nationale (BAN) ?





# Il faut <mark>apparier</mark> les DPE aux fichiers fonciers pour les fiabiliser



#### 19 July 2023