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QUINTIC NONLINEAR SCHRODINGER EQUATION
ALEXIS KNEZEVITCH

ABSTRACT. We consider the 1d nonlinear Schrodinger equation (NLS) on the torus with initial

data distributed according to the Gaussian measure with covariance operator (1 — A)~*, where

A is the Laplace operator. We prove that the Gaussian measures are quasi-invariant along the

flow of (NLS) for the full range s > % This improves a previous result obtained by Planchon,

Tzvetkov and Visciglia in [25], where the quasi-invariance is proven for s = 2k for all integers
k > 1. In our approach, to prove the quasi-invariance, we directly establish an explicit formula
for the Radon-Nikodym derivative G,(t,.) of the transported measures, which is obtained as the
limit of truncated Radon-Nikodym derivatives G n(t,.) for transported measures associated with
a truncated system. We also prove that the Radon-Nikodym derivatives belong to LP, p > 1,
with respect to H!(T)-cutoff Gaussian measures, relying on the introduction of weighted Gaussian
measures produced by a normal form reduction, following Sun-Tzvetkov [29]. Additionally, we prove
that the truncated densities G n(t,.) converges to G(t,.) in LP (with respect to the H'(T)-cutoff
Gaussian measures).
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1. INTRODUCTION

In this paper, we contribute to the program initiated by Tzvetkov in [33] on the transport of Gauss-

ian measures under the flow of Hamiltonian partial differential equations (PDEs). We consider the

defocusing quintic nonlinear Schrodinger equation on the torus :
{i@tu + 0%u = |ul*u, (t,7) ERxT (1)

u’t:O = Uo

This is a Hamiltonian PDE with the associated Hamiltonian :
1 1
H(u) = —/|8xu|2dx+—/|u|6da: (1.2)
2 Jr 6 Jr

1.1. Description of the problem. In the present work, we consider the situation where (1.1) is
globally well posed in a certain Banach space X. With such a Banach space X, we can invoke, for
every time t € R, the flow of (1.1) :

) X — X

which is the continuous map that for any initial data uy € X associates the solution of (1.1)
evaluated at time ¢.

Given a Gaussian measure p on X (defined on B(X), the o-algebra of Borel sets of X), we can
consider the push-forward measure of p under ®(¢), denoted by ®(¢)xu, and defined for all A €
B(X) as

O(t)gp(A) = p(2(t)71A)

We say that ®(t)4p is the transported measure of p under the flow ®(¢). This object is of interest
because properties on the measure ®(¢)4u provide a macroscopic description of the flow. Following
the problem raised by Tzvetkov for Hamitlonian PDEs in [33], one wonders if, for every time t,
the measure ®(t)4p is absolutely continuous with respect to p. If that is indeed the case, we use
the notation ®(¢),p < p. In other words, one wonders if, for any Borel set A in X, the following
assertion

n(A) =0 = @(t)pu(A) =0 (1.3)
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is true. If the answer is positive, we say that the measure u is quasi-invariant under the flow ®(¢).
In that case, we can invoke the Radon-Nikodym derivative F; € L'(du) which satisfies:

(t)pp = Fr(u)dp
do(t)

and often denoted as du#” The absolute continuity (1.3) is only a qualitative result because we
only obtain the existence of the Radon-Nikodym derivative F;. A more quantitative result would
be providing additional information on Fj, such as an explicit formula which should be suitably
interpreted.

The initial data spaces X under consideration will be Sobolev spaces on the torus. We can define
Gaussian measures on Sobolev spaces as follows. For any given s € R, we define the Gaussian
measure [ as the law of the random varibale:

S wr— Z Mei"”” (1.4)

nes <n>5

where (n) := (14n2)2 and {g, }nez are independent standard complex-valued Gaussian measures’
on a probability space (£2, A, P). More precisely, for o € R, we have that

Z<n>2a

nel

2
9n

(n)®

so the random series in (1.4) converges in L?((, H"(']I‘)) if and only if 0 < s — 5. Thus, p, = SxP

is a probability measure on B(H?(T)) for all 0 < s — 3. For more details on Gaussmn measures,

we refer to [17] (see also [2]). Furthermore, it is well-known that

1
<H0 < o0 <Ss— =

E
2

S e H(S_%)_(’]I‘) = ﬂ H?(T) almost surely,

1
0'<8—§

so the transported measure:
O(t) s = (P(t) 0 S)4P

makes sense if the flow ®(¢) is well defined on H~2)~(T) almost surely. In the situation where
s > 3, we have HG=2)~(T) ¢ HY(T). And, at the regularity H*(T), equation (1.1) is globally well
posed. It follows from the combination of an elementary local vvellposedness (thanks to the algebra
property of H'(T)) and the use of the conservation of the Hamiltonian (1.2) and of the mass:

1 1
:5/1T|8wu|2dx+6[r\u|6dx, /|u| dx

In conclusion, the transported measure ®(t)xpus is well defined whenever s > % and we can
legitimately wonder if it is absolutely continuous with respect to ps. For some s < 3, it is still
possible to construct the transported measure ®(t)xus, but our method in this paper only works
for s > 3.

2

Lin the sense that Gn = hy + il,, where h,, and [,, are two independent real Gaussian measures on R with law

N(0,3)
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1.2. Formal computation and main results. Formally, we can see the Gaussian measure p

as the measure

1 a2
_€*§\WHH5 du
S

where du is formally the Lebesgue measure (which does not exist on infinite dimensional vector
spaces). Let us compute formally ®(¢).ps in order to predict what the Radon-Nikodym derivative
of ®(t)xpus with respect to s could be:

1 1 1 —1,,[12
D(t) spts = @(t)#(ge—énullzsdu) _ 7(37”%) e (4 ydu

S S

Since (1.1) is a Hamiltonian PDE, we may formally write that the (non existent) Lebesgue measure
is preserved by the flow ®(¢), that is ®(¢) zdu = du. Moreover, from the additivity of the flow, we
have ®(t)~! = ®(—t). Hence,
1
B(E) p 1 — 76—%\\<1><—t>u||§{s du = e~ 31ROl g,

Then, we expect that the actual density of ®(t).ps with respect to pus is:
Gy(t,u) = e 2120l —lule)

However, since it is known that p,(H* 2 (T)) = 0, we have:

[P (—t)ul
so this is not even clear that the density G4(¢,u) is well defined on the support of p,. But the
hope is to observe some cancellation in the difference between ||®(—t)ul|?. and [|u|%.. In order
to analyze this difference, we first consider instead an approximated system for N € N:

{z’@tu + 0%u = My (|Uyul*Tlyu), (t,x) ERxT

U|t:0 = Uog

?15 = +00, s — almost surely

2. =+o0o and ||ul

where Il is the Dirichlet projector. Denoting by ®y(t) its flow (called the truncated flow), we
will be able, thanks to a finite-dimensional-type computation in Section 5, to prove rigorously that
the transported measure @y (t)xps is indeed:

By (1) gty = e 3NN OGN gy — G () dpg

and the challenge will be to take the limit N — oo into this formula. In order to do so, an
integration by parts will give rise to a rewriting of the difference ||TIy®y(—t)ul|5. — ||y, as:

1 d1
~5 My (=l — Myulf) == [ 20 Myy(r)ully. dr
0 T

— Ry n(®n(—t)u) — Ron(u) — /O  Qun(@n(F)u)dr

where R, y and (s y will emerge in Section 2 from a normal form reduction. Fortunately, we will
see, respectively in Section 3 and 4, that R y and Qs n are continuous functions on H(T) (for
o< s— % close enough to s — %) that converge pointwisely? to continuous functions respectively

2Actually, we will see that the convergence holds uniformly on compact sets of H?(T), which is stronger. See
Propositions 3.3 and 4.4
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denoted R, and Q,(the proof of those facts will be postponed to Section 10). Hence, the a priori
ill-defined quantity —1(||®(—t)u| 2o — llulls) will be seen as:

—5 (I (=uly = Jull) = Ro(@(—t0w) = Ru(w = [ Qu(®()ujar

we — llul

= lim (Ron(®x(—t)u) — Ron(u) — /0  Qun(@x(r)u)dr)

N—o00
And from this, we will be able in Section 6 to prove that indeed:
O(t) ppis = Gs(t,u)dps

More precisely, assuming that R n, Rs and Qs n, Qs have been constructed (see Section 3 and 4),
we will prove the following result:

Theorem 1.1. Let s > % and o < s—% close enough to s — % Lett € R. Then, for every N € N,
the transported measure @y (t)ups has a density Gs n(t,.) with respect to us given by:

1
Gan(t,u) = exp( = S(My®x(=t)ull . — [Txully.))

— exp (Ru(@x (-t - Rv(u) - / R Qun(@y(r)uir

Moreover, the transported measure ®(t)xpus has a density Gs(t,.) with respect to us given by:

Go(t,u) = exp (Rs<<1><—t> / Q.(@ )

which is continuous on H°(T). In addition, the densities Gs y(t,.) converge to G4(t,.) uniformly
on compact sets of H7(T).

As a consequence,

Corollary 1.2. Let s > % Then, the Gaussian measure s is quasi-invariant along the flow of
(1.1).
Results of this type were proven recently for many models, see [6, 9, 10, 11, 12, 14,13, 15, 16, 20,
) Y ) Y Y ) Y ]'
The quasi-invariance of s along the flow of (1.1) has already been proven in [25] when s = 2k, for
all integers k > 1, where the authors relied on modified energy estimates (see Theorem 1.4 in [25]).
Here, our approach is different because our aim is to obtain directly the Radon-Nikodym derivative
of the transported measures. Such an approach was adopted by Debussche and Tsutsumi in [9] and
later by Genovese-Luca-Tzvetkov [15] and by Forlano and Seong in [10]. More importantly, we are
inspired by the method employed by Sun-Tzvetkov in [29] in the context of the 3d energy critical
nonlinear Schrodinger equation. However, in order to reach the full range s > % for the quasi-
invariance, we will need to employ sharper estimates, notably by incorporating dispersive effects
through Strichartz estimates. In addition, the 1d case will allow us to benefit from deterministic
properties — through convergence on compact sets of truncated densities — in order to obtain the
explicit formula for the Radon-Nikodym derivative of the transported measure ®(t)ups. It is
however worth noticing that we will not need the remarkable cancellation presented in [29].
It would be interesting to prove the quasi-invariance below the threshold s > % of this paper.
Indeed, the question of quasi-invariance for (1.1) still arises for smaller s because, thanks to
Bourgain in [5], we know that (1.1) is still globally well-posed in H(T) for ¢ > o* with o* < 1
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More precisely, from more recent works we know that (1.1) is globally well-posed for o > %, see

[18] and [1]. Besides, we know that the quasi-invariance is true for s = 1. It is a consequence of

an other result obtained by Bourgain in [1] which states that the Gibbs measure:
Gb = iG*%”u”Eﬁ(T)dul
A

is invariant under the flow of (1.1) for every time ¢ € R (meaning that ®(¢)»Gb = Gb).

It would be also interesting to see if the recent work of Coe-Tolomeo in [¢] may be used to identify
a sharp threshold sy above which the quasi-invariance holds, and under which the transported
measure and the initial Gaussian measure are mutually singular for every time.

Let us observe that the formula ®(¢)ups = Gi(t,.)dps from Theorem 1.1 implies that G(¢,.)
belongs to L!(dus). Thus, it is legitimate to ask if G4(t,.) belongs to L?(dus), with p > 1. In the
second result of this paper, we provide a partial answer to this question. We prove in Section 8 that
if we add a H'(T)-cutoff to the Gaussian measure i, defining the restricted Gaussian measure:

s,k = L{cu)<Ryhs (1.5)
where C(u) is the (conserved by the flow) quantity:

1
C(u) :== 5 HuHig(T) + H(u), with H the Hamiltonian (1.2) (1.6)
then, (with the same G, y and Gy as before) we have the following result:
Theorem 1.3. Let s > % and R > 0. Lett € R. Then, for every N € N:

(I)N(t)#/vbs,R = Gs,N (t, u)d,us,R and; q)(t)#:us,R - Gs(ta U)dlvbs,R
Moreover, the densities G5 n(t,.), Gs(t,.) belongs to LP(dusr); and Gsn converge to Gs(t,.) in
Lp<dus’3>.

We stress the fact that s > % is the energy threshold where it is still possible to use the cutoff C.

For s < 3, H*(T) is strictly contained in the full measure space H (s_%)_(T), and we would need
to consider a renormalized cutoff as in [34].

Our approach to prove Theorem 1.3 is to work (instead of directly with the Gaussian measures
s.r) with weighted Gaussian measures, that we define in Section 7. Formally, the idea is to replace
the restricted Gaussian measure:

2
g =" ZLS]I{C(H)SR}Q%HUHHS du” by psr = ”ZLS]I{C(u)gR}e’ES(“)du”
where E,(u) is a modified energy of the form:
L2
B(w) = 3 ully. + Ruw)

and where R (u) is a correction term due to the non-linearity in (1.1), which will be produced by
the normal form reduction from Section 2. For the weighted Gaussian measures, we will be able to
prove a quantitative inequality (see Proposition 8.5) that could be transferred afterwards to js g
(see Proposition 8.7).

Besides, contrary to the proof of Theorem 1.1 (which requires only deterministic considerations),
the proof of Theorem 1.3 will require in addition probabilistic tools, relying on the fact that the
initial data are distributed according to Gaussian measures. Mainly, in order to prove LP-estimates
on Ry and Qs (respectively in Section 11 and 12), we will use the independence between high and
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low frequency Gaussians, along with a conditional Wiener chaos estimate (see Lemma 9.9). This
method was adopted before in [29]. However, we point out that we will use the Wiener chaos esti-
mate with respect to three high-frequency Gaussians (that is with m = 3 in Lemma 9.9) whereas
in [29] the authors performed the Wiener chaos with respect to two high-frequency Gaussians (that
is with m = 2 in Lemma 9.9). This remark is in fact significant because it will imply in our anal-
ysis that a ”pairing between generations” (see Section 5 of [29]) cannot occur. On the contrary,
such a pairing could occur in [29], and the authors dealt with it by emphasizing a "remarkable
cancellation” (see Section 7 of [29]).

Organization of the paper. We organize this paper as follows:

In Section 2, we perform a normal form reduction where energy-type quantities will emerge. In
particular, the normal form reduction will produce two crucial quantities: one called the energy
correction, denoted R, n, and the other called the derwative of the modified energy at 0, denoted
Qs n. Section 3 and Section 4 are respectively dedicated to deterministic properties of Ry and
(Qs.n- In Section 5, we prove that (for every s > %) (s 1S quasi-invariant along the truncated flow
Oy (t) (for N € N). More precisely, we prove the formula ®x(¢)xus = G n(t, .)dps, providing an
explicit formula for G5 x(¢,u). In Section 6, we extend this formula to the flow ®(¢); we prove
that @ () xps = Gs(t,.)dus, where the density G(t,.) will be the pointwise limit of the truncated
densities G, y(t,.). In section 8, we prove that the densities G n(%,.) and Gs(t,.) belong to L?
with respect to the restrictions of y, on bounded sets of H'(T); we also prove that, with respect to
these measures, G n(t,.) converges to G4(t,.) in LP. To do so, we will rely on the introduction, in
Section 7, of weighted Gaussian measures. Then, the remaining part of the paper will be dedicated
to the proof of the energy estimates we used in the previous sections. In Section 9, we gather the
deterministic and probabilistic tools of this paper. Section 10 is dedicated to the proof of the
deterministic properties stated in Sections 3 and 4. Section 11 and Section 12 are respectively
dedicated to the proof of L? estimates on Rs; ny and Qs n. Finally, in Appendix A, we provide a
local and global Cauchy theory for (1.1) and (2.1) on H?(T), for ¢ > 1, and we then prove an
approximation property of ®(t) by ®(t). Besides, we will prove a decomposition for the truncated
flow ® N(t)

1.3. Further remarks.

Remark 1.4. In our approach, we view the difference ||®(t)ul|5,. — ||u|| 3+ as the limit of continuous
functions on H?(T), with 0 < s — % close enough to s — % An alternative to give a meaning to
this quantity (for v € H?(T)) could have been to use a nonlinear smoothing for the solutions of
(1.1). In the context of this paper, with s > 2, the result in Theorem 1 from the interesting work

[19] implies that for o < s — 3 (close enough to s — 3), we have the following nonlinear smoothing

2
(for u € H°(T)):

U(t) = (I)(t)u _ 6it8§e—i% f(fl'q)(T)u”iéldTu c C([—T, T]; HO’+17€(T))
for 0 < € < 1, and at least for small time 7" > 0. Hence, we could have tried to define the difference
D ()ul3e — [[ullz. as

1P (t)ul e = [o(t)|

since this formula is true when w is smooth (with (.,.)y2() the L*(T)-scalar product). With e
close to 0, the 1 — ¢ gain of regularity in the smoothing above implies that for v € H(T),
||v(t)H§{S(T) < 400 because 0 + 1 — ¢ is close to s + 5 > s. However, this smoothing is not enough

2 4 2Re((V)*77u(t), (V) (0% e i3n Jol2(uliadry,)

2
Hs — ||U|

>]L2 (T)
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to define the term (V)?*79v(t) because 0 + 1 — & < 2s — o, no matter how close € and o are close

to 0 and s — % respectively. For (V)?77u(t) to be well-defined, we need a gain of 1+ ¢’ regularity,
where £ > 0.

Remark 1.5. In this paper, we deal with the defocusing NLS, but it would have also been possible
to consider the focusing NLS. However, in the focusing case, we would have needed an additional
cut-off on small L?(T)-initial data, ensuring that the flow of (1.1) is global and a control on the

H'(T)-norm of the solutions.

Acknowledgments. This work is partially supported by the ANR project Smooth ANR-22-
CE40-0017. The author is grateful to his advisors Chenmin Sun and Nikolay Tzvetkov for sug-
gesting this problem and for their valuable advice. The author would also like to thank Tristan
Robert for pointing out the reference [19].

2. POINCARE-DULAC NORMAL FORM REDUCTION AND MODIFIED ENERGY
2.1. The truncated system. Let N € N. We work with the following equation :
{i@tu + 0%u = Iy (|Iyul'Tlyu), (t,z) ERxT 1)
U’t:o = Ug

called the truncated equation, where Il is the projector on frequencies < N. More precisely,
Iy (Z ukeikm> — Z ukeikx
kEZ k|<N
We also define Il := Id — Iy as :
I (Z ukeik"’”> = Z upe*?
keZ |k|>N

Equation (2.1) is a smoothly approximated system of (1.1). We denote by @y the flow of (2.1),
called the truncated flow. Sometimes, we might use the notation ®., instead of ® to refer to the
flow of (1.1). If we set

Ey = IINyL*(T), Ey = TINLA(T) = (Id — IIy)L*(T),
the truncated flow ®y(t) can be factorized as (®y(t), %) on Ey x Ex in the sense that
Dy (t)ug = Oy () yug + €% T ug (2.2)
I S,

where @ is the flow of a (finite dimensional) ordinary differential equation (ODE). In Appendix
A, we show the local and global well-posedness of the truncated flow as well as its structure.

