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TRANSPORT OF LOW REGULARITY GAUSSIAN MEASURES FOR THE 1D
QUINTIC NONLINEAR SCHRÖDINGER EQUATION

ALEXIS KNEZEVITCH

Abstract. We consider the 1d nonlinear Schrödinger equation (NLS) on the torus with initial
data distributed according to the Gaussian measure with covariance operator (1 − ∆)−s, where
∆ is the Laplace operator. We prove that the Gaussian measures are quasi-invariant along the
flow of (NLS) for the full range s > 3

2 . This improves a previous result obtained by Planchon,
Tzvetkov and Visciglia in [25], where the quasi-invariance is proven for s = 2k for all integers
k ≥ 1. In our approach, to prove the quasi-invariance, we directly establish an explicit formula
for the Radon-Nikodym derivative Gs(t, .) of the transported measures, which is obtained as the
limit of truncated Radon-Nikodym derivatives Gs,N (t, .) for transported measures associated with
a truncated system. We also prove that the Radon-Nikodym derivatives belong to Lp, p > 1,
with respect to H1(T)-cutoff Gaussian measures, relying on the introduction of weighted Gaussian
measures produced by a normal form reduction, following Sun-Tzvetkov [29]. Additionally, we prove
that the truncated densities Gs,N (t, .) converges to Gs(t, .) in Lp (with respect to the H1(T)-cutoff
Gaussian measures).
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1. Introduction

In this paper, we contribute to the program initiated by Tzvetkov in [33] on the transport of Gauss-
ian measures under the flow of Hamiltonian partial differential equations (PDEs). We consider the
defocusing quintic nonlinear Schrödinger equation on the torus :{

i∂tu+ ∂2xu = |u|4u, (t, x) ∈ R× T
u|t=0 = u0

(1.1)

This is a Hamiltonian PDE with the associated Hamiltonian :

H(u) :=
1

2

∫
T
|∂xu|2dx+

1

6

∫
T
|u|6dx (1.2)

1.1. Description of the problem. In the present work, we consider the situation where (1.1) is
globally well posed in a certain Banach space X. With such a Banach space X, we can invoke, for
every time t ∈ R, the flow of (1.1) :

Φ(t) : X −→ X

which is the continuous map that for any initial data u0 ∈ X associates the solution of (1.1)
evaluated at time t.
Given a Gaussian measure µ on X (defined on B(X), the σ-algebra of Borel sets of X), we can
consider the push-forward measure of µ under Φ(t), denoted by Φ(t)#µ, and defined for all A ∈
B(X) as

Φ(t)#µ(A) := µ(Φ(t)−1A)

We say that Φ(t)#µ is the transported measure of µ under the flow Φ(t). This object is of interest
because properties on the measure Φ(t)#µ provide a macroscopic description of the flow. Following
the problem raised by Tzvetkov for Hamitlonian PDEs in [33], one wonders if, for every time t,
the measure Φ(t)#µ is absolutely continuous with respect to µ. If that is indeed the case, we use
the notation Φ(t)#µ≪ µ. In other words, one wonders if, for any Borel set A in X, the following
assertion

µ(A) = 0 =⇒ Φ(t)#µ(A) = 0 (1.3)
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is true. If the answer is positive, we say that the measure µ is quasi-invariant under the flow Φ(t).
In that case, we can invoke the Radon-Nikodym derivative Ft ∈ L1(dµ) which satisfies:

Φ(t)#µ = Ft(u)dµ

and often denoted as
dΦ(t)#µ

dµ
. The absolute continuity (1.3) is only a qualitative result because we

only obtain the existence of the Radon-Nikodym derivative Ft. A more quantitative result would
be providing additional information on Ft, such as an explicit formula which should be suitably
interpreted.

The initial data spaces X under consideration will be Sobolev spaces on the torus. We can define
Gaussian measures on Sobolev spaces as follows. For any given s ∈ R, we define the Gaussian
measure µs as the law of the random varibale:

S : ω 7−→
∑
n∈Z

gn(ω)

⟨n⟩s
einx (1.4)

where ⟨n⟩ := (1+n2)
1
2 and {gn}n∈Z are independent standard complex-valued Gaussian measures1

on a probability space (Ω,A,P). More precisely, for σ ∈ R, we have that

E

[∑
n∈Z

⟨n⟩2σ
∣∣∣∣ gn⟨n⟩s

∣∣∣∣2
]
< +∞ ⇐⇒ σ < s− 1

2

so the random series in (1.4) converges in L2(Ω, Hσ(T)) if and only if σ < s− 1
2
. Thus, µs = S#P

is a probability measure on B(Hσ(T)) for all σ < s − 1
2
. For more details on Gaussian measures,

we refer to [17] (see also [2]). Furthermore, it is well-known that

S ∈ H(s− 1
2
)−(T) :=

⋂
σ<s− 1

2

Hσ(T) almost surely,

so the transported measure:

Φ(t)#µs = (Φ(t) ◦ S)#P

makes sense if the flow Φ(t) is well defined on H(s− 1
2
)−(T) almost surely. In the situation where

s > 3
2
, we have H(s− 1

2
)−(T) ⊂ H1(T). And, at the regularity H1(T), equation (1.1) is globally well

posed. It follows from the combination of an elementary local wellposedness (thanks to the algebra
property of H1(T)) and the use of the conservation of the Hamiltonian (1.2) and of the mass:

H(u) =
1

2

∫
T
|∂xu|2dx+

1

6

∫
T
|u|6dx, M(u) :=

∫
T
|u|2dx

In conclusion, the transported measure Φ(t)#µs is well defined whenever s > 3
2
, and we can

legitimately wonder if it is absolutely continuous with respect to µs. For some s ≤ 3
2
, it is still

possible to construct the transported measure Φ(t)#µs, but our method in this paper only works
for s > 3

2
.

1in the sense that gn = hn + iln, where hn and ln are two independent real Gaussian measures on R with law
N (0, 1

2 )
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1.2. Formal computation and main results. Formally, we can see the Gaussian measure µs
as the measure

1

Zs
e−

1
2
∥u∥2Hsdu

where du is formally the Lebesgue measure (which does not exist on infinite dimensional vector
spaces). Let us compute formally Φ(t)#µs in order to predict what the Radon-Nikodym derivative
of Φ(t)#µs with respect to µs could be:

Φ(t)#µs = Φ(t)#
( 1

Zs
e−

1
2
∥u∥2Hsdu

)
=

1

Zs
e−

1
2∥Φ(t)−1u∥2

HsΦ(t)#du

Since (1.1) is a Hamiltonian PDE, we may formally write that the (non existent) Lebesgue measure
is preserved by the flow Φ(t), that is Φ(t)#du = du. Moreover, from the additivity of the flow, we
have Φ(t)−1 = Φ(−t). Hence,

Φ(t)#µs =
1

Zs
e−

1
2
∥Φ(−t)u∥2Hsdu = e−

1
2
(∥Φ(−t)u∥2Hs−∥u∥2Hs )dµs

Then, we expect that the actual density of Φ(t)#µs with respect to µs is:

Gs(t, u) := e−
1
2
(∥Φ(−t)u∥2Hs−∥u∥2Hs )

However, since it is known that µs(H
s− 1

2 (T)) = 0, we have:

∥Φ(−t)u∥2Hs = +∞ and ∥u∥2Hs = +∞, µs − almost surely

so this is not even clear that the density Gs(t, u) is well defined on the support of µs. But the
hope is to observe some cancellation in the difference between ∥Φ(−t)u∥2Hs and ∥u∥2Hs . In order
to analyze this difference, we first consider instead an approximated system for N ∈ N:{

i∂tu+ ∂2xu = ΠN (|ΠNu|4ΠNu) , (t, x) ∈ R× T
u|t=0 = u0

where ΠN is the Dirichlet projector. Denoting by ΦN(t) its flow (called the truncated flow), we
will be able, thanks to a finite-dimensional-type computation in Section 5, to prove rigorously that
the transported measure ΦN(t)#µs is indeed:

ΦN(t)#µs = e−
1
2
(∥ΠNΦN (−t)u∥2Hs−∥ΠNu∥2Hs )dµs = Gs,N(t, u)dµs

and the challenge will be to take the limit N → ∞ into this formula. In order to do so, an
integration by parts will give rise to a rewriting of the difference ∥ΠNΦN(−t)u∥2Hs − ∥ΠNu∥2Hs as:

−1

2

(
∥ΠNΦN(−t)u∥2Hs − ∥ΠNu∥2Hs

)
= −

∫ −t

0

d

dτ

1

2
∥ΠNΦN(τ)u∥2Hs dτ

= Rs,N(ΦN(−t)u)−Rs,N(u)−
∫ −t

0

Qs,N(ΦN(τ)u)dτ

where Rs,N and Qs,N will emerge in Section 2 from a normal form reduction. Fortunately, we will
see, respectively in Section 3 and 4, that Rs,N and Qs,N are continuous functions on Hσ(T) (for
σ < s − 1

2
close enough to s − 1

2
) that converge pointwisely2 to continuous functions respectively

2Actually, we will see that the convergence holds uniformly on compact sets of Hσ(T), which is stronger. See
Propositions 3.3 and 4.4
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denoted Rs and Qs(the proof of those facts will be postponed to Section 10). Hence, the a priori
ill-defined quantity −1

2
(∥Φ(−t)u∥2Hs − ∥u∥2Hs) will be seen as:

−1

2

(
∥Φ(−t)u∥2Hs − ∥u∥2Hs

)
:= Rs(Φ(−t)u)−Rs(u)−

∫ −t

0

Qs(Φ(τ)u)dτ

= lim
N→∞

(
Rs,N(ΦN(−t)u)−Rs,N(u)−

∫ −t

0

Qs,N(ΦN(τ)u)dτ
)

And from this, we will be able in Section 6 to prove that indeed:

Φ(t)#µs = Gs(t, u)dµs

More precisely, assuming that Rs,N , Rs and Qs,N , Qs have been constructed (see Section 3 and 4),
we will prove the following result:

Theorem 1.1. Let s > 3
2
and σ < s− 1

2
close enough to s− 1

2
. Let t ∈ R. Then, for every N ∈ N,

the transported measure ΦN(t)#µs has a density Gs,N(t, .) with respect to µs given by:

Gs,N(t, u) = exp
(
− 1

2
(∥ΠNΦN(−t)u∥2Hs − ∥ΠNu∥2Hs)

)
= exp

(
Rs,N(ΦN(−t)u)−Rs,N(u)−

∫ −t

0

Qs,N(ΦN(τ)u)dτ

)
Moreover, the transported measure Φ(t)#µs has a density Gs(t, .) with respect to µs given by:

Gs(t, u) = exp

(
Rs(Φ(−t)u)−Rs(u)−

∫ −t

0

Qs(Φ(τ)u)dτ

)
which is continuous on Hσ(T). In addition, the densities Gs,N(t, .) converge to Gs(t, .) uniformly
on compact sets of Hσ(T).

As a consequence,

Corollary 1.2. Let s > 3
2
. Then, the Gaussian measure µs is quasi-invariant along the flow of

(1.1).

Results of this type were proven recently for many models, see [6, 9, 10, 11, 12, 14, 13, 15, 16, 20,
21, 22, 23, 24, 26, 25, 28, 33].
The quasi-invariance of µs along the flow of (1.1) has already been proven in [25] when s = 2k, for
all integers k ≥ 1, where the authors relied on modified energy estimates (see Theorem 1.4 in [25]).
Here, our approach is different because our aim is to obtain directly the Radon-Nikodym derivative
of the transported measures. Such an approach was adopted by Debussche and Tsutsumi in [9] and
later by Genovese-Lucà-Tzvetkov [15] and by Forlano and Seong in [10]. More importantly, we are
inspired by the method employed by Sun-Tzvetkov in [29] in the context of the 3d energy critical
nonlinear Schrödinger equation. However, in order to reach the full range s > 3

2
for the quasi-

invariance, we will need to employ sharper estimates, notably by incorporating dispersive effects
through Strichartz estimates. In addition, the 1d case will allow us to benefit from deterministic
properties – through convergence on compact sets of truncated densities – in order to obtain the
explicit formula for the Radon-Nikodym derivative of the transported measure Φ(t)#µs. It is
however worth noticing that we will not need the remarkable cancellation presented in [29].
It would be interesting to prove the quasi-invariance below the threshold s > 3

2
of this paper.

Indeed, the question of quasi-invariance for (1.1) still arises for smaller s because, thanks to
Bourgain in [5], we know that (1.1) is still globally well-posed in Hσ(T) for σ > σ∗ with σ∗ < 1

2
.
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More precisely, from more recent works we know that (1.1) is globally well-posed for σ > 2
5
, see

[18] and [1]. Besides, we know that the quasi-invariance is true for s = 1. It is a consequence of
an other result obtained by Bourgain in [4] which states that the Gibbs measure:

Gb :=
1

Z
e
− 1

6
∥u∥6L6(T)dµ1

is invariant under the flow of (1.1) for every time t ∈ R (meaning that Φ(t)#Gb = Gb).
It would be also interesting to see if the recent work of Coe-Tolomeo in [8] may be used to identify
a sharp threshold s0 above which the quasi-invariance holds, and under which the transported
measure and the initial Gaussian measure are mutually singular for every time.

Let us observe that the formula Φ(t)#µs = Gs(t, .)dµs from Theorem 1.1 implies that Gs(t, .)
belongs to L1(dµs). Thus, it is legitimate to ask if Gs(t, .) belongs to Lp(dµs), with p > 1. In the
second result of this paper, we provide a partial answer to this question. We prove in Section 8 that
if we add a H1(T)-cutoff to the Gaussian measure µs, defining the restricted Gaussian measure:

µs,R := 1{C(u)≤R}µs (1.5)

where C(u) is the (conserved by the flow) quantity:

C(u) := 1

2
∥u∥2L2(T) +H(u), with H the Hamiltonian (1.2) (1.6)

then, (with the same Gs,N and Gs as before) we have the following result:

Theorem 1.3. Let s > 3
2
and R > 0. Let t ∈ R. Then, for every N ∈ N:

ΦN(t)#µs,R = Gs,N(t, u)dµs,R and, Φ(t)#µs,R = Gs(t, u)dµs,R

Moreover, the densities Gs,N(t, .), Gs(t, .) belongs to Lp(dµs,R); and Gs,N converge to Gs(t, .) in
Lp(dµs,R).

We stress the fact that s > 3
2
is the energy threshold where it is still possible to use the cutoff C.

For s ≤ 3
2
, H1(T) is strictly contained in the full measure space H(s− 1

2
)−(T), and we would need

to consider a renormalized cutoff as in [34].

Our approach to prove Theorem 1.3 is to work (instead of directly with the Gaussian measures
µs,R) with weighted Gaussian measures, that we define in Section 7. Formally, the idea is to replace
the restricted Gaussian measure:

µs,R = ” 1
Zs
1{C(u)≤R}e

− 1
2
∥u∥2Hsdu” by ρs,R := ” 1

Zs
1{C(u)≤R}e

−Es(u)du”

where Es(u) is a modified energy of the form:

Es(u) =
1

2
∥u∥2Hs +Rs(u)

and where Rs(u) is a correction term due to the non-linearity in (1.1), which will be produced by
the normal form reduction from Section 2. For the weighted Gaussian measures, we will be able to
prove a quantitative inequality (see Proposition 8.5) that could be transferred afterwards to µs,R
(see Proposition 8.7).
Besides, contrary to the proof of Theorem 1.1 (which requires only deterministic considerations),
the proof of Theorem 1.3 will require in addition probabilistic tools, relying on the fact that the
initial data are distributed according to Gaussian measures. Mainly, in order to prove Lp-estimates
on Rs and Qs (respectively in Section 11 and 12), we will use the independence between high and
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low frequency Gaussians, along with a conditional Wiener chaos estimate (see Lemma 9.9). This
method was adopted before in [29]. However, we point out that we will use the Wiener chaos esti-
mate with respect to three high-frequency Gaussians (that is with m = 3 in Lemma 9.9) whereas
in [29] the authors performed the Wiener chaos with respect to two high-frequency Gaussians (that
is with m = 2 in Lemma 9.9). This remark is in fact significant because it will imply in our anal-
ysis that a ”pairing between generations” (see Section 5 of [29]) cannot occur. On the contrary,
such a pairing could occur in [29], and the authors dealt with it by emphasizing a ”remarkable
cancellation” (see Section 7 of [29]).

Organization of the paper. We organize this paper as follows:
In Section 2, we perform a normal form reduction where energy-type quantities will emerge. In
particular, the normal form reduction will produce two crucial quantities: one called the energy
correction, denoted Rs,N , and the other called the derivative of the modified energy at 0, denoted
Qs,N . Section 3 and Section 4 are respectively dedicated to deterministic properties of Rs,N and
Qs,N . In Section 5, we prove that (for every s > 3

2
) µs is quasi-invariant along the truncated flow

ΦN(t) (for N ∈ N). More precisely, we prove the formula ΦN(t)#µs = Gs,N(t, .)dµs, providing an
explicit formula for Gs,N(t, u). In Section 6, we extend this formula to the flow Φ(t); we prove
that Φ(t)#µs = Gs(t, .)dµs, where the density Gs(t, .) will be the pointwise limit of the truncated
densities Gs,N(t, .). In section 8, we prove that the densities Gs,N(t, .) and Gs(t, .) belong to Lp

with respect to the restrictions of µs on bounded sets of H1(T); we also prove that, with respect to
these measures, Gs,N(t, .) converges to Gs(t, .) in L

p. To do so, we will rely on the introduction, in
Section 7, of weighted Gaussian measures. Then, the remaining part of the paper will be dedicated
to the proof of the energy estimates we used in the previous sections. In Section 9, we gather the
deterministic and probabilistic tools of this paper. Section 10 is dedicated to the proof of the
deterministic properties stated in Sections 3 and 4. Section 11 and Section 12 are respectively
dedicated to the proof of Lp estimates on Rs,N and Qs,N . Finally, in Appendix A, we provide a
local and global Cauchy theory for (1.1) and (2.1) on Hσ(T), for σ ≥ 1, and we then prove an
approximation property of Φ(t) by ΦN(t). Besides, we will prove a decomposition for the truncated
flow ΦN(t).

1.3. Further remarks.

Remark 1.4. In our approach, we view the difference ∥Φ(t)u∥2Hs−∥u∥2Hs as the limit of continuous
functions on Hσ(T), with σ < s − 1

2
close enough to s − 1

2
. An alternative to give a meaning to

this quantity (for u ∈ Hσ(T)) could have been to use a nonlinear smoothing for the solutions of
(1.1). In the context of this paper, with s > 3

2
, the result in Theorem 1 from the interesting work

[19] implies that for σ < s− 1
2
(close enough to s− 1

2
), we have the following nonlinear smoothing

(for u ∈ Hσ(T)):

v(t) := Φ(t)u− eit∂
2
xe−i

3
2π

∫ t
0 ∥Φ(τ)u∥4L4dτu ∈ C([−T, T ];Hσ+1−ε(T))

for 0 < ε < 1, and at least for small time T > 0. Hence, we could have tried to define the difference
∥Φ(t)u∥2Hs − ∥u∥2Hs as :

∥Φ(t)u∥2Hs − ∥u∥2Hs := ∥v(t)∥2Hs + 2Re
〈
⟨∇⟩2s−σv(t), ⟨∇⟩σ

(
eit∂

2
xe−i

3
2π

∫ t
0 ∥Φ(τ)u∥4L4dτu

)〉
L2(T)

since this formula is true when u is smooth (with ⟨., .⟩L2(T) the L2(T)-scalar product). With ε
close to 0, the 1 − ε gain of regularity in the smoothing above implies that for u ∈ Hσ(T),
∥v(t)∥2Hs(T) < +∞ because σ + 1− ε is close to s+ 1

2
> s. However, this smoothing is not enough



8 ALEXIS KNEZEVITCH

to define the term ⟨∇⟩2s−σv(t) because σ + 1− ε < 2s− σ, no matter how close ε and σ are close
to 0 and s− 1

2
respectively. For ⟨∇⟩2s−σv(t) to be well-defined, we need a gain of 1 + ε′ regularity,

where ε′ > 0.

Remark 1.5. In this paper, we deal with the defocusing NLS, but it would have also been possible
to consider the focusing NLS. However, in the focusing case, we would have needed an additional
cut-off on small L2(T)-initial data, ensuring that the flow of (1.1) is global and a control on the
H1(T)-norm of the solutions.

Acknowledgments. This work is partially supported by the ANR project Smooth ANR-22-
CE40-0017. The author is grateful to his advisors Chenmin Sun and Nikolay Tzvetkov for sug-
gesting this problem and for their valuable advice. The author would also like to thank Tristan
Robert for pointing out the reference [19].

2. Poincaré-Dulac normal form reduction and modified energy

2.1. The truncated system. Let N ∈ N. We work with the following equation :{
i∂tu+ ∂2xu = ΠN (|ΠNu|4ΠNu) , (t, x) ∈ R× T
u|t=0 = u0

(2.1)

called the truncated equation, where ΠN is the projector on frequencies ≤ N . More precisely,

ΠN

(∑
k∈Z

uke
ikx

)
:=
∑
|k|≤N

uke
ikx

We also define Π⊥
N := Id− ΠN as :

Π⊥
N

(∑
k∈Z

uke
ikx

)
:=
∑
|k|>N

uke
ikx

Equation (2.1) is a smoothly approximated system of (1.1). We denote by ΦN the flow of (2.1),
called the truncated flow. Sometimes, we might use the notation Φ∞ instead of Φ to refer to the
flow of (1.1). If we set

EN := ΠNL2(T), E⊥
N := Π⊥

NL2(T) = (Id− ΠN)L2(T),

the truncated flow ΦN(t) can be factorized as (Φ̃N(t), e
it∂2x) on EN × E⊥

N in the sense that

ΦN(t)u0 = Φ̃N(t)ΠNu0︸ ︷︷ ︸
∈EN

+ eit∂
2
xΠ⊥

Nu0︸ ︷︷ ︸
∈E⊥

N

(2.2)

where Φ̃N is the flow of a (finite dimensional) ordinary differential equation (ODE). In Appendix
A, we show the local and global well-posedness of the truncated flow as well as its structure.

In the same vein, we can decompose the Gaussian measure µs as

µs = µs,N ⊗ µ⊥
s,N (2.3)

where µs,N and µ⊥
s,N are respectively the law of

ω 7−→
∑
|n|≤N

gn(ω)

⟨n⟩s
einx and ω 7−→

∑
|n|>N

gn(ω)

⟨n⟩s
einx
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Equivalently, µs,N is the probability measure on EN given by:

µs,N =
1

ZN

∏
|n|≤N

e−
1
2
⟨n⟩2|û(n)|2dû(n) =

1

ZN
e−

1
2
∥ΠNu∥2Hs(T)

 ∏
|n|≤N

dû(n)

 (2.4)

where ZN > 0 is a normalizing constant, and dû(n) is the Lebesgue measure on Span(einx) = C·einx.

2.2. Normal form reduction and modified energy. We consider a smooth solution uN of
(2.1). By factoring through the linear flow, we introduce a new unknown

vN := e−it∂
2
xuN

Note that from (2.2), we have vN = ΠNvN + Π⊥
Nu0, so ∂tvN = ∂tΠNvN . In other words, if we

invoke
wN := ΠNvN ,

we have ∂tvN = ∂twN . We denote respectively by uk(t), vk(t) and wk(t) the k-th Fourier coefficient
of uN(t), vN(t) and wN(t), and for better readability, we will simply write uk, vk and wk, omitting
the variable t.

Now, we observe that vN satisfies the equation

i∂tv = e−it∂
2
xΠN

(
|eit∂2xΠNv|4eit∂

2
xΠNv

)
(2.5)

Since the Fourier transform converts the product into convolution, we deduce from (2.5) that

i∂tvk = i∂twk = 1|k|≤N
∑

k1−k2+k3−k4+k5=k

e−itΩ(k⃗)

(
5∏
j=1

1|kj |≤N

)
vk1vk2 ...vk5

= 1|k|≤N
∑

k1−k2+k3−k4+k5=k

e−itΩ(k⃗)wk1wk2 ...wk5

(2.6)

where k⃗ = (k1, ..., k5, k) and,

Ω(k⃗) :=
5∑
j=1

(−1)j−1k2j − k2

is the so-called resonant function. In the sequel, we use the equivalent Sobolev norm for s ≥ 0

|||f |||2Hs(T) :=
∑
k∈Z

(1 + |k|2s)|f̂(k)|2

which is more convenient for our purpose. Let us now compute 1
2
d
dt
|||uN |||2Hs(T):

1

2

d

dt
|||uN |||2Hs(T) =

1

2

d

dt
|||vN |||2Hs(T) =

1

2

d

dt
|||wN |||2Hs(T) = Im (i∂twN |wN)Hs×Hs

= Im
∑
k6∈Z
|k6|≤N

(1 + |k6|2s)(i∂twk6)wk6

Plugging (2.6) into this, we get

1

2

d

dt
|||wN |||2Hs(T) = Im

∑
k1−k2+...−k6=0

(1 + |k6|2s)e−itΩ(k⃗)wk1wk2 ...wk5wk6
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(where now k⃗ = (k1, ..., k5, k6) and still Ω(k⃗) =
∑6

j=1(−1)j−1k2j ).

