N

N

Bayesian linear models for large datasets: Markov chain
Monte Carlo or Matheron’s update rule
Hassan Maatouk, Didier Rulliere, Xavier Bay

» To cite this version:

Hassan Maatouk, Didier Rulliere, Xavier Bay. Bayesian linear models for large datasets: Markov
chain Monte Carlo or Matheron’s update rule. 2025. hal-04890680

HAL Id: hal-04890680
https://hal.science/hal-04890680v1

Preprint submitted on 16 Jan 2025

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-04890680v1
https://hal.archives-ouvertes.fr

Bayesian linear models for large datasets: Markov chain
Monte Carlo or Matheron’s update rule

Hassan Maatouk!, Didier Rulliere?, and Xavier Bay?

1 LAMPS, Université de Perpignan via Domitia, 52 av. Paul Alduy, 66860 Cedex 9 Perpignan,
France,
hassan.maatouk@univ-perp. fr,
2 Mines Saint-Etienne, Univ Clermont Auvergne, CNRS, UMR 6158 LIMOS, Institut Henri
Fayol, Saint-Etienne, F-42023, France

Abstract. In this paper, we consider Bayesian linear models for large datasets.
We discuss two distinct strategies for generating Bayesian linear models with a
large number of observations. The first approach employs an efficient Markov
chain Monte Carlo (MCMC) method, while the second approach is exact and
is based on a modification of Matheron’s update rule (MUR) using Bayes’ rule.
We prove that MUR can be adapted for a large number of observations, resulting
in a significant reduction in computational cost. The main advantage of these
approaches is that sampling is performed before conditioning rather than after.
This allows for the use of highly efficient samplers to generate the prior Gaussian
vector when the precision covariance matrix exhibits special structures, such
as Toeplitz, block-Toeplitz or sparsity. An empirical comparison between these
two efficient approaches in terms of computational running time and prediction
accuracy is conducted using both synthetic and real-world data studies.

Keywords: Bayesian linear models, large datasets, Matheron’s update rule, El-
liptical Slice Sampling, MCMC, Toeplitz

1 Introduction

Gaussian Processes (GPs) have become a popular choice in Bayesian approaches for
nonparametric function estimation due to their flexibility, probabilistic nature, and ability
to model uncertainty effectively [1,22,26]. Unlike parametric methods, which assume
a fixed functional form with a finite number of parameters, GPs provide a distribution
over functions, allowing for infinite-dimensional flexibility. This makes GPs particularly
well-suited for scenarios where the true functional form is unknown or highly complex.

Several finite-dimensional Bayesian linear models have been developed in the liter-
ature. Examples include the truncated Karhunen-Loeve expansion (KLE) [14, 25], the
B-spline expansion [9], Bernstein polynomials [2, 3, 6], and the compactly supported
basis expansion [15, 16]. These approaches are described as the weight-space view of
GPs in [26, Sect. 2.1]. The primary advantages of these methods lie in their simplicity
of implementation and interpretability.

In this paper, we develop two distinct general methods for generating finite-dimensional
Bayesian linear models with a large number of observations. The first approach is based
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on Markov chain Monte Carlo (MCMC), while the second leverages a modification
of Matheron’s update rule (MUR) [12, 13] using Bayes’ rule. The main advantage of
these approaches is that sampling is performed before conditioning rather than after.
Consequently, if the prior covariance matrix exhibits special structures, such as Toeplitz
or block-Toeplitz (i.e., when evaluating stationary product kernels on a regularly spaced
grid) [28,29] or banded and sparse forms [8], highly efficient samplers can be em-
ployed. Examples include the Fast Fourier Transform (FFT) [28] and the fast large-scale
approaches developed in [18-20]. For example, the authors in [4] used MUR to propose
a fast algorithm for simulating a hyperplane-truncated multivariate normal (MVN)
distribution, where the prior covariance (or precision) matrix can be expressed as a
positive-definite matrix minus (or plus) a low-rank symmetric matrix.

This paper is organized as follows. In Sect. 2, we briefly review Bayesian nonpara-
metric function estimation. Section 3 is devoted to the finite-dimensional Bayesian linear
models, where two methods for handling large datasets are developed. The excellent per-
formance of these two approaches is evaluated through both synthetic and real-world
data studies in Sects. 4 and 5, respectively.