In the same vein, we can decompose the Gaussian measure p 5 as

fis = fisN @ fiyy (2.3)
where p; v and ,usf ~ are respectively the law of
N Z gn(ws) ine and W —3 Z gn(ws) ine
[n|<N () |n|>N n)
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Equivalently, ps x is the probability measure on Ey given by:

faw = — TT e 3mPR0P gg(n) = o= $ivulfs [T ditn) (2.4)
’ Zn Zn
In|<N [n|<N
where Zy > 0 is a normalizing constant, and da(n) is the Lebesgue measure on Span(e”*) = C-¢*

2.2. Normal form reduction and modified energy. We consider a smooth solution uy of

(2.1). By factoring through the linear flow, we introduce a new unknown
VN = e’itaguN

Note that from (2.2), we have vy = Ilyvy + [yug, so Sy = O llyvy. In other words, if we
invoke
wN = HNUN,

we have dyvy = ywy. We denote respectively by wuy(t), v (t) and wy(t) the k-th Fourier coefficient
of un(t), vy (t) and wy(t), and for better readability, we will simply write ug, vy and wy, omitting
the variable ¢.

Now, we observe that vy satisfies the equation
O = e M <|eit83HNv|4eit6£HNv> (2.5)

Since the Fourier transform converts the product into convolution, we deduce from (2.5) that

5
. . —itQ(k —
10 = 10wy = Ljg<n g ek (H ]l|kj|g1v> Uky Ukg -+ Uks

k1—ko+ks—ks+ks=k Jj=1 (26)

—itQ(k —
= ]l\k\gN Z e ( )wklwkz...wks
k1—ko+k3z—ka+ks=k

where k = (k1, ..., ks, k) and,
5
Qk) = (—1) 7'k — k2
j=1

is the so-called resonant function. In the sequel, we use the equivalent Sobolev norm for s > 0

ey = D (L 1R F (R
keZ

which is more convenient for our purpose. Let us now compute 1 4|[u ~I7 (T

L en = Lo e = 2L o]
s s _'LU
9 g NN Ml 2 gt NNl (m) = 5 g 0N

2 .
Hs(T) = Im (iOwN|WN) sy prs

=Tm Y (L + [ke|*)(i0wy, ) We

ke EZ
|ke| <N

Plugging (2.6) into this, we get

1d —itQ(k __ __
5 g llw NGy =Tm > (1 [kg|*)e Py, Wi . wy, g
k1—ko+...—kg=0
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(where now k = (ki, ..., ks, k) and still Q(k) = Z?Zl(—l)jflkﬁ).

The above formula can be symmetrized using the symmetries of the resonant function and of the
indices. Firstly, the change of variables ky <> k¢ and ko <> kg respectively yield,

1d —itQ(k -
5%|”le| ?—IS("]T) =Im E (1 + |]€4|2S)6 tQ(k)wklwkZ...ka
k1—ko+...—ke=0

=Im Y (L [kef*)e Wy, wy,. 05,
k1—ko+...—ke=0

so that,

1d 34 Kol + [kal® + |K6|* i)
S gpllon il =Tm >~ ; e
k1—ko+...—ke=0

Wi, Why. Ty (2.7)

Secondly, the change of variables (ki, ks, ks) <> (ko, k4, ke) and (ki, ks, k3) <> (ko, k4, k) and
(ks, k3, k1) <> (ka, k4, kg) respectively yield,

1d .
—llwn sy = —Im (1 + |ks|*)e™ By .. 0k
2dt
k1—ko+...—kg=0

=-Im Y (1+ ke Py,
k1—ko+...—ke=0

= —Im Z (1+ |k1|28)e_itQ(E)wk1w_k2...wk6
k1—ko+...—ke=0

so that,
1d 3+ |ka|® + [kl + |ks|* ok
9 dtm N” H*(T) —Im E 3 e m(k)wklwk2...wk6 (2.8)

k1i—ko+...—kg=0

Finally, from combining (2.7) and (2.8), we obtain the symmetrized formula

1d 1 = .
sz llv s () = —gim > (ke )y, Wiy g (2.9)

k1—ko+...—ke=0

where,

Pas(k) =Y (=177 [

Jj=1
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In order to perform a differentiation by parts, we decompose the set of indices according to whether

Q(k) = 0 or not :
1d
2dt

2 ]_ N —i I -
lwn Hs(T) — —élm Z Pas(k)e m(k)wklwkzmwkﬁ

k1—k2—|;...—k6:0
Q(k)=0

1 N —i I _
—élm g o (k)e M Py, Wi 0y
k1—ko+...—kg=0
Q(K)#£0

1 N —i I -
:—glm g Yos(k)e P, Wy, g
k1—ko+...—kg=0
Q(k)=0

1 S(k _ao@®,.
—élm Z %—Q@t (e tQ(k)wklka...wk6>

—iQ(k)

]_ S 71 i —_— RN
+ élm Z %—()e 80D, (wy, Wry.. g )

—iQ(k)

Q(F)£0
Hence,
d (1 . 1 VoK) oy, o
a7 _H"LUNMHs(T) + =Im Z ——=e ! ( )wklw;@...w;%)
dt 2 6 kl—kg—b..—k@—o _ZQ(k>
Q(k)#£0

1 D) o—itUR),y T L Vas(K) o
= ——Im Vo5 (k) e " ¥ Wy W + =Im o iUE)

6 k1—k +Zk =0 " s T k1 —k +Zk _o —182(k)

1 27T .. 6= 1 2T e 6=
Q(k)=0 Q(F)#£0

Now, motivated by the above formula, we define the following quantities:

Definitions 2.1 (Energy correction and modified energy). Let N € N.
(1) For v € S§'(T), we define:

-~ 6
R n(u) = %Im Z wj;z((]% (H 1|kj|<N> Uk, Uy -+ Uk

k1—ko+...—kg=0 - j=1
Q(k)#£0
and,
1 2
Esn(u) = Sy ulllzre ) + Ron(u)

(2) For u € C*(T), we define:

1 77/125(];:) -
R oo(u) := =Im E U, Uy - Uk
6 kl—kzt..—keio _ZQ(]C)
Q(k)£0

(2.11)

(2.12)

(2.13)
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and,
1
Ey o0 i= §!HU\qusm + R 00 () (2.14)

For N € NU {oo}, Rs y and E;, y are respectively called the energy correction and the modified
energy. Moreover, we will use interchangeably the notation 25 and Ej to refer respectively to s o
and F, .

Remark 2.2. In Section 3 (in Proposition 3.1), we will see that for s > 2 and 0 < s — L close

2 2
enough to s — %, we can extend R to H(T), because we will be able to prove that the sum in

(2.13) is absolutely convergent for every u € H(T).

Using the modified energy (2.12), we can rewrite (2.10) as

d 1 L
EE&N(HNuN(t)) = —EIm Z Vos(k)e™ M P, W, g
k1—ko+...—kg=0
Q(k)=0
1 JK) ot -
+ glm Z —¢2 ( _? € “Q(k)f)t (wklwk2...wk6)
k1—ko+...—kg=0 _ZQ(]{:)
Q(K)#£0

Furthermore, expanding the time derivation 0, (wy, W,...Wg,) and performing the change of vari-
ables ky <+ k3, k1 <> ks, ko <> k4 and ky <> kg, we get that

d 1 o
S Ban(lyuy(t) = — <Im > au(k)e By w0,

1 Vaos(k) oy, —A—\ —
4+ =Im E Lo iU )wkl (—Z@tka) o Wy
2 k1—ko+...—ke=0 Q(k)
Q(k)£0

At this point, we can make use of the formula (2.6) so that the above formula can be rewritten as

—E,ny(Myun(t) = —-Im ) U (B)e Py, Wi 0

1 S E —q I [ —_— —_—
+ —Im E %—S)e MU gy T, Wy Wiy Wiy
2 hkme=o UK
1—ko+...—ke=

p1—pa2+..+ps=k1
Q(F)#0

1 s k —it(QU(k)— — S
— —Im g %—(_,)e HSk) Q@)wklwaqu...quwkS...wkb,
k1—ko+...—kg=0 Q<k)
Q1 —q2+...+gs=k2

Q(K)#£0

(2.15)
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where p' = (p1, ..., p5, k1) and ¢ = (q1, ..., g5, k2). If we come back to the variable uy on the right
hand side of (2.15), we obtain

%E&N(HNUN@)) = —%Im Z Yo (k) Ty (H T, <N)

klfkgt..fkﬁ =0
Q(F)=0

- 5
+ %Im Z w;z—%)umu_pz Ups Uk - (Hﬂlk |<N> <H]1|pj|SN>

k1—ko+...—ke=0 j=1
p1—pa2+t...+ps=k1
Q(F)#£0

6 5
1 s —_
— EIm Z w;(;; ukluqlqu quuks...u;% <H ]1|kj§N) (H ]1|Pj|SN>
Jj=1

k1—ko+...—ke=0 Jj=1
Q1 —q2+...+qs=ka
Q(E)#0
(2.16)

This quantity evaluated at time 0 will play an important role because it will appear in the explicit
formula for the Radon-Nikodym derivatives of the transported measures. Motivated by the above
formula, we define the following quantities:

Definitions 2.3 (Modified energy derivative at 0). Let N € N. Let ®x(t) the flow of (2.1).

(1) For u € §'(T), we define:

d
Qsn(u) == pr

(2) For v € C*(T), we define:
Qs.00(u) := (RHS)|4—0 of (2.16) with N = oo

1 1 77/125( ) JE
= —glm Z os(k )uklqu kg + =Im Z U, Uy - U Uy - Ui

By n(TIy®x (£)) |0 = (RHS)|i_o of (2.16)

2
k1—ko+...—ke=0 k1—ko+...—ke=0 Q(k>
Q(k)=0 p1—P2+...+ps=k1
Q(k)#£0
I ¢2s(k’ —_ —_ —_
— —1lm E Q—_,ukluqluq2...uqsukg...ukﬁ
k1—ko+...—ke=0 (k

q1—q2+...+q5=k2
Q(k)#£0
(2.17)

For N € NU {00}, Qs is called the derivative of the modified energy at 0. Moreover, we will use
interchangeably the notation ()5 to refer to (s .

Remark 2.4. For N € N, note that from the additivity of the flow we have:

d d
Qs N(Pn(T)u) = —Es v (IINON (1) PN (T)U) [i=0 = — Es v HInPn(t + 7)u) [i=o
(Pn(T)u) o ( (t)Pn(T)u) | Cg ( (t+7)u) | 2.18)

= %ES,N (IMIn@n(t)u) |1=r
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Remark 2.5. In Section 4 (in Proposition 4.1), we will see that for s > % and o < s — % close
enough to s — %, we can extend Qs to H?(T), because we will be able to prove that the sum in
(2.17) is absolutely convergent for every u € H(T).

3. DEFINITION AND DETERMINISTIC PROPERTIES OF THE ENERGY CORRECTION

In Section 2, an energy correction R,y (for N € N U {oo}) has emerged from the normal form
reduction (See Definition 2.1). We dedicate this section to the study of this quantity on H(T)
for o < s — 5 (close enough to s — —) provided that s > 5. In particular, we show that we are
able to extend R, (which is defined on C>(T)) to H "(']I‘) because we will prove that the right
hand side in (2.13) is actually an absolutely convergent sum for every u € H?(T). This section is
composed of two results; firstly, we state that for ¢ < s — % close enough to s — %, the R, n are
continuous functions on H?(T) given by the diagonal of a continuous multi-linear form; secondly,

we state that Ry ny converges to R - uniformly on compact sets of H(T).

Proposition 3.1. Let s > % Foro <s— % close enough to s — %, there exists a constant C' > 0
such that for every u™, ..., u® ¢ H(T) :

2312 2 NG) -
S Pl < e T 1)

k1—ko+...—kg=0 k)

Q(k)7£0

Hence, the map:
R: He(T)® — C
77ZJ25( ) ﬁ W
(ub, .. u®) — Z Q(k) uk qu U
k1—ko+...—ke=0
Q(k)#£0
is a continuous multi-linear form. Then, for N € NU {cc}?, setting *:
R&N . HG(T) — C

u o 1ReR(Iyu,...Tlyu) ’ (3.2)

we deduce that R, y is a continuous map on H°(T) that satisfies for all u,v € H?(T):
|Ron () = Ron(0)] < C lu = vl o (fulle + [[0ll70)

uniformly in N € NU {oco}.

Notation 3.2. We also use the notation R, to refer to R .

We postpone the proof of this proposition for Section 10, where a detailed analysis is provided.
Instead, assuming this proposition, we are able to prove now the following approximation result:

Proposition 3.3. Let s > % Let 0 < s — % close enough to s — % so that the conclusion of

Proposition 3.1 holds. Then, for every compact set K C H°(T),
sup |Rs(u) — Rs n(u)] — 0
uweK N—o0

In other words, Rs N converges to Ry uniformly on compact sets of H?(T).

3Using the notation I = id
4By abuse of notation, we still denote by R, v this new function, even though it has already been defined in
Definition 2.1. The R, n of Definition 2.1 and the R, n of this proposition coincide on C>(T).
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Proof of Proposition 3.3 assuming Proposition 3.1. Here we assume the statements in Proposi-
tion 3.1. Thus, we invoke 0 < s — % close enough to s — % along with the constant C' > 0
from this proposition. Next, we observe that for all N € N:

R(u) — Ry n(u) = Ry(Tyu)
Then, it follows from Proposition 3.1 that:
[Ru(u) = Ro(u)] = | Ru(Tw)| < C [Tyl

o

On the other hand, we have that for every u € H, < 1. So,

N“”Hc j) 0 and HH HH"—>HU

using the following general abstract lemma in the inequality above finishes the proof:

Lemma 3.4. Let E, F two Banach spaces. Let {Tn}nen be a sequence of bounded linear maps
with the uniform (in N € N) bound |Ty||p_,p < M, for some constant M > 0. If for everyu € E:

IT(w) ~ T(w) [ — 0
for some linear map T : E — F, then for every compact set K C E, we have:

sup 1T (u) — T (u)| 5 il

O

4. DEFINITION AND DETERMINISTIC PROPERTIES OF THE MODIFIED ENERGY DERIVATIVE AT 0

In Section 2, we defined a quantity Qs y (for N € NU {oc}) in Definition 2.3, called the modi-
fied energy derivative at 0. We dedicate this section to the study of this quantity on H(T) for
o< s— % (close enough to s — %), provided that s > % In particular, we show that we are able to
extend Qs « (which is defined on C*(T)) to H?(T), because we will prove that the right hand side
in (2.17) is actually the sum of three absolutely convergent sum for every u € H?(T). This section
is composed of two results; firstly, we state that for 0 < s — % close enough to s — %, the Qs n
are continuous functions on H?(T) given by the diagonal of a sum of three continuous multi-linear
forms; secondly, we state that Qs y converges to Qs « uniformly on compact sets of H7(T). We
point out that the analysis here is similar to the one from Section 3.

Proposition 4.1. Let s > % Foro < s — % close enough to s — %, there exists a constant C' > 0
such that for every uV, ... u® oM O ¢ HO(T) :

_ 6
Z WJQS E Hukl ukz ) l(€ S H HHC’ (41)

klszt..fk‘ﬁ 0
Q(k)=0

and,

N I p—— -
> 2B g @ <o T [0, IO, @2
=1

k1—ko+...—ke=0 Q(k) jG{Q,...,G}
p1—p2+...+Ps=k1
Q(k)#£0
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and,

- N 5
2. }w25~) uf oo ol <€ T 9l TTONe (43)
=1

k1—ko+...—ke= <k ]6{1 3,.. 76}
Q—q2+-.-+qs= kz

Q(k)7£0
Hence, the maps:

To: H(T)Y — C
u®u® — Z 1/128(1%’)11,91)11,&22)...11,2?7
ki1—ko+...—kg=0
Q(k)=0
T : He(T)* — C
B 05 o
FCRICITCRTC NI %—Qvgpvzg?...U;,?u,g?...u;?
k1—ko+...—kg=0 (k)
p1—p2+...+ps=k1
Q(F)£0
Ts: He(T)™ — C
¢25(E) 1 5) (3 6
uM u® L u® M B Z —_— ugﬂ)vél) fl?. v(g5)u,(€3) u,(%)
k1—ko+...—kg=0 Q(k:)

q1—q2+...+g5=k2
Q(F)#£0

are continuous multi-linear forms. Then, for j = 0,1,2, setting for u € H?(T):
Q;(u) == T;(u,...,u)
we deduce that each Q; is continuous on H°(T), and that for N € NU {oc}, the map’:
Qo = Im(—%Qo oIy + %Ql olly — %Qz olly) (4.4)
is continuous on H?(T) and satisfies for all u,v € H°(T):

Qun (1) = Qun ()] < Cllu =l o (fullfe + [0l + lull e + 01l 370) (4.5)
< Cllu = vl o (1 + [l o + 0]l 7)° '

uniformly in N € NU {oco}.

Notation 4.2. We also use the notation () to refer to Qs .

Remark 4.3. Note that we cannot a priori define Q,(u) on the support of i, as £ E,(®(t)u)].—o,
because the expression

2
(1) T Ry(D(t)u)
is a priori ill defined for initial data v in the support of ug since:

1 (#)ull

EL(2(t)u) = 3| 8(1)u

i]s(T) = +00, us-almost surely.

"By abuse of notation, we still denote by Qs,~ this new function, even though it has already been defined in
Definition 2.3. The Qs n of Definition 2.3 and the Qs y of this proposition coincide on C*°(T).
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Indeed, for o < s — 3, it follows from the fact that the flow ®(¢) is a bijection from H°(T) to itself
that:

ps({u € HO(T) = [[@(t)ul

1omy < +oo}) = ps({v € HO(T) = |[oll7a(m) < +o0}) = s (H(T)) = 0

We postpone the proof of Proposition 4.1 for Section 10 where a detailed analysis is provided.
Instead, we prove now the following approximation result:

Proposition 4.4. Let s > % Let 0 < s — % close enough to s — % so that the conclusion of
Proposition 4.1 holds. Then, for every compact set K C H°(T),

51p Q1) — Qo] — 0
ueK —0

In other words, Qs converges to Qs uniformly on compact sets of H(T).

Proof of Proposition 4.4. Assuming the statements in Proposition 4.1, the proof goes exactly the
same as the proof of Proposition 3.3. O

5. TRANSPORT OF (GAUSSIAN MEASURES UNDER THE TRUNCATED FLOW

In this section, we prove that the transported measure ®y(t)4ps is absolutely continuous with
respect to us. To do so, we directly establish an explicit formula for the Radon-Nikodym derivative
of ®n(t)yps with respect to p,. Our method relies on a change-of-variable formula. Analogous
change-of-variables have already been used: see for example [23] Proposition 6.6, or [33] Section 4.

5.1. A change-of-variable formula. We dedicate this paragraph to this change-of-variable. It
is equivalent to the statement that the truncated flow preserves a certain measure.

On the Euclidean space Ey, equipped with the orthonormal basis {€ka}|k|g ~, we consider the
Lebesgue measure H|n| < duy, where duy, is the Lebesgue measure on C - ™.