The above formula can be symmetrized using the symmetries of the resonant function and of the
indices. Firstly, the change of variables k4 ↔ k6 and k2 ↔ k6 respectively yield,

1

2

d

dt
|||wN |||2Hs(T) = Im

∑
k1−k2+...−k6=0

(1 + |k4|2s)e−itΩ(k⃗)wk1wk2 ...wk6

= Im
∑

k1−k2+...−k6=0

(1 + |k2|2s)e−itΩ(k⃗)wk1wk2 ...wk6

so that,

1

2

d

dt
|||wN |||2Hs(T) = Im

∑
k1−k2+...−k6=0

3 + |k2|2s + |k4|2s + |k6|2s

3
e−itΩ(k⃗)wk1wk2 ...wk6 (2.7)

Secondly, the change of variables (k1, k3, k5) ↔ (k2, k4, k6) and (k1, k5, k3) ↔ (k2, k4, k6) and
(k5, k3, k1) ↔ (k2, k4, k6) respectively yield,

1

2

d

dt
|||wN |||2Hs(T) = −Im

∑
k1−k2+...−k6=0

(1 + |k5|2s)e−itΩ(k⃗)wk1wk2 ...wk6

= −Im
∑

k1−k2+...−k6=0

(1 + |k3|2s)e−itΩ(k⃗)wk1wk2 ...wk6

= −Im
∑

k1−k2+...−k6=0

(1 + |k1|2s)e−itΩ(k⃗)wk1wk2 ...wk6

so that,

1

2

d

dt
|||wN |||2Hs(T) = −Im

∑
k1−k2+...−k6=0

3 + |k1|2s + |k3|2s + |k5|2s

3
e−itΩ(k⃗)wk1wk2 ...wk6 (2.8)

Finally, from combining (2.7) and (2.8), we obtain the symmetrized formula

1

2

d

dt
|||wN |||2Hs(T) = −1

6
Im

∑
k1−k2+...−k6=0

ψ2s(k⃗)e
−itΩ(k⃗)wk1wk2 ...wk6 (2.9)

where,

ψ2s(k⃗) :=
6∑
j=1

(−1)j−1|kj|2s
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In order to perform a differentiation by parts, we decompose the set of indices according to whether

Ω(k⃗) = 0 or not :

1

2

d

dt
|||wN |||2Hs(T) = −1

6
Im

∑
k1−k2+...−k6=0

Ω(k⃗)=0

ψ2s(k⃗)e
−itΩ(k⃗)wk1wk2 ...wk6

− 1

6
Im

∑
k1−k2+...−k6=0

Ω(k⃗)̸=0

ψ2s(k⃗)e
−itΩ(k⃗)wk1wk2 ...wk6

= −1

6
Im

∑
k1−k2+...−k6=0

Ω(k⃗)=0

ψ2s(k⃗)e
−itΩ(k⃗)wk1wk2 ...wk6

− 1

6
Im

∑
k1−k2+...−k6=0

Ω(k⃗)̸=0

ψ2s(k⃗)

−iΩ(k⃗)
∂t

(
e−itΩ(k⃗)wk1wk2 ...wk6

)

+
1

6
Im

∑
k1−k2+...−k6=0

Ω(k⃗)̸=0

ψ2s(k⃗)

−iΩ(k⃗)
e−itΩ(k⃗)∂t (wk1wk2 ...wk6)

Hence,

d

dt

(1
2
|||wN |||2Hs(T) +

1

6
Im

∑
k1−k2+...−k6=0

Ω(k⃗)̸=0

ψ2s(k⃗)

−iΩ(k⃗)
e−itΩ(k⃗)wk1wk2 ...wk6

)

= −1

6
Im

∑
k1−k2+...−k6=0

Ω(k⃗)=0

ψ2s(k⃗)e
−itΩ(k⃗)wk1wk2 ...wk6 +

1

6
Im

∑
k1−k2+...−k6=0

Ω(k⃗)̸=0

ψ2s(k⃗)

−iΩ(k⃗)
e−itΩ(k⃗)∂t (wk1wk2 ...wk6)

(2.10)

Now, motivated by the above formula, we define the following quantities:

Definitions 2.1 (Energy correction and modified energy). Let N ∈ N.
(1) For u ∈ S ′(T), we define:

Rs,N(u) :=
1

6
Im

∑
k1−k2+...−k6=0

Ω(k⃗)̸=0

ψ2s(k⃗)

−iΩ(k⃗)

(
6∏
j=1

1|kj |≤N

)
uk1uk2 ...uk6 (2.11)

and,

Es,N(u) :=
1

2
|||ΠNu|||2Hs(T) +Rs,N(u) (2.12)

(2) For u ∈ C∞(T), we define:

Rs,∞(u) :=
1

6
Im

∑
k1−k2+...−k6=0

Ω(k⃗)̸=0

ψ2s(k⃗)

−iΩ(k⃗)
uk1uk2 ...uk6 (2.13)
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and,

Es,∞ :=
1

2
|||u|||2Hs(T) +Rs,∞(u) (2.14)

For N ∈ N ∪ {∞}, Rs,N and Es,N are respectively called the energy correction and the modified
energy. Moreover, we will use interchangeably the notation Rs and Es to refer respectively to Rs,∞
and Es,∞.

Remark 2.2. In Section 3 (in Proposition 3.1), we will see that for s > 3
2
and σ < s − 1

2
close

enough to s − 3
2
, we can extend Rs to Hσ(T), because we will be able to prove that the sum in

(2.13) is absolutely convergent for every u ∈ Hσ(T).

Using the modified energy (2.12), we can rewrite (2.10) as

d

dt
Es,N(ΠNuN(t)) = −1

6
Im

∑
k1−k2+...−k6=0

Ω(k⃗)=0

ψ2s(k⃗)e
−itΩ(k⃗)wk1wk2 ...wk6

+
1

6
Im

∑
k1−k2+...−k6=0

Ω(k⃗)̸=0

ψ2s(k⃗)

−iΩ(k⃗)
e−itΩ(k⃗)∂t (wk1wk2 ...wk6)

Furthermore, expanding the time derivation ∂t (wk1wk2 ...wk6) and performing the change of vari-
ables k1 ↔ k3, k1 ↔ k5, k2 ↔ k4 and k2 ↔ k6, we get that

d

dt
Es,N(ΠNuN(t)) =− 1

6
Im

∑
k1−k2+...−k6=0

Ω(k⃗)=0

ψ2s(k⃗)e
−itΩ(k⃗)wk1wk2 ...wk6

+
1

2
Im

∑
k1−k2+...−k6=0

Ω(k⃗)̸=0

ψ2s(k⃗)

Ω(k⃗)
e−itΩ(k⃗)

(
i∂twk1

)
wk2 ...wk6

+
1

2
Im

∑
k1−k2+...−k6=0

Ω(k⃗)̸=0

ψ2s(k⃗)

Ω(k⃗)
e−itΩ(k⃗)wk1

(
−i∂twk2

)
...wk6

At this point, we can make use of the formula (2.6) so that the above formula can be rewritten as

d

dt
Es,N(ΠNuN(t)) = −1

6
Im

∑
k1−k2+...−k6=0

Ω(k⃗)=0

ψ2s(k⃗)e
−itΩ(k⃗)wk1wk2 ...wk6

+
1

2
Im

∑
k1−k2+...−k6=0
p1−p2+...+p5=k1

Ω(k⃗)̸=0

ψ2s(k⃗)

Ω(k⃗)
e−it(Ω(k⃗)+Ω(p⃗))wp1wp2 ...wp5wk2 ...wk6

− 1

2
Im

∑
k1−k2+...−k6=0
q1−q2+...+q5=k2

Ω(k⃗)̸=0

ψ2s(k⃗)

Ω(k⃗)
e−it(Ω(k⃗)−Ω(q⃗))wk1wq1wq2 ...wq5wk3 ...wk6

(2.15)
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where p⃗ = (p1, ..., p5, k1) and q⃗ = (q1, ..., q5, k2). If we come back to the variable uN on the right
hand side of (2.15), we obtain

d

dt
Es,N(ΠNuN(t)) = −1

6
Im

∑
k1−k2+...−k6=0

Ω(k⃗)=0

ψ2s(k⃗)uk1uk2 ...uk6

(
6∏
j=1

1|kj |≤N

)

+
1

2
Im

∑
k1−k2+...−k6=0
p1−p2+...+p5=k1

Ω(k⃗)̸=0

ψ2s(k⃗)

Ω(k⃗)
up1up2 ...up5uk2 ...uk6

(
6∏
j=1

1|kj |≤N

)(
5∏
j=1

1|pj |≤N

)

− 1

2
Im

∑
k1−k2+...−k6=0
q1−q2+...+q5=k2

Ω(k⃗)̸=0

ψ2s(k⃗)

Ω(k⃗)
uk1uq1uq2 ...uq5uk3 ...uk6

(
6∏
j=1

1|kj |≤N

)(
5∏
j=1

1|pj |≤N

)

(2.16)

This quantity evaluated at time 0 will play an important role because it will appear in the explicit
formula for the Radon-Nikodym derivatives of the transported measures. Motivated by the above
formula, we define the following quantities:

Definitions 2.3 (Modified energy derivative at 0). Let N ∈ N. Let ΦN(t) the flow of (2.1).

(1) For u ∈ S ′(T), we define:

Qs,N(u) :=
d

dt
Es,N(ΠNΦN(t)u)|t=0 = (RHS)|t=0 of (2.16)

(2) For u ∈ C∞(T), we define:

Qs,∞(u) := (RHS)|t=0 of (2.16) with N = ∞

= −1

6
Im

∑
k1−k2+...−k6=0

Ω(k⃗)=0

ψ2s(k⃗)uk1uk2 ...uk6 +
1

2
Im

∑
k1−k2+...−k6=0
p1−p2+...+p5=k1

Ω(k⃗)̸=0

ψ2s(k⃗)

Ω(k⃗)
up1up2 ...up5uk2 ...uk6

− 1

2
Im

∑
k1−k2+...−k6=0
q1−q2+...+q5=k2

Ω(k⃗)̸=0

ψ2s(k⃗)

Ω(k⃗)
uk1uq1uq2 ...uq5uk3 ...uk6

(2.17)

For N ∈ N ∪ {∞}, Qs,N is called the derivative of the modified energy at 0. Moreover, we will use
interchangeably the notation Qs to refer to Qs,∞.

Remark 2.4. For N ∈ N, note that from the additivity of the flow we have:

Qs,N(ΦN(τ)u) =
d

dt
Es,N (ΠNΦN(t)ΦN(τ)u) |t=0 =

d

dt
Es,N (ΠNΦN(t+ τ)u) |t=0

=
d

dt
Es,N (ΠNΦN(t)u) |t=τ

(2.18)
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Remark 2.5. In Section 4 (in Proposition 4.1), we will see that for s > 3
2
and σ < s − 1

2
close

enough to s − 1
2
, we can extend Qs to Hσ(T), because we will be able to prove that the sum in

(2.17) is absolutely convergent for every u ∈ Hσ(T).

3. Definition and deterministic properties of the energy correction

In Section 2, an energy correction Rs,N (for N ∈ N ∪ {∞}) has emerged from the normal form
reduction (see Definition 2.1). We dedicate this section to the study of this quantity on Hσ(T)
for σ < s − 1

2
(close enough to s − 1

2
), provided that s > 3

2
. In particular, we show that we are

able to extend Rs,∞ (which is defined on C∞(T)) to Hσ(T), because we will prove that the right
hand side in (2.13) is actually an absolutely convergent sum for every u ∈ Hσ(T). This section is
composed of two results; firstly, we state that for σ < s − 1

2
close enough to s − 1

2
, the Rs,N are

continuous functions on Hσ(T) given by the diagonal of a continuous multi-linear form; secondly,
we state that Rs,N converges to Rs,∞ uniformly on compact sets of Hσ(T).

Proposition 3.1. Let s > 3
2
. For σ < s− 1

2
close enough to s− 1

2
, there exists a constant C > 0

such that for every u(1), ..., u(6) ∈ Hσ(T) :∑
k1−k2+...−k6=0

Ω(k⃗)̸=0

∣∣ψ2s(k⃗)

Ω(k⃗)

∣∣∣∣u(1)k1 u(2)k2 ...u(6)k6 ∣∣ ≤ C
6∏
j=1

∥∥u(j)∥∥
Hσ (3.1)

Hence, the map:

R : Hσ(T)6 −→ C

(u(1), ..., u(6)) 7−→
∑

k1−k2+...−k6=0

Ω(k⃗)̸=0

ψ2s(k⃗)

Ω(k⃗)
u
(1)
k1
u
(2)
k2
...u

(6)
k6

is a continuous multi-linear form. Then, for N ∈ N ∪ {∞}3, setting 4:

Rs,N : Hσ(T) −→ C
u 7−→ 1

6
ReR(ΠNu, ...,ΠNu)

, (3.2)

we deduce that Rs,N is a continuous map on Hσ(T) that satisfies for all u, v ∈ Hσ(T):

|Rs,N(u)−Rs,N(v)| ≤ C ∥u− v∥Hσ (∥u∥5Hσ + ∥v∥5Hσ)

uniformly in N ∈ N ∪ {∞}.

Notation 3.2. We also use the notation Rs to refer to Rs,∞.

We postpone the proof of this proposition for Section 10, where a detailed analysis is provided.
Instead, assuming this proposition, we are able to prove now the following approximation result:

Proposition 3.3. Let s > 3
2
. Let σ < s − 1

2
close enough to s − 1

2
so that the conclusion of

Proposition 3.1 holds. Then, for every compact set K ⊂ Hσ(T),
sup
u∈K

|Rs(u)−Rs,N(u)| −→
N→∞

0

In other words, Rs,N converges to Rs uniformly on compact sets of Hσ(T).
3Using the notation Π∞ = id
4By abuse of notation, we still denote by Rs,N this new function, even though it has already been defined in

Definition 2.1. The Rs,N of Definition 2.1 and the Rs,N of this proposition coincide on C∞(T).
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Proof of Proposition 3.3 assuming Proposition 3.1. Here we assume the statements in Proposi-
tion 3.1. Thus, we invoke σ < s − 1

2
close enough to s − 1

2
along with the constant C > 0

from this proposition. Next, we observe that for all N ∈ N:

Rs(u)−Rs,N(u) = Rs(Π
⊥
Nu)

Then, it follows from Proposition 3.1 that:

|Rs(u)−Rs,N(u)| = |Rs(Π
⊥
Nu)| ≤ C

∥∥Π⊥
Nu
∥∥6
Hσ

On the other hand, we have that for every u ∈ Hσ,
∥∥Π⊥

Nu
∥∥
Hσ −→

N→∞
0 and

∥∥Π⊥
N

∥∥
Hσ→Hσ ≤ 1. So,

using the following general abstract lemma in the inequality above finishes the proof:

Lemma 3.4. Let E,F two Banach spaces. Let {TN}N∈N be a sequence of bounded linear maps
with the uniform (in N ∈ N) bound ∥TN∥E→F ≤M , for some constant M > 0. If for every u ∈ E:

∥T (u)− TN(u)∥F −→
N→∞

0

for some linear map T : E → F , then for every compact set K ⊂ E, we have:

sup
u∈K

∥T (u)− TN(u)∥F −→
N→∞

0

□

4. Definition and deterministic properties of the modified energy derivative at 0

In Section 2, we defined a quantity Qs,N (for N ∈ N ∪ {∞}) in Definition 2.3, called the modi-
fied energy derivative at 0. We dedicate this section to the study of this quantity on Hσ(T) for
σ < s− 1

2
(close enough to s− 1

2
), provided that s > 3

2
. In particular, we show that we are able to

extend Qs,∞ (which is defined on C∞(T)) to Hσ(T), because we will prove that the right hand side
in (2.17) is actually the sum of three absolutely convergent sum for every u ∈ Hσ(T). This section
is composed of two results; firstly, we state that for σ < s − 1

2
close enough to s − 1

2
, the Qs,N

are continuous functions on Hσ(T) given by the diagonal of a sum of three continuous multi-linear
forms; secondly, we state that Qs,N converges to Qs,∞ uniformly on compact sets of Hσ(T). We
point out that the analysis here is similar to the one from Section 3.

Proposition 4.1. Let s > 3
2
. For σ < s− 1

2
close enough to s− 1

2
, there exists a constant C > 0

such that for every u(1), ..., u(6), v(1), ..., v(5) ∈ Hσ(T) :

∑
k1−k2+...−k6=0

Ω(k⃗)=0

∣∣ψ2s(k⃗)
∣∣∣∣u(1)k1 u(2)k2 ...u(6)k6 ∣∣ ≤ C

6∏
j=1

∥∥u(j)∥∥
Hσ (4.1)

and, ∑
k1−k2+...−k6=0
p1−p2+...+p5=k1

Ω(k⃗)̸=0

∣∣ψ2s(k⃗)

Ω(k⃗)

∣∣∣∣v(1)p1
v
(2)
p2 ...v

(5)
p5
u
(2)
k2
...u

(6)
k6

∣∣ ≤ C
∏

j∈{2,...,6}

∥∥u(j)∥∥
Hσ

5∏
l=1

∥∥v(l)∥∥
Hσ (4.2)
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and, ∑
k1−k2+...−k6=0
q1−q2+...+q5=k2

Ω(k⃗)̸=0

∣∣ψ2s(k⃗)

Ω(k⃗)

∣∣∣∣u(1)k1 v(1)q1 v
(2)
q2
...v

(5)
q5 u

(3)
k3
...u

(6)
k6

∣∣ ≤ C
∏

j∈{1,3,...,6}

∥∥u(j)∥∥
Hσ

5∏
l=1

∥∥v(l)∥∥
Hσ (4.3)

Hence, the maps:

T0 : Hσ(T)6 −→ C
u(1), ..., u(6) 7−→

∑
k1−k2+...−k6=0

Ω(k⃗)=0

ψ2s(k⃗)u
(1)
k1
u
(2)
k2
...u

(6)
k6 ,

T1 : Hσ(T)10 −→ C

u(2), ..., u(6), v(1), ..., v(5) 7−→
∑

k1−k2+...−k6=0
p1−p2+...+p5=k1

Ω(k⃗)̸=0

ψ2s(k⃗)

Ω(k⃗)
v(1)p1

v
(2)
p2 ...v

(5)
p5
u
(2)
k2
...u

(6)
k6

T2 : Hσ(T)10 −→ C

u(1), u(3), ..., u(6), v(1), ..., v(5) 7−→
∑

k1−k2+...−k6=0
q1−q2+...+q5=k2

Ω(k⃗)̸=0

ψ2s(k⃗)

Ω(k⃗)
u
(1)
k1
v
(1)
q1 v

(2)
q2
...v

(5)
q5 u

(3)
k3
...u

(6)
k6

are continuous multi-linear forms. Then, for j = 0, 1, 2, setting for u ∈ Hσ(T):

Qj(u) := Tj(u, ..., u)

we deduce that each Qj is continuous on H
σ(T), and that for N ∈ N ∪ {∞}, the map5:

Qs,N := Im(−1

6
Q0 ◦ ΠN +

1

2
Q1 ◦ ΠN − 1

2
Q2 ◦ ΠN) (4.4)

is continuous on Hσ(T) and satisfies for all u, v ∈ Hσ(T):

|Qs,N(u)−Qs,N(v)| ≤ C ∥u− v∥Hσ (∥u∥6Hσ + ∥v∥6Hσ + ∥u∥9Hσ + ∥v∥9Hσ)

≤ C ∥u− v∥Hσ (1 + ∥u∥Hσ + ∥v∥Hσ)
9

(4.5)

uniformly in N ∈ N ∪ {∞}.

Notation 4.2. We also use the notation Qs to refer to Qs,∞.

Remark 4.3. Note that we cannot a priori define Qs(u) on the support of µs as
d
dt
Es(Φ(t)u)|t=0,

because the expression

Es(Φ(t)u) =
1

2
|||Φ(t)u|||2Hs(T) +Rs(Φ(t)u)

is a priori ill defined for initial data u in the support of µs since:

|||Φ(t)u|||2Hs(T) = +∞, µs-almost surely.

5By abuse of notation, we still denote by Qs,N this new function, even though it has already been defined in
Definition 2.3. The Qs,N of Definition 2.3 and the Qs,N of this proposition coincide on C∞(T).
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Indeed, for σ < s− 1
2
, it follows from the fact that the flow Φ(t) is a bijection from Hσ(T) to itself

that:

µs({u ∈ Hσ(T) : |||Φ(t)u|||2Hs(T) < +∞}) = µs({v ∈ Hσ(T) : |||v|||2Hs(T) < +∞}) = µs(H
s(T)) = 0

We postpone the proof of Proposition 4.1 for Section 10 where a detailed analysis is provided.
Instead, we prove now the following approximation result:

Proposition 4.4. Let s > 3
2
. Let σ < s − 1

2
close enough to s − 1

2
so that the conclusion of

Proposition 4.1 holds. Then, for every compact set K ⊂ Hσ(T),

sup
u∈K

|Qs(u)−Qs,N(u)| −→
N→∞

0

In other words, Qs,N converges to Qs uniformly on compact sets of Hσ(T).

Proof of Proposition 4.4. Assuming the statements in Proposition 4.1, the proof goes exactly the
same as the proof of Proposition 3.3. □

5. Transport of Gaussian measures under the truncated flow

In this section, we prove that the transported measure ΦN(t)#µs is absolutely continuous with
respect to µs. To do so, we directly establish an explicit formula for the Radon-Nikodym derivative
of ΦN(t)#µs with respect to µs. Our method relies on a change-of-variable formula. Analogous
change-of-variables have already been used: see for example [23] Proposition 6.6, or [33] Section 4.

5.1. A change-of-variable formula. We dedicate this paragraph to this change-of-variable. It
is equivalent to the statement that the truncated flow preserves a certain measure.
On the Euclidean space EN , equipped with the orthonormal basis {eikx}|k|≤N , we consider the
Lebesgue measure

∏
|n|≤N dûk, where dûk is the Lebesgue measure on C · eikx.

Proposition 5.1. The measure ∏
|k|≤N

dûk ⊗ µ⊥
s,N

is invariant under the truncated flow. In other words, for every N ∈ N and t ∈ R,

(ΦN(t))#

( ∏
|k|≤N

dûk ⊗ µ⊥
s,N

)
=
∏

|k|≤N

dûk ⊗ µ⊥
s,N

A reformulation of this proposition is:

Corollary 5.2 (change-of-variable formula). Let A a Borel measurable set. Let f : Hσ(T) −→ R+

be a positive measurable function. Then,∫
ΦN (t)A

f(v)
∏

|k|≤N

dv̂k ⊗ µ⊥
s,N(v) =

∫
A

f(ΦN(t)u)
∏

|k|≤N

dûk ⊗ µ⊥
s,N(u)

Proof of Proposition 5.1. Let Φ̃N(t) be the restriction of the truncated flow ΦN(t) on the finite-
dimensional space EN , which maps EN to itself (see Proposition A.12). We factorize ΦN(t) as

(Φ̃N(t), e
it∂2x) on EN ×E⊥

N , in the sense that ΦN(t)u0 = Φ̃N(t)ΠNu0 + eit∂
2
xΠ⊥

Nu0 (see again Propo-
sition A.12). Now, we provide a proof in two steps.
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Step 1 : Firstly, we show the formula

(ΦN(t))#

( ∏
|k|≤N

dûk ⊗ µ⊥
s,N

)
=

( ∏
|k|≤N

dûk

)
⊗ (eit∂

2
x)#µ

⊥
s,N (5.1)

To do so, we rely on the fact B(Hσ(T)) = B(EN)⊗B(E⊥
N)

6. Thanks to that point, if we show that
for every Alow ∈ B(EN) and Ahigh ∈ B(E⊥

N), we have:( ∏
|k|≤N

dûk ⊗ µ⊥
s,N

)(
ΦN(t)

−1(Alow × Ahigh)
)
=
( ∏

|k|≤N

dûk

)
(Alow)µ

⊥
s,N(e

−it∂2xAhigh), (5.2)

then, the property of uniqueness of product measures7 will ensure that the two measures in (5.1)
coincide on B(EN) ⊗ B(E⊥

N), that is on B(Hσ(T)). Hence, let us prove (5.2). Let Alow ∈ B(EN)
and Ahigh ∈ B(E⊥

N). On the one hand, from the factorization of the truncated flow, we have:

ΦN(t)
−1(Alow × Ahigh) = Φ̃N(t)

−1(Alow)× e−it∂
2
xAhigh ⊂ EN × E⊥

N

so, using the definition of product measures we obtain:( ∏
|k|≤N

dûk ⊗ µ⊥
s,N

) (
ΦN(t)

−1(Alow × Ahigh)
)
=
( ∏

|k|≤N

dûk

)
(Φ̃N(t)

−1(Alow))µ
⊥
s,N(e

−it∂2xAhigh)

Thus, to prove (5.2), it remains to show that:( ∏
|k|≤N

dûk

)(
Φ̃N(t)

−1(Alow)
)
=
( ∏

|k|≤N

dûk

)(
Alow

)
(5.3)

To do so, we recall that on the other hand, Φ̃N(t) is the flow of the Hamiltonian equation:{
i∂tu = ∂HN

∂u
(u)

u|t=0 = u0 ∈ EN
(FNLS)

on the finite-dimensional space EN (see Proposition A.12). So the equality (5.3) follows from the
application of Liouville’s theorem, which states that the flow of finite-dimensional Hamiltonian
equation preserves the Lebesgue measure. To sum up, we obtained (5.1). Let us now turn to the
second step of the proof:

Step 2 : Secondly, we show the following invariance property:

(eit∂
2
x)#µ

⊥
s,N = µ⊥

s,N

We recall that the probability measure µ⊥
s,N is the law of the random variable

X : Ω −→ Hσ(T)

ω 7−→
∑
|n|>N

gn(ω)

⟨n⟩s
einx

6Indeed, whenever X and Y are two topological separable spaces, we have B(X × Y ) = B(X)⊗ B(Y ), where ⊗
is the symbol for tensor-product of sigma-algebra

7Both
∏

|k|≤N dûk and (eit∂
2
x)#µ

⊥
s,N being σ-finite measures.
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where the sum converges in the space L2(Ω, Hσ(T)). Since eit∂2x is a linear isometry on L2(T), we
deduce that

eit∂
2
x ◦X(ω) =

∑
|n|>N

e−itn
2
gn(ω)

⟨n⟩s
einx

where the sum still converges in L2(Ω, Hσ(T)). Moreover, the Gaussian measures are invariant

under rotations, so the family {e−itn2
gn}n∈Z is still a family of independent standard complex

Gaussian measures. Consequently, we obtain that X and eit∂
2
x ◦ X have the same law, and this

means that
(eit∂

2
x)#µ

⊥
s,N = µ⊥

s,N

which is the invariance property of Step 2.

