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Efficient Bayesian linear models for a large
number of observations

Hassan Maatouk, Didier Rullière and Xavier Bay

AbstractBayesian linearmodels are widely used as efficient approaches for nonpara-
metric function estimation. In this paper, we present aBayesianmethod for generating
finite-dimensional linear models that can handle large datasets. This method is based
on an efficient Markov chain Monte Carlo algorithm. The advantage of this approach
is that sampling is performed before conditioning, rather than after. This enables the
use of efficient samplers when the prior covariancematrix exhibits special properties,
such as being Toeplitz, block-Toeplitz, or sparse. Numerical examples are provided
to illustrate the performance of the proposed method.

1 Introduction

Gaussian processes (GPs) are commonly used as effective prior distributions over
function spaces. They are frequently employed in tasks like regression and classi-
fication in machine learning [16, 19]. Over the years, GPs have gained popularity
as a Bayesian tool, finding applications across diverse fields such as geosciences,
physics, biology, chemistry, engineering, finance, and machine learning [1, 3, 4, 18].

In this paper, Bayesian linear models with Gaussian random weights for a large
number of observations are considered. In this context, direct approaches based
on Cholesky factorization and eigendecomposition [10] become computationally
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prohibitive when handling large datasets, as their computational complexity grows
cubically with the number of observations. To address this problem, we propose the
use of a Markov Chain Monte Carlo (MCMC) method. This approach builds upon
the efficient Elliptical Slice Sampling (ESS) algorithm [15] and requires only the
evaluation of the likelihood function at each MCMC iteration. The main advantage
of this method is that sampling is performed before conditioning rather than after.
Consequently, if the prior covariance (precision) matrix admits special structures,
such as Toeplitz or block-Toeplitz (i.e., when evaluating stationary product kernels on
a regularly spaced grid) [20, 21], highly efficient samplers can be employed such as
the Fast Fourier Transform (FFT) [20] and the fast large-scale approaches developed
in [12, 13, 14]. In the numerical examples of this paper, a comparison is conducted
between Cholesky factorization and the highly efficient LS.KLE sampler developed
in [13] for generating the prior.

The paper is organized as follows: in Sect. 2, GP regression is briefly reviewed.
Section 3 is divided into two parts. The first part revisits direct approaches for
generating linear models, while the second part develops a highly efficient MCMC
algorithm tailored for large datasets. Section 4 is dedicated to numerical examples.

2 Gaussian process regression review

In this paper, we consider the following regression problem with Gaussian noise,
where n vectors xi P Rd and n responses yi P R are observed from the model

yi “ f pxiq ` ε i, i “ 1, . . . , n. (1)

We assume that ε i
i.i.d.
„ N p0, σ2q, is an additive i.i.d. zero-mean Gaussian noise

with a constant variance of σ2. Here, f : X Ă Rd ÝÑ R represents an unknown
function that generates the observed target values y “ ry1, . . . , yns

J P Rn . The
sequence tpxi, yiqu represents the training samples. The set X is a compact subset
of Rd and without loss of generality, we suppose that X is the unit hypercube.

A GP is a stochastic process, i.e., a collection of random variables, such that every
finite subset of these variables follows a multivariate normal (MVN) distribution. A
GP is fully specified by its mean function µp¨q and covariance function kp ,̈ ¨q, where
the covariance function plays a crucial role in controlling the smoothness of the GP
sample paths. If we denote this GP by Z , then we can write

Z „ GPpµp¨q, kp ,̈ ¨qq,

where the mean and covariance functions are defined as:

µpxq “ ErZpxqs, @x P X;
kpx, x1q “ Cov pZpxq, Zpx1qq , @x, x1 P X.
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Additionally, Zp¨q “ µp¨q ` Y p¨q, where Y is a zero-mean GP, i.e., Y „ GPp0, kq.
In the regression framework (1), GPs are widely recognized as efficient prior distri-
butions over function spaces [19]. Conditionally on data, we have

tY p¨q|Y pXq ` ε “ yu „ GP
´

rµp¨q, rkp ,̈ ¨q
¯

,

where ε “ rε1, . . . , εns
J „ N p0, σ2Inq and the conditional mean function rµ and

covariance function rk are given by

rµpxq “ E rY pxq|ys “ kpx,XqJ
`

kpX,Xq ` σ2In
˘´1

y; (2)
rkpx, x1q “ kpx, x1q ´ kpx,XqJpkpX,Xq ` σ2Inq´1kpx1,Xq;

with In the n ˆ n identity matrix, X “ rx1, . . . , xns
J P Rnˆd the design matrix,

kpX,Xq the covariancematrix of theGaussian vectorY pXq P Rn and kpx,Xq the vec-
tor of covariance betweenY pxq andY pXq, i.e., kpx,Xq “ rkpx, x1q, . . . , kpx, xnqsJ.

3 Finite-dimensional Bayesian linear models

In this section we assume that the parent GP tY pxquxPX is approximated by the
following Bayesian linear model with Gaussian random weights, called the weight-
space view of GPs [19, Sect. 2.1.1]

qY pxq “ ΦpxqJη, @x P X,

where η P Rm is a zero-mean Gaussian vector with positive-definite covariance ma-
trix τ2K , with τ2 the signal variance parameter, andΦ is a sequence of deterministic
basis functions such that Φpxq P Rm , for any x P X. For simplicity of notations, we
denote by Φ “ ΦpXq P Rnˆm , where X is the design matrix. Therefore, the set of
noisy data tqY pXq ` ε “ yu can be written in matrix form as follows:

Φη ` ε “ y,

where ε “ rε1, . . . , εns
J is an independent zero-mean Gaussian noise vector, i.e.,

ε „ N p0, σ2Inq.

3.1 Direct sampling approaches

In this section, we briefly review the direct classical approaches for generating the
posterior distribution tη|Φη`ε “ yu. On the one hand, according to [19, Sect. 2.1.1]
and Bayes’s rule, we have the following posterior distribution:
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ppη|Φ, yq :“
ppy|Φ, ηqppηq

ppy|Φq
, (3)

where ppy|Φq is the normalizing constant, also known as the marginal likelihood.
It is independent of η and given by

ppy|Φq :“
ż

Rm
ppy|Φ, ηqppηqdη.

By developing the likelihood and prior in (3), we obtain

ppη|Φ, yq 9 exp
ˆ

´
1

2σ2 ry ´Φηs
Jry ´Φηs

˙

exp
ˆ

´
1
2τ2

ηJK´1η

˙

(4)

9 exp
ˆ

´
1
2
rη ´ qµsJ

“

ΦJΦ{σ2 ` K´1{τ2
‰

rη ´ qµs

˙

.

Consequently, the posterior distribution tη|Φη ` ε “ yu „ N pqµ, qKq, where
#

qµ “ qKΦJy{σ2;
qK “

`

ΦJΦ{σ2 ` K´1{τ2
˘´1

.
(5)

On the other hand, based on the predictive equations in (2),we have tη|Φη ` ε “ yu „

N prµ, rKq, where [10, Proposition 1]
"

rµ “ τ2pΦKqJpτ2ΦKΦJ ` σ2Inq´1y;
rK “ τ2K ´ τ4pΦKqJpτ2ΦKΦJ ` σ2Inq´1ΦK .

(6)

Comments on the two direct approaches in (5) and (6)

The two approaches in Equations (5) and (6) are equivalent. However, their compu-
tational complexities are different. In Equation (6), the matrix inversion depends on
the number of training samples n, while in the approach in (5), it depends on the
dimension m of the Gaussian vector η. As a result, for a fixed m, the approach in
(5) is more efficient for large datasets n. It is worth noting that the two approaches
(5) and (6) are based on sampling after conditioning rather than before. Therefore,
if the prior covariance matrix K exhibits a particular structure such as Toeplitz or
block-Toeplitz [20, 21] or banded and sparse [6], this property will be lost in the sam-
pling step. Finally, let us mention that generating a Gaussian vector can be achieved
using Cholesky factorization or eigendecomposition [10], with the computational
complexity growing cubically as a function of the dimension m [7].