2 Bayesian nonparameteric function estimation

In this section, the statistical problem of recovering an unknown function f : X C
R?Y — R from the training samples {(x;, y;)}"_, with Gaussian noise is considered

We assume that the noises {¢; } are i.i.d. zero-mean Gaussian with constant variance o

and are independent of the input vectors (covariates) «; € R?. The n responses {y;},
together with the covariates, form the training samples { (z;, y;) }. The unknown function
f : X C RY — Riis the target function generating the data y = [y1,...,y,] € R"
using (1). The set X is a compact subset of R?. Without loss of generality, we assume
X to be the unit hypercube.

2.1 Gaussian processes

In the Bayesian framework, a GP is defined as a stochastic process where any finite col-
lection of its random variables follows a MVN distribution. This property characterizes
GPs as infinite-dimensional generalizations of MVN distributions. A GP is completely
characterized by two functions: its mean function m(-) and its covariance function
k(-,-). The covariance function, also known as the kernel, is particularly important as
it determines the smoothness properties of the sample paths generated by the GP. In
this paper, the stationary Matérn family of covariance functions [10] is used, which in
one-dimension is defined as follows

P VO Y V2
N 2 - X e — !

for any x, 2’ € X, where I'() is the Gamma function and B, () denotes the modified
Bessel function of the second kind of order v. The positive kernel parameter 72 is
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referred to as signal variance. It is worth noting that a process with the Matérn kernel
of order v admits sample paths that are [ — 1] times differentiable [26, Sect. 4.2.1].
Suppose that this GP is denoted by Z, then we can write

(Z(@))eex ~ GP(m(),k(-,-), =X
We define the mean function m () and the covariance function k(x, ') of (Z(x)) as

m(z) = E[Z(z)], Vx e X;
K,2') = E[(Z(z) - m(2))(Z(2) - m(@))], Va,a' € .

Furthermore, Z can be decomposed as its mean function and a zero-mean GP:
Z(x)=m(x)+Y(x), e,

where (Y (x))zex is a zero-mean GP with covariance function &(, -).

2.2 Gaussian processes conditionally on data

In the regression framework (1), GPs are known as powerful prior distributions over
functions of one or more input variables [22, 26]. Let us first denote the design matrix
by X = [x1,...,2,]" € R**%, which is obtained by aggregated the input vectors {x;}.
The set of noisy observations is given by {Y (X) + € = y}, where € = [ey,..., €, "

According to [26, Appendix A.2], conditioning the GP prior (Y («))zcx on the obser-
vations, we obtain a GP

{Y()st.Y(X)+e=y} ~GP (m(.)j;(.’ .)) .

The posterior mean function 772(-) and covariance function k(-, -) are given by
) = BIY @)Y (0) +€ =y = b X)T (HXX0)+0°L) Ty
k(z,x') = k(z,z') — k(z,X) T (k(X,X) + 021,,) " k(z’, X);

with I, the n x n identity matrix and & (a, X) the vector of covariance between Y () and
Y(X), ie., k(z,X) = [k(z,z1),...,k(z,z,)] . The formula for 7 in (3) is referred
to as the prediction with noisy observations. If the standard deviation o of the noise €
is set to zero, the term noise-free observations is used, as in the context of ‘computer
experiments’ [23].

3 Finite-dimensional Bayesian linear models

In this section, we suppose that the GP (Y (x)),cx is approximated by a finite-
dimensional Bayesian linear model as follows:

Y(z)~ (@) & =Y (), zeX, @
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where & € RY is a zero-mean Gaussian vector (weight of the model) with a positive-
definite covariance matrix 72K, i.e., & ~ N(0,72K). The basis function ¢(-) is
a sequence of deterministic basis functions such that ¢(z) € RY, for any z € X.
The finite-dimensional linear model in (4) is known as weight-space view of GPs in
[26, Sect. 2.1]. The results developed in this section can be applied to several finite-
dimensional Bayesian linear models, such as those mentioned in the introduction. For
simplicity of notations, we denote by X = ¢(X) € R™¥, where X is the n x d
design matrix and the i row X; = gb(XI)T. In this case, the set of noisy observations
{YN(X) + € = y} can be written in matrix form as follows:

XE+e=y,

where € = [e1,...,¢,] " is a zero-mean Gaussian noise vector with covariance matrix
o2I,,. Tt is worth noting that the vector YV (X) follows a Gaussian distribution with
zero-mean and covariance matrix 72X KX ' Conditionally on the observations y

[e1Xe+e=y} ~ N (. K), where, )

p=72(XK) (PP XKX' +0%I,)"'y;

{ K =7K - (XK)"(r’XKX " +0%I,) ' XK.