Conclusion : We get the desired result by combining Step 1 and Step 2. □

5.2. The Radon-Nikodym derivative for the truncated transported Gaussian measures.
In this paragraph, we fixN ∈ N. We will use Proposition 5.1 in order to obtain the Radon-Nikodym
derivative of ΦN(t)#µs with respect to µs.

Proposition 5.3. Let s > 3
2
, R > 0 and N ∈ N. For every t ∈ R, we have

ΦN(t)#µs = exp
(
−1

2
(∥ΠNΦN(−t)u∥2Hs − ∥ΠNu∥2Hs)

)
dµs

Moreover, we can rewrite this formula as

ΦN(t)#µs = exp

(
Rs,N(ΦN(−t)u)−Rs,N(u)−

∫ −t

0

Qs,N(ΦN(τ)u)dτ

)
dµs

where Rs,N is defined in Definition 2.1 (see also (3.2)) and Qs,N is defined in (4.4) (see also
Definition 2.3).

Remark 5.4. Such a formula for the density has also been obtained for the different models in
[9], [10], [15] and [11].

Proof of Proposition 5.3. Firstly, we decompose µs as:

dµs =

 1

ZN
e−

1
2
∥ΠNu∥2Hs

∏
|k|≤N

dûk

⊗ dµ⊥
s,N

(see (2.3) and (2.4)). Then, thanks to a general feature for the transport of density measure, we
have :

ΦN(t)#dµs = ΦN(t)#

 1

ZN
e−

1
2
∥ΠNu∥2Hs

∏
|k|≤N

dûk

⊗ dµ⊥
s,N

=
1

ZN
e−

1
2∥ΠN (ΦN (t)−1u)∥2

Hs · ΦN(t)#

 ∏
|k|≤N

dûk

⊗ dµ⊥
s,N

=
1

ZN
e−

1
2
∥ΠN (ΦN (−t)(u)∥2Hs ·

 ∏
|k|≤N

dûk

⊗ dµ⊥
s,N

= e−
1
2(∥ΠN (ΦN (−t)(u)∥2Hs−∥ΠNu∥2Hs)dµs
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where we used in the third line the invariance property from Proposition 5.1. Hence, the first
statement of Proposition 5.3 is proven. To achieve the proof, we rewrite the term inside the
exponential thanks to the definition of the modified energy (2.12) and the identity (2.18):

−1

2

(
∥ΠN(ΦN(−t)(u)∥2Hs − ∥ΠNu∥2Hs

)
=

∫ −t

0

−1

2

d

dτ
∥ΠN(ΦN(τ)(u)∥2Hs dτ

=

∫ −t

0

( d
dτ

(Rs,N(ΦN(τ)u))−
d

dτ
(Es,N(ΠNΦN(τ)u))

)
dτ

=

∫ −t

0

( d
dτ

(Rs,N(ΦN(τ)u))−Qs,N(ΦN(τ)u)
)
dτ

= Rs,N(ΦN(−t)u)−Rs,N(u)−
∫ −t

0

Qs,N(ΦN(τ)u)dτ

which is the desired rewriting. □

6. Transport of Gaussian measures under the flow

In Section 5, we have seen that for every t ∈ R, and every N ∈ N:
ΦN(t)#µs = Gs,N(t, .)µs (6.1)

where,

Gs,N(t, u) = exp

(
Rs,N(ΦN(−t)u)−Rs,N(u)−

∫ −t

0

Qs,N(ΦN(τ)u)dτ

)
(6.2)

Our goal in this section is to ”take the limit” N → ∞ in order to extend this formula to N = ∞.
Thus, we invoke:

Gs(t, u) := exp

(
Rs(Φ(−t)u)−Rs(u)−

∫ −t

0

Qs(Φ(τ)u)dτ

)
(6.3)

and we aim to show the following proposition:

Proposition 6.1. Let s > 3
2
and R > 0. Let t ∈ R. Then,

Φ(t)#µs = Gs(t, u)dµs

In particular, µs is quasi-invariant under the flow of (1.1).

Remark 6.2. For σ < s− 1
2
close enough to s− 1

2
, we deduce from Proposition 3.1, Proposition 4.1

(whose proofs are provided in Section 10), and from the continuity properties of the flow, that the
map :

(t, u) ∈ R×Hσ(T) 7→ exp

(
Rs(Φ(−t)u)−Rs(u)−

∫ −t

0

Qs,N(ΦN(τ)u)dτ

)
is continuous, for any N ∈ N ∪ {∞}.
Moreover, on Hσ(T), the a priori ill-defined object −1

2
(∥Φ(−t)u∥2Hs − ∥u∥2Hs) can be seen as the

well-defined object:

−1

2
(∥Φ(−t)u∥2Hs − ∥u∥2Hs) := Rs(Φ(−t)u)−Rs(u)−

∫ −t

0

Qs(Φ(τ)u)dτ

In this section, we assume the statements from Proposition 3.1 and Proposition 4.1. Hence, we
work with a σ < s− 1

2
close enough to s− 1

2
so that the pointwise properties from Proposition 3.1

and 4.1 are satisfied.
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6.1. Approximation properties. Our main ingredients to ”take the limit” N → ∞ in (6.1) is
two approximation properties. The first one is the inner regularity satisfied by probability measures
on Hσ(T) :

Proposition 6.3 (inner regularity). Let µ be a finite measure on (Hσ(T),B(Hσ(T))). Then, for
any Borel set A ⊂ Hσ(T), we have

µ(A) = sup{µ(K) : K ⊂ A, K compact set inHσ(T)}

Proof. This follows from the general fact that finite measures on Polish spaces are regular. □

As a consequence, we have:

Corollary 6.4. Let µ and ν be two finite measures on (Hσ(T),B(Hσ(T))). Assume that for every
compact set K ⊂ Hσ(T), we have:

µ(K) = ν(K)

Then, µ = ν.

Proof. Let A ∈ B(Hσ(T)). Let us prove that µ(A) = ν(A). Let ε > 0. From the inner regularity of
µ (see Proposition 6.3), we invoke a compact setK ofHσ(T) such thatK ⊂ A and µ(A)−ε ≤ µ(K).
Thus,

µ(A)− ε ≤ µ(K) = ν(K) ≤ ν(A)

Since ε > 0 is arbitrary, we conclude that µ(A) ≤ ν(A). By interchanging the roles of µ and ν, we
obtain the converse inequality. □

The second approximation property that we will use is the approximation of the expected density
Gs(t, .) by the truncated densities Gs,N(t, .):

Proposition 6.5. Let s > 3
2
. Let K ⊂ Hσ(T) a compact set. Then, for every t ∈ R:

sup
u∈K

|Gs(t, u)−Gs,N(t, u)| −→
N→∞

0

In other words, Gs,N(t, .) converges to Gs(t, .) uniformly on compact sets.

Proof. Let t ∈ R. Recall that Gs,N(t, .) and Gs(t, .) are respectively defined in (6.2) and (6.3). We
prove separately that:

(a) : Rs,N(ΦN(t)u)−Rs,N(u) converges to Rs(Φ(t)u)−Rs(u) uniformly on compact sets as N → ∞

and,

(b) :
∫ t
0
Qs,N(ΦN(τ)u)dτ converges to

∫ t
0
Qs(Φ(τ)u)dτ uniformly on compact sets as N → ∞.

Indeed, if we do so, we will obtain that:

Rs,N(ΦN(t)u)−Rs,N(u)−
∫ t
0
Qs,N(Φ(Nτ)u)dτ converges to Rs(Φ(t)u)−Rs(u)−

∫ t
0
Qs(Φ(τ)u)dτ

uniformly on compact sets as N → ∞.



22 ALEXIS KNEZEVITCH

Then, since the exponential is continuous, this will lead to the result. In order not to repeat the
same argument, and since (a) is similar to (b) and a little bit easier, we will only prove (b). Then,
let K ⊂ Hσ(T) be a compact set. Then,

|
∫ t

0

Qs(Φ(τ)u)dτ −
∫ t

0

Qs,N(ΦN(τ)u)dτ |

≤
∫ t

0

|Qs(Φ(τ)u)−Qs,N(Φ(τ)u)|dτ +
∫ t

0

|Qs,N(Φ(τ)u)−Qs,N(ΦN(τ)u)|dτ

≤ |t| sup
τ∈[0,t]

|Qs(Φ(τ)u)−Qs,N(Φ(τ)u)|+ |t| sup
τ∈[0,t]

|Qs,N(Φ(τ)u)−Qs,N(ΦN(τ)u)|

(6.4)

On the one hand, from the continuity of Φ : R × Hσ → Hσ, the set {Φ(τ)u; τ ∈ [0, t], u ∈ K}
is compact. Combining this with the fact that Qs,N −→

N
Qs uniformly on compact sets (see

Proposition 4.4) yields:

sup
u∈K

sup
τ∈[0,t]

|Qs(Φ(τ)u)−Qs,N(Φ(τ)u)| −→
N→∞

0

On the other hand, using (4.5) from Proposition 4.1 we can invoke a constant Cs > 0 independent
of N such that:

sup
u∈K

sup
τ∈[0,t]

|Qs,N(Φ(τ)u)−Qs,N(ΦN(τ)u)|

≤ Cs sup
(τ,u)∈[0,t]×K

∥Φ(τ)u− ΦN(τ)u∥Hσ (1 + ∥Φ(τ)u∥Hσ + ∥ΦN(τ)u∥Hσ)
9 (6.5)

Besides, from the Cauchy theory, there exists a constant C > 0 independent of N such that:

sup
(τ,u)∈[0,t]×K

∥Φ(τ)u∥Hσ + ∥ΦN(τ)u∥Hσ ≤ C

(see Proposition A.5). And, from Proposition A.10, we also have:

sup
(τ,u)∈[0,t]×K

∥Φ(τ)u− ΦN(τ)u∥Hσ −→
N→∞

0

Using these two facts in (6.5) yields:

sup
(τ,u)∈[0,t]×K

|Qs,N(Φ(τ)u)−Qs,N(ΦN(τ)u)| −→
N→∞

0

Finally, coming back to (6.4), we conclude that:

sup
u∈K

|
∫ t

0

Qs(Φ(τ)u)dτ −
∫ t

0

Qs,N(ΦN(τ)u)dτ | −→
N→∞

0

This completes the proof. □

6.2. The Radon-Nikodym derivative for the transported Gaussian measure. In this
paragraph, we prove Proposition 6.1 based on the combination of (6.1) with the approximation
properties above.

Remark 6.6. We will be able to use Corollary 6.4 with the measures Φ(t)#µs and Gs(t, .)dµs.
Indeed, both are finite measures on (Hσ(T),B(Hσ(T))). On the one hand, Φ(t)#µs is a prob-
ability measure; on the other hand, Fatou’s lemma provide the following a priori bound for
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Gs(t, .)dµs(H
σ(T)) :

Gs(t, .)dµs(H
σ(T)) =

∫
Hσ

Gs(t, u)dµs =

∫
Hσ

lim
N
Gs,N(t, u)dµs ≤ lim inf

N

∫
Hσ

Gs,N(t, u)dµs = 1

Remark 6.7. The proof we provide below for Proposition 6.1 is similar to the one for Theorem
1.4 in [26]. However, it is worth noting that our proof do not require any Lp-integrability for the
truncated densities Gs,N(t, .).

Proof of Proposition 6.1. Let t ∈ R. Relying on Corollary 6.4, it suffices to prove that for every
compact set K of Hσ(T), we have:

Gs(t, u)dµs(K) = Φ(t)#µs(K), that is,

∫
K

Gs(t, u)dµs = µs(Φ(−t)K) (6.6)

Fix K a compact of Hσ(T).
We invoke two real numbers σ1 and σ2 such that σ < σ1 < σ2 < s − 1

2
. Moreover, we invoke for

k ∈ N:
BHσ2

k := {u ∈ Hσ2(T) : ∥u∥Hσ2 (T) ≤ k}
the closed centered ball in Hσ2(T) of radius k. Note that BHσ2

k is compact in Hσ1(T) because
σ1 < σ2. To establish (6.6), it suffices to prove that for all k ∈ N:∫

K∩BHσ2
k

Gs(t, u)dµs = µs(Φ(−t)(K ∩BHσ2

k )) (6.7)

Indeed, if we do so, we will obtain that:∫
K∩Hσ2 (T)

Gs(t, u)dµs =

∫
⋃

k∈N(K∩BHσ2
k )

Gs(t, u)dµs = lim
k→∞

1
∫
K∩BHσ2

k

Gs(t, u)dµs

= lim
k→∞

1 µs(Φ(−t)(K ∩BHσ2

k )) = µs
( ⋃
k∈N

Φ(−t)(K ∩BHσ2

k )
)
= µs

(
Φ(−t)(

⋃
k∈N

(K ∩BHσ2

k ))
)

= µs
(
Φ(−t)(K ∩Hσ2(T))

)
Besides, since µs(H

σ(T) \Hσ2(T)) = 0, we have:∫
K

Gs(t, u)dµs =

∫
K∩Hσ2 (T)

Gs(t, u)dµs

and,
µs(Φ(−t)K) = µs

(
(Φ(−t)K) ∩Hσ2(T)

)
= µs

(
Φ(−t)(K ∩Hσ2(T))

)
Hence, if we prove (6.7), then we will obtain (6.6), and the proof will be complete. Thus, we now
move on to the proof of (6.7). Let k ∈ N and denote K2 := K ∩BHσ2

k .

– Firstly, we prove that: ∫
K2

Gs(t, u)dµs ≤ µs(Φ(−t)(K2)) (6.8)

Since K2 is compact in Hσ(T), we obtain from Proposition 6.5 that:∫
K2

Gs(t, u)dµs = lim
N→∞

∫
K2

Gs,N(t, u)dµs = lim
n→∞

ΦN(t)#µs(K2) = lim
N→∞

µs(ΦN(−t)K2) (6.9)

Let ε > 0. Thanks to Corollary A.11, we invoke N0 ∈ N such that:

N ≥ N0 =⇒ ΦN(−t)(K2) ⊂ Φ(−t)(K2) +BHσ

ε
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where BHσ

ε is the closed centered ball in Hσ(T) of radius ε. As a consequence, we have:

lim sup
N

µs(ΦN(−t)K2) ≤ µs(Φ(−t)(K2) +BHσ

ε )

Plugging this into (6.9), we obtain:∫
K2

Gs(t, u)dµs ≤ µs(Φ(−t)(K2) +BHσ

ε )

Since ε > 0 is arbitrary, we deduce that8:∫
K2

Gs(t, u)dµs ≤ lim
ε→0

% µs(Φ(−t)(K2) +BHσ

ε ) = µs
(⋂
ε>0

(Φ(−t)(K2) +BHσ

ε )
)
= µs(Φ(−t)K2)

So we have proven (6.8).

– Secondly, we prove that: ∫
K2

Gs(t, u)dµs ≥ µs(Φ(−t)(K2)) (6.10)

Let us first observe thatK2 is compact inHσ1(T) : if {un}n∈N ∈ KN
2 is a sequence inK2 = K∩BHσ2

k ,
then, from the compactness of BHσ2

k in Hσ1(T) (because σ1 < σ2), there exists a subsequence
{unj

}j∈N and an element u ∈ BHσ2

k such that:∥∥unj
− u
∥∥
Hσ1

−→
j→∞

0

In particular, we have
∥∥unj

− u
∥∥
Hσ −→

j→∞
0 because σ < σ1. Since K is closed in Hσ(T), it implies

that u ∈ K. Then u ∈ K ∩BHσ2

k , and K2 is compact in Hσ1(T).

Now, let ε > 0. Thanks to Corollary A.11, and the fact that K2 is compact in Hσ1(T) , we are
able to invoke N1 ∈ N such that:

N ≥ N1 =⇒ Φ(−t)(K2) ⊂ ΦN(−t)(K2 +BHσ1

ε )

where BHσ1

ε is the closed centered ball in Hσ1(T) of radius ε. It is now important to notice that
K2 + BHσ1

ε is compact in Hσ(T). It follows from the fact that both K2 and BHσ1

ε are compact in
Hσ(T). As a consequence, we obtain from Proposition 6.5 that for N ≥ N1:

µs(Φ(−t)(K2)) ≤ µs(ΦN(−t)(K2 +BHσ1

ε )) =

∫
K2+BHσ1

ε

Gs,N(t, u)dµs −→
N→∞

∫
K2+BHσ1

ε

Gs(t, u)dµs

Since ε > 0 is arbitrary, we obtain that:

µs(Φ(−t)(K2)) ≤ lim
ε→0

%
∫
K2+BHσ1

ε

Gs(t, u)dµs =

∫
K2

Gs(t, u)dµs

So we have proven (6.10). This completes the proof of Proposition 6.1. □

8Since Φ(−t)K2 is closed in Hσ(T), we have
⋂

ε>0(Φ(−t)(K2) +BHσ

ε ) = Φ(−t)K2
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7. Weighted Gaussian measures, Lp-estimates on the weight, and transport
along the flows

In Section 6, we proved that for every s > 3
2
and every t ∈ R, we have:

Φ(t)#µs = Gs(t, u)µs

where Gs(t, u) is the continuous function on Hσ(T) (for a given σ < s− 1
2
close enough to s− 1

2
)

given by:

Gs(t, u) = exp

(
Rs(Φ(−t)u)−Rs(u)−

∫ −t

0

Qs(Φ(τ)u)dτ

)
In particular, it implies that Gs(t, .) belongs to L1(dµs) (with a L1(dµs)-norm equal to 1). Thus,
it is interesting to wonder if Gs(t, .) belongs to Lp(dµs) for p ∈ (1,∞). We will see that the answer
is positive for all p ∈ (1,∞) if we restrict µs on bounded sets of H1(T), that is at the level where
we can make use of the conservation of the Hamiltonian and of the L2(T)-norm. To do so, we need
to introduce weighted Gaussian measures.

In Section 2, we identified a modified energy in Definition 2.1. Based on this modified energy,
we define the weighted Gaussian measures. Formally, the idea is to replace the Gaussian measure
1
Zs
e−

1
2
∥u∥2Hs(T)du by 1

Z′
s
e−Es(u)du. However, we need to add a cut-off at the energy level, where the

Hamiltonian and the L2(T)-norm are conserved by the flow. In this section, we introduce the
weighted Gaussian measures as density measures with respect to the Gaussian measure µs. We
also provide Lp-estimates on these densities, ensuring in particular that the weighted Gaussian
measure are well-defined probability measures on Hσ(T), σ < s− 1

2
.

7.1. Definitions. We start by invoking the following quantity :

C(u) := 1

2
∥u∥2L2 +H(u)

which is conserved by the flow of (1.1). Next, for R > 0, and for every N ∈ N, we define the
weighted Gaussian measures as

dρs,R,N :=
1

Zs,R,N
1{C(u)≤R}e

−Rs,N (u)dµs, dρs,R :=
1

Zs,R
1{C(u)≤R}e

−Rs(u)dµs (7.1)

where,

Zs,R,N :=

∫
Hs− 1

2−
1{C(u)≤R}e

−Rs,N (u)dµs, Zs,R :=

∫
Hs− 1

2−
1{C(u)≤R}e

−Rs(u)dµs

are normalizing constants ensuring that ρs,R,N and ρs,R are probability measures (if they are positive
and finite, see Remark 7.5). We recall that Rs,N(u) and Rs(u) have been defined in Definition 2.1
(see also (3.2)).

Notation 7.1. We also use the notations ρs,R,∞ and Zs,R,∞ to respectively refer to ρs,R and Zs,R.

Remark 7.2 (H1(T) cut-off). We can rewrite C(u) as :

C(u) = 1

2
∥u∥2H1 +

1

6
∥u∥6L6

From the Sobolev embedding H1(T) ↪→ L6(T), we have

1

2
∥u∥2H1 ≤ C(u) ≤ C(1 + ∥u∥H1)

6
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It means that the cut-off 1{C(u)≤R} is a H1(T) cut-off. In particular, (for R ≥ 2)

C(u) ≤ R =⇒ ∥u∥H1 ≤
√
2R ≤ R

so,
1{C(u)≤R} ≤ 1

BH1
R

(u)

where BH1

R is the closed center ball of radius R in H1(T).
The additional nice property is that the quantity C(u) is conserved by the flow of (1.1).

Remark 7.3. (Passing from ρs,R,N to µs) Let R > 0. The measure µs|{C≤R} coincide with the

measure Zs,N,Re
Rs,N (u)ρs,R,N |{C≤R}. In other words, for every Borel set A ⊂ H1(T) such that

A ⊂ {C ≤ R}, we have
Zs,N,Re

Rs,N (u)ρs,R,N(A) = µs(A)

Indeed, it results from

Zs,N,Re
Rs,N (u)ρs,R,N(A) =

∫
A

Zs,N,Re
Rs,N (u)dρs,R,N(u)

=

∫
A

Zs,N,Re
Rs,N (u) 1{C(u)≤R}︸ ︷︷ ︸

=1

e−Rs,N (u) 1

Zs,N,R
dµs(u)

=

∫
A

dµs(u) = µs(A)

Now, we state the following crucial proposition, whose proof is postponed to the dedicated Sec-
tion 11.

Proposition 7.4. Let s > 3
2
and R > 0. Then for any p ∈ [1,+∞), there exists a constant

C(s, p, R) > 0 such that for every N ∈ N ∪ {∞}, we have:∥∥1{C(u)≤R}e
|Rs,N (u)|∥∥

Lp(dµs)
≤ C(s, p, R) (7.2)

Moreover, ∥∥1{C(u)≤R}e
−Rs(u) − 1{C(u)≤R}e

−Rs,N (u)
∥∥
Lp(dµs)

−→
N→∞

0

In particular, Zs,N,R −→
N

Zs,R so that we also have:∥∥∥∥ 1

Zs,R
1{C(u)≤R}e

−Rs(u) − 1

Zs,R,N
1{C(u)≤R}e

−Rs,N (u)

∥∥∥∥
Lp(dµs)

−→
N→∞

0 (7.3)

Remark 7.5. The inequality (7.2) in Proposition 7.4 ensures that for all N ∈ N ∪ {∞} :

Zs,R,N =

∫
Hs− 1

2

1{C(u)≤R}e
−Rs,N (u)dµs < +∞

Besides, we also have Zs,R,N > 0 because one can show that µs(1{C(u)≤R}e
−Rs,N (u) > 0) > 0. To see

this, we write on the one hand:

µs
(
1{C(u)≤R}e

−Rs,N (u) > 0
)
= µs ({C(u) ≤ R} ∩Rs,N < +∞) = µs ({C(u) ≤ R})

and on the other hand, we have that µs({C(u) ≤ R}) > 0, for any R > 0, since µs charges all
open sets of H1(T). For this latter point, we refer to [7], Proposition 1.2. Note also that since
Zs,R,N → Zs,R, there exists a constant Cs,R > 0 such that:

1

Cs,R
≤ Zs,R,N ≤ Cs,R (7.4)
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uniformly in N ∈ N ∪ {∞}.

7.2. Transport of weighted Gaussian measures along the flows. For N ∈ N ∪ {∞}, now
that we know explicitly the density of ΦN(t)#µs with respect to µs, we are able to obtain the den-
sity of ΦN(t)#ρs,R,N with respect to ρs,R,N without re-performing the analysis of Section 5 and 6.

We stress the fact that the following proposition holds for N ∈ N and N = ∞.

Proposition 7.6. Let s > 3
2
, R > 0 and N ∈ N ∪ {∞}. For every t ∈ R, we have:

ΦN(t)#ρs,R,N = Fs,N(t, u)dρs,R,N

for a function Fs,N(t, .) given by the explicit formula:

Fs,N(t, u) = exp

(
−
∫ −t

0

Qs,N(ΦN(τ)u)dτ

)
where Qs,N is defined in (4.4) (see also Definition 2.3). In particular, ρs,R is quasi-invariant along
the flow of (1.1); and when N ∈ N, ρs,R,N is quasi-invariant along the flow of (2.1).

Remark 7.7. When N ∈ N, we have:∫ t

0

Qs,N(ΦN(τ)u)dτ = Es,N(ΠNΦN(t)u)− Es,N(ΠNu)

Hence, the a priori ill-defined object Es(Φ(t)u)− Es(u) (on the support of µs) can be seen as:

Es(Φ(t)u)− Es(u) :=

∫ t

0

Qs(Φ(τ)u)dτ

which is a continuous function on Hσ(T) for σ < s− 1
2
close enough to s− 1

2
.