Proposition 5.1. The measure
H duy, @ ,USL,N
k|<N

18 tnvaritant under the truncated flow. In other words, for every N € N and t € R,

(q’N(t))#( IT i@ MSL,N) =[] dar®piy

|k|<N |k|<N
A reformulation of this proposition is:

Corollary 5.2 (change-of-variable formula). Let A a Borel measurable set. Let f: H7(T) — R,
be a positive measurable function. Then,

v dvy, @ piy(v) = Oy (t)u dily, @ pn (u
[DN(t)Af()H ® ity (0) /Af( () T i © sty ()

[k|<N lk|<N

Proof of Proposition 5.1. Let ®y(t) be the restriction of the truncated flow ®x () on the finite-
dimensional space Ey, which maps Ey to itself (see Proposition A.12). We factorize ®y(t) as

(1), e) on Ey x E+, in the sense that ®y(t)ug = @y () Iyug + 4%+ u, (see again Propo-
N N g
sition A.12). Now, we provide a proof in two steps.
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Step 1 : Firstly, we show the formula

(Pn(?) < H dug @ iy N) = ( H dﬂk> ® (eiwﬁ)#ui]\, (5.1)

k<N I|<N

To do so, we rely on the fact B(H°(T)) = B(En) ® B(Ex)®. Thanks to that point, if we show that
)

for every Aj € B(Eyx) and Ay, € B(ER), we have:
(TT e ® s ) (@8 (07 (Aiow x Anign)) = (T dii) (Aui)piin (™% Auign).— (5:2)
[k|<N [k|<N

then, the property of uniqueness of product measures’ will ensure that the two measures in (5.1)
coincide on B(Ey) ® B(Ex), that is on B(H?(T)). Hence, let us prove (5.2). Let Ay € B(EN)
and Apign € B(E%). On the one hand, from the factorization of the truncated flow, we have:

On (1) (Asow X Anign) = On (1) (Asow) X €% Apign, € Ey x Ex;

so, using the definition of product measures we obtain:

(T diin @ ptne ) (@) (Atow x Anign)) = ( TT e ) (@ (6) (Ao (e Apigr)

|k|<N |k|<N

Thus, to prove (5.2), it remains to show that:

(T i) @x ) (Aww)) = ( TT i) (Aio) (5.3)

k|<N k|<N
To do so, we recall that on the other hand, ® ~(t) is the flow of the Hamiltonian equation:
Oy = 2
i = T () (FNLS)
U|t:0 = Ug € EN

on the finite-dimensional space Ey (see Proposition A.12). So the equality (5.3) follows from the
application of Liouville’s theorem, which states that the flow of finite-dimensional Hamiltonian
equation preserves the Lebesgue measure. To sum up, we obtained (5.1). Let us now turn to the
second step of the proof:

Step 2 : Secondly, we show the following invariance property:

i 2
(") by = Han
We recall that the probability measure ,usf y is the law of the random variable

X :Q — H°(T)

W Z gn ma:

[n|>N

Indeed, whenever X and Y are two topological separable spaces, we have B(X x Y) = B(X) ® B(Y), where ®
is the symbol for tensor-product of sigma-algebra

"Both [1jx)<n dity and (eitaz)#uj-’]v being o-finite measures.
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where the sum converges in the space L?(Q, H°(T)). Since e%% is a linear isometry on L2(T), we
deduce that

~ e gn(w)
ezt@% o X(w) = n eine
[n|>N

where the sum still converges in L2(2, H°(T)). Moreover, the Gaussian measures are invariant
under rotations, so the family {e‘””2 Gntnez 1s still a family 2Of independent standard complex
Gaussian measures. Consequently, we obtain that X and "% o X have the same law, and this
means that ;

ito)

(ezt x)#/”LsL,N = Ms,L,N

which is the invariance property of Step 2.

Conclusion : We get the desired result by combining Step 1 and Step 2. U

5.2. The Radon-Nikodym derivative for the truncated transported Gaussian measures.
In this paragraph, we fix N € N. We will use Proposition 5.1 in order to obtain the Radon-Nikodym
derivative of @y (t)xps with respect to ps.

Proposition 5.3. Let s > %, R >0 and N € N. For everyt € R, we have

1
D (1) p11s = exp(—5 (T @y (—t)ull}. = [Myull3))ds,

Moreover, we can rewrite this formula as

Bx(thpne = exp (Ru@y(=00) — Rl — [ B Qun(@x(r)uldr ) di

where Ry n is defined in Definition 2.1 (see also (3.2)) and Qs n is defined in (4.4) (see also
Definition 2.3).

Remark 5.4. Such a formula for the density has also been obtained for the different models in
9], [10], [15] and [11].

Proof of Proposition 5.3. Firstly, we decompose p; as:

dp, = | L emdimnaly I1 dii | © dity
ZN ’
FZN

(see (2.3) and (2.4)). Then, thanks to a general feature for the transport of density measure, we
have :

1 P
q)N(t)#d,U/s = @N(t)# Z—Ne_%HHNUH%Is H dup | ® d/isl’N
|k[<N

1 _ 2
_eiéHHN(q)N(t) 1u)| HS . CI)N(t)# H d@ & d'U’SL,N

ZN IKI<N
1 1 —H) )2 P
= Z—Ne SN (@5 (=8) (w)ll7rs . H duk ® d:usL,N

|k|<N

— o3 (IMy(@n (=) )1~ TullFs)

dps
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where we used in the third line the invariance property from Proposition 5.1. Hence, the first
statement of Proposition 5.3 is proven. To achieve the proof, we rewrite the term inside the
exponential thanks to the definition of the modified energy (2.12) and the identity (2.18):

S (N — vl ) = [ =3 () @)y dr
= [ G Res(@n(r) — (B
_ /0 - (diT (R (x(7)10)) — Qo (B (r)u))dr
R (Do (—t)u) — R () Ot Qun(®x (r)u)dr
which is the desired rewriting. 0

6. TRANSPORT OF (GAUSSIAN MEASURES UNDER THE FLOW

In Section 5, we have seen that for every ¢t € R, and every N € N:
(I)N(t)#ﬂs = GS,N(t> '):us (6'1)

where,

G (t1) = exp (Res(@(=000) — Rul) - | tQS,N@N(r)u)dr) (62)

Our goal in this section is to "take the limit” N — oo in order to extend this formula to N = oc.
Thus, we invoke:

—t
Gs(t,u) :==exp (RS(CI)(—t)u) — Ry(u) — / QS(QD(T)u)dT) (6.3)
0
and we aim to show the following proposition:
Proposition 6.1. Let s > % and R > 0. Lett € R. Then,
(I)(t)#:us = Gs<t7 U)dﬂs

In particular, us is quasi-invariant under the flow of (1.1).

Remark 6.2. For o < s— % close enough to s — %, we deduce from Proposition 3.1, Proposition 4.1
(whose proofs are provided in Section 10), and from the continuity properties of the flow, that the

map :
(t.u) € R x H(T) s exp (Rs@(—t)u) — Ry(u) - / QS,N@N(r)u)dT)

is continuous, for any N € NU {oo}.
Moreover, on H(T), the a priori ill-defined object —1(||®(—t)u|3. — [[ull3.) can be seen as the
well-defined object:

(1 ®(~tu

2 )= Ry(B(—t)u) — Ry(u) — /O 0@ u)dr

In this section, we assume the statements from Proposition 3.1 and Proposition 4.1. Hence, we
work with a 0 < s — % close enough to s — % so that the pointwise properties from Proposition 3.1
and 4.1 are satisfied.

2
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6.1. Approximation properties. Our main ingredients to ”take the limit” N — oo in (6.1) is
two approximation properties. The first one is the inner regularity satisfied by probability measures
on H°(T) :

Proposition 6.3 (inner regularity). Let u be a finite measure on (H°(T),B(H?(T))). Then, for
any Borel set A C H°(T), we have

p(A) =sup{u(K): K C A, K compact set in H°(T)}
Proof. This follows from the general fact that finite measures on Polish spaces are regular. 0

As a consequence, we have:

Corollary 6.4. Let j1 and v be two finite measures on (H°(T),B(H?(T))). Assume that for every
compact set K C H?(T), we have:

Then, pu = v.

Proof. Let A € B(H?(T)). Let us prove that u(A) = v(A). Let € > 0. From the inner regularity of
p (see Proposition 6.3), we invoke a compact set K of H?(T) such that K C A and u(A)—e < p(K).
Thus,

1(A) —e < p(K) = v(K) < v(A)

Since € > 0 is arbitrary, we conclude that p(A) < v(A). By interchanging the roles of p and v, we
obtain the converse inequality. 0

The second approximation property that we will use is the approximation of the expected density
G5(t,.) by the truncated densities G5 n(t,.):

Proposition 6.5. Let s > % Let K C H°(T) a compact set. Then, for everyt € R:

sup |Gs(t,u) — Gsn(t,u)] — 0
ue K N—oo

In other words, G4 n(t,.) converges to G4(t,.) uniformly on compact sets.

Proof. Let t € R. Recall that G, y(t,.) and G,(t,.) are respectively defined in (6.2) and (6.3). We
prove separately that:

(a) : Ry N(Pn(t)u) — R n(u) converges to Ry(P(t)u) — Rs(u) uniformly on compact sets as N — oo
and,

(D) : fot Qs N(Pn(T)u)dr converges to fg Qs(P(7)u)dr uniformly on compact sets as N — oo.
Indeed, if we do so, we will obtain that:

Ryn(®n(t)u) — Ron(u) — [o Qun(®(nT)u)dr converges to Ry(P(t)u) — Ry(u) — [1 Qu(®(7)u)dr
uniformly on compact sets as N — oo.
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Then, since the exponential is continuous, this will lead to the result. In order not to repeat the
same argument, and since (a) is similar to (b) and a little bit easier, we will only prove (b). Then,
let K C H?(T) be a compact set. Then,

[ - | ' Qun(@x(Pu)dr

< /O |Qs(P(7)u) — Qun(®(T)u)|dT + /0 Qan(P(T)u) — Qo n (P (T)u)|dr (6.4)
S ’t| Tsel[lﬂpt] |QS<CI)(T)U> - Qs,N(q)(T)u)’ + ’t| Tsel[lopt] |QS,N((I)(T)U“) - QS,N(CI)N<T>U)|

On the one hand, from the continuity of ® : R x H? — H, the set {®(r)u; 7 € [0,t],u € K}
is compact. Combining this with the fact that Q, n 7 (Q)s uniformly on compact sets (see

Proposition 4.4) yields:
sup sup |Qs(P(7)u) — Qs n(P(7)u)| e 0

ueK r€0,t]

On the other hand, using (4.5) from Proposition 4.1 we can invoke a constant Cy > 0 independent
of N such that:

sup sup |Q N (P(7)u) = Qs n(Pn(T)u)|

ueK 7€(0,t]

<Cy  sup [|@(7)u— Bn(T)ull o (L+ 1R(7)ul o + | Pn(T)ull o)
(Tyu)€[0,t]x K

(6.5)

Besides, from the Cauchy theory, there exists a constant C' > 0 independent of N such that:

sup [|B(T)ull o + [[Pn(T)ull o < C
(ru)€l0,t|x K

(see Proposition A.5). And, from Proposition A.10, we also have:

sup |1D(T)u — Pn(T)ul|ge — O
(T u)€E[0,fx K N—oo

Using these two facts in (6.5) yields:
sup Qs n(P(T)u) — Qs (Pn(T)u)| — 0

(Tu)€E[0,]x K N—oo
Finally, coming back to (6.4), we conclude that:

t

sup| [ Ou(@(r)u)dr — /0 Qun (B (T)u)dr| — 0

ueK 0 N—oo

This completes the proof. 0

6.2. The Radon-Nikodym derivative for the transported Gaussian measure. In this
paragraph, we prove Proposition 6.1 based on the combination of (6.1) with the approximation
properties above.

Remark 6.6. We will be able to use Corollary 6.4 with the measures ®(¢)xus and Gy(t,.)dus.
Indeed, both are finite measures on (H?(T), B(H°(T))). On the one hand, ®(t)xus is a prob-
ability measure; on the other hand, Fatou’s lemma provide the following a priori bound for
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Gs(t, )dus(H(T)) -

Gs(t, . )dus(H(T)) = / Gs(t,u)dps = / li]{]nGs,N(t,u)dus < limNinf/ Gsn(t,u)dps =1

o o

Remark 6.7. The proof we provide below for Proposition 6.1 is similar to the one for Theorem
1.4 in [26]. However, it is worth noting that our proof do not require any LP-integrability for the
truncated densities G n(t, .).

Proof of Proposition 6.1. Let t € R. Relying on Corollary 6.4, it suffices to prove that for every
compact set K of H?(T), we have:

GﬂwMMm=¢®wﬂQtMﬁHL&mW%z%@PWQ (6.6)

Fix K a compact of H(T).
We invoke two real numbers o7 and o, such that 0 < 07 < 09 < s — % Moreover, we invoke for
ke N:

B = fue HOT): full sy < )
the closed centered ball in H%2(T) of radius k. Note that Bf™ is compact in H°'(T) because
01 < 09. To establish (6.6), it suffices to prove that for all k£ € N:

/' G, (t,w)dpiy = 1 (D(—t)(K O BE™)) (6.7)
KNBH"?
Indeed, if we do so, we will obtain that:
/ Gs(t, u)dps :/ Gs(t,u)dps = lim / Gs(t, u)dps
KNH2(T) Ugen(KNBH2) k—oo KNBH”2
= lim / n((-0(K 1 BE™)) = (| @(-1)(K 0 BE)) = (@) (5 0 BE™))
keN keN

— e (®(—4)(K 0 H™(T)))
Besides, since us(H?(T) \ H??(T)) = 0, we have:

/Gs(t,u)dusz/ Gs(t, u)dps
K KNH"2(T)

a(@(—1)K) = g (B(—)) (1 HP(T)) =, ((—) (K 1 HE*(T)))
Hence, if we prove (6.7), then we will obtain (6.6), and the proof will be complete. Thus, we now
move on to the proof of (6.7). Let k € N and denote K, := K N B™.

and,

— Firstly, we prove that:
| Guttudu, < (-0 (6.9)
K>

Since K, is compact in H?(T), we obtain from Proposition 6.5 that:

/ Gs(t, u)d,us = lim stN(t,U)dus = lim (I)N(t)#,us(Kg) = lim ,uS(CIDN(—t)Kg) (69)
Ko N n—o00 N—oo

- Jk,
Let € > 0. Thanks to Corollary A.11, we invoke Ny € N such that:
N > Ny = Oy (—t)(Ky) C ®(—t)(Ky) + B
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where BH” is the closed centered ball in H(T) of radius €. As a consequence, we have:

lim;up s (Pn (=) Ka) < ps(®(—t)(K>) + B
Plugging this into (6.9), we obtain:
| Gt < pu(@(=0(5) + B)
Since € > 0 is arbitrary, we deduce that®:

Gt w)dpg < T\, g (@(—1)(K2) + BE) = s ({()(@(—)(K2) + BI)) = po(® (1) K2)

Ko e>0
So we have proven (6.8).
— Secondly, we prove that:
Gi(t, u)dps = ps(P(—1)(K32)) (6.10)

K>

Let us first observe that Ks is compact in Ho'(T) : if {u, }neny € KY is a sequence in Ky = KNBA™,
then, from the compactness of B in H?'(T) (because o; < 03), there exists a subsequence
{tn, }jen and an element u € Bf"* such that:

ln; =l o =2 0

j—00
In particular, we have Hunj — uH o — 0 because o < 1. Since K is closed in H 7(T), it implies
Jj—0o0

that u € K. Then v € K N B and K, is compact in H'(T).

Now, let € > 0. Thanks to Corollary A.11, and the fact that K, is compact in H?'(T) , we are
able to invoke N; € N such that:

N >N, = &(—t)(K;) C On(—t)(Ky + BE™)

where B is the closed centered ball in H°'(T) of radius €. It is now important to notice that
Ky + BE”" is compact in H?(T). Tt follows from the fact that both Ky and BZ"' are compact in
H?(T). As a consequence, we obtain from Proposition 6.5 that for N > Ny:

ps(@(—1)(K2)) < po(@n(—t)(K> + BI™)) = / Gon(t u)dps — Gs(t, u)dps
K2+B£IUI N—oo Kg—‘,—Bé‘IJl
Since € > 0 is arbitrary, we obtain that:
po(@(—0)(Iz)) < lim \ .t u)du, = [ Gult,u)d.
e— Ky

Ko+BH1

So we have proven (6.10). This completes the proof of Proposition 6.1. O

8Since ®(—t) K> is closed in H(T), we have (.o o(®(—t)(K2) + BA") = (—t) K,
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7. WEIGHTED (GAUSSIAN MEASURES, LP-ESTIMATES ON THE WEIGHT, AND TRANSPORT
ALONG THE FLOWS

In Section 6, we proved that for every s > % and every t € R, we have:

D(t)yps = Gs(t, w)ps
where G,(t,u) is the continuous function on H7(T) (for a given o < s — 1 close enough to s — 1)
given by:

Go(t,u) = exp (Rs@(—t) / Q.(® )

In particular, it implies that G(t,.) belongs to ]Ll(d,us) with a Ll(d,us) norm equal to 1). Thus,
it is interesting to wonder if G(t, .) belongs to LP(dpus) for p € (1,00). We will see that the answer
is positive for all p € (1,00) if we restrict p, on bounded sets of H'(T), that is at the level where
we can make use of the conservation of the Hamiltonian and of the IL?(T)-norm. To do so, we need
to introduce weighted Gaussian measures.

In Section 2, we identified a modified energy in Definition 2.1. Based on this modified energy,
we define the Welghted Gaussian measures. Formally, the idea is to replace the Gaussian measure

Z 1 = zlullizem gy by Es(w) dy. However, we need to add a cut-off at the energy level, where the
Hamiltonian and the ]LZ(T)—norm are conserved by the flow. In this section, we introduce the

weighted Gaussian measures as density measures with respect to the Gaussian measure pgs. We

also provide LLP-estimates on these densities, ensuring in particular that the weighted Gaussian

measure are well-defined probability measures on H?(T), 0 < s — %

7.1. Definitions. We start by invoking the following quantity :
Lo
Clu) 1= NllZs + H ()

which is conserved by the flow of (1.1). Next, for R > 0, and for every N € N, we define the
weighted Gaussian measures as

dps.ry = Licwzrye” ™y, dpsr = —ieweme ™ dp, (7.1)

ZSRN

sty

ZS,R

where,

Zs RN ::/ . Lewerye ™V Wdpy, Zsr ::/ o ew=zrye = Mdp,
HS 2~ HS" 2~

are normalizing constants ensuring that ps g v and p, g are probability measures (if they are positive
and finite, see Remark 7.5). We recall that R, n(u) and R,(u) have been defined in Definition 2.1
(see also (3.2)).

Notation 7.1. We also use the notations p, g and Zs r o to respectively refer to ps r and Z; p.

Remark 7.2 (H'(T) cut-off). We can rewrite C(u) as :

1 1
Clu) = 5l + = [l

From the Sobolev embedding H'(T) < L5(T), we have

1
5 llulls < Cu) < CO+ Jull)°
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It means that the cut-off Lycwy<gy is a H'(T) cut-off. In particular, (for R > 2)
Clu) <R = |lul|;n < V2R<R

S0,
Licwszry < Lgm(u)
where B is the closed center ball of radius R in H'(T).
The additional nice property is that the quantity C(u) is conserved by the flow of (1.1).

Remark 7.3. (Passing from p,rn to ps) Let R > 0. The measure ji|;c<py coincide with the

measure Zs y ge®¥®Wp, p nlie<ry. In other words, for every Borel set A € H'(T) such that
A C {C < R}, we have

Zs,N,ReRS’N(u)ps,R,N(A) = us(A)
Indeed, it results from

Zs,N,ReRS’N(u)ps,R,N<A> :/Zs,N,ReRS’N(u)dps,R,N(U)
A

= / Zs v re" ) Loy <py e o™
A —

= /A dpis(u) = ps(A) .

Now, we state the following crucial proposition, whose proof is postponed to the dedicated Sec-
tion 11.

