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Preface

Nonlinear functional analysis is a new area that was born and has matured from abundant research
developed in studying nonlinear problems. In the past thirty years, nonlinear analysis has undergone
rapid growth; it has become part of the mainstream research fields in contemporary mathematical
analysis. It is now an important field of study in both pure and applied mathematics. Many nonlinear5
analysis problems have their roots in geometry, astronomy, fluid and elastic mechanics, physics,
chemistry, biology, control theory, image processing, optimization, game theory and economics.
Their development provided nonlinear functional analysis with new concepts, tools and theories
that enriched the subject considerably. Nowadays nonlinear functional analysis is a well established
mathematical discipline, which is characterized by a remarkable mixture of analysis, topology and10
applications. It is exactly the fact that the subject combines in a beautiful way these items that makes
it attractive to mathematicians. The notions and techniques of nonlinear functional analysis provide
the appropriate tools to develop more realistic and accurate models describing various phenomena.
Today the more theoretically inclined nonmathematician (engineer, economist, biologist or chemist)
needs a working knowledge of at least a part of nonlinear analysis in order to be able to conduct a15
complete qualitative analysis of their models. Of course actually the subject is vast and it is not
possible to include in a book all its theoretical and applied parts. Thus, in this manuscript, we have
selected some techniques and applications where we have been working recently. We have focused
essentially on two topics which are pertinent to evolution equations and boundary value problems:
Accretive operators and Fixed point theory.20

The theory of generation of semigroups of linear contractions, which is the basis of the theory
of evolution equations governed by linear operators, was developed by E. Hille and K. Yosida in
1948 and by W. Feller, I. Miyadera and R. S. Phillips for the general case. Theorems of generation
of semigroups of Hille-Yosida and Lumer-Phillips and the Hille-Yosida exponential formula are
presented. The theory of evolution equations governed by accretive operators started in the late25
1960s by the works of Y. Komura who established a generation theorem of nonlinear semigroups in
a Hilbert space in 1967. Afterwards, in 1971, the theory was extended to general Banach spaces with
the seminal work by M. G. Crandall and T. Liggett. We present an account of various aspects of the
(𝑚-)accretive operators theory (old and recent results). The exponential formula of M. G. Crandall
and T. Liggett and the generation theorem for accretive operators in Banach spaces are established.30
The case of quasi-accretive operators is also considered. Crandall-Liggett’s generation result is
applied to discuss the well-posedness of Cauchy problems (existence uniqueness of solutions and
continuous dependence of the initial data of the solutions) governed by accretive operators. The
concepts of mild, weak and strong solutions are discussed. These results are applied to concrete
evolution problems arising in dynamic of population and neutron transport theory.35

For stationary problems, the fixed point theory plays a crucial role because, in general, the
solutions of such problems can be expressed as fixed points of operators derived from the problems.
We present the remarkable Banach’s fixed point theorem known as the Banach contraction principle.
It is fundamental in fixed point theory and it is a simple tool in establishing existence and uniqueness
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results for functional and operator equations. In the literature they are numerous generalizations of
Banach’s fixed point theorem for various kind of contractive mappings (we refer, for example, to
the works by E. Rakotch, V. M. Sehgal, D.W. Boyd and J. S. W. Wong, M. Edelstein, L. Janos, A.
Meir and E. Keeler, R. Kannan, S. Reich, D. Wardowski, S. P. Singh, L. B. Ciric, Y. Liu and Z. Li,
T. Suziki, etc.). We discuss the fixed point property for nonexpansive mappings in some classes of 5
Banach spaces such as Hilbert spaces, reflexive Banach spaces with the Opial property, uniformly
convex Banach spaces, reflexive Banach spaces with normal structure. A detailed discussion of
fixed points for 𝜙-expansive mappings and the zeros of 𝑚-accretive mappings is presented.