Proof of Proposition 7.6. Let N ∈ N ∪ {∞}. We start by applying a general feature for the
transport of density measures:

ΦN(t)#ρs,R,N = ΦN(t)#

(
1

Zs,R,N
1{C(u)≤R}e

−Rs,N (u)dµs

)
=

1

Zs,R,N
1{C(ΦN (t)−1u)≤R}e

−Rs,N (ΦN (t)−1u)ΦN(t)#dµs

Next, thanks to Proposition 5.3 and 6.1, along with the facts that ΦN(t)
−1 = ΦN(−t) and that C

is conserved by the flows, we obtain:

ΦN(t)#ρs,R,N =
1

Zs,R,N
1{C(u)≤R}exp

(
−Rs,N(u)−

∫ −t

0

Qs,N(ΦN(τ)u)dτ

)
dµs

= exp

(
−
∫ −t

0

Qs,N(ΦN(τ)u)dτ

)
dρs,R,N

which completes the proof. □

Remark 7.8. Let s > 3
2
and σ < s − 1

2
. Then, for every t ∈ R, Fs,N(t, .) converges to Fs(t, .)

uniformly on compact sets of Hσ(T) (see the proof of Proposition 6.5).
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8. Densities in Lp and convergence in Lp of the truncated densities

Let s > 3
2
. In Section 5 and 6, we have seen that for every N ∈ N and every t ∈ R,

ΦN(t)#µs = Gs,N(t, .)µs, and, Φ(t)#µs = Gs(t, .)µs

where Gs,N and Gs are known explicitly (see Proposition 5.3 and 6.1). In this section, our goal is
to prove that for every fixed R > 0, and every t ∈ R:

Gs(t, .), Gs,N(t, .) ∈ Lp(dµs,R) and: ∥Gs(t, .)−Gs,N(t, .)∥Lp(dµs,R) −→
N→∞

0

where µs,R is the restricted Gaussian measure define by:

µs,R := 1{C(u)≤R}µs (8.1)

This is equivalent to the fact that:

1{C(u)≤R}Gs(t, .), 1{C(u)≤R}Gs,N(t, .) ∈ Lp(dµs) and:
∥∥1{C(u)≤R}(Gs(t, .)−Gs,N(t, .))

∥∥
Lp(dµs)

−→
N→∞

0

Remark 8.1. Since C is conserved by the flow, we still have:

ΦN(t)#µs,R = Gs,N(t, .)µs,R, and, Φ(t)#µs,R = Gs(t, .)µs,R (8.2)

In our approach, we do not consider directly µs,R but we consider instead the weighted Gaussian
measures ρs,R,N . We will then be able to prove a quantitative inequality in Proposition 8.5 thanks
to suitable Lp-estimates on Qs,N . In a second step, we will be able to go back to µs,R by proving
the same quantitative inequaltiy for µs,R.
The quantitative inequaltiy (8.6) is significant in itself; indeed, it is often used to obtain the quasi-
invariance without knowing the Radon-Nikodym derivative, see for example [13], [23], [33],[15].
Here, we know explicitly the Radon-Nikodym derivative of the transported measure, and from this
point it will be easier to establish (8.6).

8.1. Quantitative quasi-invariance. Recall that for convenience we use the notations ρs,R,∞ =
ρs,R, Qs = Qs,∞, etc.
We start this paragraph by providing Lp estimates for Qs,N . These estimates will help us to
establish the quantitative quasi-invariance property in Proposition 8.5. We postpone the proof of
the following proposition to Section 12 where a detailed analysis is provided.

Proposition 8.2. Let s > 3
2
. There exists β ∈ (0, 1) such that for every R > 0, there exists a

constant C(s, R) > 0, such that for any p ∈ [2,+∞),∥∥1{Cu≤R}Qs,N(u)
∥∥
Lp(dµs)

≤ C(s, R)pβ (8.3)

uniformly in N ∈ N ∪ {∞}.

Combining estimate (8.3) with estimate (7.2) from Proposition 7.4, we also have:

Proposition 8.3. Let s > 3
2
. There exists β ∈ (0, 1) such that for every R > 0, there exists a

constant C(s, R) > 0, such that for any p ∈ [1,+∞),

∥Qs,N(u)∥Lp(dρs,R,N ) ≤ C(s, R)pβ (8.4)

uniformly in N ∈ N ∪ {∞}.
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Proof of Proposition 8.3 assuming (8.3) and (7.2). It results from Cauchy-Schwarz that:

∥Qs,N(u)∥Lp(dρs,R,N ) =

∥∥∥∥ 1

Zs,R,N
1{Cu≤R}|Qs,N(u)|pe−Rs,N (u)

∥∥∥∥1/p
L1(dµs)

≤ 1

Zs,R,N

∥∥1{Cu≤R}Qs,N(u)
∥∥
L2p(dµs)

∥∥1{Cu≤R}e
−Rs,N (u)

∥∥1/p
L2(dµs)

≤ C(s, R)2βpβ · C(s, R, 2)1/p ≤ C(s, R)pβ

where the constant C(s, R) has changed but still depends only on s and R. Note also that we used
(7.4). □

The following identity will be our starting point in order to obtain the forthcoming inequality
(8.6).

Proposition 8.4. Let s > 3
2
, R > 0, N ∈ N ∪ {∞} and t ∈ R. For every Borel set A ⊂ Hσ(T),

we have :
d

dt
ρs,R,N (ΦN(t)(A)) = −

∫
ΦN (t)A

Qs,N(u)dρs,R,N (8.5)

Proof of Proposition 8.4. We use the explicit formula for the density from Proposition 7.6, so that
we obtain:

d

dt
ρs,R,N (ΦN(t)(A)) =

d

dt
(ΦN(−t)#ρs,R,N) (A) =

d

dt

∫
A

e−
∫ t
0 Qs,N (ΦN (τ)u)dτdρs,R,N

= −
∫
A

Qs,N(ΦN(t)u)d (ΦN(−t)#ρs,R,N) (u) = −
∫
ΦN (t)A

Qs,N(u)dρs,R,N

where the last equality follows from the definition of a push-forward measure. □

Proposition 8.5. Let s > 3
2
, R > 0 and t ∈ R. Then, there exists β ∈ (0, 1) such that for every

α ∈ (0, 1), there exists a constant C = Cs,R,α,β > 0 such that for all Borel set A ⊂ Hσ(T) :

ρs,R,N(ΦN(t)A) ≤ ρs,R,N(A)
1−αexp

(
C(1 + |t|)

1
1−β

)
(8.6)

uniformly in N ∈ N ∪ {∞}.

Proof. Let s > 3
2
, R > 0 and N ∈ N ∪ {∞}. Let A ⊂ Hσ(T) be a Borel set. Using (8.5), Hölder

inequality and the energy estimate from Proposition 8.3, we obtain :∣∣ d
dt
ρs,R,N(ΦN(t)A)

∣∣ ≤ ∥Qs,N∥Lp(dρs,R,N ) ρs,R,N(ΦN(t)A)
1− 1

p ≤ Cs,R p
βρs,R,N(ΦN(t)A)

1− 1
p

for all p ∈ [1,+∞). It means that the function F (t) := ρs,R,N(ΦN(t)A) satisfies the differential
inequality :

|F ′(t)| ≤ Cs,R p
βF (t)1−

1
p

Integrating this yields :

F (t) ≤
(
F (0)

1
p + Cs,R|t|pβ−1

)p
= F (0)

(
1 + Cs,R|t|F (0)−

1
ppβ−1

)p
= F (0)exp

(
plog(1 + Cs,R|t|F (0)−

1
ppβ−1)

)
Then, using the inequality log(1 + x) ≤ x implies :

F (t) ≤ F (0)exp
(
Cs,R|t|F (0)−

1
ppβ)

)
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Now, we choose p := 1 + log( 1
F (0)

) so that F (0)−
1
p = exp( log(F (0))

log(F (0))−1
) ≤ exp(1). Hence,

F (t) ≤ F (0)exp
(
Cs,R|t|(1− logF (0))β

)
(8.7)

Let us mention the following elementary lemma, whose proof is provided afterwards.

Lemma 8.6. For every α ∈ (0, 1), there exists a constant Cs,R,α,β > 0 such that for all x ≥ 0 :

Cs,R|t| (1 + x)β ≤ αx+ Cs,R,α,β (1 + |t|)
1

1−β

Using Lemma 8.6 in (8.7) with x = −log(F (0)) ≥ 0 yields :

F (t) ≤ F (0)1−αexp
(
Cs,R,α,β(1 + |t|)

1
1−β

)
which is the desired inequality, so the proof is completed. □

Here, we provide a proof of Lemma 8.6:

Proof of Lemma 8.6. Let α ∈ (0, 1). We invoke the function f(x) := Cs,R|t|(1+ x)β −αx. We aim

to show that f(x) ≤ Cs,R,α,β (1 + |t|)
1

1−β . Recall that β ∈ (0, 1). We have :

f ′(x) = βCs,R|t|(1 + x)β−1 − α ≥ 0 ⇐⇒ (1 + x)β−1 ≥ α

βCs,R|t|
⇐⇒ x ≤

(
βCs,R|t|

α

) 1
1−β

− 1

This implies that f has a maximum at the point x =
(
βCs,R|t|

α

) 1
1−β − 1. Thus, for all x ≥ 0 :

f(x) ≤ Cs,R|t|
(
βCs,R|t|

α

) β
1−β

− α

(
βCs,R|t|

α

) 1
1−β

+ α

= α + (Cs,R|t|)
1

1−β

((
β

α

) β
1−β

− α

(
β

α

) 1
1−β

)
≤ Cs,R,α,β(1 + |t|)

1
1−β

This completes the proof of Lemma 8.6. □

Now, we can go back to the measure µs,R (see (8.1) for the definition). Indeed, we are able to
deduce from Proposition 8.5 the analogous proposition for µs,R.

Proposition 8.7. Let s > 3
2
, R > 0 and t ∈ R. Then, there exists β ∈ (0, 1) such that for every

α ∈ (0, 1), there exists a constant C = Cs,R,α,β > 0 such that for all Borel set A ⊂ H1(T) :

µs,R(ΦN(t)A) ≤ µs,R(A)
1−αexp

(
C(1 + |t|)

1
1−β

)
(8.8)

uniformly in N ∈ N ∪ {∞}.
Proof. Let N ∈ N ∪ {∞}. Recall that µs,R is defined in (8.1), and observe that we have:

µs,R = Zs,N,Re
Rs,N (u)dρs,R,N

(see also Remark 7.3). Let α ∈ (0, 1). Let us invoke the β ∈ (0, 1) and the constant C > 0 from
Proposition 8.5. Then, for every q1 ∈ (1,∞):

µs,R(ΦN(t)A) = Zs,R,N

∫
Φ(t)A

eRs,N (u)dρs,R,N ≤ Zs,R,N
∥∥eRs,N

∥∥
Lq1 (dρs,R,N )

ρs,R,N(Φ(t)A)
1− 1

q1

≤ Cs,R,q1ρs,R,N(Φ(t)A)
1− 1

q1
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where in the last inequality we used (7.4) and Proposition 7.4. Using now Proposition 8.5, we
obtain:

µs,R(ΦN(t)A) ≤ ρs,R,N(A)
(1−α)(1− 1

q1
)
exp

(
C(1 + |t|)

1
1−β

)
(8.9)

where the constant C > 0 depends on s, R, α and q1 (and also β). On the other hand, for every
q2 ∈ (1,∞):

ρs,R,N(A) =
1

Zs,R,N

∫
A

e−Rs,Ndµs,R ≤ 1

Zs,R,N

∥∥e−Rs,N
∥∥
Lq2 (dµs,R)

µs,R(A)
1− 1

q2

≤ Cs,R,q2µs,R(A)
1− 1

q2

where again in the last inequality we used (7.4) and Proposition 7.4. Then, plugging this into (8.9)
yields:

µs,R(ΦN(t)A) ≤ ρs,R,N(A)
(1−α)(1− 1

q1
)(1− 1

q2
)
exp

(
C(1 + |t|)

1
1−β

)
where now, the constant C > 0 depends on s, R, α, q1 and q2. Finally, since α ∈ (0, 1) and
q1, q2 ∈ (1,∞) are arbitrary, we have that (1−α)(1− 1

q1
)(1− 1

q2
) takes all the values in (0, 1). This

completes the proof. □

8.2. Consequences: uniform Lp integrability and convergence. In this paragraph, we per-
form an analysis similar to the one from Section 7 of [15]. As a consequence of Proposition 8.7,
we are now able to prove the following proposition. Here, for clarity, we denote Gs,N,t = Gs,N(t, .)
for N ∈ N ∪ {∞} (still Gs,∞,t = Gs,t).

Proposition 8.8. Let s > 3
2
, R > 0 and t ∈ R. For every p ∈ [1,+∞), there exists a constant

C(s, R, p, t) ∈ (0,+∞) such that :

∥Gs,N,t∥Lp(dµs,R) ≤ C(s, R, p, t)

uniformly in N ∈ N ∪ {∞}.

Proof. Let p ∈ [1,+∞) and let us prove that Gs,N,t belongs to Lp(dµs,R). To do so, we use
Cavalieri’s principle :

∥Gs,N,t∥pLp(dµs,R) = p

∫ ∞

0

λp−1µs,R(Gs,N,t > λ)dλ (8.10)

We can estimate µs,R(Gs,N,t > λ) as follows :

µs,R(Gs,N,t > λ) =

∫
1{Gs,N,t>λ}dµs,R =

∫
1

Gs,N,t

1{Gs,N,t>λ}Gs,N,tdµs,R

=

∫
1

Gs,N,t

1{Gs,N,t>λ}d (ΦN(t)#µs,R) ≤
1

λ

∫
1{Gs,N,t>λ}d (ΦN(t)#µs,R) =

1

λ
µs,R(ΦN(−t)(Gs,N,t > λ))

Here, we can make use of estimate (8.8) and deduce that for any α ∈ (0, 1), there exists C =
Cs,R,α > 0 such that

µs,R(Gs,N,t > λ) ≤ 1

λ
µs,R(Gs,N,t > λ)1−αexp

(
C(1 + |t|)

1
1−β

)
So,

µs,R(Gs,N,t > λ) ≤ λ−1/αexp
(
C ′(1 + |t|)

1
1−β

)
=: λ−1/αCs,R,α,t
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(Where C ′ = C
α
still depends only on s, R and α). Plugging this into (8.10) yields

∥Gs,N,t∥pLp(dµs,R) ≤ p+

∫ ∞

1

λp−1µs,R(Gs,N,t > λ)dλ ≤ p+ Cs,R,α,t

∫ ∞

1

λp−1−1/αdλ

Choosing α ∈ (0, 1) such that p−1− 1
α
< −1, that is α < 1

p
, we have that the integral

∫∞
1
λp−1−1/αdλ

is finite. Hence, denoting by

C(s, R, p, t) := p+ Cs,R,α,t

∫ ∞

1

λp−1−1/αdλ

leads the result. □

Proposition 8.9. Let s > 3
2
and R > 0. Then, for every t ∈ R and every p ∈ [1,+∞), Gs,N(t, .)

converges to Gs(t, .) in Lp(dµs,R).

Proof. Let q ∈ (1,+∞). From Proposition 8.8 and 6.5, we know that the two following facts hold:{
supN∈N ∥Gs,N(t, .)∥Lq(dµs,R) < +∞
Gs,N(t, .) converges in measure to Gs(t, .) (with respect to µs,R)

Then – see for example [31] Remark 3.8 – it implies that for every p ∈ [1, q), Gs,N(t, .) converges
in Lp(dµs,R) to Gs(t, .). Since q ∈ (1,+∞) is arbitrary, we deduce that this convergence holds for
every p ∈ [1,+∞). □

We conclude this section by a short remark:

Remark 8.10. Starting from Proposition 8.5, it would have also been possible to prove (with
the notations of Proposition 7.6) that the densities Fs,N(t, .), Fs(t, .) of the transported weighted
Gaussian measures belongs to Lp(dρs,R) and that Fs,N(t, .) converges to Fs(t, .) in Lp(dρs,R).

9. Tools for the energy estimates

In this section, we gather the main tools that we will use in the forthcoming Section 10, 11 and
12.

9.1. Deterministic tools.

Notations 9.1 (Number ordering). We will intensively use the following notations:

• Given a set of frequencies k1, ..., km ∈ Z, we denote by k(1), ..., k(m) a rearrangement of the
k′js such that

|k(1)| ≥ |k(2)| ≥ ... ≥ |k(m)|
• Similarly, given a set of dyadic integers N1, ..., Nm ∈ 2N, we denote by N(1), ..., N(m) a
non-decreasing rearrangement of the Nj.

Examples 9.2. For example, we have :

• If k1 = −1, k2 = 0, k3 = 2 then k(1) = k3, k(2) = k1, and k(3) = k2
• If N1 = 8, N2 = 2, N3 = 4 then N(1) = N1, N(2) = N3, and N(3) = N2

Lemma 9.3 (Counting bound). There exists a constant C > 0 such that for every dyadic integers
N1, ..., Nm, every ε1, ..., εm ∈ {−1,+1}, and every κ ∈ Z,∑

k1,...,km∈Z

1ε1k1+ε2k2+...+εmkm=κ ·

(
m∏
j=1

1|kj |∼Nj

)
≤ CN(2)N(3)...N(m) (9.1)
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Proof. Without loss of generality, we assume that Nj = N(j). The idea of the proof is to let free the
variables k2, ..., km and to freeze the variable k1 thanks to the constraint ε1k1 = κ−ε2k2−...−εmkm:∑
k1,...,km
|kj |∼Nj

1ε1k1+ε2k2+...+εmkm=κ =
∑

k1,...,km
|kj |∼Nj ,j≥2

∑
|k1|∼N1

1ε1k1=κ−ε2k2−...−εmkm︸ ︷︷ ︸
≤1

≤
∑

k1,...,km
|kj |∼Nj ,j≥2

1 ≲ N2N3...Nm

□

In the proof of energy estimates, we will use the following estimate on ψ2s as a starting point.

Lemma 9.4. Set

ψ2s(k⃗) :=
6∑
j=1

(−1)j−1|kj|2s, Ω(k⃗) =
6∑
j=1

(−1)j−1k2j

There exists a constant C(s) > 0 such that for every k1 − k2 + k3 − k4 + k5 − k6 = 0,

|ψ2s(k⃗)| ≤ C(s)|k(1)|2s−2
(
|Ω(k⃗)|+ |k(3)|2

)
Proof. Essentially, we have to consider two cases : when k(1) = k1, k(2) = k2 and k(1) = k1,
k(2) = k3. In any case, we can assume that |k(3)| ≤ 1

2
|k(2)|. Otherwise, using the fact that the con-

straint k1−k2+k3−k4+k5−k6 = 0 implies that |k(2)| ∼ |k(1)|, we would deduce that |k(3)| ∼ |k(1)|.
Therefore, the a priori bound |ψ2s(k⃗)| ≲ |k(1)|2s would guarantee the desired inequality.

Case 1 : Firstly, we consider the case k(1) = k1 and k(2) = k2. We use the mean value theorem :

|ψ2s(k⃗)| ≤ k2s1 − k2s2 + |k2s3 − k2s4 + k2s5 − k2s6 |

≤ sup
t∈[k22 ,k21 ]

d

dt
(ts)(k21 − k22) + 4k2s(3)

≤ s|k(1)|2(s−1)(Ω(k⃗)− k23 + k24 − k25 + k26) + 4k
2(s−1)
(1) k2(3)

≤ C(s)|k(1)|2(s−1)(|Ω(k⃗)|+ |k(3)|2)
which is the desired inequality.

Case 2 : Secondly, we consider the case k(1) = k1 and k(2) = k3. Since we assume that k(3) ≤
1
2
|k(2)| = 1

2
|k3|, we have

Ω(k⃗) ≥ k21 + k23 − |k22 + k24 − k25 + k26| ≥ k21 + k23 − 4k2(3) ≥ k21

Therefore, the a priori bound |ψ2s(k⃗)| ≲ |k(1)|2s guarantees the desired inequality. □

In order to make our analysis work for the full range s > 3
2
, we will use the followinw Strichartz

estimate for the linear propagator of the Schrödinger equation–see [3].

Theorem 9.5 (Strichartz estimate). For any ε > 0, there exists a constant Cε > 0 such that for
any function g on T : ∥∥∥eit∂2xg∥∥∥

L6(Tt×Tx)
≤ Cε ∥g∥Hε(T)

As a consequence, we can prove the following useful estimate :
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Lemma 9.6. Let ε > 0. There exists a constant Cε > 0 such that for any dyadic integers N1, ..., N6

and any sequences
(
f
(1)
k1

)
k1∈Z

,...,
(
f
(6)
k6

)
k6∈Z

of complex numbers that satisfy f
(j)
kj

= 1|kj |∼Nj
f
(j)
kj

, we

have for any κ ∈ Z : ∑
k1−k2+...−k6=0

Ω(k⃗)=κ

6∏
j=1

|f (j)
kj

| ≤ CεN
ε
(1)

6∏
j=1

∥∥f (j)
∥∥
l2

Proof. We set

F
(1)
0 (x) :=

∑
k1∈Z

|f (1)
k1

|eik1x, F (1)(t, x) := eit∂
2
xeitκF

(1)
0 (x)

and for j ≥ 2,

F
(j)
0 (x) :=

∑
kj∈Z

|f (j)
kj

|eikjx, F (j)(t, x) := eit∂
2
xF

(j)
0 (x)

Let us now prove the identity :∑
k1−k2+...−k6=0

Ω(k⃗)=κ

6∏
j=1

|f (j)
kj

| =
∫
Tt

∫
Tx

(
F (1)F (2)F (3)F (4)F (5)F (6)

)
(t, x)

dxdt

(2π)2
(9.2)

Firstly, we expand(
F (1)F (2)F (3)F (4)F (5)F (6)

)
(t, x) =

∑
k1,...,k6∈Z

|f (1)
k1
...f

(6)
k6

|eix(k1−k2+...−k6)e−it(Ω(k⃗)−κ)

Secondly, we integrate with respect to x and t∫
Tt

∫
Tx

F (1)F (2)F (3)F (4)F (5)F (6)(t, x)
dxdt

(2π)2

=
∑

k1,...,k6∈Z

|f (1)
k1
...f

(6)
k6

|
(∫

Tt

∫
Tx

eix(k1−k2+...−k6)e−it(Ω(k⃗)−κ) dxdt

(2π)2

)
Then, the formula (9.2) follows from the fact that∫

Tt

∫
Tx

eix(k1−k2+...−k6)e−it(Ω(k⃗)−κ) dxdt

(2π)2
= 1k1−k2+...−k6=01Ω(k⃗)=κ

Starting now from (9.2) and using the Hölder’s inequality and Theorem 9.5 we get that∑
k1−k2+...−k6=0

Ω(k⃗)=κ

6∏
j=1

|f (j)
kj

| ≤
6∏
j=1

∥∥F (j)
∥∥
L6(Tt×Tx)

≤ Cε

6∏
j=1

∥∥∥F (j)
0

∥∥∥
H

ε
6 (Tx)

We also used the fact that
∥∥F (1)

∥∥
L6(Tt×Tx)

=
∥∥∥eitκeit∂2xF (1)

0

∥∥∥
L6(Tt×Tx)

=
∥∥∥eit∂2xF (1)

0

∥∥∥
L6(Tt×Tx)

.

On the other hand, with the localizations of the sequences
(
f
(j)
kj

)
kj∈Z

, we can write∥∥∥F (j)
0

∥∥∥
H

ε
6 (Tx)

≲ N
ε
6
j

∥∥f (j)
∥∥
l2
≲ N

ε
6

(1)

∥∥f (j)
∥∥
l2
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Coming back to the previous estimate we obtain∑
k1−k2+...−k6=0

Ω(k⃗)=κ

6∏
j=1

|f (j)
kj

| ≤ C ′
εN

ε
(1)

6∏
j=1

∥∥f (j)
∥∥
l2

which is the desired estimate. □

Finally, we conclude this section with the following suitable lemma. Although its significance will
become apparent later (in the proof of energy estimates in Section 10, 11 and 12), we prove it now
for a better clarity.

Lemma 9.7. Let s ∈ R and ε > 0. There exists a constant Cε,s > 0 such that for any dyadic

integers N1, ..., N6 and any sequences
(
f
(1)
k1

)
k1∈Z

,...,
(
f
(6)
k6

)
k6∈Z

of complex numbers that satisfy

f
(j)
kj

= 1|kj |∼Nj
f
(j)
kj

, we have∑
k1−k2+...−k6=0

Ω(k⃗)̸=0

∣∣∣∣∣ψ2s(k⃗)

Ω(k⃗)

∣∣∣∣∣
6∏
j=1

|f (j)
kj

| ≤ Cε,sN
2s−2+ε
(1) N2

(3)

6∏
j=1

∥∥f (j)
∥∥
l2

Proof. We start by applying Lemma 9.4 :∑
k1−k2+...−k6=0

Ω(k⃗)̸=0

∣∣∣∣∣ψ2s(k⃗)

Ω(k⃗)

∣∣∣∣∣
6∏
j=1

|f (j)
kj

| ≲
∑

k1−k2+...−k6=0

Ω(k⃗)̸=0

|k(1)|2s−2

(
1 +

|k(3)|2

|Ω(k⃗)|

)
6∏
j=1

|f (j)
kj

|

≲ I+ II

where we denote

I := N2s−2
(1)

∑
k1−k2+...−k6=0

Ω(k⃗)̸=0

6∏
j=1

|f (j)
kj

|

and,

II := N2s−2
(1) N2

(3)

∑
k1−k2+...−k6=0

Ω(k⃗)̸=0

1

|Ω(k⃗)|

6∏
j=1

|f (j)
kj

|

We estimate separately I and II.