In the following section, we present an alternative approach for generating sam-
ples from the posterior distribution tη|Φη ` ε “ yu, where sampling is performed
before conditioning rather than after. Consequently, this approach is well-suited for
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handling high-dimensional spaces (when the prior covariance matrix K exhibits
special properties) and large datasets.

3.2 Alternative sampling approaches

Due to its computational complexity, which grows cubically, direct approaches be-
come infeasible for generating the posterior distribution tη|Φη` ε “ yu when m is
significant large (i.e., m " 1, 000), regardless of whether the dataset is small or large.
In this section, we present a different approach to address this issue. Precisely, we
explain how MCMC approaches can handle the problem of generating the posterior
distribution tη|Φ, yu when both m and n are large. The posterior probability density
function (pdf) in (4) is proportional to the product of a likelihood function and a
zero-mean Gaussian prior:

ppη|Φ, yq 9 exp
ˆ

´
1

2σ2 ry ´Φηs
Jry ´Φηs

˙

looooooooooooooooooooomooooooooooooooooooooon

likelihood

exp
ˆ

´
1
2τ2

ηJK´1η

˙

loooooooooooomoooooooooooon

Gaussian prior

“ LpηqN pη; 0, τ2Kq.

The logarithm of the likelihood function Lpηq can be expressed as follows:

logrLpηqs “ ´
1

2σ2 }y ´Φη}
2. (7)

The logarithm function in (7), which has a computational complexity of orderOpnNq
will be evaluated at each MCMC iteration. In this context, sampling from (4) can be
performed using Metropolis-Hastings (MH) proposals [5, 16]:

η1 “ ρζ `
b

1´ ρ2η, ζ „ N p0, τ2Kq, (8)

where ρ P r´1, 1s is a step-size parameter, η is the current state, and η1 is the pro-
posal state. Recall that the MH acceptance ratio, α “ min t1, Lpη1q{Lpηqu depends
solely on the likelihood ratio and is independent of ρ. Furthermore, this method is
straightforward to implement and can be readily applied to a wide range of models
with Gaussian priors.

The ESS relies on the parametrization ρ “ sinpθq in (8), offering an adaptive and
automated approach to tuning the step-size parameter ρ, which ensures acceptance
at every step. As a result, the MH proposal in (8) is reformulated as follows:

η1 “ sinpθqζ ` cospθqη, ζ „ N p0, τ2Kq,

where the angle θ is uniformly generated from a rθmin, θmaxs interval which is shrunk
exponentially fast until an acceptable state is reached. For a given value of θ, a uniform
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random number is generated and compared with the likelihood ratio Lpη1q{Lpηq. If
the proposal η1 is rejected, one shrinks the bracket of θ, and continues this process
until acceptance. Detailed guidelines for shrinking the bracket are provided in [15].

Comments on the MCMC approach

Unlike direct methods, the key advantage of the MCMC approach described in this
section is its ability to avoid matrix inversion. Moreover, the sampling process is
carried out prior to conditioning, rather than after. Consequently, highly efficient sam-
plers can be employedwhen the prior covariancematrixK exhibits special structures,
such as Toeplitz or block-Toeplitz [20]. In Sect. 4, we investigate the performance
of the developed approach denoted linGP-ESS in terms of computational running
time when using a highly efficient sampler for the prior. Furthermore, the MCMC
method introduced in this section is capable of addressing more complex posterior
inference (complex likelihood function), such as when additional shape constraints
are required [11]. However, this sampling method remains an approximation of the
posterior distribution. Moreover, it requires evaluating the log-likelihood function
(7) at each MCMC iteration.

4 Numerical performance

In this section, we investigate the performance of the developed approach for large
datasets. To this end, we consider the finite-dimensional Bayesian linear model with
Gaussian random weights proposed by [9]. This approach has gained significant
attention for its ability to incorporate a wide range of shape constraints across the
entire domain, as well as for its strong theoretical foundation [2, 8]. For simplicity,
we recall this approach in the one-dimensional case. Let tt ju denote a sequence of
m ě 2 equally spaced knots on X, i.e., 0 “ t1 ă . . . ă tm “ 1. Then,

qY pxq :“
m
ÿ

j“1

η jφ jpxq “ ΦpxqJη, x P X, (9)

where η “ rη1, . . . , ηms
J is a zero-mean Gaussian vector with positive-definite

covariance matrix τ2K P Rmˆm , and Φp¨q “ rφ1p¨q, . . . , φmp¨qsJ P Rm , with φ j the
compactly supported basis function associated to the knot t j . Thus, we have for any
j P t2, . . . ,m ´ 1u

φ jpxq :“

#

1´ |x´t j |

t j`1´t j
if x P rt j´1, t j`1s;

0 otherwise.