A detailed exposition of topological fixed point theory for the strong as well as the weak
topology is given. For the strong topology, the classical results such as Brouwer’s fixed point 10
theorem, Schauder’s fixed point theorem, Darbo’s fixed point theorem and Sadovskii’s fixed point
theorem for set contractive mappings (with respect to a measure of noncompactness) are presented.
Afterwards, some recents results of Dardo-Sadovskii’s type are discussed. For the weak topology,
we start with the Tychonoff fixed points theorem in a Hausdorff locally convex topological vector
space and its formulation in Banach spaces equipped with the weak topology together with its 15
extension for weakly sequentially mappings in metrizable locally convex topological vector spaces.
We introduce the classes of ws-compact and ww-compact operators and derive some results related
to them. Various fixed point theorems of Dardo-Sadovskii’s type for set contractive mappings
(with respect to a measure of weak noncompactness) are shown. Afterwards, we present a fixed
point theorems of Schaefer’s type and Leray-Schader’s type. Next, fixed points results for sum of 20
mappings in bounded sets, unbounded sets and in Banach algebras are discussed. These results
are applied to concrete boundary value problems arising in dynamic of population and neutron
transport theory.

The book consists in eight chapters. Chapter 1 collets preliminary ideas and gathers most of
definitions and concepts which will be needed throughout the book, i.e. elements of topological 25
linear vector spaces, linear operators theory, weak topology, geometry of Banach spaces, Bochner
integral, duality mapping, etc. In order to avoid permanent referrals to other works, we give
definitions and precise statements of many results of functional analysis.

In Chapter 2 we expose an introduction to the theory of C0-semigroups for linear operators.
We introduce the concepts such as, the infinitesimal generator, semigroup of contractions, Yosida 30
approximation, exponential formula, required in Chapters 3 and 4. Theorems of generation
(Hille-Yosida’s theorem and Lumer-Phillips’s theorem) are established.

Chapter 3 deals with the concept of accretive operators in Banach spaces. We give the main
properties of accretive operators and m-accretive operators. We present a proof of Crandall-Liggett’s
exponential formula. We close this chapter by introducing the class of quasi-accretive operators. 35

In Chapter 4, we deal with abstract Cauchy problems governed by accretive operators. We
discuss existence and uniqueness of (strong, integral, weak, mild) solutions to both homogeneous
and inhomogeneous Cauchy problems as well as the relationship between them. We end this
chapter by discussing abstract Cauchy problems governed by quasi-accretive and m-quasi-accretive
operators and derive some of their elementary properties. 40
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In Chapter 5, we present several applications of general theory to nonlinear Cauchy problems
governed by m-accretive or m-quasi-accretive operators illustrating the ideas and general existence
theory developed in the previous chapter.

Chapter 6 is dedicated to the metric fixed point theory. The first part is concerned with the
Banach contraction principle and some of its generalizations. In Sections 6.5 we have gathered5
some results about the fixed point property for nonexpansive mappings in some classes of Banach
spaces. Section 6.6 is devoted to fixed point properties of 𝜙-expansive mappings while Sections
6.7 and 6.8 treat with zeros of 𝑚-accretive and 𝜙-expansive operators. The results of the last three
sections of this chapter are recent.

In Chapter 7, we consider the topological fixed point theory in normed spaces. Section 7.2 is10
concerned with the Brouwer and the Schauder fixed point theorems while Section 7.3 is dedicated
to study set contractive mappings with respect to a measure of noncompactness. In addition to
the classical Darbo’s and Sadovskii’s theorems we present some recent results of Darbo’s and
Sadovskii’s type. In Section 7.4 we give two recent results concerning the existence of approximate
fixed point sequence for mappings 𝑓 such that 𝐼 − 𝑓 is 𝜙-expansive. In Section 7.5 we present15
Thychonoff’s fixed point theorem and its formulation for weakly sequentially maps. We introduce in
Section 7.6 the classes of ws-compact and ww-compact mappings. In Sections 7.7, 7.8 and 7.10 the
concept of measure of weak noncompactness is considered and we give some fixed point results for
set contractive mappings with respect to a measure of weak noncompactness. In Section 7.11 our
goal is to present some fixed point theorems of Leray-Schauder’s type for the weak topology while20
Sections 7.12 deals with fixed point theorems for sum of mappings involving the weak topology in
bounded as well as unbounded sets. The results presented in Sections 7.11 and 7.12 are recent.

In Chapter 8, we present some examples of nonlinear boundary value problems to illustrate the
field of applications of the results presented in Chapters 6 and 7.

Valencia, June 2022 Jesus Garcia-Falset25

Clermont-Ferrand, June 2022 Khalid Latrach
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