•Estimate of I : Removing the constraint Ω(k⃗) ̸= 0 and using the Cauchy-Schwarz inequality in
the k(1), k(2) summations, we get that

I ≤ N2s−2
(1)

∥∥f ((1))
∥∥
l2

∥∥f ((2))
∥∥
l2

6∏
j=3

∥∥f ((j))
∥∥
l1

≤ N2s−2
(1)

(
N(3)N(4)N(5)N(6)

) 1
2

6∏
j=1

∥∥f (j)
∥∥
l2

≤ N2s−2
(1) N2

(3)

6∏
j=1

∥∥f (j)
∥∥
l2
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which is even better than the desired bound.

•Estimate of II : Firstly, we observe that |Ω(k⃗)| ≲ N2
(1) so we can write

II ≤ N2s−2
(1) N2

(3)

∑
N2

(1)
≳|κ|≥1

1

|κ|
∑

k1−k2+...−k6=0

Ω(k⃗)=κ

6∏
j=1

|f (j)
kj

|

Secondly, we use Lemma 9.6 that says

∑
k1−k2+...−k6=0

Ω(k⃗)=κ

6∏
j=1

|f (j)
kj

| ≤ CεN
ε
2

(1)

6∏
j=1

∥∥f (j)
∥∥
l2

Finally, we invoke the well-known estimate∑
N2

(1)
≳|κ|≥1

1

|κ|
≲ log

(
N(1)

)
≤ C ′

εN
ε
2

(1)

and the combination of those inequalities yields

II ≤ C ′′
εN

2s−2+ε
(1) N2

(3)

6∏
j=1

∥∥f (j)
∥∥
l2

which is the desired bound. This completes the proof of Lemma 9.7. □

9.2. Some properties of Gaussian measures. Our analysis for the energy estimates in Sec-
tion 11 and 12 will also require the following probabilistic tools.

Lemma 9.8 (Moments of Gaussian measures). Let s ∈ R and σ < s − 1
2
. Then, there exists

C = C(s, σ) > 0 such that for all m ≥ 1 :(∫
Hσ

∥u∥mHσ dµs

) 1
m ≤ Cm

1
2 (9.3)

Proof. From Fernique’s theorem (see for example [17], [2]), there exists α > 0 such that:∫
Hσ

eα∥u∥
2
Hσdµs < +∞

Then, by Markov’s inequality, we obtain the following large deviation estimate:

µs(∥u∥Hσ > λ) = µs(e
α∥u∥2Hσ > eαλ

2

) ≤ e−αλ
2

∫
Hσ

eα∥u∥
2
Hσdµs ≤ Ce−αλ

2

Combining this estimate with Cavalieri’s principle, we have:∫
Hσ

∥u∥mHσ dµs = m

∫ +∞

0

λm−1µs(∥u∥Hσ > λ)dλ ≤ Cm

∫ +∞

0

λm−1e−αλ
2

dλ
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To conclude, we perform ⌊m
2
⌋ − 1 integration by parts on the integral on the right hand side:∫ +∞

0

λm−1e−αλ
2

dλ =
m− 2

2α

∫ +∞

0

λm−3e−αλ
2

dλ

= ... =
(m− 2)(m− 4)...(m− 2(⌊m

2
⌋ − 1))

(2α)⌊
m
2
⌋−1

∫ +∞

0

λm−2(⌊m
2
⌋−1)−1e−αλ

2

dλ

≤
(m
2α

)⌊m
2
⌋−1

sup
m̃∈[0,2]

∫ +∞

0

λm̃e−αλ
2

dλ

□

Next, we state a conditional Wiener chaos estimate which will play a crucial role in the energy
estimates. In the sequel, for any complex number z, we adopt the notation z+ = z and z− = z,
called respectively positive and negative signature of z.

Lemma 9.9 (Conditional Wiener chaos estimate). Let (Ω,A,P) be a probability space and B be a
σ-algebra on Ω such that B ⊂ A. Let m ∈ N and ι1, ..., ιm ∈ {−,+}. We consider the following
expression :

F (ω) :=
∑

k1,...,km

ck1,...,km(ω) ·
m∏
j=1

g
ιj
kj
(ω), ω ∈ Ω

where, the gkj(ω) are complex standard i.i.d Gaussians, independent of the σ-algebra B, and the
ck1,...,km(ω) are B-mesurable complex random variables. Then, there exists C > 0 such that for
every p ≥ 2, we have :

∥F∥Lp(Ω|B) ≤ Cp
m
2 ∥F∥L2(Ω|B)

where Lp(Ω|B) is the Lp-norm conditioned to the σ- algebra B.
In the energy estimates, we will apply this lemma with m = 3, B the σ-algebra generated by
low-frequency Gaussians, and the random variables ck1,..,km will be some multi-linear expression
of high-frequency Gaussians (independent of the low-frequency Gaussians). For a proof of this
lemma, we refer to [27] (see also [32] and [30]).

Lemma 9.10. Let (Ω,A,P) be a probability space. Let m ∈ N, ι1, ..., ιm ∈ {−,+}, and gk1 , ..., gkm
be complex standard i.i.d Gaussians. We consider the following multi-linear expression of Gaus-
sians:

G(ω) :=
∑

k1,...,km
∀ιi ̸=ιj , ki ̸=kj

ck1,...,km ·
m∏
j=1

g
ιj
kj
(ω), ω ∈ Ω (9.4)

where ck1,...,km is a sequence of l2(Zm;C). Then, there exists C > 0 such that:

∥G∥L2(Ω) ≤ C

( ∑
k1,...,km

∀ιi ̸=ιj , ki ̸=kj

|ck1,...,km|2
) 1

2

(9.5)

Proof. For more readability, we perform the proof only for m = 3 (and that is the value of m we
will use with this lemma). In addition, we assume that ι1, ι3 = 1 and ι2 = −1 (the other cases are
similar). Thus, we want to prove that:∥∥ ∑

k1,k2,k3
k2 ̸=k1,k3

ck1,k2,k3gk1gk2gk3
∥∥2
L2(Ω)

≤ C
∑

k1,k2,k3
k2 ̸=k1,k3

|ck1,k2,k3|2
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We start by expanding the left hand side:∥∥ ∑
k1,k2,k3
k2 ̸=k1,k3

ck1,k2,k3gk1gk2gk3
∥∥2
L2(Ω)

=
∑

k1,k2,k3,l1,l2,l3
k2 ̸=k1,k3 & l2 ̸=l1,l3

ck1,k2,k3cl1,l2,l3 E[gk1gk2gk3gl1gl2gl3 ] (9.6)

From the independence of the Gaussians gn, and the fact that for a complex standard Gaussian
variable g we have E[g] = E[g2] = E[g3] = 0, the only non-zero contributions in the sum above is
when for each g±kj there exists an g∓li , with the opposite signature, such that kj = li. Hence, the

only non-zero contributions are of the form:

ck1,k2,k3cl1,l2,l3 E[|gk1|2|gk2|2|gk3|2] with k2 = l2, {k1, k3} = {l1, l3} and k2 ̸= k1, k3

Then, we invoke the following set of indices:

D1 := {(k1, k2, k3, l1, l2, l3) ∈ Z6 : k2 = l2, k1 = l1, k3 = l3, k2 ̸= k1, k3, k1 ̸= k3}
D2 := {(k1, k2, k3, l1, l2, l3) ∈ Z6 : k2 = l2, k1 = l3, k3 = l1, k2 ̸= k1, k3, k1 ̸= k3}
D3 := {(k1, k2, k3, l1, l2, l3) ∈ Z6 : k2 = l2, k1 = k3 = l1 = l3, k2 ̸= k1, k3}

so that, coming back to (9.6), we have (for any complex standard Gaussian g):∥∥ ∑
k1,k2,k3
k2 ̸=k1,k3

ck1,k2,k3gk1gk2gk3
∥∥2
L2(Ω)

= E[|g|2]3
∑
D1

|ck1,k2,k3|2 + E[|g|2]3
∑
D2

ck1,k2,k3ck3,k2,k1

+ E[|g|2]E[|g|4]
∑
D3

|ck1,k2,k1|2

This concludes the proof since:∑
D1

|ck1,k2,k3|2 +
∑
D3

|ck1,k2,k1|2 =
∑

k1,k2,k3
k2 ̸=k1,k3 & k1 ̸=k3

|ck1,k2,k3|2 +
∑
k1,k2
k2 ̸=k1

|ck1,k2,k1|2 =
∑

k1,k2,k3
k2 ̸=k1,k3

|ck1,k2,k3|2

and,∑
D2

ck1,k2,k3ck3,k2,k1 ≤
1

2

∑
k1,k2,k3

k2 ̸=k1,k3 & k1 ̸=k3

|ck1,k2,k3|2 +
1

2

∑
k1,k2,k3

k2 ̸=k1,k3 & k1 ̸=k3

|ck3,k2,k1|2 ≤
∑

k1,k2,k3
k2 ̸=k1,k3

|ck1,k2,k3|2

□

Remark 9.11. When ιi ̸= ιj and ki = kj, we say that ki and kj are paired. If one allows such
parings in the sum in (9.4), then the inequality (9.5) does not hold anymore in general. In our
analysis in the upcoming sections, we will not encounter such pairings. However, in [29], this
situation occurred, and the authors needed to study these pairing contributions separately.

10. Proofs of the deterministic properties

This section is dedicated to the proof of the deterministic properties of the energy correction Rs,N

and of the derivative of the modified energy Qs,N . More precisely, we prove here Proposition 3.1
and Proposition 4.1. To do so, we are going to use the deterministic tools from Section 9.
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Deterministic estimate for the energy correction. In this paragraph, we prove Proposi-
tion 3.1. Recall that we want to estimate the sum of positive terms in (3.1).

Proof of Proposition 3.1. Let σ < s − 1
2
and let u(1), ..., u(6) ∈ Hσ(T). First, we decompose the

sum in (3.1) dyadically:∑
k1−k2+...−k6=0

Ω(k⃗)̸=0

∣∣ψ2s(k⃗)

Ω(k⃗)

∣∣|u(1)k1 u(2)k2 ...u(6)k6 | = ∑
N1,...,N6

R(N1, ..., N6) (10.1)

where the summations are performed on the dyadic values of N1, ..., N6 and,

R(N1, ..., N6) :=
∑

k1−k2+...−k6=0

Ω(k⃗)̸=0

∣∣ψ2s(k⃗)

Ω(k⃗)

∣∣ 6∏
j=1

1|kj |∼Nj
|u(j)kj |

Now, using Lemma 9.7 yields:

R(N1, ..., N6) ≲ε N
2s−2+ε
(1) N2

(3)

6∏
j=1

∥∥PNj
u(j)
∥∥
L2(T) ≲ε N

2s−2+ε
(1) N2

(3)(N(1)...N(6))
−σ

6∏
j=1

∥∥u(j)∥∥
Hσ

(10.2)
where PN is the projector onto frequencies |k| ∼ N . Note that we have N(1) ∼ N(2) because
the constraint k1 − k2 + ... − k6 = 0 implies that |k(2)| ∼ |k(1)|. Besides, we crudely estimate
(N(4)N(5)N(3))

−σ ≲ 1. Then, we rewrite the inequality above as:

R(N1, ..., N6) ≲ε N
2(s−1−σ)+ε
(1) N2−σ

(3)

6∏
j=1

∥∥u(j)∥∥
Hσ (10.3)

Next, let us observe that for σ < s− 1
2
and ε > 0:


2(s− 1− σ) + ε > −1

2(s− 1− σ) + ε −→ −1 as

{
σ → s− 1

2

ε→ 0

and,


2− σ > 5

2
− s

2− σ −→ 5
2
− s as

{
σ → s− 1

2

ε→ 0

In particular, in (10.3), N(1) is accompanied by a negative exponent9.
Finally, if:

− 1 + (
5

2
− s) < 0, that is if: s >

3

2
,

then, for σ < s − 1
2
and ε > 0 respectively close enough to s − 1

2
and 0, we deduce from (10.3)

that10:

R(N1, ..., N6) ≲ N−
(1) ·

6∏
j=1

∥∥u(j)∥∥
Hσ

which is summable in the Nj. Coming back to (10.1) finishes the proof. □

9In dimension d ≥ 2, we have σ < s− d
2 , and this scenario would be worse because we would have 2(s−1−σ) > 0,

so N(1) would be accompanied by a positive exponent. This scenario is encountered in [29], with d = 3.
10The notation N− means that the power of N is −γ for a certain γ > 0.
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Deterministic estimate for the derivative of the modified energy. In this paragraph, we
prove Proposition 4.1. Recall that we want to estimate the sums of positive terms in (4.1), (4.2)
and (4.3).

Proof of Proposition 4.1. Let σ < s− 1
2
.

•Estimate for T0 : The analysis is similar to the one forR. Indeed, let us fix u(1), ..., u(6) ∈ Hσ(T).
Then, decomposing the sum in (4.1) dyadically and using Lemma 9.4 (with Ω(k⃗) = 0), leads to:∑

k1−k2+...−k6=0

Ω(k⃗)=0

|ψ2s(k⃗)||u(1)k1 u
(2)
k2
...u

(6)
k6
| ≲

∑
k1−k2+...−k6=0

Ω(k⃗)=0

|k(1)|2s−2|k(3)|2|u(1)k1 u
(2)
k2
...u

(6)
k6
|

≲
∑

N1,...,N6

T0(N1, ..., N6)

where,

T0(N1, ..., N6) :=
∑

k1−k2+...−k6=0

Ω(k⃗)=0

N2s−2
(1) N2

(3)

6∏
j=1

1|kj |∼Nj
|u(j)kj |

Next, from Lemma 9.6 (with f jkj = 1|kj |∼Nj
|u(j)kj |), we have:

T0(N1, ..., N6) ≲ε N
2s−2+ε
(1) N2

(3)

6∏
j=1

∥∥PNj
u(j)
∥∥
L2(T)

From that point the proof goes the same as the one for R (see the estimate (10.2)).

•Estimate of Tj for j = 1, 2: We only prove the estimate (4.2) since the analysis for the estimate
(4.3) is similar. Here, the computations are a little more delicate. For the sake of readability, we
restrict ourselves to prove the estimate:∑

k1−k2+...−k6=0
p1−p2+...+p5=k1

Ω(k⃗)̸=0

∣∣ψ2s(k⃗)

Ω(k⃗)

∣∣|up1up2 ...up5uk2 ...uk6| ≤ Cs ∥u∥10Hσ

In other words, we just prove the estimate (4.2) where all the u(j) and v(l) are equal to a single u.
To do so, we will use the following lemma:

Lemma 10.1. There exists a constant C > 0 such that for any dyadic integers P1, ..., P5 and any

sequences
(
gP1
p1

)
p1∈Z

, ...,
(
gP5
p5

)
p5∈Z

of complex numbers that satisfy for j = 1, ..., 5, g
Pj
pj = 1|pj |∼Pj

gpj ,

if we set for k1 ∈ Z :

fk1 :=
∑

p1−p2+...+p5=k1

gP1
p1
gP2
p2
gP3
p3
gP4
p4
gP5
p5

Then,

∥f∥l2(Z) ≤ C
(
P(2)P(3)P(4)P(5)

) 1
2

5∏
j=1

∥∥gPj
∥∥
l2(Z)
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For clarity, we postpone the proof of this lemma for the end of this section. Now we are ready to
prove the estimate. Once again, we start by decomposing the sum as:∑

k1−k2+...−k6=0
p1−p2+...+p5=k1

Ω(k⃗)̸=0

∣∣ψ2s(k⃗)

Ω(k⃗)

∣∣|up1up2 ...up5uk2 ...uk6| = ∑
M1,...,M6
P1,...,P5

T1(M1, ...,M6, P1, ..., P5)

where M1, ...,M6, P1, ..., P5 are dyadic-valued and

T1(M1, ...,M6, P1, ..., P5) :=
∑

k1−k2+...−k6=0
p1−p2+...+p5=k1

Ω(k⃗)̸=0

∣∣ψ2s(k⃗)

Ω(k⃗)

∣∣|uP1
p1
...uP5

p5
uM2
k2
...uM6

k6
| · 1|k1|∼M1 (10.4)

with the practical notation uNl := 1|l|∼Nul. Next, we rewrite T1 as:

T1(M1, ..., P5) =
∑

k1−k2+...−k6=0

Ω(k⃗)̸=0

∣∣ψ2s(k⃗)

Ω(k⃗)

∣∣ 6∏
j=1

|f (j)
kj

| (10.5)

where, for j = 2, ..., 6 we denote f
Mj

kj
:= u

Mj

kj
, and:

f
(1)
k1

:= 1|k1|∼M1 ·
∑

p1−p2+...+p5=k1

|uP1
p1
...uP5

p5
|

At this stage, let us recall that M(1) ≥ ... ≥ M(6) and P(1) ≥ ... ≥ P(5) are respectively a non-
increasing rearrangement of M1, ...,M6 and P1, ..., P5. We also introduce:

N(1) ≥ N(2) ≥ ... ≥ N(10) a non-increasing rearrangement of M2, ...,M6, P1, ..., P5

Note that the constraints in the sum in T1 imply that

M(1) ∼M(2), and: P(1) ∼ P(2) or P(1) ∼M1, and: N(1) ∼ N(2).

Now, we use Lemma 9.7 to estimate T1 in (10.5); we obtain that for any ε > 0:

T1(M1, ..., P5) ≲ε M
2s−2+ε
(1) M2

(3)

6∏
j=1

∥∥f (j)
∥∥
l2
≲ε M

2s−2+ε
(1) M2

(3)

∥∥f (1)
∥∥
l2

6∏
j=2

∥∥uMj
∥∥
L2

Applying the well-suited estimate of
∥∥f (1)

∥∥
l2
from Lemma 10.1 leads to

T1(M1, ..., P5) ≲ε M
2s−2+ε
(1) M2

(3)(P(2)P(3)P(4)P(5))
1
2

5∏
j=1

∥∥uPj
∥∥
L2

6∏
j=2

∥∥uMj
∥∥
L2 (10.6)

and it follows that

T1(M1, ..., P5) ≲ε M
2s−2+ε
(1) M2

(3) (M2M3M4M5M6)
−σ P−σ

(1)

(
P(2)P(3)P(4)P(5)

) 1
2
−σ ∥u∥10Hσ

In the remaining part of the proof, we show that it implies that:

T1(M1, ..., P5) ≲ε N
−
(1) ∥u∥

10
Hσ (10.7)
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for σ < s − 1
2
close enough to s − 1

2
, which will complete the estimate for T1. We start from the

inequality above and we use the fact that M1 ≲ P(1) due to the constraint p1 − p2 + ...+ p5 = k1,

along with the rough estimates (M(4)M(5)M(6))
−σ ≤ 1 and (P(3)P(4)P(5))

1
2
−σ ≤ 1, in order to obtain:

T1(M1, ..., P5) ≲ε M
2s−2+ε
(1) M2

(3)(M1M2M3M4M5M6)
−σ(Mσ

1 P
−σ
(1) )(P(2)P(3)P(4)P(5))

1
2
−σ ∥u∥10Hσ

≲ε M
2(s−1−σ)+ε
(1) M2−σ

(3) P
1
2
−σ

(2) ∥u∥10Hσ

(10.8)

Besides, when σ < s− 1
2
and ε > 0 are respectively arbitrarily close to s− 1

2
and 0, we have that

2(s− 1− σ) + ε, 2− σ and 1
2
− σ are respectively arbitrarily close to

2(s− 1− (s− 1

2
)) = −1, 2− (s− 1

2
) =

5

2
− s,

1

2
− (s− 1

2
) = 1− s

Hence, M(1) is accompanied by a negative exponent, P(2) is accompanied by a negative exponent
(since s > 3

2
> 1), and M(3) is accompanied by a negative exponent when s ≥ 5

2
and by a non-

negative one when s < 5
2
.

–In the situation whereM(1) ∼ N(1), we use the rough estimate P
1
2
−σ

(2) ≤ 1 in (10.8), and we obtain:

T1(M1, ..., P5) ≲ε N
2(s−1−σ)+ε
(1) M2−σ

(3) ∥u∥10Hσ

which is conclusive as far as

2(s− 1− (s− 1

2
)) + 2− (s− 1

2
) < 0

that is, as far as s > 3
2
.

–In the other situation, where M(1) ≪ N(1), we necessarily have P(1) ∼ P(2) ∼ N(1), so we deduce
from (10.8) that:

T1(M1, ..., P5) ≲ε N
1
2
−σ

(1) M
2(s−1−σ)+2−σ+ε
(3) ∥u∥10Hσ

Then, for σ < s− 1
2
and ε > 0 respectively arbitrarily close to s− 1

2
and 0, we have:

T1(M1, ..., P5) ≲ N
(1−s)+
(1) M

( 3
2
−s)+

(3) ∥u∥10Hσ ≲ N−
(1) ∥u∥

10
Hσ

since s > 3
2
.

In conclusion, (10.7) is proven and the proof of Proposition 4.1 is completed. □

We finish this section by a proof of Lemma 10.1.

Proof of Lemma 10.1. We have to estimate :

∥f∥2l2(Z) =
∑
k1∈Z

∣∣∣∣ ∑
p1−p2+...+p5=k1

gP1
p1
gP2
p2
gP3
p3
gP4
p4
gP5
p5

∣∣∣∣2
Using the Cauchy-Schwarz inequality we obtain:

∥f∥2l2(Z) ≤
∑
k1∈Z

( ∑
p1,...,p5

1p1−p2+...+p5=k1

5∏
j=1

1|pj |∼Pj

)( ∑
p1,...,p5

1p1−p2+...+p5=k1|gP1
p1
gP2
p2
gP3
p3
gP4
p4
gP5
p5
|2
)
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Plugging the counting bound (9.1) into this formula yields

∥f∥2l2(Z) ≲ P(2)P(3)P(4)P(5)

∑
p1,...,p5

|gP1
p1
gP2
p2
gP3
p3
gP4
p4
gP5
p5
|2
(∑
k1∈Z

1p1−p2+...+p5=k1
)

︸ ︷︷ ︸
≤1

Thus,

∥f∥2l2(Z) ≲ P(2)P(3)P(4)P(5)

5∏
j=1

∥∥gPj
∥∥2
l2(Z)

which is the desired estimate. □

11. Estimates for the weight of the weighted Gaussian measures

This section is dedicated to estimates on the weight 1{C(u)≤R}e
−Rs,N (u) of the weighted Gaussian

measure ρs,R,N (defined in (7.1)). In particular, we show that :

1{C(u)≤R}e
−Rs,N (u) ∈ L1(dµs)

which ensures that ρs,R,N is a finite measure on Hσ(T), σ < s − 1
2
. More precisely, we prove

Proposition 7.4. Yet, before doing so, we will need the two following lemmas :

Lemma 11.1. Let s > 3
2
. Then, there exists β ∈ (0, 1) such that for every R > 0, there exists

C(s, R) > 0, such that for any p ∈ [2,+∞),∥∥1{C(u)≤R}Rs,N

∥∥
Lp(dµs)

≤ C(s, R)pβ

uniformly in N ∈ N ∪ {∞}.

Recall that we denote Rs,∞ = Rs for convenience.

Lemma 11.2. Let (X,A, dν) be a probability space and let F : X −→ C be a mesurable function.
Assume that there exist constants C0 > 0 and β ∈ (0, 1) such that for every p ∈ [2,+∞),

∥F∥Lp(dν) ≤ C0p
β

Then, there exist δ > 0 and C1 > 0 only depending on β and C0 such that :∫
X

eδ|F (v)|
1
β
dν(v) ≤ C1

We will only prove Lemma 11.1, Lemma 11.2 being just a slightly different version of Lemma 4.5
from [32] (where a proof is given).

Before doing the proof of Lemma 11.1, let us briefly show how it implies Proposition 7.4 when
combining with Lemma 11.2.

Proof of Proposition 7.4. Here, we assume the statements in Lemma 11.1 and Lemma 11.2.
–We start by proving the first statement in Proposition 7.4. Lemma 11.1 shows that F :=
1{C(u)≤R}Rs,N(u) : Hσ(T) −→ C satisfies the assumptions of Lemma 11.2 (with ν = µs). Then,
applying Lemma 11.2, we obtain that there exist δ = δ(s, R) > 0 and C1(s, R) > 0 such that :∫

Hσ

eδ|1{C(u)≤R}Rs,N (u)|
1
β

dµs ≤ C1(s, R)
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A fortiori we have, ∫
Hσ

1{C(u)≤R}e
δ|Rs,N (u)|

1
β

dµs ≤ C1(s, R)

Thanks to the fact that 1
β
> 1, we deduce from the above inequality that for every p ∈ [1,+∞) :∥∥1{C(u)≤R}e

|Rs,N (u)|∥∥p
Lp(dµs)

=

∫
Hσ

1{C(u)≤R}e
p|Rs,N (u)|dµs ≤ C(s, R, p) < +∞

for a certain constant C(s, R, p) > 0.
–As a consequence, we are now able to prove the second statement of Proposition 7.4, that is:∥∥1{C(u)≤R}e

−Rs(u) − 1{C(u)≤R}e
−Rs,N (u)

∥∥
Lp(dµs)

−→
N→∞

0

Firstly, we know from Proposition 3.3 that we have the pointwise convergence:

1{C(u)≤R}Rs(u) = 1{C(u)≤R} ·
1

6
Re

∑
k1−k2+...−k6=0

Ω(k⃗)̸=0

ψ2s(k⃗)

Ω(k⃗)
uk1uk2 ...uk6 = lim

N→∞
1{C(u)≤R}Rs,N(u)

Consequently, from the continuity of the exponential, we also have the pointwise convergence:

1{C(u)≤R}e
−Rs(u) = lim

N→∞
1{C(u)≤R}e

−Rs,N (u)

In particular, 1{C(u)≤R}e
−Rs,N (u) converges to 1{C(u)≤R}e

−Rs(u) in measure. In addition, for a fixed

q ∈ (1,+∞), we just proved that the functions 1{C(u)≤R}e
−Rs,N (u) are uniformly bounded in Lq(dµs)

(with respect to N ∈ N). Then, (using the same argument as the one from the proof of Proposition
8.9) we can conclude that 1{C(u)≤R}e

−Rs,N (u) converges to 1{C(u)≤R}e
−Rs(u) in Lp(dµs) for any p ∈

[1, q); and since q ∈ (1,+∞) is arbitrary, the convergence holds for any p ∈ [1,+∞). This
completes the proof of Proposition 7.4. □

However, it remains to prove Lemma 11.1. Our analysis will rely on a decomposition into two parts
of Rs,N . We will be able to treat the first part deterministically thanks to suitable ”exchanges of
derivatives”. For the second part, those ”exchanges of derivatives” will fail because we will be in
a high-high-high-low-low-low regime of frequency (where the three highest frequencies in the sum
(3.2) defining Rs,N are in fact much more higher than the three lowest frequencies). Instead, we
will handle the second part using the independence between the high frequency Gaussians and the
low frequency Gaussians, using Wiener chaos estimate.