Proposition 7.4. Let s > % and R > 0. Then for any p € [1,400), there exists a constant

C(s,p, R) > 0 such that for every N € NU {oo}, we have:

HE{C(U)SR}QIRS,N(M |]Lp(dus) < C(s,p, R) (7.2)
Moreover,
—Rs(u —RS u
[tew@smye™™ = Lewsme ™y, 720
In particular, Zs y r - Zs r so that we also have:
1 1
Licw<rye =™ — Licw<rye” N ™ — 0 7.3
HZS,R {Cw<R} o HC@=R) by N (7.3)

Remark 7.5. The inequality (7.2) in Proposition 7.4 ensures that for all N € NU {oo} :

ZoRN = / , Lewzme ¥ Wdp, < +o0
H

s—3
Besides, we also have Z; p v > 0 because one can show that us(]l{c(u)SR}e*R&N(“) > 0) > 0. To see
this, we write on the one hand:
ps (Licwy<mye” V™ > 0) = pe ({C(u) < R} N Ry v < 400) = s ({C(u) < R})

and on the other hand, we have that ps({C(u) < R}) > 0, for any R > 0, since p, charges all
open sets of H'(T). For this latter point, we refer to [7], Proposition 1.2. Note also that since
Zsr.N — Zs g, there exists a constant Cs g > 0 such that:

1

CS,R

< Zspn < Csr (7.4)
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uniformly in N € NU {o0}.

7.2. Transport of weighted Gaussian measures along the flows. For N € NU {0}, now

that we know explicitly the density of @y (t)xps with respect to s, we are able to obtain the den-
sity of ®n(t)4ps rn With respect to ps gy Without re-performing the analysis of Section 5 and 6.

We stress the fact that the following proposition holds for N € N and N = oo.
Proposition 7.6. Let s > %, R>0 and N € NU{oo}. For everyt € R, we have:
Oy (t)ups,pn = Fon(t,u)dps r.n

for a function Fs n(t,.) given by the explicit formula:

Fustto) = e (- [ R Qux(@y(ryuir

where Qs n s defined in (4.4) (see also Definition 2.3). In particular, ps g is quasi-invariant along
the flow of (1.1); and when N € N, ps p n is quasi-invariant along the flow of (2.1).

Remark 7.7. When N € N, we have:

/ Qo (D (F)u)dr = Eun(Tx®y () — Eox(Tyu)

Hence, the a priori ill-defined object Es(®(t)u) — Es(u) (on the support of p) can be seen as:

E(®(t)u) / Qu(®

which is a continuous function on H(T) for o < s — 3 close enough to s — 1.

Proof of Proposition 7.6. Let N € N U {occ}. We start by applying a general feature for the
transport of density measures:

1
Oy (t)wpsry = Pr(t)p ( ~ ]l{cw)sme_RS’N(”)dus)

s,R,
1

_ 71u
= ———lc@y-rw<me IOy (1) ydp,
s,R,N

Next, thanks to Proposition 5.3 and 6.1, along with the facts that ®y(¢)~! = ®x(—t) and that C
is conserved by the flows, we obtain:

1
<I>J\f(t)#Ps,R,N = Z (u )<R}eXP( / QsN (I)N ) ) dpts
< / Qs N (PN (T)u)d ) dps,r,N
which completes the proof. 0
Remark 7.8. Let s > 3 and o < s — . Then, for every t € R, F, x(t,.) converges to Fj(t,.)

uniformly on compact sets of H?(T) (see the proof of Proposition 6.5).
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8. DENSITIES IN L? AND CONVERGENCE IN L? OF THE TRUNCATED DENSITIES

Let s > % In Section 5 and 6, we have seen that for every N € N and every t € R,
O (t) s = Gsnl(t, ) s, and, O () pp1s = Gs(t, ) s

where G y and G are known explicitly (see Proposition 5.3 and 6.1). In this section, our goal is
to prove that for every fixed R > 0, and every t € R:

Gs(t,.), Gsn(t,.) € LP(dps,r) and: ||Gs(t,.) — Gs n(t, .)||Lp(dus’R) — 0

N—oo

where ps r is the restricted Gaussian measure define by:

s,k = L{c(u)y<Ryhs (8.1)
This is equivalent to the fact that:

]]-{C(U)SR}GS(tJ .), ]]-{C(u)SR}GS,N(ta ) S Lp<dus) and: H]}-{C(U)SR}(GS<t7 ) - GS,N<t7 '))”]Lp(d,us) — O

N—oo

Remark 8.1. Since C is conserved by the flow, we still have:
@N(t)#usﬂ = stN(Zf, -),Us,Ra and, (I)(t)#ﬂs’R = Gs(t, -),US,R (82)

In our approach, we do not consider directly j; p but we consider instead the weighted Gaussian
measures ps g . We will then be able to prove a quantitative inequality in Proposition 8.5 thanks
to suitable LP-estimates on Q)s; y. In a second step, we will be able to go back to ys r by proving
the same quantitative inequaltiy for p g.

The quantitative inequaltiy (8.6) is significant in itself; indeed, it is often used to obtain the quasi-
invariance without knowing the Radon-Nikodym derivative, see for example [13], [23], [33],[15].
Here, we know explicitly the Radon-Nikodym derivative of the transported measure, and from this
point it will be easier to establish (8.6).

8.1. Quantitative quasi-invariance. Recall that for convenience we use the notations ps g oo =

Ps,Rs Qs = Qs,om etc.

We start this paragraph by providing LP estimates for (), y. These estimates will help us to
establish the quantitative quasi-invariance property in Proposition 8.5. We postpone the proof of
the following proposition to Section 12 where a detailed analysis is provided.

Proposition 8.2. Let s > % There exists B € (0,1) such that for every R > 0, there exists a

constant C(s, R) > 0, such that for any p € [2,+00),

uniformly in N € NU {oco}.

Combining estimate (8.3) with estimate (7.2) from Proposition 7.4, we also have:

Proposition 8.3. Let s > % There exists § € (0,1) such that for every R > 0, there exists a
constant C(s, R) > 0, such that for any p € [1,400),

HQS,N(U)HLP(dpS,RYN) < 0(57 R)pﬁ (84)
uniformly in N € N U {oo}.
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Proof of Proposition 8.3 assuming (8.3) and (7.2). It results from Cauchy-Schwarz that:

1 B 1/p
||QS,N(U)||]LP(dpS RN) = H Z H{CUSR}|QS,N(U/)|p6 RS,N(U‘)
h i L' (dus)
1/p
S Z H]l{Cu<R}Qs N H]L2p (dps) |]l{Cu<R}e H]L2 (duia)

sO@waﬂaa&>W§0@Rm
where the constant C'(s, R) has changed but still depends only on s and R. Note also that we used
(7.4). O
The following identity will be our starting point in order to obtain the forthcoming inequality
(8.6).

Proposition 8.4. Let s > 2, R >0, N € NU{oo} and t € R. For every Borel set A C H°(T),
we have : p

o @nOA) == [ Qundpunn (55)

Proof of Proposition 8.4. We use the explicit formula for the density from Proposition 7.6, so that
we obtain:

d d d

= penn (PN (E)(A) = — (Pn(—t)ppsrn) (A) = — [ e o Qun(@n(wdr g,
ey @(O(A) = 5 @n(Dppn) () = [ pory
- [ Quv@r@ui@s(-Dgonn == [ Quatudpnn
A @N(t)A
where the last equality follows from the definition of a push-forward measure. U

Proposition 8.5. Let s > %, R >0 and t € R. Then, there exists € (0,1) such that for every
€ (0,1), there exists a constant C = Cy rap > 0 such that for all Borel set A C H°(T) :

prrn(On()A) < pyrx(A)exp (COL+ 1)) (8.6)
uniformly in N € NU {oco}.

Proof. Let s > 3, R > 0 and N € NU {oo}. Let A C H?(T) be a Borel set. Using (8.5), Holder
inequality and the energy estimate from Proposition 8.3, we obtain :

d

_1 _1
PN (ON (D A)| < N1Qun Loy, 10y Porn (B (A7 < Conp’pann(Pn(H)A)

for all p € [1,+00). It means that the function F(t) := psrn(Pn(t)A) satisfies the differential
inequality :

F(0)] < Con P F ()
Integrating this yields :

F(t) < (FO)7 + Corltlp™™)" = F(O) (14 ConltlF(0) 79 )]

= F(O)exp (plog(1 + Conlt F(0) 75" )

Then, using the inequality log(1 + =) < z implies :

F(t) < FO)exp (Corlt/F(0)7p"))
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Now, we choose p := 1+ log(ﬁ) so that F(O)fé = exp(%) < exp(1). Hence,
F(t) < F(0)exp (Cy gt (1 — logF(0))”) (8.7)

Let us mention the following elementary lemma, whose proof is provided afterwards.
Lemma 8.6. For every a € (0,1), there exists a constant Cs g p > 0 such that for all x >0 :
Conlt|(1+2)° < az + Cypag (1+[t)) 77
Using Lemma 8.6 in (8.7) with x = —log(#'(0)) > 0 yields :
F(t) < F(0)"~exp (Comas(1 + [H) 77
which is the desired inequality, so the proof is completed. 0
Here, we provide a proof of Lemma 8.6:

Proof of Lemma 8.6. Let o € (0,1). We invoke the function f(z) := C,z|t|(1+ z)’ — az. We aim
to show that f(x) < Csrap(1+ |t])77. Recall that 8 € (0,1). We have :

=5
fl@) = BCualt|(1+2)" —a>0 e 1+ > T « < (50&1{’1&') ~1
BC&RM «

_1
This implies that f has a maximum at the point x = <’GC§TRM> . Thus, for all x >0 :

£ _1
f(z) < Oy rlt] (502R|’5|> o (ﬁCS,RItI) o

«

— at (Coglth) ™ <§> g (§> 11)

< Conap(1+ )7
This completes the proof of Lemma 8.6. 0

Now, we can go back to the measure ps p (see (8.1) for the definition). Indeed, we are able to
deduce from Proposition 8.5 the analogous proposition for ji, g.

Proposition 8.7. Let s > %, R >0 andt € R. Then, there exists € (0,1) such that for every
a € (0,1), there exists a constant C' = Cy pag > 0 such that for all Borel set A C H(T) :

o n(@n(1)A) < pon(A) " exp (C(1 + |t)77) (8.8)
uniformly in N € N U {oo}.
Proof. Let N € NU {oo}. Recall that i, g is defined in (8.1), and observe that we have:

R u
ls.R = Zs N RE s )dps,R,N

(see also Remark 7.3). Let « € (0,1). Let us invoke the § € (0,1) and the constant C' > 0 from
Proposition 8.5. Then, for every ¢; € (1, 00):

Hor (P (D) A) = Zo v /

D(t)A

u S 1_i
N dp, gy < Zopn ||€™V ]| Lo (dps,R, ) paN(®()A)

1

< Os,RmPs,R,N(‘I)(t)A)kE
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where in the last inequality we used (7.4) and Proposition 7.4. Using now Proposition 8.5, we
obtain:

o (@) 4) < por (A R exp (0014 1)) (5.9

where the constant C' > 0 depends on s, R, o and ¢; (and also ). On the other hand, for every
g2 € (1,00):

1 1

1 _1
= _R&N _RS,N 1
pS,RyN(A> - ZS’RJ\T A € d/’LS,R S ZS7R7N He HLqQ (d#s,R) /’LS,R(A) a2

1—L

< Cs,R,rp :us,R(A) 92

where again in the last inequality we used (7.4) and Proposition 7.4. Then, plugging this into (8.9)
yields:

@ (04) < porn (A0 e (C(1 4 1))

where now, the constant C' > 0 depends on s, R,a,q and ¢o. Finally, since @ € (0,1) and
¢1, 92 € (1,00) are arbitrary, we have that (1 —«)(1— qil)(l - q%) takes all the values in (0, 1). This
completes the proof. O
8.2. Consequences: uniform L? integrability and convergence. In this paragraph, we per-
form an analysis similar to the one from Section 7 of [15]. As a consequence of Proposition 8.7,
we are now able to prove the following proposition. Here, for clarity, we denote G5yt = Gs (2, .)
for N € NU {oo} (still G5 0ot = Gs4).

Proposition 8.8. Let s > %, R >0 andt € R. For every p € [1,400), there exists a constant
C(s,R,p,t) € (0,400) such that :

||GS7N,t||LP(dus’R) S 0(87 R7p7 t)
uniformly in N € N U {oo}.

Proof. Let p € [1,400) and let us prove that G,y belongs to LP(dus ). To do so, we use
Cavalieri’s principle :

||Gs,N,t||Z£p(dus R) = p/ )\p_lﬂs,R(Gs,N,t > )\)d>\ (810)
’ 0

We can estimate s r(Gsn: > M) as follows :

1
/"LS,R(GS,N,t > /\) = /l{Gs,N,t>)\}du‘97R = / G
1

1 1
= / e Nt]l{Gs,N,pA}d(‘I)N(t)#usﬂ) < X/1{GS,N,t>A}d(¢N(f)#us,R) = Xus,R(q’N(—t)(Gs,N,t > A))

Here, we can make use of estimate (8.8) and deduce that for any a € (0, 1), there exists C' =
Cs.ro > 0 such that

]l{Gs,N,t>)\}Gs,N,ths,R

7N7t

1 1
psr(Gsne > A) < X,MS,R(G&NJ > A\ %exp <C’(1 + |t|)175)

So,
pon(Goa > A) S A Voexp (C1(1+ |15 ) = AC,
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(Where C” = £ still depends only on s, R and «). Plugging this into (8.10) yields

HGS’N’tHiP(dus R) sp +/ Apilﬂs,R(Gs,N,t > A)d\ <p+ Cs,R,a,t/ AP—i=t/e gy
’ 1

1
Choosing o € (0,1) such that p—1—2 < —1, that is a < ]l?, we have that the integral [~ A\P~1=1/og)
is finite. Hence, denoting by

C(s,R,p,t) :==p+ CS,R,a,t/ AN

1
leads the result. O

Proposition 8.9. Let s > 3 and R > 0. Then, for every t € R and every p € [1,+00), G, n(t,.)
converges to G(t,.) in LP(dus g).

Proof. Let q € (1,400). From Proposition 8.8 and 6.5, we know that the two following facts hold:

supyen || Gs,n (2, ')HLq(dus,R) < +00
Gs.n(t,.) converges in measure to Gg(t,.) (with respect to s r)
Then — see for example [31] Remark 3.8 — it implies that for every p € [1,q), Gs n(t,.) converges

in LP(dps r) to Gs(t,.). Since g € (1,+00) is arbitrary, we deduce that this convergence holds for
every p € [1,+00). 0O

We conclude this section by a short remark:
Remark 8.10. Starting from Proposition 8.5, it would have also been possible to prove (with

the notations of Proposition 7.6) that the densities Fs y(t,.), Fi(t,.) of the transported weighted
Gaussian measures belongs to LP(dp;, ) and that F n(t,.) converges to Fi(t,.) in LP(dps r)-

9. TOOLS FOR THE ENERGY ESTIMATES

In this section, we gather the main tools that we will use in the forthcoming Section 10, 11 and
12.

9.1. Deterministic tools.

Notations 9.1 (Number ordering). We will intensively use the following notations:
e Given a set of frequencies ki, ..., k,, € Z, we denote by k1), ..., k() a rearrangement of the
k’s such that
k)l = k@)l = - = [km)]
e Similarly, given a set of dyadic integers Ny,...,N,, € 2V, we denote by Nay, -y Nomy 2
non-decreasing rearrangement of the N;.

Examples 9.2. For example, we have :
o If ki =—1, ks =0, k3 = 2 then k‘(l) = ks, k‘(g) = ky, and k(g) = ko
o If Ny =8, Ny =2, N3 =4 then N(l) = Ny, N(Q) = N3, and N(g) =N,

Lemma 9.3 (Counting bound). There exists a constant C' > 0 such that for every dyadic integers
Ni, ..oy N, every ey, ...,em € {—1,+1}, and every k € Z,

D Lakiteskatotembn=s - (H ﬂkj|~Nj> < CN@)Ne)-+-Nim) (9.1)
j=1

E1yeeskmEZ
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Proof. Without loss of generality, we assume that N; = N(;). The idea of the proof is to let free the

variables ko, ..., k,, and to freeze the variable k; thanks to the constraint e1k; = k—eoks—...— k-
E ]161k1+€2k2+...+6mkm:/£ - E E ]]-Elklzli—sgkg—...—smkm S E ]- S N2N3Nm
klv"'7k77L klv"'vkm |k1""N1 kla--wk'r.n
|kj|~N; [kjl~INj G >2 ~ |kj|~Nj,j>2
<1
O

In the proof of energy estimates, we will use the following estimate on vy, as a starting point.

Lemma 9.4. Set
6 6

s (R) = S (=1 My, Q) =Y (-17'K

j=1 j=1
There exists a constant C(s) > 0 such that for every ky — ko + ks — kg + ks — k¢ = 0,

[as ()] < C(s)ley 2 (10R)] + [ )

Proof. Essentially, we have to consider two cases : when kn)y = ki, k) = ky and kqy = ki,
k(2) = ks. In any case, we can assume that |k()| < 5|k()|. Otherwise, using the fact that the con-
straint ki — ko + ks — ks + ks — k¢ = 0 implies that |k)| ~ |k@)|, we would deduce that |ke)| ~ |kq)|.
Therefore, the a priori bound WQS(EH < k@y|* would guarantee the desired inequality.

Case 1 : Firstly, we consider the case k(1) = k; and k() = k2. We use the mean value theorem :
[thos ()] < KF* — K3° + |3 — kY® + k2" — kY|

d
sup d—(ts)(k% —k3) + 4k(2§)
te[k3 k7]
< sl POTVQUR) — B + k3 — k2 + k) + 4k7S VR,
< C() |k PV (1QR)| + ke )
which is the desired inequality.

Case 2 : Secondly, we consider the case k() = ki and k) = k3. Since we assume that k) <
%|k(2)| = %|k53|, we have

Q(k) >k + k2 — |k3 + k3§ — k2 + k2| > K} + k3 — 4kYy) > k]
Therefore, the a priori bound [ts, (k)| < |kay|? guarantees the desired inequality. O

In order to make our analysis work for the full range s > %, we will use the followinw Strichartz

estimate for the linear propagator of the Schrédinger equation—see [3].

Theorem 9.5 (Strichartz estimate). For any € > 0, there exists a constant C. > 0 such that for
any function g on T :

As a consequence, we can prove the following useful estimate :

452
eztaz q

< C: .
LO(TuxTs) — 9]l (T)
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Lemma 9.6. Lete > 0. There exists a constant C. > 0 such that for any dyadic integers Ny, ..., Ng

and any sequences <f,$)> . (f,g?) of complex numbers that satisfy féj) = Lj|~n, f,gj), we
ke€EZ

have for any k € Z : ’

)
ki1€Z

Z H\fk”|<CN Hllf §"

k2+ —kg=0j=1

Q(k)=k
Proof. We set
— Z |féi)|eik1x’ FO(t, 7)== eitageitnFo(l)(x)
k1€Z
and for j > 2
= > I, FO(t 2) = ¢ F9) (1)
k€L

Let us now prove the identity :

6
(4) 3) (5) dxdt
S TIui= // OFRFOF@OF F(6)> (t:2) Gy (9.2)

k‘lfkgt..fkﬁzo 7j=1
Q(k)=k

Firstly, we expand

(F(l)F(2)F(3)F(4)F(5)F(6)) (t,x) = Z | (1) (6| ix(kl—k2+...—k6)e—z’t(§l(l;)—n)

k1,...,k6 €L

Secondly, we integrate with respect to x and ¢

/ / FOFE O F® FOFE) (1, ) L
T J T, (27)?
_ Z (1) f’g6)| (/ / (s~ )~ it(SX dxdt)
k1,....k6EZ Tt J T (2m)2
Then, the formula (9.2) follows from the fact that

oy dxdt
a(k1—kat...—ke) ,—it(Qk)—K
/]I‘t /m ey )(27T)2 = Lkt k=0 Lty

Starting now from (9.2) and using the Holder’s inequality and Theorem 9.5 we get that

3 Hlf”|<H||F Nosrn,) < OHHF

k1— k‘2+ —ke=0j5=1
Q(k)=x

We also used the fact that ||F1) H]LG(’]Ttx’IF )= eitreitd: 1) eitd: p{!