Additionally, we define φ1pxq :“ 1´ pm ´ 1q|x|, if x P rt1, t2s, and zero otherwise.
Similarly, for j “ m, we define φmpxq :“ 1 ´ pm ´ 1q|x ´ 1|, if x P rtm´1, tms,
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and zero otherwise. It is worth noting that, in this case, if a stationary covariance
kernel, such as, the Matérn family of covariance functions, is used, then the prior
covariance matrix K exhibits a Toeplitz structure [20, 21]. This property is explored
in the numerical examples presented in this section.

Now, we consider the statistical problem of recovering an unknown function
f : X ÝÑ R from the training samples tpxi, yiquni“1. The following target function
proposed by [17] is considered

f pxq “
1

r1` p10xq4s
`

1
2
exp

 

´100px ´ 0.5q2
(

, x P X. (10)

This function is known to be nonnegative onX, but this constraint is not incorporated
into the model developed in this section, as it falls outside the scope of the paper.
This function is particularly relevant in our case because it exhibits significant
variation. Consequently, a substantial number of observations are required to achieve
a satisfactory approximation. The training samples are obtained as follows: the
covariates txiu are sampled uniformly over X, and the observed values tyiu were
obtained using model (1) with the target function f defined in (10) and a standard
deviation of σ “ 0.1. The positive-definite covariance matrix τ2K of the Gaussian
vector η is obtained using the stationary Matérn family of covariance functions

kpx, x1q “ τ2
21´ν

Γpνq

ˆ

?
2ν
`
|x ´ x1|

˙ν

Bν

ˆ

?
2ν
`
|x ´ x1|

˙

, (11)

for any x, x1 P X, where Γp¨q is the Gamma function and Bνp¨q denotes the modified
Bessel function of the second kind of order ν. It is worth noting that a process with
the Matérn kernel of order ν admits sample paths that are rν´1s times differentiable
[19, Sect. 4.2.1].
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Fig. 1 Bayesian linear model using ESS with Cholesky sampler prior (dashed curve) and with
LS.KLE sampler prior (solid curve). The computational running time of generating 1,000 posterior
sample paths as a function of the number of samples (left) and of the dimension m (right)

In Fig. 1, theMatérn covariance function with a smoothness parameter ν “ 5{2 is
employed (11), where the length-scale parameter ` is chosen such that the correlation
at the maximum possible separation between the covariates equals 0.05.We illustrate
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the computational runtime required to generate 1,000 posterior sample paths as a
function of the number of samples (left) and the dimensionality (right). The dashed
curve represents the runtime in seconds for the developed approach when using the
Cholesky sampler to generate the prior, while the solid curve represents the runtime
when using the LS.KLE sampler [13]. As expected, the runtime of the developed
approach increases linearly with both the number of samples, n, and the dimension,
m. Moreover, the Cholesky factorization outperforms the LS.KLE sampler for low
values of m, whereas the LS.KLE sampler is more efficient for high values of m.

5 Conclusion

In this paper, Bayesian linear regression models for a large number of observations
are considered. Direct approaches based on Cholesky factorization and eigende-
composition become computationally prohibitive when applied to large datasets.
To address this issue, we present an efficient Markov Chain Monte Carlo (MCMC)
algorithm based on Elliptical Slice Sampling (ESS), which requires only the eval-
uation of the likelihood function at each MCMC iteration. The main advantage of
this approach is that sampling is performed before conditioning rather than after.
This enables the use of highly efficient methods in the sampling procedure when
the prior covariance matrix exhibits special structures, such as Toeplitz, banded and
sparse. The effectiveness of this approach is demonstrated using synthetic data in
the context of nonparameteric function estimation.
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