Sampling the posterior distribution in (5), involves generating a Gaussian vector of

dimension N. When N is large, this approach becomes prohibitive due to its compu-

tational complexity of order O(N?3) [11]. Additionally, the predictive equations in (6)

require a matrix inversion of dimension n x n, making this approach infeasible for a
large number of observations n.

In the following section, we develop two different approaches for handling this issue.

(6)

3.1 First approach: Markov chain Monte Carlo

In this section, we explore highly efficient MCMC methods to address the problem of
sampling from a finite-dimensional Bayesian linear model (4) applied to a large number
of observations. According to [26, Sect. 2.1.1] and Bayes’ rule, we have the following
posterior distribution:
Py X, §)p(§)
p(ylX)
where p(y|X) is the normalizing constant, also known as the marginal likelihood. 1t is
independent of £ and given by

(€| X,y) := (7

pulX) = | o(wlX.€le)ae.

By developing the likelihood and prior in (7), we obtain

PEIX ) ox exp (— N e X&]) exp (—1£TK—1s) ®)

202 272

X exp <—;[£ —p) T ZE - u]) ;



Bayesian linear models for large datasets 5

where )
o= {XTX/O'Q—‘,-K_l/TQ} X Ty/o?; )
-1
= [XTX/U2 + K—l/ﬂ .

As in (5), the posterior distribution in (7) is Gaussian and is given by {£|X,y} ~
N(p,X). Tt is worth noting that the mean of the Gaussian posterior distribution
{&€| X, y} is also its mode, which is referred to as the maximum a posteriori (MAP) esti-
mate of &. The predictive equations in (6) and (9) are equivalent, and the two approaches
are referred to as direct approaches, as sampling is performed after conditioning. How-
ever, the predictive equations in (9) require matrix inversion of dimension N x N, where
N is the dimension of the Gaussian vector £. This results in an efficient approach when
the dimension N is low and the number of samples n is high.

Now, we explain how MCMC approaches can handle the problem of generating the
posterior distribution {£| X, y} when both NV and n are large. The posterior probability
density function (pdf) in (8) is proportional to the product of a likelihood function and
a zero-mean Gaussian prior:

€. 9) o oxp gzl — XTIy - X€])oxp (- a€ K )

202

likelihood untruncated prior

= L(§)N (&0, 7°K).

The logarithm of the likelihood function L (&) can be expressed as follows:

1
log[L(€)] = —55ly — X&[*. (10)

The logarithm function in (10), which has a computational complexity of order O(nN)
will be evaluated at each MCMC iteration. In this context, sampling from (8) can be
performed using Metropolis-Hastings (MH) proposals [5, 22]:

g =pw+V1-p2%, v~N(0O7TK), (11)

where p € [—1,1] is a step-size parameter, £ is the current state, and &’ is the proposal
state. Recall that the MH acceptance ratio, v = min {1, L(¢")/L(&) } depends solely on
the likelihood ratio and is independent of p. Furthermore, this method is straightforward
to implement and can be readily applied to a wide range of models with Gaussian priors.

The Elliptical Slice Sampling (ESS) is based on the parametrization p = sin(f) in
(11), providing an adaptive and automated method for tuning the step-size parameter p,
which guarantees acceptance at every step. Consequently, the MH proposal in (11) is
reformulated as follows:

¢ =sin(0)v +cos(9)€, v ~N(0,7°K),

where the angle 6 is uniformly generated from a [Oin, Omax] interval which is shrunk
exponentially fast until an acceptable state is reached. For a given value of 6, a uniform
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random number is generated and compared with the likelihood ratio L(¢£")/L(€). If the
proposal £ is rejected, one shrinks the bracket of 6, and continues this process until
acceptance. Detailed guidelines for shrinking the bracket are provided in [21].