L6(T; xT) ‘ LS(T;xTy)

On the other hand, with the localizations of the sequences ( f,gj )> , We can write
kjEZ

HFO(j) SN |F9| S <%1> 179

g

HE (T,)
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Coming back to the previous estimate we obtain

6 6
Yoo I ey ITI
k1—ko+...—ke=0 j=1 j=1
Q(k)=x
which is the desired estimate. O

Finally, we conclude this section with the following suitable lemma. Although its significance will
become apparent later (in the proof of energy estimates in Section 10, 11 and 12), we prove it now
for a better clarity.

Lemma 9.7. Let s € R and € > 0. There exists a constant C. s > 0 such that for any dyadic
integers Ny, ..., Ng and any sequences <f,$)> ,...,(f,g?) of complexr numbers that satisfy
k1€Z k6 EZ

fig) - ]1\kj|~Njf;§f), we have

2.

k1 7]624:..7]{)6:0
Q(R)#£0

Proof. We start by applying Lemma 9.4 :

¢2s E

B H! < Co NITHENG HHf ] 2

J=1

6
wzs o ke :
> Hlfk < Y kP 2 TR
klszt‘.fkezo klfkgt..fkﬁzo ‘Q(k)‘ 7j=1
Q(k)#0 Q(k)#£0
< I+11

where we denote

6
o 25—2 ()
1= Ng, > IR
k1—ko+...—ke=0 j=1
Q(k)£0
and,

_ 25—2
L= NONGy )
ki1— k2+ .—kg=0
QR)#0

]Q
We estimate separately I and II.

eEstimate of I : Removing the constraint Q(k ) # (0 and using the Cauchy-Schwarz inequality in
the k1), k) summations, we get that

6
e TS (I

SN() (N(3)N H”f HP

< NN, H (R

Jj=1
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which is even better than the desired bound.

eEstimate of II : Firstly, we observe that |Q(k)| < N(Ql) SO we can write

1 6
R YD S SN I (1

|n|>1 k1—k24;...—k6:0j=1

Nz Q(F)=r

Secondly, we use Lemma 9.6 that says

6
> H\fk”| < C.Nj Hllf(”Hp

ki—ko+...—ke=0 j=1 j=1
Q(k)=k

Finally, we invoke the well-known estimate

1 <
Z | |~ log( (1)) < CéN(Ql)

N21>2\/{\>1

and the combination of those inequalities yields

6
11 < congy g, T 1

Jj=1

[
which is the desired bound. This completes the proof of Lemma 9.7. 0

9.2. Some properties of Gaussian measures. Our analysis for the energy estimates in Sec-
tion 11 and 12 will also require the following probabilistic tools.

Lemma 9.8 (Moments of Gaussian measures). Let s € R and 0 < s — +. Then, there exists

2
C = C(s,0) > 0 such that for allm >1 :

([ Vol das) " < cm

Proof. From Fernique’s theorem (see for example [17], [2]), there exists o > 0 such that:

N

(9.3)

/ elllio 4y < too

Then, by Markov’s inequality, we obtain the following large deviation estimate:

II’LS(HUHHU > )\) _ Ius(eaHuH?_Ig > 60“\2) < e—a,\Q/ ea”u”%’adus < Ce—oé)ﬁ

o

Combining this estimate with Cavalieri’s principle, we have:

+oo +0oo
ul|™, dus = m ua>AM<%1 Am—le—ad® gy
[Jull s ([lull )
HO‘
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To conclude, we perform || — 1 integration by parts on the integral on the right hand side:

+o0 ) +o0
/ Amtemen gy = I / AN gy
0 2a Jo

(m—=2)(m —4)..(m=2([F] = 1)) [T o(m_1)1 —ax
- = B /O =215 D-1 gan? gy

[5]-1 oo
< (ﬁ) : sup / ATre 0 )\
2 me0,2] Jo
]

Next, we state a conditional Wiener chaos estimate which will play a crucial role in the energy
estimates. In the sequel, for any complex number z, we adopt the notation 27 = z and 27 = Z,
called respectively positive and negative signature of z.

Lemma 9.9 (Conditional Wiener chaos estimate). Let (2, A,P) be a probability space and B be a
o-algebra on ) such that B C A. Let m € N and t1, ..., ., € {—,+}. We consider the following
eTpression !

F(w) = Z Chy o (W) - HQZ- (w), w €
k1 yeeeskim j=1
where, the gy, (w) are complex standard i.i.d Gaussians, independent of the o-algebra B, and the
Chy,okom (W) are B-mesurable complex random variables. Then, there exists C' > 0 such that for
every p > 2, we have :

HFH]LP(Q|B) < Cp*? HFH]L?(Q\B)
where LP(Q|B) is the LP-norm conditioned to the o- algebra B.

In the energy estimates, we will apply this lemma with m = 3, B the o-algebra generated by
low-frequency Gaussians, and the random variables cg, g, Wwill be some multi-linear expression
of high-frequency Gaussians (independent of the low-frequency Gaussians). For a proof of this
lemma, we refer to [27] (see also [32] and [30]).

Lemma 9.10. Let (2, A,P) be a probability space. Let m € N, 11, ...t € {—,+}, and gx,, ..., Gk,
be complex standard i.i.d Gaussians. We consider the following multi-linear expression of Gaus-
sians:

Gw) =" Y ok | [ 95 W), w € (9.4)
k1yeeiskm j=1
ViiFs, ki#k;

is a sequence of I*(Z™;C). Then, there exists C > 0 such that:

||G||L2<Q>sc( S e |) (9.5)

klv"vk'm
Vi, itk
Proof. For more readability, we perform the proof only for m = 3 (and that is the value of m we
will use with this lemma). In addition, we assume that ¢1,.3 = 1 and 1 = —1 (the other cases are
similar). Thus, we want to prove that:

H Z Ckl,kQ,kggkI%%HEg(Q)SC Z |Chy oo s |

k1,k2,ks k1,k2,k3
ko#ki ks ko#ki,ks

where ck, .k

m
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We start by expanding the left hand side:

_ 2 - -
H E Cky k2 ,k3 Jk1 Gk Gk ||]L2(Q) = E Chky k2 k3 Cly,la,l3 E[gk1gk29ksgl1gl2gl3] (9'6>
k1,ka k3 ki,ka,ks,l1,l2,l3
kak ks Kok ks & lo£l,l3

From the independence of the Gaussians g,, and the fact that for a complex standard Gaussian
variable g we have E[g] = E[¢?] = E[¢®] = 0, the only non-zero contributions in the sum above is
when for each gkij there exists an gZ_F , with the opposite signature, such that k; = [;. Hence, the
only non-zero contributions are of the form:

Chy bk Clr o ds Bl Gk, 1?1 Gha 1P| ks IP] with ko = lo, {k1, ks} = {l1, 13} and ky # ki, ks
Then, we invoke the following set of indices:

Dy = {(k1, ko, ks, I, 1o, 13) €Z8 : kg =1y, k1 =11, ks =3, ko # ki1, ks, ki # ks}

Dy = {(k1, ko, ks, 1, 2, 13) € Z8 : kg =1y, k1 =3, ks =11, ko # k1, ks, ki # ks}

Dy = {(k1, ko, k3, 11, 1o, 13) € Z° : ko =1, by = ks =11 =I5, ky # k1, ks3}

so that, coming back to (9.6), we have (for any complex standard Gaussian g):

— 2 R
H Z Chy ko, k3 Gk1 Gka ks H]Lz(g) = E[|g|2]3 Z ‘Ckhkz,k?, |2 + E[|g|2]3 Z Ch1 ka2, k3 Chs ko k1
k1,k2,k3 D, D,

ko#k1,k3
+E(gPIEg1"] D ek o
D3

This concludes the proof since:

Z |Ck1,k2,k3|2 + Z |Ck1,/€2,k1|2 = Z |Ck1,k2,k3|2 + Z ‘Ckhkz,k’l’Q = Z |C/€1J€2J€3 2
D1 D3

k1,k2,k3 k1,k2 k1,k2,ks
ka#k1,ks & k1#ks ka#k1 ka#k1,k3
and,
1 1
P — 2 2 2
Y " Chy o ks Ch o < 5 > [ ksl + 5 > [ R N T

Dy k1,k2,k3 k1,k2,k3 k1,k2,k3
ko#k1,k3 & k1#k3 ka#k1,ks & k1#£ks3 ka#k1,k3

O

Remark 9.11. When ¢; # ¢; and k; = k;, we say that k; and k; are paired. If one allows such
parings in the sum in (9.4), then the inequality (9.5) does not hold anymore in general. In our
analysis in the upcoming sections, we will not encounter such pairings. However, in [29], this
situation occurred, and the authors needed to study these pairing contributions separately.

10. PROOFS OF THE DETERMINISTIC PROPERTIES

This section is dedicated to the proof of the deterministic properties of the energy correction R n
and of the derivative of the modified energy (s . More precisely, we prove here Proposition 3.1
and Proposition 4.1. To do so, we are going to use the deterministic tools from Section 9.
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Deterministic estimate for the energy correction. In this paragraph, we prove Proposi-
tion 3.1. Recall that we want to estimate the sum of positive terms in (3.1).

Proof of Proposition 3.1. Let 0 < s — % and let u™W,...,u(® € H?(T). First, we decompose the

2
sum in (3.1) dyadically:

> |w28 g = Y RN, No) (10.1)

k1—ko+...—ke=0 Q<k) Ni,...,Ng
Q(k)#0

where the summations are performed on the dyadic values of Ny, ..., Ny and,

Vou(B) | T
2s
R(Ni, ..., Ng) := > | UL ‘H]l\kj|~zvj|“1(cjj)
k1—k2—l:..—k6:0 ( ) 7=1
Q(F)£0

Now, using Lemma 9.7 yields:

6
R(N1, ..., No) N(QS) 2+€N(?, H ”PN U H]L2(11‘) Se N(QB_%EN(Z?»)(N(l)"'N(6))_UH ”u(j)”Hv

7j=1
(10.2)
where Py is the projector onto frequencies |k| ~ N. Note that we have Ny ~ N because
the constraint ky — ko + ... — k¢ = 0 implies that |k@)| ~ |kq)|. Besides, we crudely estimate
(NayN5Nzy) ™7 S 1. Then, we rewrite the inequality above as:
6
2(5—1—U)+6 2—0 ]
R(Ny, ..., No) Se Ny Ny TT O (10.3)
j=1
Next, let us observe that for o < s — % and € > 0:
20s—1—0)+e> -1 2—0>2—5s
1 1
—s—3 and, — 85— 3
20s—1—0)+e— —1 as ’ 2 2—0—3—s as 7 2
e—=0 e—=0
In particular, in (10.3), N is accompanied by a negative exponent’.
Finally, if:
5t . 3
—1+(§—s)<0, that is if: s> 5
then, for o < s — % and £ > 0 respectively close enough to s — % and 0, we deduce from (10.3)
that!?:
R(N:,... No) S Ny H 1] 4
which is summable in the N;. Coming back to (10.1) ﬁnlshes the proof. U
9In dimension d > 2, we have 0 < s— 5, and this scenario would be worse because we would have 2(s—1—0) > 0,
so N1y would be accompanied by a positive exponent. This scenario is encountered in [29], with d = 3.

10The notation N~ means that the power of N is —y for a certain v > 0.
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Deterministic estimate for the derivative of the modified energy. In this paragraph, we
prove Proposition 4.1. Recall that we want to estimate the sums of positive terms in (4.1), (4.2)

and (4.3).

Proof of Proposition 4.1. Let 0 < s — %
eEstimate for 7; : The analysis is similar to the one for R. Indeed, let us fix u, ..., u(® € H7(T).

Then, decomposing the sum in (4.1) dyadically and using Lemma 9.4 (with Q(k) = 0), leads to:

2 6 S— 1 2 6
S @ a1 ST Tk Pk Plug u )|

k1—ko+...—kg=0 k1—ko+...—kg=0
Q(k)=0 Q(k)=0
< Y To(Ny, ..., Ng)
Ni,...,Ng
where,
6 .
To(N1, .y Ng) i= Z N(213_2N(23> H]llkﬂNNa‘Mij)’
k1—ko+...—kg=0 7j=1
Q(k)=0

Next, from Lemma 9.6 (with f,i] = ]1|kj‘NNj|u,%)\), we have:

6
To(N1, ..., Ng) S NQS 2+€N HHPNJ'u(j)HL2(T)

From that point the proof goes the same as the one for R (see the estimate (10.2)).
eEstimate of 7; for j = 1,2: We only prove the estimate (4.2) since the analysis for the estimate

(4.3) is similar. Here, the computations are a little more delicate. For the sake of readability, we
restrict ourselves to prove the estimate:

UosB) )
Z ‘ s_' ||up1up2...up5uk2...uk6| < CS ||u||}?g
k1—ko+...—kg=0 Q(k>

p1—p2+...+ps=k1
Q(R)#0

In other words, we just prove the estimate (4.2) where all the u'9) and v are equal to a single u.
To do so, we Wlll use the following lemma:

Lemma 10.1. There exists a constant C > 0 such that for any dyadic integers Py, ..., Ps and any
sequences (gﬁl)plez ) (gﬁj)mez of complex numbers that satisfy for j =1, ..., 5, g;;j = 1yp,1~pP;9p;
if we set for ki € Z :
fo= Y. araraiigiigh
p1—p2+...+ps=k1

Then,

1£1l2z) < C (Pi2y Py Py Ps)) HHg”le
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For clarity, we postpone the proof of this lemma for the end of this section. Now we are ready to
prove the estimate. Once again we start by decomposing the sum as:

Z { ?/)23

\| U, Uy - Ui Uy - U | = § Ty (My, ..., Mg, Py, ..., Ps)

k1—ko+...—ke=0 ) Mjy,...,.Mg
p1—pa+...+ps=k1 Py,...,Ps
Q(k)#0
where My, ..., Mg, Py, ..., Ps are dyadic-valued and
TU(M, ..., Mg, Py, ..., Ps) = V2o (k) T T T I | 10.4
1( 1y ceey 6y 4 1y -0y 5) - Z | k ‘ . U’ uk2 uk,‘e ‘ |]€1‘NM1 ( O )
k1—ko+...—ke=0 )
p1—p2+;-+p5:k1
Q(E)#0

with the practical notation ulN = Lyjonu;. Next, we rewrite €, as:

TMy, P =Y wzs |H |fk])| (10.5)

kl*k‘Qt..*k‘ﬁ
Q(k)#0
: M, M;
where, for j = 2,...,6 we denote fkj] = ukjj, and:
1) ._ P Ps
Jor” = Tipagonsy § : [t -+

p1—p2+...+ps=k1

At this stage, let us recall that M) > ... > M) and Py > ... > P are respectively a non-
increasing rearrangement of M, ..., Mg and Py, ..., Ps. We also introduce:

Nay 2 Ny > ... 2 N(g) a non-increasing rearrangement of Mo, ..., Mg, P, ..., Ps
Note that the constraints in the sum in ¥; imply that
M(l) ~ M(g), and: P(l) ~ P(Q) or P(l) ~ Ml, and: N(l) ~ N(g).
Now, we use Lemma 9.7 to estimate ¥; in (10.5); we obtain that for any € > 0:
Ta(My, ..., P5) Se ME> My H 1P e MMy || F Vs H (|1
7j=2

Applying the well-suited estimate of || f HZQ from Lemma 10.1 leads to

5 6
Ty (M, .., P) Se M2 M (Pioy Py Py Psy)® [ |lw™ ||, T T 1™ | (10.6)

and it follows that

1My, .., Ps) So MET#H M) (MyMs MyMs M)~ Py (Pioy Py Py Prsy) * 7 )] 1o

In the remaining part of the proof, we show that it implies that:

T (M, ey Ps) Se Ny llull o (10.7)
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for o < s — 5 close enough to s — —, which will complete the estimate for 7;. We start from the
inequality above and we use the fact that M; < Py due to the constralnt P1— P2+ .. +ps = ki,

along with the rough estimates (M) Mz M) ™7 < 1 and (PsyPayFPrs )) ~? < 1, in order to obtain:

T (M, ..., Ps) <. Mf§—2+€M(23)(M1M2M3M4M5M6)—0(M3P(;;)(P(Q)P(g)P(4)P(5))%—" [ s

< M(810)+€M2 g'P

~e M)

5 lull.

(10.8)

Besides, when o < s — % and € > 0 are respectively arbitrarily close to s — % and 0, we have that
2(s —1—0)+e¢,2—o0 and 5 — o are respectively arbitrarily close to
1 1 5 1 1
2(3—1—(3—5)):—1, 2—(8—5)25—87 ——(s—=)=1-s5

Hence, My is accompanied by a negative exponent, o) is accompanied by a negative exponent
(since s > % > 1), and M3 is accompanied by a negative exponent when s > g and by a non-
negative one when s < g

l—O' . .
—In the situation where My ~ N(j), we use the rough estimate P5  <1lin (10.8), and we obtain:

2(s—1—0o)+ -0 10
Tl(Ml,...,P)< N(l() ) E‘]\4(23) HUHHG

which is conclusive as far as

that is, as far as s > %
—In the other situation, where M) < N1y, we necessarily have P(;) ~ P ~ N, so we deduce
from (10.8) that:
-0 l1—0)+2—0c+ 10
Ti(My, oo Pr) Se NGy MESTI 202775y 16,
Then, for o < s — % and € > 0 respectively arbitrarily close to s — % and 0, we have:

1—s)+ 7 p(3—5)+ 10 - 10
Ty (M, ..., P5) S N((l) ) M 2 [ul[ o SJN(l) l[wll 7o

since s > %
In conclusion, (10.7) is proven and the proof of Proposition 4.1 is completed. O

We finish this section by a proof of Lemma 10.1.
Proof of Lemma 10.1. We have to estimate :

ANy =

k1€Z

P P> P3 Py Ps
Yo wereaee
p1—p2+...+ps=k1

Using the Cauchy-Schwarz inequality we obtain:

2
HfHZQ( < Z Z Ly —pot..tps= k1H1|P1\NP Z ]lplfp2+...+p5=k1|gp1 gngp3gp4gp5’ )

k1€Z p1,.--,p5 P1;.-D5
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Plugging the counting bound (9.1) into this formula yields

||f||l2(Z) < P( )P(3)P P(5 Z |gp1 gpg gp3 gp4 gp5|2 Z ]lpl —p2+...+p5= kl)

P1;--P5 k:1 E€Z

-

<1

Thus,
> 2
Pj
1£ 11722y S PeayPrsy Peay Pos UHg [
which is the desired estimate. O

11. ESTIMATES FOR THE WEIGHT OF THE WEIGHTED (GAUSSIAN MEASURES

This section is dedicated to estimates on the weight 1 ic)< R}e*RS»N @) of the weighted Gaussian
measure p, gy (defined in (7.1)). In particular, we show that :

ﬂ{c(u)SR}eiRs’N(u) € ]Ll (d,us)

which ensures that ps gy is a finite measure on H°(T), 0 < s — % More precisely, we prove

Proposition 7.4. Yet, before doing so, we will need the two following lemmas :

Lemma 11.1. Let s > % Then, there exists 5 € (0,1) such that for every R > 0, there exists
C(s,R) > 0, such that for any p € [2,+00),

uniformly in N € N U {oo}.
Recall that we denote R, = R, for convenience.