11.1. Decomposition. Recall that we have (see Section 3, Proposition 3.1):

Rs,N(u) =
1

6
ReR(w)

where w := ΠNu (with the convention Π∞ = id), and

R(w) :=
∑

k1−k2+...−k6=0

Ω(k⃗) ̸=0

ψ2s(k⃗)

Ω(k⃗)
wk1wk2 ...wk6

It suffices to show the estimate of Lemma 11.1 for 1{C(u)≤R}R(w) because |Rs,N(u)| ≤ 1
6
|R(w)|.



TRANSPORT OF GAUSSIAN MEASURES FOR NLS 45

Next, we split the set of indices over which we sum. We invoke the following sets of indices :

ΛD := {(k1, ..., k6) ∈ Z6 :
6∑
j=1

(−1)j−1kj = 0,
6∑
j=1

(−1)j−1k2j ̸= 0,

|k(3)| < |k(1)|1−δ0 or |k(4)| ≥ |k(3)|δ0}

(11.1)

and,

ΛW := {(k1, ..., k6) ∈ Z6 :
6∑
j=1

(−1)j−1kj = 0,
6∑
j=1

(−1)j−1k2j ̸= 0,

|k(3)| ≥ |k(1)|1−δ0 and |k(4)| < |k(3)|δ0}

(11.2)

where δ0 ∈ (0, 1)11. Then, we split R as :

R(w) = R(D)(w) +R(W )(w)

where,

R(D)(w) :=
∑
ΛD

ψ2s(k⃗)

Ω(k⃗)
wk1wk2 ...wk6 , R(W )(w) :=

∑
ΛW

ψ2s(k⃗)

Ω(k⃗)
wk1wk2 ...wk6

To estimate R(D) we will use the deterministic tools from Section 9. To estimate R(W ), we
note that in the sum we are in a high-high-high-low-low-low regime because |k(1)|, |k(2)|, |k(3)| ≫
|k(4)|, |k(5)|, |k(6)|. It will then be possible to make use of the independence between the Gaussians
gk(1) , gk(2) , gk(3) and gk(4) , gk(5) , gk(6) via Wiener chaos.

11.1.1. Absence of pairing:

Definition 11.3 (Pairing). Consider a constraint under the form :

ε1k1 + ε2k2 + ...+ εmkm = 0

where kj ∈ Z and εj ∈ {−,+}. We say that kj and kl are paired if

εjkj + εlkl = 0

Remark 11.4. In ΛW (see (11.2) above), there is (for k(1) large enough) no pairing within the
three highest frequencies (relatively to the constraint k1− k2+ ...− k6 = 0). Indeed, suppose there
is a pairing between two of the three highest frequencies. Then, the constraint would take the
form:

the remaining high frequency = sum of three low frequencies

which is impossible because in ΛW we have:

|high frequencies| ≫ |low frequencies|

11We will see in the forthcoming proof that there is no constraint on δ0, so we can chose it as any number in
(0, 1)
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11.2. Proof of the estimate. We are now ready to prove Lemma 11.1.

Proof of Lemma 11.1. We organize the proof in two steps. In the first step, we provide a (deter-
ministic) estimate for 1{C(u)≤R}R. In the second step, we show that this estimate is only conclusive

for the contribution R(D), and that for the remaining contribution R(W ), further analysis using
Wiener chaos is required.

Step 1, Deterministic estimate : We rely on the estimate (10.2) we obtained in Section 10 (which
we do not reprove here). Thus, we start our analysis from the following estimates:

|R(w)| ≲
∑

N1,...,N6

R(N1, ..., N6) and: R(N1, ..., N6) ≲ε N
2s−2+ε
(1) N2

(3)

6∏
j=1

∥∥PNj
w
∥∥
L2(T) (11.3)

where N1, ..., N6 are dyadic valued, PN is the projector onto frequencies |k| ∼ N , and:

R(N1, ..., N6) :=
∑

k1−k2+...−k6=0

Ω(k⃗)̸=0

∣∣∣ψ2s(k⃗)

Ω(k⃗)

∣∣∣ 6∏
j=1

1|kj |∼Nj
|wkj |

We decompose R as R = R(D) +R(W ), according to the decomposition of R.

Now, let 1 < σ′ < σ < s− 1
2
. We have:

6∏
j=1

∥∥PNj
w
∥∥
L2(T) ≲

6∏
j=1

∥∥PNj
u
∥∥
L2(T) ≲ (N−σ

(1) ∥u∥Hσ)(N
−σ′

(2) ∥u∥Hσ′ )(N(3)N(4)N(5)N(6))
−1 ∥u∥4H1

(11.4)
Recall that the constraints in the sum in R above implies that N(1) ∼ N(2). Moreover, if we write:

σ′ = α1 + (1− α)σ

for α ∈ (0, 1), then, by interpolating Hσ′
between H1 and Hσ, we obtain from (11.4) that:

6∏
j=1

∥∥PNj
u
∥∥
L2(T) ≲ N

−2σ+α(σ−1)
(1) (N(3)N(4)N(5)N(6))

−1 ∥u∥4+αH1 ∥u∥2−αHσ

≲ N
−2σ+α(s− 3

2
)

(1) (N(3)N(4)N(5)N(6))
−1 ∥u∥4+αH1 ∥u∥2−αHσ , (because α(σ − 1) < α(s− 3/2) )

Plugging this into (11.3), we obtain

R(N1, ..., N6) ≲ε N
2(s−σ−1)+ε+α(s− 3

2
)

(1) N(3)(N(4)N(5)N(6))
−1 ∥u∥4+αH1 ∥u∥2−αHσ

In particular, thanks to Remark 7.2,

1{C(u)≤R}R(N1, ..., N6) ≲ε N
2(s−σ−1)+ε+α(s− 3

2
)

(1) N(3)(N(4)N(5)N(6))
−1R4+α ∥u∥2−αHσ

And since we will not need the smallness provided by (N(5)N(6))
−1, we simply write :

1{C(u)≤R}R(N1, ..., N6) ≲ε,R N
2(s−σ−1)+ε+α(s− 3

2
)

(1) N(3)N
−1
(4) ∥u∥

2−α
Hσ

Using now (9.3), we conclude that∥∥1{C(u)≤R}R(N1, ..., N6)
∥∥
Lp(dµs)

≤ CN
2(s−σ−1)+ε+α(s− 3

2
)

(1) N(3)N
−1
(4)p

2−α
2 (11.5)
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Where the constant C > 0 depends on R, s, σ and ε. This is the estimate we will work with later
in the proof. We stress the fact that (11.5) is true for R and also for R(D) and R(W ) (with the
exact same proof).

Step 2, Estimates for R(D) and R(W ):

•We start with R(D). Recalling that σ < s− 1
2
, we see that the exponent of N(1) in (11.5) satisfies:

2(s− σ − 1) + ε+ α(s− 3
2
) > −1

2(s− σ − 1) + ε+ α(s− 3
2
) −→ −1 as


ε→ 0

α → 0

σ → s− 1
2

(11.6)

Moreover, for a fixed δ0 ∈ (0, 1), the conditions on the indices lying in ΛD imply that N(3) ≲ N1−δ0
(1)

or N(4) ≳ N δ0
(3). In both cases, we deduce from (11.5) that for ε and α close enough to 0 and σ

close enough to s− 1
2
, we have12∥∥1{C(u)≤R}R

(D)(N1, ..., N6)
∥∥
Lp(dµs)

≤ CN−
(1)p

2−α
2

Consequently, ∥∥1{C(u)≤R}R(D)
∥∥
Lp(dµs)

≤ Cp
2−α
2

•We continue our analysis with the term R(W ). Once again, we start by decomposing R(W )

dyadically as R(W )(w) =
∑

N1,...,N6
R(W )
N1,...,N6

(w), where13:

R(W )
N1,...,N6

(w) :=
∑

k1−k2+...−k6=0

Ω(k⃗)̸=0

|k(4)|≤|k(3)|δ0

ψ2s(k⃗)

Ω(k⃗)
wk1wk2 ...wk6

6∏
j=1

1|kj |∼Nj

Henceforth, we denote w
Nj

kj
:= 1|kj |∼Nj

wkj for better readability.

Without loss of generality, we assume that {N1, N2, N3} = {N(1), N(2), N(3)}, meaning that the
three highest frequencies are k1, k2, k3. The other cases are similar or simpler.
We denote B≪N(3)

the σ-algebra generated by the Gaussians (gk)|k|≤N(3)/100
. We only need to

consider the contribution when N(1) is large because when N(1) is small, all the Nj’s are small, and
we can use (11.5) without fearing issues of summability in the Nj’s. In particular, we assume that

N(1) is sufficiently large so that N(3) (which is ≳ N1−δ0
(1) ) is large enough to ensure that N(4) (which

is ≲ N δ0
(3)) is ≤ N(3)/100. As a consequence, we have that the random variables :

wN4
k4
, wN4

k4
, wN6

k5
are B≪N(3)

mesurable

wN1
k1
, wN2

k2
, wN3

k3
are independent of B≪N(3)

12The notation N− means that the power of N is −γ for a certain γ > 0.
13For the analysis below, we need to keep the complex conjugation bars, so here we don’t use R(W )
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With this set up, we can now begin the analysis. Thanks to Remark 7.2, we have∥∥∥1{C(u)≤R}R(W )
N1,...,N6

∥∥∥
Lp(dµs)

≤
∥∥∥1BH1

R
(u) · R(W )

N1,...,N6

∥∥∥
Lp(dµs)

≤
∥∥∥1BH1

R
(PN(3)/100

u) · R(W )
N1,...,N6

∥∥∥
Lp(dµs)

And, 1
BH1

R
(PN(3)/100

u) is B≪N(3)
mesurable. So, using the Lp-norm conditioned to the σ-algebra

B≪N(3)
, denoted Lp(dµs|B≪N(3)

), we obtain :∥∥∥1{C(u)≤R}R(W )
N1,...,N6

∥∥∥
Lp(dµs)

≤
∥∥∥∥∥1BH1

R
(PN(3)/100

u) · R(W )
N1,...,N6

∥∥
Lp(dµs|B≪N(3)

)

∥∥∥
L∞(dµs)

≤
∥∥∥∥∥R(W )

N1,...,N6

∥∥
Lp(dµs|B≪N(3)

)
· 1

BH1
R

(PN(3)/100
u)
∥∥∥
L∞(dµs)

(11.7)

Now, the conditional Wiener-chaos estimate from Lemma 9.9 (withm = 3), followed by Lemma 9.10
combined with the absence of paring (see Remark 11.4), allows us to obtain :∥∥∥R(W )

N1,...,N6

∥∥∥
Lp(dµs|B≪N(3)

)
≲ p

3
2

∥∥∥R(W )
N1,...,N6

∥∥∥
L2(dµs|B≪N(3)

)

≲ p
3
2 (N(1)N(2)N(3))

−s
( ∑
k1,k2,k3

∣∣∣ ∑
k4,k5,k6

C(k⃗) · ψ2s(k⃗)

Ω(k⃗)
wN4
k4
wN5
k5
wN6
k6

∣∣∣2) 1
2

(11.8)

where we gathered all the constraints into the term :

C(k⃗) := 1k1−k2+...−k6=0 · 1Ω(k⃗) ̸=0 ·
6∏
j=1

1|kj |∼Nj

Next, by Cauchy-Schwarz,∑
k1,k2,k3

∣∣∣ ∑
k4,k5,k6

C(k⃗)·ψ2s(k⃗)

Ω(k⃗)
wN4
k4
wN5
k5
wN6
k6

∣∣∣2 ≲ ∑
k1,k2,k3

( ∑
k4,k5,k6

C(k⃗)·
∣∣∣ψ2s(k⃗)

Ω(k⃗)

∣∣∣2|wN4
k4
wN5
k5
|2
)( ∑

k4,k5,k6

C(k⃗)|wN6
k6
|2
)

From Lemma 9.4 we get
∣∣∣ψ2s(k⃗)

Ω(k⃗)

∣∣∣ ≲ |k(1)|2s−2(1 +
|k(3)|2

|Ω(k⃗)|
) ≲ |k(1)|2s−2|k(3)|2 ≲ N2s−2

(1) N2
(3). Then, on

the one hand :∑
k4,k5,k6

C(k⃗) ·
∣∣∣ψ2s(k⃗)

Ω(k⃗)

∣∣∣2|wN4
k4
wN5
k5
|2 ≲ (N2s−2

(1) N2
(3))

2
∑

k4,k5,k6

C(k⃗) · |wN4
k4
wN5
k5
|2

≲ (N2s−2
(1) N2

(3))
2
∑
k4,k5

|wN4
k4
wN5
k5
|2 ·
∑
k6

1k6=k1−k2...+k5︸ ︷︷ ︸
≤1

≲ (N2s−2
(1) N2

(3)

∥∥wN4
∥∥
L2

∥∥wN5
∥∥
L2)

2

and on the other hand,∑
k1,k2,k3

( ∑
k4,k5,k6

C(k⃗)|wN6
k6
|2
)
=
∑
k6

|wN6
k6
|2

∑
k1,k2,k3,k4,k5

C(k⃗) ≲ N(2)N(3)N(4)N(5) ·
∥∥wN6

∥∥2
L2
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where we used the counting bound from Lemma 9.3. We deduce from the two inequalities above
that( ∑
k1,k2,k3

∣∣∣ ∑
k4,k5,k6

C(k⃗) · ψ2s(k⃗)

Ω(k⃗)
wN4
k4
wN5
k5
wN6
k6

∣∣∣2) 1
2

≲ N2s−2
(1) N2

(3)N
1
2

(1)N
1
2

(3)(N(4)N(5)
1
2

∥∥wN4
∥∥
L2

∥∥wN5
∥∥
L2

∥∥wN6
∥∥
L2

≲ N
2s−2+ 1

2

(1) N
5
2

(3)(N(4)N(5)
− 1

2N−1
(6)

∥∥wN4
∥∥
H1

∥∥wN5
∥∥
H1

∥∥wN6
∥∥
H1

≲ N
2s− 3

2

(1) N
5
2

(3)

∥∥wN4
∥∥
H1

∥∥wN5
∥∥
H1

∥∥wN6
∥∥
H1

Coming back to (11.8), we deduce that∥∥∥R(W )
N1,...,N6

∥∥∥
Lp(dµs|B≪N(3)

)
≲ p

3
2N

− 3
2

(1) N
5
2
−s

(3)

∥∥wN4
∥∥
H1

∥∥wN5
∥∥
H1

∥∥wN6
∥∥
H1

And plugging this into (11.7), we obtain:∥∥∥1{C(u)≤R}R(W )
N1,...,N6

∥∥∥
Lp(dµs)

≲R p
3
2N

− 3
2

(1) N
5
2
−s

(3)

Interpolating the above inequality with (11.5) (more precisely (11.5) with R(W ) instead of R), we
have that for any θ ∈ (0, 1) :∥∥∥1{C(u)≤R}R(W )

N1,...,N6

∥∥∥
Lp(dµs)

≲ p
3
2
θ+ 2−α

2
(1−θ)N

− 3
2
θ+(2(s−1−σ)+ε+α(s− 3

2
))(1−θ)

(1) N
( 5
2
−s)θ+(1−θ)

(3) (11.9)

Finally, we use the following lemma to finish the proof of Lemma 11.1:

Lemma 11.5. There exist σ < s − 1
2
close enough to s − 1

2
, ε > 0 close enough to 0, θ ∈ (0, 1)

and α ∈ (0, 1), such that

3

2
θ +

2− α

2
(1− θ) < 1, N

− 3
2
θ+(2(s−1−σ)+ε+α(s− 3

2
))(1−θ)

(1) N
( 5
2
−s)θ+(1−θ)

(3) ≲ N−
(1)

Let us provide a proof of this lemma:

Proof of Lemma 11.5. Firstly, we have:

3

2
θ +

2− α

2
(1− θ) < 1 ⇐⇒ θ

(
1 + α

2

)
< 1 +

α− 2

2
=
α

2

⇐⇒ θ <
α

1 + α

(11.10)

Secondly, regarding the exponent of N(3), we have:

(
5

2
− s)θ + (1− θ) ≥ 0 ⇐⇒ θ ≤ 1

s− 3
2

(11.11)

Let us take θ ≤ 1
s− 3

2

(always true when s ≤ 5
2
). Then,

N
− 3

2
θ+(2(s−1−σ)+ε+α(s− 3

2
))(1−θ)

(1) N
( 5
2
−s)θ+(1−θ)

(3) ≲ N
− 3

2
θ+(2(s−1−σ)+ε+α(s− 3

2
))(1−θ)

(1) N
( 5
2
−s)θ+(1−θ)

(1)

We want to have appropriate parameters such that the conditions on θ given in (11.10) and (11.11)
are satisfied along with the following one:

−3

2
θ +

(
2(s− 1− σ) + ε+ α(s− 3

2
)

)
(1− θ) + (

5

2
− s)θ + (1− θ) < 0
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Since 2(s− 1− σ) + ε −→ −1 as σ → s− 1
2
and ε → 0, the previous condition will be true for σ

and ε respectively close enough to s− 3
2
and 0 if:

−3

2
θ +

(
−1 + α(s− 3

2
)

)
(1− θ) + (

5

2
− s)θ + (1− θ) < 0

And this condition is equivalent to the following one:

θ

(
1− s− α(s− 3

2
)

)
< −α(s− 3

2
)

⇐⇒ θ >
α(s− 3

2
)

s− 1 + α(s− 3
2
)
=

α
s−1
s− 3

2

+ α
=

α

1 + 1
2(s− 3

2
)
+ α

(11.12)

To conclude, if we first take α small enough such that α
1+α

< 1
s− 3

2

, and then θ such that

α

1 + 1
2(s−3/2)

+ α
< θ <

α

1 + α
,

the conditions given in (11.10), (11.11) and (11.12) are satisfied. We illustrate this with the
following drawing :

0
1

s−3/2

α
1+ 1

2(s−3/2)
+α

α
1+α

θ

With those parameters, Lemma 11.5 is proven. □

Hence, coming back to (11.9), the proof of Lemma 11.1 is completed. □

12. Estimates for the modified energy derivative at 0

This section is dedicated to Lp(dµs) estimates on Qs,N (defined in (4.4), see also Definition 2.3).
More precisely, we prove Proposition 8.2. The strategy of our proof is the same as the one
of Lemma 11.1. We first obtain a deterministic estimate that will be conclusive except for a
frequency regime high-high-high-low-...-low (where the three highest frequencies are in fact much
more higher than the others). This will lead us to decompose Qs,N into two parts, one that captures
the high-high-high-low-...-low regime, and one that captures the other regime of frequencies. We
will handle the high-high-high-low-...-low regime using the independence of Gaussians via Wiener-
chaos estimate. It will be slightly more complicated than the proof of Lemma 11.1 because of
the presence of more indices. However, in our situation, we will not encounter the possibility of
a ”pairing between generations”14 which could have required the ”remarkable cancellation” that
has been presented in [29] (sections 5 and 7). The reason why we do not encounter such a pairing
stems from the fact that we perform the Wiener chaos estimate with respect to three high-frequency
Gaussians, that is withm = 3 in Lemma 9.9. In doing so, we prevent a pairing between generations
from occurring (see Paragraph 12.1.1). In [29], the Wiener chaos estimates are performed with
respect to two high-frequency Gaussians, that is with m = 2 in Lemma 9.9, and in this situation,
a pairing between generation may occur.

14For example, considering the constraint k1 − k2 + ... − k6 = 0 & p1 − p2 + ... + p5 = k1, then according to
Definition 11.3, a ”pairing between generations” corresponds to the situation when one of the kj is paired with one
of the pl.
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Preliminaries. Fix N ∈ N ∪ {∞}. Recall that from (4.4) we have:

Qs,N(u) = Qs,N(w) = Im(−1

6
Q0(w) +

1

2
Q1(w)−

1

2
Q2(w))

where w := ΠNu (with the convention Π∞ = id), and:

Q0(w) :=
∑

k1−k2+...−k6=0

Ω(k⃗)=0

ψ2s(k⃗)wk1wk2 ...wk6

and,

Q1(w) :=
∑

k1−k2+...−k6=0
p1−p2+...+p5=k1

Ω(k⃗)̸=0

ψ2s(k⃗)

Ω(k⃗)
wp1wp2 ...wp5wk2 ...wk6

and,

Q2(w) :=
∑

k1−k2+...−k6=0
q1−q2+...+q5=k2

Ω(k⃗)̸=0

ψ2s(k⃗)

Ω(k⃗)
wk1wq1wq2 ...wq5wk3 ...wk6

It suffices to show the estimates forQ0,Q1 andQ2 because |Qs,N(u)| ≤ |Q0(w)|+|Q1(w)|+|Q2(w)|.

Estimate for Q0 : Actually, the estimate :∥∥1{C(u)≤R}Q0

∥∥
Lp(dµs)

≤ C(s, R)pβ (12.1)

has somehow already been proven in the proof of Lemma 11.1. Indeed, the proof is very similar,
and we only sketch the beginning of it.

Sketch of the proof of (12.1). We decompose Q0 dyadically and we use Lemma 9.4 (with Ω(k⃗) =
0), and we obtain :

|Q0(w)| ≲
∑

N1,...,N6

Q0(N1, ..., N6)

where,

Q0(N1, ..., N6) :=
∑

k1−k2+...−k6=0

Ω(k⃗)=0

N2s−2
(1) N2

(3)

6∏
j=1

1|kj |∼Nj
|wkj |

To estimate Q0(N1, ..., N6), we use Lemma 9.6 (with f jkj = 1|kj |∼Nj
|wkj |), which yields:

Q0(N1, ..., N6) ≲ε N
2s−2+ε
(1) N2

(3)

6∏
j=1

∥∥PNj
w
∥∥
L2(T)

with PN the projector onto frequencies |k| ∼ N . This estimate is the analogue of (11.3). And
from this point, the proof of (12.1) goes exactly the same as the proof of Lemma 11.1. □

To sum up, in order to prove Proposition 8.2, it remains to establish the estimates in the following
lemma :
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Lemma 12.1. Let s > 3
2
. Then, there exists β ∈ (0, 1) such that for every R > 0, there exists a

constant C(s, R) > 0, such that for any p ∈ [2,+∞),∥∥1{C(u)≤R}Qj

∥∥
Lp(dµs)

≤ C(s, R)pβ (12.2)

for j = 1, 2.

Since the analysis for Q1 and Q2 is the same, we only prove the estimate for Q1.

12.0.1. Notations and remarks on set of indices: Before decomposing Q, let us first introduce some
notations :

Notations 12.2. Given a set of frequency k1, k2, ..., k6, p1, p2, ..., p5 ∈ Z, we denote :

• k(1), ..., k(6) a rearrangement of the kj such that

|k(1)| ≥ |k(2)| ≥ ... ≥ |k(6)|
• p(1), ..., p(6) a rearrangement of the pj such that

|p(1)| ≥ |p(2)| ≥ ... ≥ |p(5)|
• n(1), n(2), ..., n(10) a rearrangement of k2, ..., k6, p1, ..., p5 such that

|n(1)| ≥ |n(2)| ≥ ... ≥ |n(10)|
Also, in the sequel we will use :

• the letter Mj for the localization of the frequency kj,
• the letter Pj for the localization of the frequency pj,

Finally, N(1) ≥ N(2) ≥ ... ≥ N(10) will be a non-increasing rearrangement of P1, ..., P5,M2, ...,M6.

Remark 12.3. – when k1 − k2 + ...− k6 = 0, we have |k(1)| ∼ |k(2)|.
– when k1 = p1 − p2 + ...+ p5, we have |p(1)| ∼ |p(2)| or |p(1)| ∼ |k1|.
– when k1 − k2 + ...− k6 = 0 and k1 = p1 − p2 + ...+ p5, we have |n(1)| ∼ |n(2)|.
12.1. Decomposition. For convenience, we will denote Q1 simply as Q.