Unlike direct approaches, the primary advantage of the MCMC approach developed
in this section is that it avoids matrix inversion. Additionally, the sampling procedure
is performed before conditioning rather than after. As a result, highly efficient samplers
can be employed when the prior covariance matrix K exhibits special structures, such as
Toeplitz, block-Toeplitz or sparsity. Furthermore, the MCMC method introduced in this
section is capable of addressing more complex posterior inference (complex likelihood
function), such as when additional shape constraints are required [17]. However, this
sampling method remains an approximation of the posterior distribution. Moreover, it
requires evaluating the log-likelihood function (10) at each MCMC iteration. To address
this limitation, the following section introduces an exact sampling method for generating
the posterior distribution in (5), specifically tailored for large datasets.

3.2 Second approach: Matheron’s update rule

In this section, we develop a new approach based on the MUR methodology. The MUR,
which first appeared in geostatistics [12, 13], is an exact method for sampling conditional
Gaussian vectors. It was recently explored by [27] in the context of machine learning
and by [4] in the field of Bayesian analysis for high-dimensional regression. Let us first
recall the following result:

Proposition 1 (Matheron’s update rule (MUR)). Let £ be an N -dimensional Gaus-
sian vector with a prior distribution characterized by a mean vector p and a covariance
matrix T2 K. Suppose that X € R™™N is a given matrix of rank n, and y € R" is an
output vector representing the data. Then

exe=y) L ¢ +(XK)T(XKXT) w-Xe. ()
;i/o-r/ update

Additionally, we have
SO IEXE =) Lot [+ (XK)T (XKXT) (- X8)].

where ¢(-) is the basis vector appearing in the Bayesian linear model (4).

The problem in (12) is known as hyperplane-truncated MVN distribution [4]. The
proof of Proposition 1 is provided in [19, Appendix B] and in [27, Theorem 1]. More
generally, if the data are observed with independent Gaussian noise { X & + € = y},
where € ~ N(0,0%1,,), then

(E1Xe+e=y) e+ 2(XK)T (TZXKXT + 02171)71 (y— X€—e€). (13)

Equation (13) is a simple extension of the result in Proposition 1.
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Fig. 1. Visual representation of the MUR (noise-free case). Top left: a single path of the prior
together with the observations (green stars). Top right: the corresponding update sample path,
derived from (12) is displayed as black dashed curve. Bottom: the posterior paths (gray solid
curves) are obtained by combining the prior and the update as per (12)

Figure 1 visually represents Proposition 1 using the Bayesian linear model proposed
by [15]. The noise-free case is considered. In the top left panel, we only illustrate one
sample path of the prior with the training samples (green stars). The prior is generated
using a zero-mean Gaussian vector, with its covariance matrix derived from the Matérn
covariance function (2), specified by a smoothness parameter v = 5/2 and a length-
scale parameter ¢ = 0.3. In the top left panel, we added the corresponding update
sample paths, derived from Equation (12) (black dashed curve). In the bottom panel,
we show one hundred posterior sample paths (gray curves) obtained by combining the
priors and the updates using Equation (12). It is worth noting that the prior sample
path is independent of the data, whereas the update follows the trend of the data.
The posterior sample paths (gray curves) effectively interpolate the data (green stars).
The main advantage of this method is that sampling is performed before conditioning
rather than after. Consequently, if the precision covariance matrix K exhibits a special
structure, such as block-Toeplitz, efficient sampling approaches like those mentioned in
the introduction can be employed. The MUR has demonstrated high stability compared
to eigendecomposition and Cholesky factorization [18]. However, this method still has
some limitations, particularly when a large number of observations is required. To
overcome this issue, we propose the following adaptation.
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Proposition 2 (MUR for a large number of observations). Under the same settings
as Proposition 1, we have

{e1XE+e=y} 2 £ H(XTX/?+ K )X T (y — XE— €))%,

prior update

where y — X & — € represents the residual and o is the variance of the noise.
Before proving Proposition 2, let us present the following Lemma.
Lemma 1. Consider three random vectors Vi € RN, Vo € R" and V5 € RN s.1.
d
Vi =f(Va)+ Vs,
where f is a measurable function of V o and where V 5 is independent of V 3. Then,
d
{V1|Vy =06} = f(0) + V3,
forany 8 € R™.
Proof. The proof is provided in [27, Lemma 2].