Lemma 11.2. Let (X, A, dv) be a probability space and let F': X — C be a mesurable function.
Assume that there exist constants Cy > 0 and € (0,1) such that for every p € [2, +00),

1 F Loy < Cop”
Then, there exist § > 0 and Cy > 0 only depending on B and Cy such that :

/6|F leV()SCl
X

We will only prove Lemma 11.1, Lemma 11.2 being just a slightly different version of Lemma 4.5
from [32] (where a proof is given).

Before doing the proof of Lemma 11.1, let us briefly show how it implies Proposition 7.4 when
combining with Lemma 11.2.

Proof of Proposition 7.4. Here, we assume the statements in Lemma 11.1 and Lemma 11.2.

~We start by proving the first statement in Proposition 7.4. Lemma 11.1 shows that F' :=
Licw<ryRsn(u) : H7(T) — C satisfies the assumptions of Lemma 11.2 (with v = p,). Then,
applying Lemma 11.2, we obtain that there exist § = §(s, R) > 0 and C(s, R) > 0 such that :

1
/ 65‘ﬂ{c(u)§R}RSvN(u)‘6d,Us < Ci(s, R)
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/ Licw<rye’

Thanks to the fact that % > 1, we deduce from the above inequality that for every p € [1,400) :

A fortiori we have,

Ry n(w)|P dus < Ci(s, R)

||]l{C(u)SR}6|RS’N(U)|||ip(d#§) = / Licw<rye¥ldpu, < C(s, R,p) < +o0
‘ 1o
for a certain constant C'(s, R,p) > 0.
—As a consequence, we are now able to prove the second statement of Proposition 7.4, that is:

s(u) — 0
N—o0

S

L ew=<rye ™™ = Licw<nrye ™ ’N(")H]Lp(dﬂs)

Firstly, we know from Proposition 3.3 that we have the pointwise convergence:

! o (K o
]l{C(U)SR}RS(U) = Liewsm - gRe Z : (_» >Uk1uk2...Uk6 = lim l{C(u)SR}Rs,N(u)
6 k1—ko+...—ke=0 Q(k) N—o0
Q(K)#£0

Consequently, from the continuity of the exponential, we also have the pointwise convergence:

—RS (u) RS,N(U)

= m Tiews<re

Lewsrye A

In particular, 1)< R}e_RS»N (u) converges to lice)< R}e_RS(“) in measure. In addition, for a fixed
q € (1,+00), we just proved that the functions 1(c(y<rye () are uniformly bounded in IL9(du)
(with respect to N € N). Then, (using the same argument as the one from the proof of Proposition
8.9) we can conclude that ]l{c(u)SR}e_RS!N(“) converges to 1{C(U)SR}€_RS(U) in LP(dus) for any p €
[1,q); and since ¢ € (1,4+00) is arbitrary, the convergence holds for any p € [1,400). This
completes the proof of Proposition 7.4. O

However, it remains to prove Lemma 11.1. Our analysis will rely on a decomposition into two parts
of Ry . We will be able to treat the first part deterministically thanks to suitable ”exchanges of
derivatives”. For the second part, those ”exchanges of derivatives” will fail because we will be in
a high-high-high-low-low-low regime of frequency (where the three highest frequencies in the sum
(3.2) defining R,y are in fact much more higher than the three lowest frequencies). Instead, we
will handle the second part using the independence between the high frequency Gaussians and the
low frequency Gaussians, using Wiener chaos estimate.

11.1. Decomposition. Recall that we have (see Section 3, Proposition 3.1):

Ron(u) = ~Re R(w)

6
where w := ITyu (with the convention 1T, = id), and
vaslk)
R(w) := Z —— W, Wy - Wy
k1—ko+...—ke=0 Q(k)
Q(k)#£0

It suffices to show the estimate of Lemma 11.1 for 1cw<rR(w) because |Ry n(u)| < #|R(w)].



TRANSPORT OF GAUSSIAN MEASURES FOR NLS 45

Next, we split the set of indices over which we sum. We invoke the following sets of indices :

6

6
Ap = {(k1, ... ke) € Z8: > (=1) 'k =0, > (=1)7'k} # 0,
7=1

j=1 = (11.1)
k)| < [kl = or [kuy| > [k}
and,
6 6
Aw = {(k, o kig) € Z°: > (=1) 7k =0, Y (=1) 7'k} #0,
J=1 j=1 (112)

(ks | = [k [~ and [k < [k}
where &y € (0,1)'. Then, we split R as :
R(w) = RP (w) + RMW) (w)

where,

RP) (w) := Z w;‘zg;) Wy Wy - Whe s RW) (w) := ;W: w;zg{);)wklw_;@...w%

To estimate R(P) we will use the deterministic tools from Section 9. To estimate R™MW), we
note that in the sum we are in a high-high-high-low-low-low regime because |kwl, [k@)|, k@) >
|k, |ke)l, |key|- It will then be possible to make use of the independence between the Gaussians
Ghrys Gy Jhzy A0 Gryy s Gigs  Ghs, via Wiener chaos.

11.1.1. Absence of pairing:
Definition 11.3 (Pairing). Consider a constraint under the form :
e1k1 +eoko + ... + ek, =0
where k; € Z and ¢; € {—,+}. We say that k; and k; are paired if
gikj + ek =0

Remark 11.4. In Ay (see (11.2) above), there is (for k() large enough) no pairing within the
three highest frequencies (relatively to the constraint k1 — ks + ... — k¢ = 0). Indeed, suppose there
is a pairing between two of the three highest frequencies. Then, the constraint would take the
form:

the remaining high frequency = sum of three low frequencies
which is impossible because in Ay we have:

|lhigh frequencies| > |low frequencies|

HwWe will see in the forthcoming proof that there is no constraint on dg, so we can chose it as any number in
(0,1)
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11.2. Proof of the estimate. We are now ready to prove Lemma 11.1.

Proof of Lemma 11.1. We organize the proof in two steps. In the first step, we provide a (deter-
ministic) estimate for 1c)<ryR. In the second step, we show that this estimate is only conclusive
for the contribution R, and that for the remaining contribution R™"), further analysis using
Wiener chaos is required.

Step 1, Deterministic estimate : We rely on the estimate (10.2) we obtained in Section 10 (which
we do not reprove here). Thus, we start our analysis from the following estimates:

w) S Y RNy, ., No)  and: R(N, ..., Ng) So NJTPENG HHPNwHLQ (11.3)

Ny,...,Ng

where N, ..., Ng are dyadic valued, Py is the projector onto frequencies |k:| ~ N, and:

Vas(F) | T
R(Ny, ..., Ne) = > ‘ - ‘Hﬂ\kj|~zvj|wkj|
k1—k2+ﬁ...—k6:0 Q(k) j=1
Q(R)#£0

We decompose R as R = RP) + RW) - according to the decomposition of R.

Now, let 1 < o’ <a<3—— We have:

6
H HPN7w||L2(1r) 5 H ”PNJ‘UHLZ(T) 5 (N(_lf HUHHJ)(N(E;, ||u||Hﬂ’)(N(3)N(4)N(5)N(6))_1 HuH}l{l
- (11.4)
Recall that the constraints in the sum in R above implies that Ny ~ N(3). Moreover, if we write:
o' =al+(1-a)
for o € (0,1), then, by interpolating H° between H' and H?, we obtain from (11.4) that:

H”PN Wl pmy < Ny ™ (N Ny Ny Noy) ™l [ll 77"

—204a(s—
<
Nay

Plugging this into (11.3), we obtain

)(N(g)N(4)N(5)N( ) 1 Hu||4+a HUHH(7 s (because a(a — 1) < Oé(S — 3/2) )

2(s—o—1)4e+a(s—32)
R(Ny, ..., No) S NG z

In particular, thanks to Remark 7.2,

44+ 22—«
Ny (Nay Ny Neey) ™ lull i w3

Lic<mR (N, .., No) e Ny 7 ”*5“‘(5‘2%(N4N5N<6>>*1R4+a\|ulli;“

And since we will not need the smallness provided by (N)N)) ™', we simply write :

3

o—1)+e+ 5 _ —
Lic@wy<myR (N1, ..., No) Ser N ()s Jretatss 2)N(3 Ny 77"

Using now (9.3), we conclude that

H]I{C(U)SR}m(NIJ i3} N,

2(s—o—1)+e+a(s—
6) H]LP(dug) <CN

) —1, 25
) NigyNigyp (11.5)
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Where the constant C' > 0 depends on R, s, o and €. This is the estimate we will work with later
in the proof. We stress the fact that (11.5) is true for & and also for R”) and RW) (with the
exact same proof).

Step 2, Estimates for R?) and RMW):
oWe start with R(?). Recalling that o < s — 1, we see that the exponent of N1 in (11.5) satisfies:

2s—o—1)+e+als—32)>-1

e—0
2s—o—1)+e+afs—32)— -l asqa—0
1

TS5

(11.6)

Moreover, for a fixed dy € (0, 1), the conditions on the indices lying in Ap imply that Ny < N, (11;50

or Nuy 2 N(‘S:,?). In both cases, we deduce from (11.5) that for ¢ and « close enough to 0 and o

1

close enough to s — 5, we have!?

1T cy<mBRP N, ooy No)| gy < CNGyp 2

Consequently,
1L e=m R L < Cp2*

eWe continue our analysis with the term R™). Once again, we start by decomposing R"W)
dyadically as R")(w) = > o NioNs R%/)Nﬁ (w), where'®:

7 6
w Q/)Qs(k)
Rg\h,)...,z\/6 (w) == Z kalwkgwwka H Lk
ki—ko+...—ke=0 ( ) j=1
Q(k)#0

Ik(ay |<|k(z)|%0
N; .
Henceforth, we denote wy,” := 1jx,|~n,ws,; for better readability.
J

Without loss of generality, we assume that {Ny, Na, N3} = {N), N2y, N3y}, meaning that the
three highest frequencies are ki, ko, k3. The other cases are similar or simpler.

We denote Bgy, the o-algebra generated by the Gaussians <gk>|k| <Nig)/100° We only need to
consider the contribution when Ny is large because when Ny is small, all the INV;’s are small, and
we can use (11.5) without fearing issues of summability in the N;’s. In particular, we assume that
N is sufficiently large so that N3y (which is 2 IV (11;50) is large enough to ensure that N4 (which

is < Néf)) is < N(3/100. As a consequence, we have that the random variables :

Ny Ny Ng
wytwet wy S’ are B N mesurable

Ny , Ny , Ns .
wy ' w, wy? are independent of By,

2The notation N~ means that the power of N is —y for a certain v > 0.
BFor the analysis below, we need to keep the complex conjugation bars, so here we don’t use R("W)
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With this set up, we can now begin the analysis. Thanks to Remark 7.2, we have

W
H]IBHI ) R§\71,)...,N6

Ticn R(W)

H (SR ENN l g, LP (djss)
w

= H]IB%” (PN 100t - Rgvl,)-..,Ne

L (dps)

And, 1 (P, i000) 18 Beng, mesurable. So, using the LP-norm conditioned to the o-algebra
R
B<<N<3)’ denoted Lp(dﬂs|8<<N3 ), we obtain :

< H”]le PNy 100t u) - RNl, ,N6H]Lp(dus ‘]LOO(dus)

< H ”RNl, -»Ne H]Lﬁl’(oluS

LromemR™W)
H {CO<RY NG No | Ly gy B (11.7)
Bang)  LBH (P 100) HILOO(d,uS)

Now, the conditional Wiener-chaos estimate from Lemma 9.9 (with m = 3), followed by Lemma 9.10
combined with the absence of paring (see Remark 11.4), allows us to obtain :

(W)

3
Ni,...,Ne 2

Sp

RW)
Ni,...,Ng
]Lp(d/'LS ‘B<<N(3))

L2 (dlU’S|B<<N(3>)

3 —s o g ]g 5 N
§p2<N(1)N(2)N(3)) ( Z ‘ Z C(k}) 2( )wi\%wlfg\?wlfc\?

1
2)2

k1,k2,ks  ka,ks,ke Q(k)
(11.8)
where we gathered all the constraints into the term :
6
C(k) == by —kptomko=0 * Loytys0 - | J RIS
j=1

Next, by Cauchy-Schwarz,

Y| X ¢25~ el < Y (% ciy | (k)\l wiuP) (Y ) wel)

k1,k2,k3  ka,ks,ke ) ki,k2,ks  ka,ks,ke Q(k) ka,ks,ke

s— kg2 s— s
|k ‘2 2( |Q<?,)g)|) 5 ’k(l)|2 2|]€(3)|2 ,S N(Ql) ZN(23) Then, on

/-\ u;
wlm

the one hand :

o |Yas(k) .
Z C(k> i ’ ‘2 S (N2 2N3) Z C k4 wk55‘2
ka,ks ke Q(k> K Ko K
(N(QS) 2N 3) Z ‘wk4 wljc\gs ’ Z]lk6=k1fk2...+ks
ka,ks ke
<1

S (NG NG [lw™ g [Jw™

o e 1™ Iz

and on the other hand,

> ( > Clk)wye| )ZZ!inGG\Q S° ClR) S NeyNsyNpNes) - [|w™ |7

ki,k2,ks  ka,ks5,ke ke k1,k2,k3,ka,ks
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where we used the counting bound from Lemma 9.3. We deduce from the two inequalities above
that

1
2\ 2 1
(5| 52 o BNl ) & e v (! o o o
A

S NG NG (N N NG 0 [0 g [0

S NG NGy ™| o 5HH1 [
Coming back to (11.8), we deduce that

(W) < 3—s N, N,
[ R e .t T Y s PR
And plugging this into (11.7), we obtain:
3 5,
[1casnRE) 5, R p* Ny NG,

Interpolating the above inequality with (11.5) (more precisely (11.5) with R") instead of ), we
have that for any 6 € (0,1) :

< 394 2-a(1_g) (2(5 1— O‘)+E+Oé(8—3)>(1 0) (——s)@—l—(l 0)
oy ~ T Noy N (11.9)

Finally, we use the following lemma to finish the proof of Lemma 11.1:

Lemma 11.5. There exist 0 < s — % close enough to s — %, e > 0 close enough to 0, 6§ € (0,1)

and a € (0,1), such that

9_ o —30+(2(s—1-0)+e+a(s—2))(1-0
(1-6)<1 N
2 )

) A7 (3—5)0+(1-0)
1) N
Let us provide a proof of this lemma:

®3)

S Ny

Proof of Lemma 11.5. Firstly, we have:

22 (11.10)

Secondly, regarding the exponent of N(3), we have:

1
<g—s)e+(1_9)zo =< —
2

(11.11)

Let us take 6 < -5 (always true when s < 5). Then,
s—5 2

N7%9+(2(57170)+6+a(s 3))a-0)
1)
We want to have appropriate parameters such that the conditions on # given in (11.10) and (11.11)

are satisfied along with the following one:

N(—9)0+(1-0) —30+(2(s—1-0)+e+a(s—2)) (1- §—s)0+(1 )

(
(3) S Noy N

—g@+(2(s—1—a)+5+a(s—g)> (1—9)+(g—s)9+(1—9)<0

[

I
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Since 2(s —1—0)4+e— —laso — s— % and € — 0, the previous condition will be true for o
and ¢ respectively close enough to s — % and 0 if:

—§0+(—1+a(s—g)) (1—9)+(g—5)9+(1—9)<0

And this condition is equivalent to the following one:

(11.12)

s—1+a(s—3) j:§+a 1+2(%_g)+a

To conclude, if we first take v small enough such that 3 < S_%, and then 6 such that
2

a
T <0< ,
1+ 0o=3/2) + « 1+«
the conditions given in (11.10), (11.11) and (11.12) are satisfied. We illustrate this with the

following drawing :

Q L Q L S_I3/2
With those parameters, Lemma 11.5 is proven. 0
Hence, coming back to (11.9), the proof of Lemma 11.1 is completed. 0

12. ESTIMATES FOR THE MODIFIED ENERGY DERIVATIVE AT 0

This section is dedicated to LP(dys) estimates on Qs n (defined in (4.4), see also Definition 2.3).
More precisely, we prove Proposition 8.2. The strategy of our proof is the same as the one
of Lemma 11.1. We first obtain a deterministic estimate that will be conclusive except for a
frequency regime high-high-high-low-...-low (where the three highest frequencies are in fact much
more higher than the others). This will lead us to decompose Q) y into two parts, one that captures
the high-high-high-low-...-low regime, and one that captures the other regime of frequencies. We
will handle the high-high-high-low-...-low regime using the independence of Gaussians via Wiener-
chaos estimate. It will be slightly more complicated than the proof of Lemma 11.1 because of
the presence of more indices. However, in our situation, we will not encounter the possibility of
a ”pairing between generations”'* which could have required the "remarkable cancellation” that
has been presented in [29] (sections 5 and 7). The reason why we do not encounter such a pairing
stems from the fact that we perform the Wiener chaos estimate with respect to three high-frequency
Gaussians, that is with m = 3 in Lemma 9.9. In doing so, we prevent a pairing between generations
from occurring (see Paragraph 12.1.1). In [29], the Wiener chaos estimates are performed with
respect to two high-frequency Gaussians, that is with m = 2 in Lemma 9.9, and in this situation,
a pairing between generation may occur.

HMEor example, considering the constraint k; — ko + ... — kg = 0& p1 — p2 + ... + p5 = ki1, then according to
Definition 11.3, a ”pairing between generations” corresponds to the situation when one of the k; is paired with one
of the p;.
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Preliminaries. Fix N € NU {oo}. Recall that from (4.4) we have:

Qe () = Qu(w) = I(— Q(w) + 5 Qa(w) — 3 Qafu)

where w := IIyu (with the convention I1, = id), and:

Qw) = Y ta(k)wy, ;.. Wk,
k1—ko+...—ke=0
Q(k)=0
and,
N )
Q1 (w) == Z S Wy, Wiy - Wi Wy - Wi
k1—ko+...—kg=0 Q(k)
p1*p2+;.-+p5=k1
Q(k)#£0
and,
1/125 E J— _ __
Qo (w) := Z (_, )wklwaw@...wq5wk3...wk6

k1—ko+...—ke=0 Q(k)

q1—q2+...+q5=k2
Q(k)#0

It suffices to show the estimates for Qpy, Q; and Qs because |Qs y(u)| < [Qo(w)|+|Q1 (w)|+] Qa2 (w)].

Estimate for Qg : Actually, the estimate :

[ Lie=ryQoll gy, < Cls, R)p (12.1)

has somehow already been proven in the proof of Lemma 11.1. Indeed, the proof is very similar,
and we only sketch the beginning of it.

Sketch of the proof of (12.1). We decompose Q dyadically and we use Lemma 9.4 (with Q(E) =
0), and we obtain :

|Qo(w)| S Z Qo(Ni, ..., Ng)
N1,....Ng

where,
6
Qo(Ni, oy Ne) = Y NET2NG ] Ty, |
k1—ko+...—kg=0 7j=1
Q(k)=0

To estimate Qq(NVy, ..., Ng), we use Lemma 9.6 (with f,zj = Ljg,|~n, [wy,|), which yields:

6
Q0(N1, ., No) Se NGTHHENG, H HPNijLQ(T)

j=1

with Py the projector onto frequencies |k| ~ N. This estimate is the analogue of (11.3). And
from this point, the proof of (12.1) goes exactly the same as the proof of Lemma 11.1. O

To sum up, in order to prove Proposition 8.2, it remains to establish the estimates in the following
lemma :
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Lemma 12.1. Let s > % Then, there exists § € (0,1) such that for every R > 0, there exists a
constant C(s, R) > 0, such that for any p € [2,+00),

[Lie=ry Qill o, < Cls, R’ (12.2)
forj=1,2.
Since the analysis for Q1 and O is the same, we only prove the estimate for Q;.