Next, in the same spirit as the decomposition in Section 11, we decompose the set of indices over
which we sum in Q. We invoke the following set of indices :

ID := {(k1, ..., k6, p1, ..., p5) ∈ Z11 :
6∑
j=1

(−1)j−1kj = 0, k1 =
5∑
j=1

(−1)j−1pj,
6∑
j=1

(−1)j−1k2j ̸= 0,

(n(1), n(2)) ∈ {p1, ..., p5}2 or |n(3)| < |n(1)|1−δ0 or |n(4)| ≥ |n(3)|δ0}
(12.3)

and,

IW := {(k1, ..., k6, p1, ..., p5) ∈ Z11 :
6∑
j=1

(−1)j−1kj = 0, k1 =
5∑
j=1

(−1)j−1pj,
6∑
j=1

(−1)j−1k2j ̸= 0,

(n(1), n(2)) /∈ {p1, ..., p5}2 and |n(3)| ≥ |n(1)|1−δ0 and |n(4)| < |n(3)|δ0}
(12.4)

for a fixed δ0 ∈ (0, 1)15. Note that what differs from the decomposition in Section 11 is the
additional constraint (n(1), n(2)) /∈ {p1, ..., p5}2 in IW . This is because if (n(1), n(2)) ∈ {p1, ..., p5}2,

15Once again, δ0 can be any number in (0, 1)
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we will not need to use Wiener-chaos.
In the same vein, we split Q as :

Q(w) = Q(D)(w) +Q(W )(w)

where,

Q(D)(w) :=
∑
ID

ψ2s(k⃗)

Ω(k⃗)
wp1wp2 ...wp5wk2 ...wk6 , Q(W )(w) :=

∑
IW

ψ2s(k⃗)

Ω(k⃗)
wp1wp2 ...wp5wk2 ...wk6 (12.5)

12.1.1. Absence of pairing. Recall that we have defined what a ”pairing” is in Definition 11.3.
In IW (see (12.4) above), there is (for n(1) large enough) no pairing within the three highest
frequencies, relatively to the constraint:

p1 − p2...+ p5 − k2 + k3...− k6 = 0

Indeed, suppose there is a pairing between two of the three highest frequencies. Then, the con-
straint would take the form:

the remaining high frequency = sum of seven low frequencies

which is impossible because in IW we have:

|high frequencies| ≫ |low frequencies|

12.2. Proof of the estimate. We are now prepared to prove Lemma 12.1 (for j = 1). The
forthcoming proof is organized as follows. Firstly, we establish an estimate that will be conclusive
only for the contribution Q(D). For the contribution Q(W ), we will also exploit the independence
between high frequency Gaussians and low frequency Gaussians using Wiener chaos estimate.

Proof of Lemma 12.1. Step 1, Deterministic estimate : Let w ∈ Hs− 1
2
−(T). For convenience, for

any dyadic number N we denote wNk := 1|k|∼N |wk|. We start by taking the absolute value and
summing over dyadic blocks

|Q(w)| ≲
∑

M1,...,M6,P1,...,P5

Q(M1, ...,M6, P1, ..., P5)

where M1, ...,M6, P1, ..., P5 are dyadic-valued and

Q(M1, ...,M6, P1, ..., P5) :=
∑

k1−k2+...−k6=0
p1−p2+...+p5=k1

Ω(k⃗) ̸=0

∣∣ψ2s(k⃗)

Ω(k⃗)

∣∣|wP1
p1
...wP5

p5
wM2
k2
...wM6

k6
| · 1|k1|∼M1

We decompose Q as Q = Q(D) +Q(W ), according to the decomposition of Q.

In regard to (10.4) and (10.6) from the proof of Proposition 4.1, we have:

Q(M1, ..., P5) ≲M2s−2+ε
(1) M2

(3)

(
P(2)P(3)P(4)P(5)

) 1
2

5∏
j=1

∥∥wPj
∥∥
L2

6∏
j=2

∥∥wMj
∥∥
L2

Using Notations 12.2, it means that

Q(M1, ..., P5) ≲M2s−2+ε
(1) M2

(3)

(
P(2)P(3)P(4)P(5)

) 1
2

10∏
j=1

∥∥wNj
∥∥
L2 (12.6)
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Moreover, for 1 < σ′ < σ < s− 1
2
, we have :

10∏
j=1

∥∥wNj
∥∥
L2 ≲ (N−σ

(1) ∥u∥Hσ)(N
−σ′

(2) ∥u∥Hσ′ )(N(3)N(4)...N(10))
−1 ∥u∥8H1 (12.7)

Then, since N(1) ∼ N(2), and writing σ′ as:

σ′ = α1 + (1− α)σ

for α ∈ (0, 1), we deduce from (12.7), by interpolating Hσ′
between H1 and Hσ, that:

10∏
j=1

∥∥wNj
∥∥
L2 ≲ N

−2σ+α(σ−1)
(1) (N(3)N(4)...N(10))

−1 ∥u∥8+αH1 ∥u∥2−αHσ

≲ N
−2σ+α(s− 3

2
)

(1) (N(3)N(4)...N(10))
−1 ∥u∥8+αH1 ∥u∥2−αHσ , (because α(σ − 1) < α(s− 3/2) )

Plugging this into (12.6), we obtain

Q(M1, ..., P5) ≲ N
−2σ+α(s− 3

2
)

(1) M2s−2+ε
(1) M2

(3)

(
P(2)P(3)P(4)P(5)

) 1
2 (N(3)N(4)...N(10))

−1 ∥u∥8+αH1 ∥u∥2−αHσ

Using the facts M(1) ≲ N(1) and N(1) ∼ N(2), and also Remark 7.2, we deduce that

1{C(u)≤R}Q(M1, ..., P5)

≲ε,R N
2(s−σ−1)+ε+α(s− 3

2
)

(1) M2
(3)

(
P(2)P(3)P(4)P(5)

) 1
2 N2

(1)(

=M2...M6P1...P5︷ ︸︸ ︷
N(1)N(2)N(3)N(4)...N(10))

−1 ∥u∥2−αHσ

≲ N
2(s−σ)+ε+α(s− 3

2
)

(1) M2
(3)(M2...M6)

−1P−1
(1)

(
P(2)P(3)P(4)P(5)

)− 1
2 ∥u∥2−αHσ

≲

N
2(s−σ)− 3

2
+ε+α(s− 3

2
)

(1) ∥u∥2−αHσ , if (N(1), N(2)) ∈ {P1, ..., P5}2

N
2(s−σ−1)+ε+α(s− 3

2
)

(1) N(3)N
− 1

2

(4) ∥u∥2−αHσ , if (N(1), N(2)) /∈ {P1, ..., P5}2

(12.8)

Here, we used estimates on M2
(3)(M2...M6)

−1P−1
(1)

(
P(2)P(3)P(4)P(5)

)− 1
2 in terms of the Nj, which are

gathered in the following lemma.

Lemma 12.4. – If (N(1), N(2)) ∈ {P1, ..., P5}2, then

M2
(3)(M2...M6)

−1P−1
(1)

(
P(2)P(3)P(4)P(5)

)− 1
2 ≲ N

− 3
2

(1)

– If (N(1), N(2)) /∈ {P1, ..., P5}2, then

M2
(3)(M2...M6)

−1P−1
(1)

(
P(2)P(3)P(4)P(5)

)− 1
2 ≲ N−2

(1)N(3)N
− 1

2

(4)

For clarity, we postpone the proof of Lemma 12.4 for the end of this section.
To conclude the first step of the proof, using (9.3) in (12.8) yields:

∥∥1{C(u)≤R}Q(M1, ..., P5)
∥∥
Lp(dµs)

≲

N
2(s−σ)− 3

2
+ε+α(s− 3

2
)

(1) p
2−α
2 , if (N(1), N(2)) ∈ {P1, ..., P5}2

N
2(s−σ−1)+ε+α(s− 3

2
)

(1) N(3)N
− 1

2

(4) p
2−α
2 , if (N(1), N(2)) /∈ {P1, ..., P5}2

(12.9)
where the constant depends on s, R, σ and ε. This is the deterministic estimate we will work with
later in the proof. We stress the fact that (12.9) is true for Q and also for Q(D) and Q(W ) (with
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the exact same proof).

Step 2, Estimates for Q(D) and Q(W ) :

•Let us begin with the estimate for Q(D). Recall that in Q(D) we sum over the set ID defined in
(12.3). And, the constraints in ID imply that the dyadic integers (from the dyadic decomposition)
must satisfy one of the following conditions :

(N(1), N(2)) ∈ {P1, ..., P5}2 or N(3) ≲ N1−δ0
(1) or N(4) ≳ N δ0

(3)

In the first situation, when (N(1), N(2)) ∈ {P1, ..., P5}2, (12.9) (with Q(D) instead of Q) yields:∥∥1{C(u)≤R}Q
(D)(M1, ..., P5)

∥∥
Lp(dµs)

≲ N
2(s−σ)− 3

2
+ε+α(s− 3

2
)

(1) p
2−α
2

And, the exponent of N(1) satisfy :
2(s− σ)− 3

2
+ ε+ α(s− 3

2
) > −1

2

2(s− σ)− 3
2
+ ε+ α(s− 3

2
) −→ −1

2
as


ε→ 0

α → 0

σ → s− 1
2

Thus, for ε and α close enough to 0 and σ close enough to s− 1
2
, we have∥∥1{C(u)≤R}Q

(D)(M1, ..., P5)
∥∥
Lp(dµs)

≲ N−
(1)p

2−α
2

Now, in the second situation when (N(1, N(2)) /∈ {P1, ..., P5}2 and : N(3) ≲ N1−δ0
(1) or N(4) ≳ N δ0

(3) ,

(12.9) yields : ∥∥1{C(u)≤R}Q
(D)(M1, ..., P5)

∥∥
Lp(dµs)

≲ N
2(s−σ−1)+ε+α(s− 3

2
)

(1) N(3)N
− 1

2

(4) p
2−α
2

And since the exponent of N(1) satisfy :
2(s− σ − 1) + ε+ α(s− 3

2
) > −1

2(s− σ − 1) + ε+ α(s− 3
2
) −→ −1 as


ε→ 0

α → 0

σ → s− 1
2

we deduce that for a fixed δ0 ∈ (0, 1) and for ε and α close enough to 0 and σ close enough to
s− 1

2
, we have again ∥∥1{C(u)≤R}Q

(D)(M1, ..., P5)
∥∥
Lp(dµs)

≲ N−
(1)p

2−α
2

Finally, summing over the dyadic integers M1, ...,M6, P1, ..., P5, this estimate for both situations
leads to ∥∥1{C(u)≤R}Q(D)

∥∥
Lp(dµs)

≲ p
2−α
2

which is the desired estimate.

•Next, in order to finish the proof of Lemma 12.1, we need the same estimate for the contribution
Q(W ). For this term, while the estimate (12.9) is not conclusive, we are in a situation where we can
make use of Wiener chaos. Recall that in Q(W ), we sum over the set IW defined in (12.4). Even
though the following method is very similar to the one used for estimating R(W ) in Section 11 (see
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the proof of Lemma 11.1), we re-perform the analysis in detail.

As usual, we start by decomposing Q(W ) as16 Q(W ) =
∑

M1,...,M6,P1,...,P5
Q(W )
M1,...,M6,P1,...,P5

, where :

Q(W )
M1,...,M6,P1,...,P5

:=
∑
IW

ψ2s(k⃗)

Ω(k⃗)
wp1wp2 ...wp5wk2 ...wk6

(
6∏
j=1

1|kj |∼Mj

)(
5∏
j=1

1pj∼Pj

)
Henceforth, we denote w

Mj

kj
:= 1|kj |∼Nj

wkj and w
Pj
pj := 1|pj |∼Pj

wpj for better readability.

Without loss of generality, we only prove the estimate for the contribution in Q(W ) where the three
highest frequencies are k2, k3 and k4, because the other cases are identical.
Again we denote B≪N(3)

the σ-algebra generated by Gaussians (gk)|k|≤N(3)/100
. Since we only need

to consider the contribution when N(1) is large, we can assume that N(1) is sufficiently large to

ensure N(4) ≤ N(3)/100. This follows from the constraints in IW which imply N(3) ≳ N1−δ0
(1) and

N(4) ≲ N δ0
(3). Thus, for N(1) large enough, we have N δ0

(3) ≪ N(3), ensuring that N(4) ≤ N(3)/100.

As a consequence, we have that the random variables :

wM2
k2
, wM3

k3
, wM4

k4
are independent of B≪N(3)

,

wM5
k5
, wM6

k6
, wP1

p1
, wP2

p2
, wP3

p3
, wP4

p4
, wP5

p5
are B≪N(3)

mesurable.

Now, identically to (11.7), we have∥∥∥1{C(u)≤R}Q(W )
M1,...,M6,P1,...,P5

∥∥∥
Lp(dµs)

≤
∥∥∥∥∥Q(W )

M1,...,M6,P1,...,P5

∥∥
Lp(dµs|B≪N(3)

)
· 1

BH1
R

(PN(3)/100
u)
∥∥∥
L∞(dµs)

(12.10)
And, the conditional Wiener-chaos estimate from Lemma 9.9 (withm = 3), followed by Lemma 9.10
combined with the absence of paring (see Paragraph 12.1.1), allows us to obtain :∥∥∥Q(W )

M1,...,M6,P1,...,P5

∥∥∥
Lp(dµs|B≪N(3)

)
≲ p

3
2

∥∥∥Q(W )
M1,...,M6,P1,...,P5

∥∥∥
L2(dµs|B≪N(3)

)

≲ p
3
2 (N(1)N(2)N(3))

−s
( ∑
k2,k3,k4

∣∣∣ ∑
k1,k5,k6

p1,p2,p3,p4,p5

C(k⃗, p⃗) · ψ2s(k⃗)

Ω(k⃗)
wP1
p1
wP2
p2w

P3
p3
wP4
p4w

P5
p5
wM5
k5
wM6
k6

∣∣∣2) 1
2

(12.11)

where we gathered all the constraints into the term :

C(k⃗, p⃗) := 1k1−k2+...−k6=0 · 1p1−p2+...+p5=k1 · 1Ω(k⃗)̸=0 ·
6∏
j=1

1|kj |∼Mj

5∏
j=1

1|pj |∼Pj

Next, by Cauchy-Schwarz,∑
k2,k3,k4

∣∣∣∣ ∑
k1,k5,k6

p1,p2,p3,p4,p5

C(k⃗, p⃗) · ψ2s(k⃗)

Ω(k⃗)
wP1
p1
...wP5

p5
wM5
k5
wM6
k6

∣∣∣∣2

≲
∑

k2,k3,k4

( ∑
k1,k5,k6

p1,p2,p2,p4,p5

C(k⃗, p⃗) ·
∣∣∣ψ2s(k⃗)

Ω(k⃗)

∣∣∣2|wP1
p1
...wP5

p5
wM5
k5

|2
)( ∑

k1,k5,k6
p1,p2,p2,p4,p5

C(k⃗, p⃗)|wM6
k6

|2
)

16For the analysis below, we need to keep the complex conjugation bars, so here we don’t use Q(W )
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From Lemma 9.4 we get
∣∣∣ψ2s(k⃗)

Ω(k⃗)

∣∣∣ ≲ |k(1)|2s−2(1 +
|k(3)|2

|Ω(k⃗)|
) ≲ |k(1)|2s−2|k(3)|2 ≲ N2s−2

(1) N2
(3). Then, on

the one hand:∑
k1,k5,k6

p1,p2,p2,p4,p5

C(k⃗, p⃗)·
∣∣∣ψ2s(k⃗)

Ω(k⃗)

∣∣∣2|wP1
p1
...wP5

p5
wM5
k5

|2 ≲ (N2s−2
(1) N2

(3))
2

∑
k1,k5,k6

p1,p2,p2,p4,p5

C(k⃗, p⃗) · |wP1
p1
...wP5

p5
wM5
k5

|2

≲ (N2s−2
(1) N2

(3))
2

∑
k5

p1,p2,p2,p4,p5

|wP1
p1
...wP5

p5
wM5
k5

|2 ·
∑
k1,k6

1k6=k1−k2...+k5 · 1p1−p2+...+p5=k1︸ ︷︷ ︸
≤1

≲ (N2s−2
(1) N2

(3)

∥∥wP1
∥∥
L2 ...

∥∥wP5
∥∥
L2

∥∥wM5
∥∥
L2)

2

≲
(
N2s−2

(1) N2
(3)(P1...P5M5)

−1
∥∥wP1

∥∥
H1 ...

∥∥wP5
∥∥
H1

∥∥wM5
∥∥
H1

)2
and on the other hand,∑
k1,k2,k3,k4,k5,k6
p1,p2,p2,p4,p5

C(k⃗, p⃗)|wN6
k6
|2 =

∑
k6

|wN6
k6
|2 ·

∑
k1,k2,k3,k4,k5
p1,p2,p2,p4,p5

C(k⃗, p⃗) ≲ N(2)N(3)P1...P5M5 · (M−1
6

∥∥wM6
∥∥
H1)

2

where we used the counting bound from Lemma 9.3. We deduce from the two inequalities above
that ( ∑

k2,k3,k4

∣∣ ∑
k1,k5,k6

p1,p2,p3,p4,p5

C(k⃗, p⃗) · ψ2s(k⃗)

Ω(k⃗)
wP1
p1
wP2
p2w

P3
p3
wP4
p4w

P5
p5
wM5
k5
wM6
k6

∣∣2) 1
2

≲ N2s−2
(1) N2

(3)N
1
2

(1)N
1
2

(3)

∥∥wP1
∥∥
H1 ...

∥∥wP5
∥∥
H1

∥∥wM5
∥∥
H1

∥∥wM6
∥∥
H1

≲ N
2s− 3

2

(1) N
5
2

(3)

∥∥wP1
∥∥
H1 ...

∥∥wP5
∥∥
H1

∥∥wM5
∥∥
H1

∥∥wM6
∥∥
H1

Coming back to (12.11), we deduce that∥∥∥Q(W )
M1,...,M6,P1,...,P5

∥∥∥
Lp(dµs|B≪N(3)

)
≲ p

3
2N

− 3
2

(1) N
5
2
−s

(3)

∥∥wP1
∥∥
H1 ...

∥∥wP5
∥∥
H1

∥∥wM5
∥∥
H1

∥∥wM6
∥∥
H1

And plugging this into (12.10), we obtain :∥∥∥1{C(u)≤R}Q(W )
M1,...,M6,P1,...,P5

∥∥∥
Lp(dµs)

≲R p
3
2N

− 3
2

(1) N
5
2
−s

(3)

Interpolating the above inequality with (12.9) (more precisely (12.9) with Q(W ) instead of Q), we
can conclude in the same way as what we did with R(W ) in the proof of Lemma 11.1 (in particular
using again Lemma 11.5). □

In order to complete the proof of Lemma 12.1, we provide in the next paragraph a proof of the
technical Lemma 12.4.

Proof of Lemma 12.4.

Proof of Lemma 12.4. Recall that we use Notations 12.2.

•Assume first that (N(1), N(2)) ∈ {P1, ..., P5}2. Then, P−1
(1)P

− 1
2

(2) ≲ N
− 3

2

(1) . Moreover, we have

M2
(3)(M2...M6)

−1 ≤M2
(3)(M(2)M(3)...M(6))

−1 ≤ (M(4)M(5)M(6))
−1 ≲ 1
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Combining these two inequalities, we obtain

M2
(3)(M2...M6)

−1P−1
(1)

(
P(2)P(3)P(4)P(5)

)− 1
2 ≲ N

− 3
2

(1) (P(3)P(4)P(5))
− 1

2 ≲ N
− 3

2

(1)

which is the desired estimate.

•Now, assume that (N(1), N(2)) /∈ {P1, ..., P5}2. It means that :

(N(1), N(2)) ∈ {M2, ...,M6}2 or
(
N(1) ∈ {M2, ...,M6} and N(2) ∈ {P1, ..., P5}

)
or
(
N(2) ∈ {M2, ...,M6} and N(1) ∈ {P1, ..., P5}

)
– Fristly, we suppose that (N(1), N(2)) ∈ {M2, ...,M6}2. Then, we note that N(3) ∈ {M2, ...,M6} or
P(1) = N(3). And also,

N(4) ∈ {M2, ...,M6} or N(4) ∈ {P1, ..., P5}
Considering these facts (and still the fact that N(1) ∼ N(2)), we deduce that

M2
(3)(M2...M6)

−1P−1
(1)

(
P(2)P(3)P(4)P(5)

)− 1
2 ≲M2

(3)N
−2
(1)N

−1
(3)N

− 1
2

(4)

Using then the fact that M(3) ≲ N(3), we have

M2
(3)(M2...M6)

−1P−1
(1)

(
P(2)P(3)P(4)P(5)

)− 1
2 ≲ N−2

(1)N(3)N
− 1

2

(4)

which is the desired inequality.
–Secondly, we suppose that N(1) ∈ {M2, ...,M6} and N(2) ∈ {P1, ..., P5}. We consider two cases.
a) The first one is when M1 ∈ {M(1),M(2),M(3)}. In that case, M(4),M(5),M(6), P(2), ..., P(5) are
seven indices out of the ten indicesNj (that would not have been the case ifM(1) ∈ {M(4),M(5),M(6)},
because according to Notations 12.2, M1 is not one of the Nj). As a consequence,

max{M(4),M(5),M(6), P(2), ..., P(5)} ≥ N(4) so, (M(4)M(5)M(6))
−1(P(2)...P(5))

− 1
2 ≲ N

− 1
2

(4)

On the other hand, using the fact that M(1) ∼M(2), we have

M2
(3)(M2M3...M6)

−1 ≲M2
(3)(M(2)M(3)...M(6))

−1 ≲M−1
(1)M(3)(M(4)M(5)M(6))

−1

Combining these two inequalities and recalling that M(1), P(1) ∼ N(1), we obtain

M2
(3)(M2...M6)

−1P−1
(1)

(
P(2)P(3)P(4)P(5)

)− 1
2 ≲ N−2

(1)M(3)N
− 1

2

(4) ≲ N−2
(1)N(3)N

− 1
2

(4)

b) The second case we consider is whenM1 ∈ {M(4),M(5),M(6)}. In that case, {M(1),M(2),M(3)} ⊂
{M2,M3, ...,M6}. Thus,

(M2...M6)
−1 ≲ (M(1)M(2)M(3)M(5)M(6))

−1

so,

M2
(3)(M2...M6)

−1 ≲ N−2
(1)M(3)

and,

M2
(3)(M2...M6)

−1P−1
(1)

(
P(2)P(3)P(4)P(5)

)− 1
2 ≲ N−3

(1)M(3) ≲ N−3
(1)N(3)

which is an even better estimate than the one we desired.
–Finally, the case N(2) ∈ {M2, ...,M6} and N(1) ∈ {P1, ..., P5} is identical to the previous one.
Hence, the proof of Lemma 12.4 is finished.

□
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Appendix A. Construction and properties of the flow and the truncated flow

In this appendix, we study the local and global wellposedness in Hσ(T), σ ≥ 1, for both equation
(1.1) and truncated equation (2.1). We also study approximation properties of the truncated flow
along with its structure.

A.1. Local and global wellposedness. We begin this paragraph by recalling some facts about
the space :

W (T) := {u ∈ D′(T) :
∑
k∈Z

|û(k)| < +∞}

of absolutely convergent Fourier series, called the Wiener algebra, and equipped with the norm

∥u∥W (T) :=
∑
k∈Z

|û(k)|

(1) W (T) is a Banach algebra with the estimate

∥uv∥W (T) ≤ ∥u∥W (T) ∥v∥W (T)

(2) For every σ ≥ 0, W (T) ∩Hσ(T) is an algebra. Furthermore, there exists Cσ > 0 such that

∥uv∥Hσ ≤ Cσ(∥u∥Hσ ∥v∥W (T) + ∥v∥Hσ ∥u∥W (T))

In particular, if σ > 1
2
, Hσ(T) is a Banach algebra and there exists C ′

σ > 0 such that

∥uv∥Hσ ≤ C ′
σ ∥u∥Hσ ∥v∥Hσ

We are now ready to prove the following local existence theorem :

Theorem A.1. Let σ ≥ 1. Let t0 ∈ R. Both equation (1.1) and truncated equation (2.1) are
locally well-posed in Hσ(T), in the sense that for any R0 > 0, there exists T0 > 0 such that for
every ∥u∥Hσ ≤ R0 there exists a unique u ∈ C([t0 − T0, t0 + T0], H

σ(T)) that satisfies the Duhamel
formula :

u(t) = ei(t−t0)∂
2
xu0 − i

∫ t

t0

ei(t−τ)∂
2
x(|u(τ)|4u(τ))dτ (A.1)

for all |t− t0| ≤ T0. And, for every N ∈ N, there exists a unique vN ∈ C([t0 − T0, t0 + T0], H
σ(T))

that satisfies the Duhamel formula :

vN(t) = ei(t−t0)∂
2
xu0 − i

∫ t

t0

ei(t−τ)∂
2
xΠN(|ΠNvN(τ)|4ΠNvN(τ))dτ (A.2)

for all |t− t0| ≤ T0.

Remark A.2. It is important to notice that the existence time T0 > 0 is the same for both NLS
and truncated equation and does not depend on the integer N ∈ N.

Proof. To show Theorem A.1, we apply a fixed point argument. Fix R0 > 0 and ||u0||Hσ ≤ R0.
For T > 0, we denote

XT := C([t0 − T, t0,+T ], H
σ(T))

which is a Banach space when endowed with the sup norm

∥u∥XT
:= sup

τ∈[t0−T,t0,+T ]
∥u(τ)∥Hσ
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For every N ∈ N ∪ {∞}, let us consider the well-defined map

ΓN :XT −→ XT

u 7−→ ei(t−t0)∂
2
xu0 − i

∫ t

t0

ei(t−τ)∂
2
xΠN(|ΠNu(τ)|4ΠNu(τ))dτ

where by convention Π∞ = id. We recall the crucial point that ||ΠNu||Hσ ≤ ∥u∥Hσ . Thanks to
that point, every estimate below are uniform in N so that every constant below does not depend
on N.