Proof (Proof of Proposition 2). From the equivalent between the two direct approaches
Equations (6) and (9), we have

(X"X/o? + K ' )1)X T o> =7’ KX (P X KX " +5°I,,)7 L. (14)
LetVi:=€& — (XX /o2 + K '/72)" X T (X ¢ + €)/0?. Additionally, we have
E¢|X¢+e=(X"X/o?+ K1 /m2)1X T (XE +€) /0%
Thus, we can write:
¢ = Bl§|X¢+e+(E-ElE|Xe+e)) = (XX /o> +K /) X T (XEte) /o> + Vs,
LetV; =&and V, = X£+e€. Since V5 and V 5 are jointly Gaussian but uncorrelated,
it follows that they are independent. Indeed,

Cov(Vy,V3) =Cov(XE+et— (X'X/o2+ K1) X T (X +€)/0?)
=72XK - Var(X¢+ €)[(X ' X /o + K~ /7)1 X T Jo?]T
=7’XK — (r"*XKX" +0°I,)(r*XKX" +0%I,) '’ XK
=XK-1mXK =0,y,

where 0,,, v is the n X N zero matrix. The second-to-last line is done using Equation (14).
Setting f(V3) = (X' X /o2 4+ K~ /7?)"' X "V, /0? and using Lemma 1, we obtain

{eXe+e=y} £ (XX /o> + K /r2) ' X Tyfo? + €~
(X"X /o2 + K1 )m2) 71X T (X + €)/0?
Le+r (XTX/2+ K V) X T (y — XE—€) /o

Hence, the claim follows.
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Unlike Proposition 1, the update in Proposition 2 involves a matrix inversion of size
N x N. This provides an efficient approach for handling a large number of observations
n, provided that N remains reasonably small. As for the MCMC approach, the sampling
procedure is carried out prior to conditioning. This involves using highly efficient meth-
ods when the dimension of the prior [V is large and the prior covariance matrix exhibits
special structures, such as Toeplitz, block-Toeplitz or sparsity. The performance of this
method is investigated in the context of Bayesian nonparametric function estimation.
Notably, the result in Proposition 2 enables an exact sampling method for generating the
posterior distribution in (5). As a result, the proposed approach eliminates the need for
MCMC sampling and the evaluation of a likelihood function at each MCMC iteration.

4 Performance illustration

The aim of this section is to investigate the performance of the proposed two strategies
in terms of computational running time and prediction accuracy. To do this, several
Bayesian linear models can be employed such as the truncated Karhunen-Loeve expan-
sion (KLE) [14, 25], the B-spline expansion [7, 9] and Bernstein polynomial [2, 3, 6]. In
this section, the compact basis expansion approach proposed by [15] is considered. In
order for the article to be self-contained, we briefly review this method. If (Y (z))zex
is a zero-mean GP with covariance function k(-, -), then it can be approximated by the
following finite-dimensional Bayesian linear model:

N

N
YN@) =Y Y(t)h(x) = &os(x), weX, (15)
j=1

Jj=1

where, we denote {; = Y (t;) forany j € {1,..., N}, with {¢;} a sequence of N > 2
equally-spaced knots, i.e., 0 = t; < ... < ty = 1. Since Y is assumed to be a
zero-mean GP, then the basis coefficients {£ j} form a zero-mean Gaussian vector with
covariance matrix 72K, i.e., £ = [¢1,...,6n] T ~ N(0,72K). Indeed,

Cov(&, &) = Cov(Y (1), Y (t;)) = k(titj) = T° K, j, Vi,j=1,...,N,

where k(-,-) is the covariance function of the parent GP Y. The function ¢, is the
compactly supported basis function associated to the knot ¢; := (j — 1)dn

—t .
bi(x) =4 1~ il ity € [ty 1yl
/ 0 otherwise;

with oy = 1/(N — 1). We define ¢1(x) = 1 — |z — t;|/dn if t; € [t1,2], and zero
otherwise. Additionally, we define ¢n(x) = 1 — |z — t;|/dn if t; € [tn_1,tn], and
zero otherwise (B-spline of degree 1 [9, Fig. 1.a]). As proved in [15], YV (-) converges
uniformly to Y'(-) as IV tends to infinity (with probability one). This implies that every
realization of YV (-) converges uniformly to a realization of Y ().