12.0.1. Notations and remarks on set of indices: Before decomposing Q, let us first introduce some
notations :
Notations 12.2. Given a set of frequency k1, ko, ..., kg, p1, P2, ..., p5 € Z, we denote :
® k..., k) a rearrangement of the k; such that
k|l = k@] > ... > [kl

® D), ---, P6) & rearrangement of the p; such that
Pl = pe)| = - = [pe)l

® (1), N(2), .-, N(10) & rearrangement of ks, ..., kg, p1, ..., ps such that
Inwy| > Ingl > ... > |nqo)
Also, in the sequel we will use :

e the letter M; for the localization of the frequency k;,
e the letter P; for the localization of the frequency p;,

Finally, N1y > Ng) > ... = N0y will be a non-increasing rearrangement of P, ..., P5, My, ..., M.
Remark 12.3. — when ky — ks + ... — kg = 0, we have |kq)| ~ k()|

—when k1 = p1 — p2 + ... + ps, we have [py| ~ |p@)| or [pay| ~ |k

—when ky —ky + ... — kg =0 and ky = p1 — p2 + ... + p5, we have |[n)| ~ |[n)].

12.1. Decomposition. For convenience, we will denote Q; simply as Q.

Next, in the same spirit as the decomposition in Section 11, we decompose the set of indices over
which we sum in Q. We invoke the following set of indices :

6 5 6
ID = {(kb "'7k67p17 "'>p5) € le : Z(_l)j_lkj = 07 kl = Z - j pj7 Z ] 1k]2 7& Oa
j=1 j=1 j=1
(ny.n@) € {p1, - ps} or ng)| < [na)l' ™™ or |nw| > |n@)|™}
(12.3)
and,
6 5 6
Ty o= {(k1, .. kg, pr,oops) €210 D (=1 Mk =0, ky = (=1 'p;, Y (1K £0,
j=1 j=1 j=1
(nay,n@) & {p1, - ps)? and |ng| > [n)"* and |ng)| < |ng) ™)
(12.4)
for a fixed &, € (0,1)%. Note that what differs from the decomposition in Section 11 is the
additional constraint (n(),n@e) & {p1,....,ps}* in Zyy. This is because if (nay, new)) € {p1,...,ps}%

150nce again, dy can be any number in (0,1)
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we will not need to use Wiener-chaos.
In the same vein, we split Q as :

Q(w) = Q) (w) + Q") (w)

where,

Yo (k) N Yo (k) N
Z 2 _») W, Wy + - W Wy -+ W Q(W)(w) ;:Z ;(E) Wy, Wy - W Wy - Wi (12.5)
Iw

12.1.1. Absence of pairing. Recall that we have defined what a ”pairing” is in Definition 11.3.
In Ty (see (12.4) above), there is (for n(; large enough) no pairing within the three highest
frequencies, relatively to the constraint:

p1— P2... + D5 — ]{72 +l€3 — k‘ﬁ =0

Indeed, suppose there is a pairing between two of the three highest frequencies. Then, the con-
straint would take the form:

the remaining high frequency = sum of seven low frequencies
which is impossible because in Zy, we have:

|high frequencies| > |low frequencies|

12.2. Proof of the estimate. We are now prepared to prove Lemma 12.1 (for j = 1). The
forthcoming proof is organized as follows. Firstly, we establish an estimate that will be conclusive
only for the contribution Q”). For the contribution Q") we will also exploit the independence
between high frequency Gaussians and low frequency Gaussians using Wiener chaos estimate.

Proof of Lemma 12.1. Step 1, Deterministic estimate : Let w € H S_%_(T). For convenience, for
any dyadic number N we denote wj := Ljyn|wy|. We start by taking the absolute value and
summing over dyadic blocks

[Q(w)] S > QM. Mg, Py, ..., Ps)
My,...,Mg,Py,...,Ps
where My, ..., Mg, Py, ..., Ps are dyadic-valued and

oy (k
Q(Ml,...,MG,Pl,...,Pg)) = Z ‘%prﬁl wpswg/iz' wk6 ’ ]1|k1|~M1
k1—ko+...—ke=0 (k>
P1 —p2+;.+p5:k1
Q(k)#£0

We decompose Q as Q = QP) + QW) according to the decomposition of Q.
In regard to (10.4) and (10.6) from the proof of Proposition 4.1, we have:
252 2 P M;
Q(My, ..., P5) S M(ls) +€M(3) (P( 2) P(4)P H Hw H]L2 H ||w ”JL2
Using Notations 12.2, it means that

Q(M, ..., Ps) S MET*T Mg, (P Pisy Py Prs)) HHwN [ (12.6)
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Moreover, for 1 < o' <o < s— %, we have :

. o _ 8
TT ™l S (NG5 el o) (NGl o) (Nigy Neay - Naoy) ™l (12.7)

Then, since Ny ~ N(2), and writing ¢’ as:
od=al+(1-a)
for o € (0, 1), we deduce from (12.7), by interpolating H° between H' and H?, that:

HHw Nl S NG (N Ny - Naaoy) ™ llull 3 [l

—20 cysf§
<N()2+( )

Plugging this into (12.6), we obtain

(Neay Ny Naoy) " lull3h ullzs,  (because a(o — 1) < a(s — 3/2) )

—20+a(s—3) S—24¢ 1 o —a
Q(M, ..., P5) S Ny 2 M(Z) My (P PsyPuyPs)) ® (N3N Nagy) ™! el 32 (el 770

Using the facts M) S < Ny and Ny ~ N2y, and also Remark 7.2, we deduce that
Licwy<myQ (M, ..., P5)
=Ms,...MgP;...Ps
1 -~ - =, _ 2—a
MGy (PoyPeyPayPes))* Niy(Nay Ny Ny Ny - Nao) ™ lulls

2(s—o—1)4eta(s—32)
Sen Ny :

2(s—o)+eta(s—3) _1 9o
S Ny ’ M<3>(M +Mg) ™ Py (PeyPiay Py Prs)) 7 ullzo
2(s—0)—24e+a(s— .
< N(l) 2 || ||HU ) if (N(l),N(Q)) c {Pl,...,P5}2
~ 2(s—o—1)+e+a(s— .
N(1(> et 2)N<3> 2 Jul| 7>, if (Nay, Ngy) & {P1, .., Ps}?

(12.8)

_1
Here, we used estimates on M(23)(M2...M6)*1P(I)1 (P(Q)P(3)P(4)P(5)) * in terms of the N, which are
gathered in the following lemma.

Lemma 12.4. — If (Nay, N2y) € {Py,..., P5}?, then

_1 _3
M) (Ms...Me) 7' Py (PoyPiay Py Pisy) 2 < Niyy
- ]f (N(l),N(g)) ¢ {Pl, ...,P5}2, then
MGy (My...Mg) ™ P (Poy Py PayPs)) * S Nay NNy

For clarity, we postpone the proof of Lemma 12.4 for the end of this section.
To conclude the first step of the proof, using (9.3) in (12.8) yields:

s—o)—3 ofs—3 — 1
2(s—0)— 3 +e+o 2)p22 : if (N(1),N(2)) c {Pl,...,P5}2
3
N N,

4 )2 ., if (Nay, Ngy) ¢ {P, ..., Ps}?
(12.9)

where the constant depends on s, R, 0 and . This is the deterministic estimate we will work with

later in the proof. We stress the fact that (12.9) is true for Q and also for Q) and Q") (with

N(21)
N (s—o—1)+eta(s—

(1)

[ LezmyQ(Mi, ooy P) || gy S
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the exact same proof).

Step 2, Estimates for Q®) and QW) -

eLet us begin with the estimate for Q). Recall that in Q") we sum over the set Zp defined in
(12.3). And, the constraints in Zp imply that the dyadic integers (from the dyadic decomposition)
must satisfy one of the following conditions :

(Nay, Noy) € { Py, ..., Ps}? or Ng S NG™ or Ny 2 NG,

In the first situation, when (N, Niz)) € {Py, ..., P5}?, (12.9) (with Q%) instead of Q) yields:

2(s—o)—%+e+a(s—%) 2—a

|1 eq<ry QP (M, ...,PS)HMWS) S Ny Pz
And, the exponent of Ny satisfy :

20s—0)—2+e+a(s—32)>—3

e—=0
2s—0)—3+eta(s—3)— —5 asqa—0
c—s—1
Thus, for € and « close enough to 0 and o close enough to s — %, we have

b _ 2a

H]I{C(u)gR}Q( )(Mlv ""P5)||Lp(dus) S N(l)p ’
Now, in the second situation when (N¢, Ni2)) & {P1,..., P5}* and : Nz < N(lljéo or Ny 2 Né% ;
(12.9) yields :

2(5—0—1)+a+o¢(s—§) -1 2 4
[Lica<m QP (Moo Po) |y S Ny *NgyNyip 2
And since the exponent of N satisfy :

2s—o—1)+e+als—3)>-1
e—0
2s—o—1)+e+ta(s—3)— -l asqa—0
1

o= 8=

we deduce that for a fixed dy € (0,1) and for ¢ and « close enough to 0 and o close enough to

1

s — 5, we have again

D _  2=a
L ewem )(Ml""’P5)||]LP(dus) S Nayp
Finally, summing over the dyadic integers My, ..., Mg, Py, ..., Ps, this estimate for both situations
leads to )
D 2—a
1e<ry @ |y, S P2

which is the desired estimate.

eNext, in order to finish the proof of Lemma 12.1, we need the same estimate for the contribution
QW) For this term, while the estimate (12.9) is not conclusive, we are in a situation where we can
make use of Wiener chaos. Recall that in Q") we sum over the set Zy defined in (12.4). Even
though the following method is very similar to the one used for estimating R") in Section 11 (see
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the proof of Lemma 11.1), we re-perform the analysis in detail.

As usual, we start by decomposing Q") as'® QW) = Y M. Mg.PL....Ps Q%?--~7MG7P17~-~7P5’ where :

g 6 5
w 2/}25(15) -
Q§\41,)...,M6,P1,...,P5 = Z Q(E) Wp, Wpy -+ Wps Wk - Wi (H]lkj|NMj) (H ]lijPj>
Tw j=1

J=1

Henceforth, we denote w,]c\jj i= Lo, Wi, and wf,? := 1}, |~p,wp, for better readability.

Without loss of generality, we only prove the estimate for the contribution in Q") where the three
highest frequencies are ko, k3 and k4, because the other cases are identical.

Again we denote B«n,,, the o-algebra generated by Gaussians (gk)| K<N(g)/100° Since we only need
to consider the contribution when N is large, we can assume that N is sufficiently large to

ensure N( 4) < N3)/100. This follows from the constraints in Zy, which imply Ny 2 NV, (11;60 and

Nu S N(a) Thus, for Ny large enough, we have N(‘Sé’) < N3y, ensuring that Ny < Ngy/100.
As a consequence, we have that the random variables :

My , Ms . M .
wy,®, wi*, wy,* are independent of By,

Ms , Mes , P wP2 wps wP4 wP5

oy Wpa s Wyt wy, b w,® are By, mesurable.

Now, identically to (11.7), we have

HIL{C <R}QM1 +Me,Pr,....P: <HHQ Mg, Py,... P5HILP (dps|Bens)) ]lBgl(PN@)/lOOu)H

LP(dps) Lo°(dps)

(12.10)
And, the conditional Wiener-chaos estimate from Lemma 9.9 (with m = 3), followed by Lemma 9.10
combined with the absence of paring (see Paragraph 12.1.1), allows us to obtain :
< p2
H-‘p(dl"9|8<<N(3))

3 - (o (E) — 2
Sp2(NayNiyN)) ™ E ‘ E C(k,p) - QSE w[ilw,%wPSwP4wP5w£45w£§6
ko,k3,k4 k1,ks,ke ( )
P1,pP2,P3,P4,P5

oy o\
My,...,Me,P1,...,Ps M1, Mg, P1,...,Ps

.....

L2 (dlu‘9|8<<N<3) )

where we gathered all the constraints into the term :

C(k,P) = Ly —kot...~ke=0 - Ly —pottps=hs - ]lQ(E#O ) I l ]l|kj|NMj | | ]l|pj\NPj
S -
Next, by Cauchy-Schwarz,

- () S My Mo
E E C(k,p) - S—ngl...wﬁ’w%f’w%ﬁ
k2,ks3,k4 k1,ks ke Q<k)
P1,P2.P3.p4.P5

> (% b 2O agerr) (X cEamr)

ko,k3,kq k1,k5,ke ( ) k1,ks ke
P1,P2,P2,P4,P5 P1,P2,P2,P4,P5

2

6For the analysis below, we need to keep the complex conjugation bars, so here we don’t use QW)
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2220 < o) 2721+ HB0) S [k [Pk P S NE2NE). Then, on
the one hand:
Vs (k _ -
S Ckp) ‘ : ‘ wlt P S (NE2NG)? Y O, p) - [l wlowd?
k1,ks,ke k1,ks,ke
P1,P2,P2,P4,P5 P1,P2,P2,P4,P5
S (‘]\/v(218)72‘]\[(23))2 Z |w;zl)311 wk55’2 Z ]lk(s =k1—ka...+ks ']lplfp2+...+p5=k1
ks k1,ke
P1,P2,P2,P4,P5 ~ -
<1
25—2 72 P, P M,
5 (N(IS) N(3) Hw 1||]L2 Hw 5HL2 Hw 5H]L2

2
< (V2 NE (Puec P M) [ [0 e )

and on the other hand,

> Clplu =Dl >0 CkP) S NN ProPsMs - (Mg ! [[w*]] 1,)?
k1,k2,k3,ka ks, ke ke k1,k2,k3ka,ks
P1,P2,P2,P4,P5 Pp1,P2,P2,P4,P5

where we used the counting bound from Lemma 9.3. We deduce from the two inequalities above

that

1

P ¢ s ]2 2
Z ‘ Z C(k,p) - l_,)wp1 wf,?w wf;fw wﬁ?w%ﬂ

k2,k3,ka k1,ks ke Q(k)
P1,P2,P3,P4,P5

11
S NG NN NG 0™ |- o g [ ] [0
s 3 5
SN NGyl s o™ g [ fl™e]
Coming back to (12.11), we deduce that
(08 g 5PN T e T

And plugging this into (12.10), we obtain :

3 s
5RP2N(>N(§>

W)
H]I{C(u)SR} QMl,...,Mg,Pl,...,Pg, Lp (dss)

Interpolating the above inequality with (12.9) (more precisely (12.9) with Q") instead of ), we
can conclude in the same way as what we did with R(") in the proof of Lemma 11.1 (in particular
using again Lemma 11.5). OJ

In order to complete the proof of Lemma 12.1, we provide in the next paragraph a proof of the
technical Lemma 12.4.

Proof of Lemma 12.4.

Proof of Lemma 12./. Recall that we use Notations 12.2.
eAssume first that (N1y, Nig)) € {Pi, ..., Ps}?. Then, P

=
OJ

)IP( )2 N( )2 Moreover, we have

My (My...Mg) ™ < My (Mg Mis)... Mg)) ™" < (MayMsyMe)) ™ < 1
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Combining these two inequalities, we obtain

1 3 o _%
MGy (Ms...Mg) ™' P (PoyPayPayPrs)) 2 S Nipy (PayPayPis)) ™2 S Ny
which is the desired estimate.
eNow, assume that (Npy, Ni)) € {P, ..., Ps}*. It means that :

(Nay, N2)) € {1\42,...,1\46}2 or ( Nuy € {Ms,..., Mg} and N € {P1,..., P} )
or ( Ny € {Ms,..., Mg} and Ny € {P1,..., P} )
— Fristly, we suppose that (Nqy, Nio)) € {Ma, ..., Mg}*. Then, we note that Ny € {M, ..., Mg} or
P(l) = N(g). And also,
Ny € {Ms,...,Ms} or Nu€{Pi,...,Ps}
Considering these facts (and still the fact that Ny) ~ N(2 ), we deduce that

)
1
2

=

< MENANGIN,,?

2 —1
Mz (My...Mg)™ P 0 Ve Ny

1)
Using then the fact that M) S N(3), we have

' (PoyPsyPayPs))

M) (Ms...Ms) ™' Pg) (P Py Py Pis))

which is the desired inequality.

—Secondly, we suppose that Ny € {Mo, ... M6} and N € {Pi,..., Ps}. We consider two cases.
a) The first one is when M E {M(l), My} In that case, My, My, Mg), Py, ..., P5) are
seven indices out of the ten indices N; (that would not have been the case if M1y € {M4), M5y, M6) },

because according to Notations 12.2, M; is not one of the N;). As a consequence,

_ _1
maX{M(4), M(5), M(G), P(Q), ceny P(5)} 2 N(4) SO, (M(4)M(5)M(6)) 1(P(2)...P(5)) 2 g N,
On the other hand, using the fact that M) ~ M), we have

M(23)(M2M3...M6)_1 < M(23)(M(2)M(3)...M(6))_1 < M(_l)lM(g)(M(4)M(5)M(6))_1

Combining these two inequalities and recalling that M( 1), Py ~ N1y, we obtain

-

)
1
2

MGy (My...Mg) ™ P (Ppo /PeyPigyP) S Noy M Ny S Noy NNy

b) The second case we consider is when M; € { M), M(5), M) }. In that case, { M), M(2), M3} C
{MQ,Mg,.. MG} ThUS
(MQ...MG)_l S (M(l)M(Q)M(g)M(5)M(6))_1

SO,
1\4(23)(1\42..1\46)—1 < N2 M

and,

M) (My... M) ™' P

which is an even better estimate than the one we desired.
~Finally, the case Ny € {Ma,..., Ms} and Ny € {P, ..., P} is identical to the previous one.
Hence, the proof of Lemma 12.4 is finished.

) (PoyPeyPuyPe) * <N

-3
M) S NayNes)

(1)
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APPENDIX A. CONSTRUCTION AND PROPERTIES OF THE FLOW AND THE TRUNCATED FLOW

In this appendix, we study the local and global wellposedness in H?(T), ¢ > 1, for both equation
(1.1) and truncated equation (2.1). We also study approximation properties of the truncated flow
along with its structure.

A.1. Local and global wellposedness. We begin this paragraph by recalling some facts about
the space :

W(T) := {u e D'(T): Y [a(k)| < +oo}
keZ
of absolutely convergent Fourier series, called the Wiener algebra, and equipped with the norm

el zy = > [a(k)]
keZ
(1) W(T) is a Banach algebra with the estimate

HuUHW(’ﬂ‘) < HUHW(T) ”U“W(T)

(2) For every o > 0, W(T) N H?(T) is an algebra. Furthermore, there exists C, > 0 such that
[uv] e < Co(l[ull gro 0l ery + 101l o N1l ery)
In particular, if o > %, H?(T) is a Banach algebra and there exists C’ > 0 such that
luvll e < CF llull go 0]l 7o
We are now ready to prove the following local existence theorem :

Theorem A.1. Let 0 > 1. Let ty € R. Both equation (1.1) and truncated equation (2.1) are
locally well-posed in H°(T), in the sense that for any Ry > 0, there exists Ty > 0 such that for
every ||ul| o < Ry there exists a unique u € C([to — To, to + 1o, H?(T)) that satisfies the Duhamel
formula :

t
u(t) = 0%y, — / "% ()| *u(T))dr (A1)
to

for all |t —to] < Ty. And, for every N € N, there exists a unique vy € C([tg — To,to + To], H7(T))
that satisfies the Duhamel formula :

t
on(t) = 0%y — g / e DTy (T oy (1) Tyon (7)) dr (A.2)

to
for all |t — to| < Th.