Using now the facts that Hσ(T) is an algebra (since σ ≥ 1 > 1
2
) and ei(t−t0)∂

2
x is a linear isometry

on Hσ(T), we have for some constant C0 > 0,

∥ΓNu∥XT
≤ ∥u0∥Hσ + C0T ∥u∥5XT

(A.3)

In addition, using the multilinearity of (u1, u2, u3, u4, u5) 7−→ u1u2u3u4u5 we have for some constant
C1 > 0,

∥ΓNu− ΓNv∥XT
=

∥∥∥∥∫ t

t0

ei(t−τ)∂
2
xΠN(|ΠNu(τ)|4ΠNu(τ)− |ΠNv(τ)|4ΠNv(τ))dτ

∥∥∥∥
XT

≤ C1T (∥u∥4XT
+ ∥v∥4XT

) ∥u− v∥XT

(A.4)

Let R > 2R0 (for example R = 1 + 2R0) and T0 := 1
3max(C0,C1)R4 . Fix 0 < T ≤ T0 and denote by

BR(T ) the closed centered ball in XT of radius R. We get from (A.3) and (A.4) and our choice of
the parameters R and T0 that for any u, v ∈ BR(T ),

||ΓNu||BR(T ) ≤
R

2
+
R

2
≤ R (A.5)

and,

||ΓNu− ΓNv||BR(T ) ≤ 2C1TR
4 ∥u− v∥BR(T ) ≤

2

3
∥u− v∥BR(T ) (A.6)

These two estimates imply that the map ΓN is a contraction from (the complete space) BR(T ) to
itself. Hence, applying the Banach’s fixed point theorem to the map

ΓN : BR(T ) −→ BR(T )

leads to the existence part of Theorem A.1. However, through classical considerations, we can
prove that the uniqueness holds in the entire space C([t0 − T, t0 + T ], Hσ(T)). So the proof is
completed. □

Putting together the local solutions from Theorem A.1, we obtain the two following corollaries.

Corollary A.3. Let σ ≥ 1. For every u0 ∈ Hσ(T), there exists a unique maximal solution
u ∈ C(Imax(u0), Hσ(T)) of (1.1) where Imax(u0) is an open interval containing 0. Moreover, if
Imax(u0) is strictly included in R, then

∥u(t)∥Hσ −→ +∞

as t −→ ∂Imax(u0).
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Corollary A.4. Let σ ≥ 1. For every u0 ∈ Hσ(T) and every N ∈ N, there exists a unique maximal
solution uN ∈ C(Imax,N(u0), Hσ(T)) of (2.1) where Imax,N(u0) is an open interval containing 0.
Moreover, if Imax,N(u0) is strictly included in R, then

||uN(t)||Hσ −→ +∞
as t −→ ∂Imax,N(u0).

Thus, to obtain that the solutions of equations (1.1) and (2.1) are global, it suffices to show that
the Hσ(T)-norm of the solutions do not blow up in finite time. Fortunately, we have :

Proposition A.5. Let u0 ∈ Hσ(T). There exists a constant C0 > 0 only depending on ∥u∥H1(T)
and σ ≥ 1, such that

∥u(t)∥Hσ ≤ ∥u∥Hσ e
C0|t|, for all t ∈ Imax(u0) (A.7)

and,
||uN(t)||Hσ ≤ ∥u∥Hσ e

C0|t|, for all t ∈ Imax,N(u0) (A.8)

where u is the maximal solution of (1.1) and uN is the maximal solution of (2.1). Moreover, we
can explicitly choose C0 ≤ Cσ(1 + ∥u∥H1(T))

12 where Cσ > 0 depends only on σ.

Proof. We use the convention Π∞ = id, u∞ = u and Imax,∞(u0) = Imax(u0). Let N ∈ N ∪ {∞}
and t ∈ Imax,N(u0). Passing to the Hσ-norm in the Duhamel formula

uN(t) = ei(t)∂
2
xu0 − i

∫ t

0

ei(t−τ)∂
2
xΠN(|ΠNuN(τ)|4ΠNuN(τ))dτ

we get that, for some constant C > 0 (only depending on σ),

||uN(t)||Hσ ≤ ∥u∥Hσ + |
∫ t

0

∥∥|ΠNuN(τ)|4ΠNuN(τ)
∥∥
Hσ dτ |

≤ ∥u∥Hσ + C |
∫ t

0

∥uN(τ)∥Hσ ∥uN(τ)∥4W (T) dτ |
(A.9)

The crucial point of the proof is that ∥uN(τ)∥W (T) is bounded by the H1(T)-norm of the initial
data. Indeed, using the mass and Hamiltonian conservation

∥uN(τ)∥W (T) ≤ ∥uN(τ)∥H1(T)

≤ (∥uN(τ)∥2L2 + ∥∂xuN(τ)∥2L2)
1
2

≲

(
∥uN(τ)∥2L2 +

(
1

2
∥∂xuN(τ)∥2L2 +

1

6
∥uN(τ)∥6L6

)) 1
2

≲ (∥u∥2L2 +
1

2
∥∂xu0∥2L2 +

1

6
∥u∥6L6)

1
2

≤ C ′
0

where we can choose C ′
0 ∼ (1 + ∥u∥H1(T))

3, because H1(T) embeds continuously in L6(T). Now,

plugging this bound into (A.9), we get

||uN(t)||Hσ ≤ ∥u∥Hσ + C0 |
∫ t

0

∥uN(τ)∥Hσ dτ |

where we can choose C0 ∼ (1 + ∥u∥H1(T))
12. Then, applying Gronwall’s inequality, we obtain

||uN(t)||Hσ ≤ ∥u∥Hσ e
C0|t|
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which is the desired bound. □

Theorem A.6. For every u0 ∈ Hσ(T), each maximal solution of (1.1) and (2.1) is global. In
other words,

Imax(u0), Imax,N(u0) = +∞
for all N ∈ N.

Proof. The estimates from Proposition A.5 imply that the Hσ-norm of both solutions does not
blow up in finite time. Therefore, Corollaries A.3 and A.4 lead to the result. □

A.2. Regularity of the flows and approximation properties. We recall that we denote by
Φ(t) the flow of (1.1) and by ΦN(t) the flow of the truncated equation (2.1). We also use the
notation Φ∞(t) = Φ(t).

Proposition A.7. Let σ ≥ 1. Let R > 0 and T > 0. There exists a constant Λ(R, T ) > 0 only
depending on T,R and σ, such that for any u0 ∈ BHσ

R ,

sup
|t|≤T

∥Φ(t)u0∥Hσ + sup
|t|≤T

∥ΦN(t)u0∥Hσ ≤ Λ(R, T ), ∀N ∈ N

Proof. This is a consequence of Proposition A.5. For example we can take

Λ(R, T ) = ReCσ(1+R)12T

for a certain constant Cσ > 0 only depending on σ. □

We continue this paragraph with two significant regularity results for the flow of (1.1) and (2.1).

Proposition A.8. Let t ∈ R. For every N ∈ N ∪ {∞}, the map

ΦN(t) :H
σ(T) −→ Hσ(T)

u 7−→ ΦN(t)u

is continuous.

Proof. For better readability, we only provide the proof for Φ(t). Let u, v ∈ Hσ(T). Without loss of
generality, we can assume that ∥u∥Hσ ≤ R and ∥v∥Hσ ≤ R for some R > 0. We invoke Λ(R, t) > 0
from the Proposition A.7. Firstly, using the Duhamel formula and passing to the Hσ(T)-norm we
get that for all s ≤ t

∥Φ(s)v − Φ(s)u∥Hσ ≤ ∥v − u∥Hσ + CΛ(R, t)4 |
∫ s

0

∥Φ(τ)v − Φ(τ)u∥Hσ dτ |

Secondly, the Gronwall’s inequality yields

∥Φ(t)v − Φ(t)u∥Hσ ≤ ∥v − u∥Hσ e
CΛ(R,t)4|t|

In particular,
∥Φ(t)v − Φ(t)u∥Hσ −→

v→u
0

□

We can go even further with the following proposition:

Proposition A.9. For every N ∈ N ∪ {∞}, the map

ΦN : R×Hσ(T) −→ Hσ(T)
(t, u) 7−→ ΦN(t)u

is continuous.
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Proof. For better readability, we only provide the proof for Φ. We fix t ∈ R and u ∈ Hσ(T) and
we show that

∥Φ(t+ h)(u+ δu)− Φ(t)u∥Hσ −→ 0, as h→ 0 and δu→ 0

We denote F (τ, v) := |Φ(τ)v|4Φ(τ)v. Let us compute the difference Φ(t+h)(u+ δu)−Φ(t)u using
the Duhamel formula.

Φ(t+ h)(u+ δu)− Φ(t)u =
(
Φ(t+ h)(u+ δu)− Φ(t+ h)u

)
+
(
Φ(t+ h)u− Φ(t)u

)
= ei(t+h)∂

2
xδu− i

∫ t+h

0

ei(t+h−τ)∂
2
x(F (τ, u+ δu)− F (τ, u))dτ

+ eit∂
2
x(eih∂

2
x − 1)u− i

∫ t+h

0

ei(t+h−τ)∂
2
xF (τ, u)dτ + i

∫ t

0

ei(t−τ)∂
2
xF (τ, u)dτ

= ei(t+h)∂
2
xδu+ eit∂

2
x(eih∂

2
x − 1)u− i

∫ t+h

0

ei(t+h−τ)∂
2
x(F (τ, u+ δu)− F (τ, u))dτ

− i

∫ t+h

t

ei(t+h−τ)∂
2
xF (τ, u)dτ − i

∫ t

0

ei(t−τ)∂
2
x(eih∂

2
x − 1)F (τ, u)dτ

Furthermore, without loss of generality we can assume that t+ h ≤ t+ 1 =: T and ∥u+ δu∥Hσ ≤
∥u∥Hσ + 1 =: R. Now, we invoke Λ(R, T ) > 0 from Proposition A.7. Passing to the Hσ(T)-norm
in the above formula we have

∥Φ(t+ h)(u+ δu)− Φ(t)u∥Hσ ≤ ∥δu∥Hσ +
∥∥∥(eih∂2x − 1)u

∥∥∥
Hσ

+ CΛ(R, T )4 |
∫ T

0

∥Φ(τ)(u+ δu)− Φ(τ)u∥Hσ dτ |

+ |h|Λ(R, T )5+ |
∫ t

0

∥∥∥(eih∂2x − 1)F (τ, u)
∥∥∥
Hσ
dτ |

Using the continuity of v 7−→ Φ(τ)v (Proposition A.8) and the dominated convergence theorem, we
deduce that the right hand side tends to 0 as h→ 0 and δu→ 0. So the proof of Proposition A.9
is complete. □

Proposition A.10 (Approximation property). Let σ ≥ 1. Let K be a compact subset of Hσ(T)
and T > 0. Then, uniformly in |t| ≤ T and u0 ∈ K,

lim
N→+∞

∥Φ(t)u0 − ΦN(t)u0∥Hσ = 0,

In other words,
sup
|t|≤T

sup
u0∈K

∥Φ(t)u0 − ΦN(t)u0∥Hσ −→
N→+∞

0

Proof. First, from the compactness of K, we invoke R > 0 such that K ⊂ BHσ

R , where BHσ

R is the
closed centered ball of radius R in Hσ(T). We then invoke Λ(R, T ) > 0 from Proposition A.7.
Now, we set R1 := 1 + 2Λ(R, T ) and invoke δ = δ(R1) > 0 the local existence time associated to
R1 from the local theory (Theorem A.1). These parameters ensure that for every N ∈ N ∪ {∞}
and u0 ∈ BHσ

R , the Duhamel map,

ΓN : BR1(δ) −→ BR1(δ)

u 7−→ eit∂
2
xu0 − i

∫ t

0

ei(t−τ)∂
2
xΠN(|ΠNu(τ)|4ΠNu(τ))dτ
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is a contraction, with a universal contraction coefficient 0 < γ < 1 (for example γ = 2
3
as in the

proof of Theorem A.1), where BR1(δ) is the closed centered ball in C([−δ, δ], Hσ(T)) of radius R1.

Step 1: Local-time convergence

Firstly, we prove the local property

sup
|t|≤δ

sup
u0∈K

∥Φ(t)u0 − ΦN(t)u0∥Hσ −→
N→+∞

0 (A.10)

Let u0 ∈ BHσ

R . We denote u(t) = Φ(t)u0 and uN(t) = ΦN(t)u0. Since u and uN are respectively
the fixed point of Γ∞ and ΓN , we have

∥u− uN∥BR1
(δ) = ∥Γ∞u− ΓNuN∥BR1

(δ)

≤ ∥Γ∞u− ΓNu∥BR1
(δ) + ∥ΓNu− ΓNuN∥BR1

(δ)

≤ ∥Γ∞u− ΓNu∥BR1
(δ) + γ ∥u− uN∥BR1

(δ)

Therefore,

∥u− uN∥BR1
(δ) ≤

1

1− γ
∥Γ∞u− ΓNu∥BR1

(δ)

Hence, to prove (A.10), it suffices to show that

sup
u0∈K

∥Γ∞u− ΓNu∥BR1
(δ) −→

N→+∞
0

Next, for every |t| ≤ δ we have,

Γ∞u(t)− ΓNu(t) = −i
∫ t

0

ei(t−τ)∂
2
x(|u(τ)|4u(τ)− ΠN(|ΠNu(τ)|4ΠNu(τ)))dτ

= −i
∫ t

0

ei(t−τ)∂
2
xΠ⊥

N(|u(τ)|4u(τ))dτ − i

∫ t

0

ei(t−τ)∂
2
xΠN(|u(τ)|4u(τ)− |ΠNu(τ)|4ΠNu(τ))dτ

So passing to the sup norm we get,

∥Γ∞u− ΓNu∥BR1
(δ) ≤ δ sup

|τ |≤δ

∥∥Π⊥
N(|u(τ)|4u(τ))

∥∥
Hσ

+ Cδ sup
|τ |≤δ

∥u(τ)− ΠNu(τ)∥Hσ (∥u(τ)∥4Hσ + ∥ΠNu(τ)∥4Hσ)

≤ Cδ(sup
|τ |≤δ

∥∥Π⊥
N(|u(τ)|4u(τ))

∥∥
Hσ + sup

|τ |≤δ

∥∥Π⊥
Nu(τ)

∥∥
Hσ Λ(R, T )

4)

Taking the supremum over u0 ∈ K we then obtain,

sup
u0∈K

∥Γ∞u− ΓNu∥BR1
(δ)

≤ Cδ( sup
u0∈K

sup
|τ |≤δ

∥∥Π⊥
N(|u(τ)|4u(τ))

∥∥
Hσ + Λ(R, T )4 sup

u0∈K
sup
|τ |≤δ

∥∥Π⊥
Nu(τ)

∥∥
Hσ)

(A.11)

Besides, based on a classical result in functional analysis (see Lemma 3.4), Π⊥
N satisfies the key

property of converging uniformly to 0 on compact sets as N → +∞. At the same time, the two
following sets

K1 : = {Φ(τ)u0 : u0 ∈ K, |τ | ≤ δ}, K2 : = {|Φ(τ)u0|4Φ(τ)u0 : u0 ∈ K, |τ | ≤ δ}
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are compacts in Hσ(T). Indeed, it results from the facts that the map

R×Hσ(T) −→ Hσ(T)
(t, u0) 7−→ Φ(t)u0

and the map

Hσ(T)5 −→ Hσ(T)
(u1, u2, u3, u4, u5) 7−→ u1u2u3u4u5

are continuous and the fact that the image of a compact set under a continuous map is compact.
Now, rewriting (A.11) we get

sup
u0∈K

∥Γ∞u− ΓNu∥BR1
(δ) ≤ Cδ( sup

w2∈K2

Π⊥
Nw2 + Λ(R, T )4 sup

w1∈K1

Π⊥
Nw1)

−→
N→∞

0

And this implies the desired local property (A.10).

Step 2: Long-time convergence

Secondly, we complete the proof of Proposition A.10 by iterating this local argument. Let m :=
⌊T
δ
⌋+ 1, and for any integer |k| ≤ m, let Ik := [kδ − δ, kδ + δ]. We show that for any |k| ≤ m,

sup
t∈Ik

sup
u0∈K

∥Φ(t)u0 − ΦN(t)u0∥Hσ −→
N→+∞

0 (A.12)

If we do so, the proof of Proposition A.10 will be completed. At this stage, we know that (A.12)
is true when k = 0. Now, we assume that (A.12) is true for some integer |k| ≤ m− 1 and we show
that (A.12) is still true for every integer |k′| = |k|+ 1. Also, without loss of generality, we assume
that k ≥ 0 and k′ = k + 1. The crucial point here is that since we chose R1 = 1 + 2Λ(R, T ), we
have that for every N ∈ N ∪ {∞} and u0 ∈ BHσ

R , the Duhamel map

ΓN : B
(k)

R1
(δ) −→ B

k

R1
(δ)

u 7−→ ei(t−tk)∂
2
xuN(tk)− i

∫ t

tk

ei(t−τ)∂
2
xΠN(|ΠNu(τ)|4ΠNu(τ))dτ

is a contraction with a universal contraction coefficient 0 < γ < 1, where tk := kδ, u∞(tk) := u(tk),

and B
(k)

R1
(δ) is the closed centered ball in C([tk − δ, tk + δ], Hσ(T)) of radius R1.

Now, doing the same calculations as in the first step of the proof we obtain,

∥u− uN∥B(k)
R1

(δ)
≤ 1

1− γ
∥Γ∞u− ΓNu∥B(k)

R1
(δ)

and,

sup
u0∈K

∥Γ∞u− ΓNu∥B(k)
R1

(δ)
≤ sup

u0∈K
sup
t∈Ik

∥∥∥ei(t−tk)∂2x(u(tk)− uN(tk))
∥∥∥
Hσ

+ Cδ( sup
u0∈K

sup
τ∈Ik

∥∥Π⊥
N(|u(τ)|4u(τ))

∥∥
Hσ + Λ(R, T )4 sup

u0∈K
sup
τ∈Ik

∥∥Π⊥
Nu(τ)

∥∥
Hσ)

On the right hand side, the first term :

sup
u0∈K

sup
t∈Ik

∥∥∥ei(t−tk)∂2x(u(tk)− uN(tk))
∥∥∥
Hσ

= sup
u0∈K

∥u(tk)− uN(tk)∥Hσ
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tends to 0 as N −→ +∞ by our assumption. And, we handle the remaining term in the same
way as in the first part of the proof. Finally (A.12) is true for all |k| ≤ m, so the proof of
Proposition A.10 is completed. □

Corollary A.11. Let σ ≥ 1, T > 0 and let K be a compact subset of Hσ(T). Then,
(1) for any ε > 0, there exists N0 ∈ N such that for all N ≥ N0

ΦN(t)(K) ⊂ Φ(t)(K) +BHσ

ε

for all |t| ≤ T .
(2) for any ε > 0, there exists N1 ∈ N such that for all N ≥ N1

Φ(t)(K) ⊂ ΦN(t)(K +BHσ

ε )

for all |t| ≤ T .

Proof. Let ε > 0.

• For the first point, we take u0 ∈ K and we write

ΦN(t)u0 = Φ(t)u0 + (ΦN(t)u0 − Φ(t)u0) (A.13)

From Proposition A.10, there exists N0 ∈ N such that for all N ≥ N0

sup
|t|≤T

sup
v0∈K

∥ΦN(t)v0 − Φ(t)v0∥Hσ ≤ ε

Thus, for all N ≥ N0, ΦN(t)u0 − Φ(t)u0 ∈ BHσ

ε for all |t| ≤ T and all u0 ∈ K. Coming
back to (A.13), it implies that for all N ≥ N0

ΦN(t)u0 ∈ Φ(t)(K) +BHσ

ε

for all u0 ∈ K and all |t| ≤ T .
• The second point is a consequence of the first one. Let |t| ≤ T . From the continuity of the
map Φ(t) (see Proposition A.8) we have that Φ(t)(K) is a compact subset of Hσ(T). So
from the first point there exists N1 ∈ N such that for all N ≥ N1

ΦN(−τ) (Φ(t)(K)) ⊂ Φ(−τ)Φ(t)(K) +BHσ

ε

for all |τ | ≤ T . In particular, for τ = t we have :

ΦN(−t) (Φ(t)(K)) ⊂ Φ(−t)Φ(t)(K) +BHσ

ε = K +BHσ

ε

Applying ΦN(t) to this we obtain

Φ(t)(K) ⊂ ΦN(t)
(
K +BHσ

ε

)
This concludes the proof of Corollary A.11. □

A.3. Structure of the truncated flow. We set

EN := ΠNL2(T)
E⊥
N := Π⊥

NL2(T) = (Id− ΠN)L2(T)

Proposition A.12. We have the following properties ;
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(1) The truncated flow ΦN(t) commute with the frequency projector ΠN , that is

ΦN(t) ◦ ΠN = ΠN ◦ ΦN(t)

As a consequence, the truncated flow ΦN(t) maps the finite-dimensional space EN to itself. More-
over, the induced map

Φ̃N(t) : EN −→ EN

u0 7−→ ΦN(t)(u0)

is the flow of the ODE {
i∂tu+ ∂2xu = ΠN (|u|4u)
u|t=0 = u0 ∈ EN

(FNLS)

which can be seen as the finite-dimensional Hamiltonian equation on EN :{
i∂tu = ∂HN

∂u
(u)

u|t=0 = u0 ∈ EN

with Hamiltonian HN(u) :=
1
2
∥∂2xu∥

2
L2(T) +

1
6
∥u∥6L6(T), for u ∈ EN .

(2) The truncated flow ΦN(t) commute with Π⊥
N , that is

ΦN(t) ◦ Π⊥
N = Π⊥

N ◦ ΦN(t)

As a consequence, the truncated flow ΦN(t) maps the space E⊥
N to itself. Moreover, the induced

map

Φ⊥
N(t) : E

⊥
N −→ E⊥

N

u0 7−→ ΦN(t)(u0)

is the solution of the linear Schrödinger equation{
i∂tu+ ∂2xu = 0

u|t=0 = u0 ∈ E⊥
N

Hence, Φ⊥
N(t) coincide with the linear operator eit∂

2
x on E⊥

N .

(3) The truncated flow ΦN(t) can be factorized as (Φ̃N(t), e
it∂2x) on EN ×E⊥

N . In other words, for every
u0 ∈ Hσ(T),

ΦN(t)(u0) = Φ̃N(t)ΠNu0 + eit∂
2
xΠ⊥

Nu0

Let us now prove these three points.

Proof. Let u0 ∈ L2(T).
(1) • ΦN(t) is the flow of (2.1). And, when we apply ΠN to equation (2.1), we see that ΠNΦN(t)u0 is

the solution of the equation{
i∂tu+ ∂2xu = ΠN (|ΠNu|4ΠNu) = ΠN (|u|4u)
u|t=0 = ΠNu0

On the other hand, from the definition of the flow of (2.1), the solution of the equation above is
none other than ΦN(t)ΠNu0 itself. This means that

ΠNΦN(t)u0 = ΦN(t)ΠNu0
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• Next, we show that (FNLS) can be seen as a finite-dimensional Hamiltonian equation on EN .
Every element u ∈ EN can be decompose as

u = v + iw

where

v =
∑
|k|≤N

Re(uk)e
ikx =:

∑
|k|≤N

vke
ikx ∈ EN

w =
∑
|k|≤N

Im(uk)e
ikx =:

∑
|k|≤N

wke
ikx ∈ EN

Furthermore, we invoke the operators

∂

∂uk
:=

∂

∂vk
+ i

∂

∂wk
∂

∂u
:=

∂

∂v
+ i

∂

∂w
=:
∑
|k|≤N

eikx
∂

∂vk
+ i

∑
|k|≤N

eikx
∂

∂wk

and also the function
HN : EN −→ R

u 7−→ 1

2

∥∥∂2xu∥∥2L2(T) +
1

6
∥u∥6L6(T)

By performing elementary computations, we see that we can rewrite (FNLS) as{
i∂tu = ∂HN

∂u
(u)

u|t=0 = u0
(FNLS)

This means that (FNLS) is an Hamiltonian equation on EN with associated Hamiltonian HN .

(2) Once again, applying Π⊥
N to equation (2.1), we see that Π⊥

NΦN(t)u0 is the solution of the equation{
i∂tu+ ∂2xu = 0

u|t=0 = Π⊥
Nu0

This means that
Π⊥
NΦN(t)u0 = eit∂

2
xΠ⊥

Nu0 (A.14)

Furthermore, ΠNΦN(t)Π
⊥
Nu0 is the solution of the equation{

i∂tu+ ∂2xu = ΠN (|ΠNu|4ΠNu)

u|t=0 = 0

Thus, ΠNΦN(t)Π
⊥
Nu0 is none other than 0, and we obtain from (A.14) that

ΦN(t)Π
⊥
Nu0 = Π⊥

NΦN(t)Π
⊥
Nu0 = eit∂

2
xΠ⊥

Nu0 = Π⊥
NΦN(t)u0

(3) As a consequence of the two previous points, we can write

ΦN(t)u0 = ΠNΦN(t)u0 +Π⊥
NΦN(t)u0

= ΦN(t)ΠNu0 + ΦN(t)Π
⊥
Nu0

= Φ̃N(t)ΠNu0︸ ︷︷ ︸
∈EN

+ eit∂
2
xΠ⊥

Nu0︸ ︷︷ ︸
∈E⊥

N
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2025.
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