In Fig. 2, the finite-dimensional Bayesian linear model defined in (15) with N = 50
is employed. We consider the target function f(x) = x cos(10x) (black solid curve).



10 Hassan Maatouk, Didier Rulliere and Xavier Bay

linGP-ESS and dimension N = 50 linGP-bData—MUR and dimension N = 50

Number of samples n = 100 and runtime (s) = 0.803 Number of samples n = 100 and runtime (s) = 0.039
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Fig. 2. Performance accuracy of the finite-dimensional Bayesian linear model (4) for N = 50.
The number of samples (green stars) is fixed at n = 100. The gray shaded area represents the
95% confidence interval based on 6,000 sample paths. The highly efficient MCMC approach
developed in Sect. 3.1 is employed in the left panel, while the proposed MUR for big data
developed in Sect. 3.2 is applied in the right panel

The green stars represent the n = 100 training samples generated from (1) using the
target function f and a zero-mean Gaussian noise A/(0, 0?), with variance 02 = 0.01. In
the left panel, the linear GP using the MCMC approach ESS (linGP-ESS for short) and
developed in Sect. 3.1 is applied for generating 6,000 MCMC sample paths, where the
first 1,000 are discarded as burn-in. The gray shaded area represents the 95% confidence
interval obtained from the 6,000 sample paths. The blue dashed curve represents the
posterior mean using Equation (9). The mean square error (MSE) as well as the running
time in seconds for generating the posterior sample paths are displayed in the main
of the panels. In the right panel, the proposed approach using MUR for large datasets
(linGP-bData-MUR for short) developed in Sect. 3.2 is employed. It is worth noting that
both approaches fit well the data (green stars) with a comparable MSE. However, the
linGP-bData-MUR outperforms the linGP-ESS in terms of computational running time.
This is due to the fact that the linGP-bData-MUR eliminates the necessity of evaluating
a likelihood function at each MCMC iteration. Now, we evaluate their performance for
a large number of observations.

In Fig. 3, the runtime in seconds for generating 15,000 sample paths using the two
developed methods is shown. The computational running time of the two approaches
grows linearly as a function of the number of samples, but with different slopes. As
expected, the proposed linGP-bData-MUR method outperforms the linGP-ESS approach
for large values of sample size n. This is because linGP-bData-MUR avoids evaluating
the likelihood function at each MCMC iteration. Furthermore, unlike the linGP-ESS
approach, the linGP-bData-MUR method provides an exact solution for generating the
posterior distribution (see Fig. 4).

In Fig. 4, we applied the two methods to an extreme case, where the samples are
concentrated in the first half of the input domain X and only a few observations (n = 10)
are available in the second half. The stationary Matérn covariance function (2) with a
smoothness parameter v = 5/2 is employed. The prior £ is generated using Cholesky
factorization [24, Sect. 3.3] even though the precision covariance matrix K is Toeplitz.
This is because the dimension [V is reasonably ‘small’, and thus, Cholesky factorization
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Fig.3. Runtime in seconds for generating 15,000 posterior sample paths as a function of the
number of samples for the two competing approaches

linGP-ESS and dimension N = 50
Number of samples n = 15500 and runtime (s) = 54.9

linGP-bData-MUR and dimension N = 50
Number of samples n = 15500 and runtime (s) = 4.4

— true function
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Fig. 4. Same settings as Fig. 2 except the number of samples n which is fixed at 15,500 instead

of 100. Unlike linGP-bDatMUR, the 95% confidence interval (gray shaded area) of the linGP-ESS
approach does not closely follow the posterior mean (blue dashed curve)

is highly efficient. For both approaches, the posterior mean (blue dashed curve) defined
in Equation (9) fits the data well. However, unlike the linGP-bData-MUR method, the 95%
confidence interval (gray shaded area) of the linGP-ESS approach, which is computed
from 6,000 simulations, fails to follow the posterior mean in the second part of the
domain. It is worth noting that this 95% confidence interval is significantly reduced for
both approaches in the first part of the domain (i.e., when z < 0.5) due to the high
number of observations. Finally, we note that when the n = 15, 500 data (green stars)
uniformly cover the entire domain X, the issue of convergence in the MCMC approach
is no longer present.