Remark A.2. It is important to notice that the existence time Ty > 0 is the same for both NLS
and truncated equation and does not depend on the integer N € N.

Proof. To show Theorem A.1, we apply a fixed point argument. Fix Ry > 0 and ||ug||ge < Ro.
For T > 0, we denote

X :=C([to = T, to, +T], H°(T))

which is a Banach space when endowed with the sup norm

lullx, == sup  flu(7)|[go
TE[to—T,to,—‘rT]
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For every N € NU {00}, let us consider the well-defined map
'y : X7 — X7
t
u— €TI0y — / eIy (v ()| Tlyu(r))dr
to

where by convention Il,, = id. We recall the crucial point that ||IIyu||ge < |Ju|;-. Thanks to
that point, every estimate below are uniform in N so that every constant below does not depend
on N.

Using now the facts that H(T) is an algebra (since o > 1 > 1) and ei(t=10)22 ig a linear isometry
on H?(T), we have for some constant Cy > 0,

Tl e, < lloll e + CoT [lull, (A.3)

In addition, using the multilinearity of (uy, ug, ug, ug, us) — uUzustzus we have for some constant
Cy >0,

/ ei(t_T)aﬂ%HN(\HNu(T)]4HNu(T) — Mo () [MIyv(T))dr

to

HrNu——vaw&wz\
Xr (A.4)

4 4
< T ([[ullx, +1lollx,) llu = vlix,

Let R > 2Ry (for example R = 1+ 2Ry) and Ty := m. Fix 0 < T < Ty and denote by

Br(T) the closed centered ball in X7 of radius R. We get from (A.3) and (A.4) and our choice of
the parameters R and Ty that for any u,v € Bg(T),

R R
gy <5 +5 < R (A.5)
and,
2
ICnvu = Dyollg, ) < 20 TR lu = vz, < % v = vllg,m (A.6)

These two estimates imply that the map I'y is a contraction from (the complete space) Br(T) to
itself. Hence, applying the Banach’s fixed point theorem to the map

I'y: FR(T) — ER(T)

leads to the existence part of Theorem A.1. However, through classical considerations, we can
prove that the uniqueness holds in the entire space C([to — T, to + 1], H°(T)). So the proof is
completed. 0

Putting together the local solutions from Theorem A.1, we obtain the two following corollaries.

Corollary A.3. Let 0 > 1. For every uy € H(T), there exists a unique mazimal solution
u € C(Lnax(uo), H°(T)) of (1.1) where Ina.(ug) is an open interval containing 0. Moreover, if
@naz(wo) is strictly included in R, then

lu(®)ll o — +-o00

as t —> Ol ez (ug).
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Corollary A.4. Let o > 1. For everyug € H°(T) and every N € N, there exists a unique mazximal
solution un € C(Ipmazn(uo), H7(T)) of (2.1) where Iy n(uo) is an open interval containing 0.
Moreover, if Lyqa. n(uo) is strictly included in R, then

un ()| e — 400
as t — Ol ez n(Uo).

Thus, to obtain that the solutions of equations (1.1) and (2.1) are global, it suffices to show that
the H?(T)-norm of the solutions do not blow up in finite time. Fortunately, we have :

Proposition A.5. Let ug € H?(T). There exists a constant Co > 0 only depending on |[u|| gy

and o > 1, such that
w()| o < [Jull go €M, for all t € T, (uo) (A.7)

and,
un ()] e < |Jull o €M for all t € T n (uo) (A.8)

where u is the maximal solution of (1.1) and uy is the maximal solution of (2.1). Moreover, we
can explicitly choose Cy < Co(1+ ||ul| g1(p))'* where Cy > 0 depends only on o.

Proof. We use the convention Il = id, s = u and Loz .co(to) = Imaz(to). Let N € NU {o0}
and t € Ipae n(up). Passing to the H%-norm in the Duhamel formula
t
un(t) = €M%y, — i / DOy (I yun (7) [ yun (7)) dr
0
we get that, for some constant C' > 0 (only depending on o),
t
(Ol < ullgo+ | [ [ () Tyaun(7) . |
. ) (A.9)
< Nellge +C1 [ Nl (7 ry
0

The crucial point of the proof is that |[uy(7)lly () is bounded by the H 1(T)-norm of the initial
data. Indeed, using the mass and Hamiltonian conservation
lun ()l my < llun ()l gy

< (lun ()22 + |8zun(7)|I72)?

S (b1 + (G 10Ol + 5 low(DIE ) )

[NIES

1 1 1
2 2 6 \1
S (lullge + 5 10suolle + & llullce)?
< Cj
where we can choose Cj ~ (1 + HuHHl(T))3, because H'(T) embeds continuously in L%(T). Now,

plugging this bound into (A.9), we get

t
lun ()]l < [lullgo + Co | /0 [[un (7)o d7 |

where we can choose Cy ~ (1 4 |[ul| ;1 (T))lz. Then, applying Gronwall’s inequality, we obtain

[luw ()]s < lJull o €
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which is the desired bound. O

Theorem A.6. For every ug € H(T), each maximal solution of (1.1) and (2.1) is global. In
other words,

Imaa:(“O)a Ima$,N(u0> = 400
for all N € N.

Proof. The estimates from Proposition A.5 imply that the H?-norm of both solutions does not
blow up in finite time. Therefore, Corollaries A.3 and A.4 lead to the result. 0

A.2. Regularity of the flows and approximation properties. We recall that we denote by
®(t) the flow of (1.1) and by ®n(t) the flow of the truncated equation (2.1). We also use the
notation ®.(t) = ®(t).

Proposition A.7. Let 0 > 1. Let R > 0 and T > 0. There exists a constant A(R,T) > 0 only
depending on T, R and o, such that for any uo € BE",

sup [|@()uoll o + sup [Pn(Huollyo < AR, T), VN € N
|t|<T |t|<T

Proof. This is a consequence of Proposition A.5. For example we can take
AR, T) = ReCo(1+R)2T
for a certain constant C, > 0 only depending on o. U
We continue this paragraph with two significant regularity results for the flow of (1.1) and (2.1).
Proposition A.8. Lett € R. For every N € NU {oc}, the map
Oy (t): H°(T) — H°(T)
ur— On(t)u
18 continuous.

Proof. For better readability, we only provide the proof for ®(¢). Let u,v € H?(T). Without loss of
generality, we can assume that |lul| ;. < R and ||v]| z» < R for some R > 0. We invoke A(R,t) >0
from the Proposition A.7. Firstly, using the Duhamel formula and passing to the H?(T)-norm we
get that for all s <t

[2(s)v = (s)ull o < v — ull o + CA(R, )" | /0 [ ()0 — @(7)ull 4o dr |

Secondly, the Gronwall’s inequality yields
[ @@ = (t)ull o < o = 1l yo XHET
In particular,
[®(0)0 — @(t)ul 5 — 0
We can go even further with the following proposition:
Proposition A.9. For every N € NU {oo}, the map
Oy : Rx H(T) — H?(T)
(t,u) — P (t)u

18 continuous.
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Proof. For better readability, we only provide the proof for ®. We fix t € R and v € H?(T) and
we show that

|®(t+ h)(u+ ou) — P(t)ul|ly7o — 0, as h— 0and du — 0
We denote F(7,v) := |®(7)v|*®(7)v. Let us compute the difference ®(t + h)(u + du) — ®(t)u using
the Duhamel formula.

O(t+ h)(u+ du) — P(t)u = <<I>(t + h)(u+ du) — O(t + h)u> + <®(t + h)u — cb(t)u)
— it 5y, — z'/Hh ei(”h’T)aﬁ%(F(T, u+ou) — F(r,u))dr

t+h t
+ eitag(eihag —1u— z/ ei(t+h_7)6£F(T, w)dT + z/ ei(t_T)agF(T, w)dr
0 0

t+h
— itz 50, 1 e”ag(eihaﬂ% —1)u— z/ i t+h="); (F(r,u+ du) — F(r,u))dr
0

t+h ¢
— z/ ei(tJ’h_T)a%F(T, w)dr — z/ ei(t_T)ag(eihag — V) F(r,u)dr
t 0

Furthermore, without loss of generality we can assume that t + h <t+1=:T and ||u + dul| z» <
|ul| o + 1 =: R. Now, we invoke A(R,T) > 0 from Proposition A.7. Passing to the H?(T)-norm
in the above formula we have

[0t + ) (u+ 0u) = Dl o < 00l 4o + |[("% = 1)

Ho

+CA(R,T)4|/O 1®(7)(u + 6u) — D(F)ul] ;o d7 |

("% — 1)P(r,u)

dr |

Ho

t
T BAR,T)+ | /
0

Using the continuity of v — ®(7)v (Proposition A.8) and the dominated convergence theorem, we
deduce that the right hand side tends to 0 as h — 0 and du — 0. So the proof of Proposition A.9
is complete. 0]

Proposition A.10 (Approximation property). Let o > 1. Let K be a compact subset of H°(T)
and T > 0. Then, uniformly in |t| <T and uy € K,

(|2 (g — v (#)uoll - = 0,

In other words,

sup sup ||®(t)up — Pn(t)uollye — O

s sup (0~ Byl
Proof. First, from the compactness of K, we invoke R > 0 such that K C BH" where BE" is the
closed centered ball of radius R in H?(T). We then invoke A(R,T) > 0 from Proposition A.7.
Now, we set Ry := 1+ 2A(R,T) and invoke 6 = 6(R;) > 0 the local existence time associated to
R, from the local theory (Theorem A.1). These parameters ensure that for every N € NU {oo}
and ug € BH’, the Duhamel map,

I'y ZERI (5) — ERl ((5)

t
ws ey — / DRy (Tyu(r)| Tyu(r))dr
0
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is a contraction, with a universal contraction coefficient 0 < v < 1 (for exampl

ey = % as in the
proof of Theorem A.1), where B, (§) is the closed centered ball in C([—4, 6], H°(T)

) of radlus R,.

Step 1: Local-time convergence

Firstly, we prove the local property
sup sup || ®(t)ug — Pn(t)uol 5o ey 0 (A.10)

[t|<0 uwoEK —+00
Let ug € BE’. We denote u(t) = ®(t)uy and uy(t) = ®n(t)up. Since u and uy are respectively
the fixed point of I'y, and I'y, we have
Ju— UN“ERl(a) = [[Toou — 11NUN||§R1(5)
< |Foou = Ivullg,, 5 + [Tvu = Tyunllz, o)
< |Poot = Tvullg,, o +7[lu—unllz,, @

Therefore,

1
lv = unllz,, & < T— IToot = Ivullg, ()
Hence, to prove (A.10), it suffices to show that

Poou — Dyl 7
5;&%” ool Nu||BR1(5) NﬁJrOOO

Next, for every [t| < ¢ we have,
t
Foult) = Tu(t) = = [ (ulr)|'u(r) — Dy Tyalr) Ta(r)))ds
0

t t
— / DRI (Ju (7)) (r))dr — i / e DR (Ju() | u(r) — Tyu(r)| Tyu(r))dr
0 0
So passing to the sup norm we get,

IToct = nullg, ) <90 sup [Ty (Ju()*u (7)) | 4
7|<é

+C8 sup [[u(r) = Tyu(r)l| g ([u(7) 10 + [ITxee(m) | 370)

Ir|<é

< Co(sup [T () u(r) AR, T))

e

||HU + sup ||H§u(7')
<5

I7|<
Taking the supremum over uy € K we then obtain,

sup [|I'eou — I'yul|s
uoeKH N ||BR )

< 05( sup sup H]:[J- ’u )|4u<7_>>HHU +A(R, T)4 Sup sup HHJ]\}U(T) (All)

=
up€K |7|<6 upEK |7|<é

Besides, based on a classical result in functional analysis (see Lemma 3.4), Il satisfies the key
property of converging uniformly to 0 on compact sets as N — +o00. At the same time, the two
following sets

Ky ={®(T)uo: uo € K, |7] < 6}, Ky = {]@(T)u0]4<1)(7)u0 cug € K, || <6}
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are compacts in H?(T). Indeed, it results from the facts that the map
R x H°(T) — H°(T)
(t,ug) — P(t)ug
and the map
H?(T)> — H°(T)
(w1, Uz, us, ug, uz) — UIUaU3ULUs

are continuous and the fact that the image of a compact set under a continuous map is compact.
Now, rewriting (A.11) we get

sup ||Toou — FNu||§ ) < C6( sup Myws + AR, T)* sup Ilxyw)

upEK w2E€K? w1€K1

— 0
N—oo

And this implies the desired local property (A.10).

Step 2: Long-time convergence

Secondly, we complete the proof of Proposition A.10 by iterating this local argument. Let m :=
|Z£] +1, and for any integer |k| < m, let Ij, := [ké — 6,kd + 6]. We show that for any |k| < m,
sup sup ||®(t)ug — Py (t)uol| o o7 0 (A.12)
tel, upeK 400
If we do so, the proof of Proposition A.10 will be completed. At this stage, we know that (A.12)
is true when k = 0. Now, we assume that (A.12) is true for some integer |k| < m — 1 and we show
that (A.12) is still true for every integer |k'| = |k| + 1. Also, without loss of generality, we assume
that £ > 0 and ¥’ = k + 1. The crucial point here is that since we chose R; = 1 + 2A(R,T), we
have that for every N € NU {oo} and uy € BH’, the Duhamel map

Ty : By (8) — By, (9)

t

tk
is a contraction with a universal contraction coefficient 0 < v < 1, where t := k9, uco(tx) 1= u(ts),
and Eg?(cS) is the closed centered ball in C([ty, — 0, tx + 0], H7(T)) of radius R;.

Now, doing the same calculations as in the first step of the proof we obtain,

HU_UNHEEQ( 5 = 1 HFOOu FNUHE%?((;)
and,
sup |[Tacts = Dl ) < sup sup 0% (u(ty) — u (b))
ug€EK uoEK tely He
+ C§( sup sup ||HL u(7) [*u(T) ||HU + A(R,T)* sup sup ||HNu )HHU)
upeK €I} upeK 7€}

On the right hand side, the first term :

el1=t% (4 (1,) — UN(tk»HHU = sup [Ju(te) = ux(ti)ll
uo

sup sup
up€eK tely
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tends to 0 as N — 400 by our assumption. And, we handle the remaining term in the same
way as in the first part of the proof. Finally (A.12) is true for all |k| < m, so the proof of
Proposition A.10 is completed. 0J

Corollary A.11. Let o > 1, T > 0 and let K be a compact subset of H(T). Then,
(1) for any e > 0, there exists Ny € N such that for all N > Ny

Oy (t)(K) C ®(t)(K) + B

forall [t| <T.
(2) for any e > 0, there exists Ny € N such that for all N > Ny

O(t)(K) C On(t)(K + BI)
forall |t| <T.
Proof. Let € > 0.

e For the first point, we take uy € K and we write
From Proposition A.10, there exists Ny € N such that for all N > N,

sup sup [|®n(t)vg — () vollgo < €
|t|<T voeK

Thus, for all N > Ny, ®n(t)ug — ®(t)ug € B for all |t| < T and all uy € K. Coming
back to (A.13), it implies that for all N > N,

Oy (t)ug € ®(t)(K) + B

for all up € K and all |t| <T.

e The second point is a consequence of the first one. Let |t| < T. From the continuity of the
map ®(t) (see Proposition A.8) we have that ®(¢)(K) is a compact subset of H?(T). So
from the first point there exists N; € N such that for all N > N,

Oy (—7) (B()(K)) € O(—7)P(1)(K) + B
for all |7| < T'. In particular, for 7 =t we have :
Oy (—t) (2(t)(K)) C D(—t)(t)(K) + B = K + B
Applying @y () to this we obtain
®(t)(K) C D (t) (K + B")
This concludes the proof of Corollary A.11. O
A.3. Structure of the truncated flow. We set
Ey = IIyL*(T)
B = IHLA(T) = (Id — ILy)L¥(T)

Proposition A.12. We have the following properties ;



(1)

(2)

(3)
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The truncated flow ®n(t) commute with the frequency projector Iy, that is
(I)N(t) 0] HN = HN 0] CIDN(t)

As a consequence, the truncated flow @y (t) maps the finite-dimensional space Ex to itself. More-
over, the induced map

E)N(t) Exy — En
Ug — (I)N(t)(’d())
1s the flow of the ODE
i0pu + 0?u = Ty (Jul*u) (FNLS)
Uli—o = up € En
which can be seen as the finite-dimensional Hamiltonian equation on Ey :
10yu = 8%"(u)
U’t:() = Uug € EN
with Hamiltonian Hy(u) := 5 H(9§u||]2L2(T) + 3 ||u||1i6(T)’ foru € Ey.
The truncated flow ®n(t) commute with 11y, that is
Oy (t) oy = Iy o D (1)
As a consequence, the truncated flow ®n(t) maps the space Ex to itself. Moreover, the induced
map
oy (1) : Exy — Exy
Ug ——> q)N(t)(Uo)
18 the solution of the linear Schrodinger equation
10+ 02u =0
u|t:0 = Ug - EJJ\_f
Hence, ®%(t) coincide with the linear operator % on E3;.

The truncated flow ®y(t) can be factorized as (P (t), €"%) on Ey x Ex. In other words, for every
Uy € HU(T),
~ s
(I)N(t) (UO) = (I)N(t)HNUO + €ZtazHﬁU0

Let us now prove these three points.

Proof. Let ug € L*(T).
e O (t) is the flow of (2.1). And, when we apply IIy to equation (2.1), we see that TIy®y(¢)uo is
the solution of the equation
i0pu + O*u = Ty (|Myul*Tlyu) = My (Jul*u)
{U\tzo = Hyug
On the other hand, from the definition of the flow of (2.1), the solution of the equation above is

none other than @y (¢)IIyug itself. This means that

HN(I)N(t)UO = CI)N(t)HNUQ



(3)
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e Next, we show that (FNLS) can be seen as a finite-dimensional Hamiltonian equation on Ey.
Every element u € Ey can be decompose as

U =v-+iw

where

v = Z Re(ug)e™™ =: Z ve'™ € By

k|<N k|<N
w = Im(uy)e™ =: wre™ € By
|<N <N

Furthermore, we invoke the operators

o 9 D

8ﬂk 8Uk Zawk
0 o .0 e 0 PG
TRl TR i) DA D Dl v
|k|<N [k|<N
and also the function
HN : EN — R
Lo 2 1 6
ur— 2 HaquH}('[r) + 6 HUHLG(T)
By performing elementary computations, we see that we can rewrite (FNLS) as
Opu = 2
0 = () (FNLS)
U’t:O = Uo

This means that (FNLS) is an Hamiltonian equation on Ey with associated Hamiltonian Hy.

Once again, applying T to equation (2.1), we see that TI5®x(t)ug is the solution of the equation
10 + 02u =0
{u|t0 = Ty ug
This means that
L@y (t)ug = 2 % ug (A.14)
Furthermore, ITny® v (¢)II5u is the solution of the equation
i0yu + 0*u = Ty (I yul* T yu)
{u|t0 =0
Thus, TIx®y(t)[Ixup is none other than 0, and we obtain from (A.14) that
Oy (O Txug = M@y (O)Thug = e TThug = ITL Py (£)uo
As a consequence of the two previous points, we can write
Oy (t)ug = My @y (t)ug + M@ (t)ug
= O () Iyug + O () xug
= Dy (O)TTyug + " Ty ug

—~ N~

€EN EE]#
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