5 Real application

In this section, we apply the two strategies developed in this paper to real-world diamond
data. This dataset consists of the prices in US dollars (326$-18,823%) of n = 53,940
diamonds as a function of their carat, i.e., weight of the diamond (0.2-5.01). This
application is particularly interesting because the dataset is divided into two parts of
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the domain: one with a large number of observations in the first part and another with
relatively few observations in the latter part (green stars in Fig. 6). Before using the
entire dataset, we first test the two developed approaches on a smaller subset of training
samples. The stationary Matérn covariance function (2) is employed with a smoothness
parameter v = 5/2.

linGP-ESS with n = 100

runtime (s) = 0.12 and Energy measure = 0.06

linGP-bData-MUR with n = 100

runtime (s) = 0.01 and Energy measure = 0.06
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Fig. 5. Accuracy estimation of the price of only n = 100 diamonds as a function of carat. The
two developed strategies are employed linGP-ESS (left panel) and linGP-bData-MUR (right panel).
The gray shaded area represents the 95% confidence interval based on 1,000 sample paths. The
computational running time of generating 1,000 sample paths and the energy measure criterion
are displayed in the main of each panel

In Fig. 5, the two strategies developed in this paper are employed to estimate the
prices of n = 100 diamonds as a function of their carat (standardized to fall in the range
X = [0,1]). We randomly choose only n = 100 diamonds to test the two approaches
for a few observations (green stars). The blue dashed curve represents the posterior
mean (9), while the gray shaded area represents the 95% confidence interval based on
1,000 posterior sample paths. The Energy measure criterion is computed as follows:
Zgol (yi — 9:)?/ legi y?, where §); represents the posterior mean (9) evaluated at the
training covariate x;. It is worth noting that the linGP-bData-MUR approach outperforms
the linGP-ESS method in terms of the computational time required to generate 1,000

sample paths.

Now, in Fig. 6, we evaluate the performance of these two approaches in terms of both
computational running time and prediction accuracy when using the entire dataset. The
green stars represent the n = 53, 940 samples, which are concentrated in the first half of
the input domain X (i.e., the diamond’s weight between 0.2 and 3). This setup provides
an interesting scenario to evaluate the convergence of the two approaches. It is evident
that the proposed linGP-bData-MUR method is significantly faster than the MCMC-
based linGP-ESS approach in generating 1,000 posterior sample paths. Additionally, as
expected, in the second half of the domain, the posterior distribution (gray shaded area)
produced by linGP-bData-MUR fits the data well, unlike the linGP-ESS method. This
difference arises because linGP-bData-MUR is an exact method, whereas linGP-ESS is
an approximate method that fails to adequately capture the data in the second half of the
domain X.
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linGP-ESS with n = 53940 linGP-bData-MUR with n = 53940
runtime (s) = 18.64 and Energy measure = 0.07 runtime (s) = 1.49 and Energy measure = 0.07
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Fig. 6. Accuracy estimation of the price of n = 53, 940 diamonds as a function of carat. The two
developed strategies are employed linGP-ESS (left panel) and linGP-bData-MUR (right panel). The
computational running time of generating 1,000 sample paths and the energy measure criterion
are displayed in the main of each panel

6 Conclusion

In this paper, Bayesian nonparametric function estimation for a large number of ob-
servations is studied. Two distinct strategies for generating finite-dimensional Bayesian
linear models are developed. The first approach employs MCMC with Elliptical Slice
Sampling (ESS) and is considered an approximate method. The second approach, which
is exact, modifies Matheron’s update rule (MUR) using Bayes’ rule. We theoretically
demonstrate that MUR can be adapted for large datasets, significantly reducing com-
putational complexity. The excellent performance of these two methods, particularly
in terms of computational runtime and prediction accuracy, is evaluated in the context
of Bayesian nonparametric function estimation using both synthetic and real datasets.
Based on our numerical experiments, the proposed MUR approach is more stable and
faster than the approach based on the MCMC with ESS.
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