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A JACQUET-LANGLANDS FUNCTOR FOR p-ADIC LOCALLY ANALYTIC

REPRESENTATIONS

GABRIEL DOSPINESCU AND JUAN ESTEBAN RODRÍGUEZ CAMARGO

Abstract. We study the locally analytic theory of infinite level local Shimura varieties. As a main result,
we prove that in the case of a duality of local Shimura varieties, the locally analytic vectors of different
period sheaves at infinite level are independent of the actions of the p-adic Lie groups G and Gb of the
two towers; this generalizes a result of Pan for the Lubin-Tate and Drinfeld spaces for GL2. We apply this
theory to show that the p-adic Jacquet-Langlands functor of Scholze commutes with the passage to locally
analytic vectors, and is compatible with central characters of Lie algebras. We also prove that the compactly
supported de Rham cohomology of the two towers are isomorphic as smooth representations of G×Gb.
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1. Introduction

Let p be a prime number. The main objective of this work is to give some new insights in the locally
analytic incarnation of the p-adic local Langlands correspondence, cf. [Bre10] [CDP14]. The objects of
study in this paper are the infinite level Lubin-Tate and Drinfeld spaces (or more generally local Shimura
varieties) and the locally analytic vectors for the action of the associated p-adic Lie groups on different
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2 GABRIEL DOSPINESCU AND JUAN ESTEBAN RODRÍGUEZ CAMARGO

period sheaves. To motivate our main results let us recall the perfectoid geometry of the Lubin-Tate and
Drinfeld spaces.

Let F be a finite extension of Qp with ring of integers O, pseudo-uniformizer ̟ and residue field F. Fix F

an algebraic closure of F and let Ŏ be the completion of the maximal unramified extension of O with residue
field F. Write F̆ = Ŏ[ 1̟ ]. Consider the group GLn,F , let µ be the cocharacter (1, 0, · · · , 0) with n − 1

occurrences of 0 and let Xb be a formal O-module over F of dimension 1 and O-height n. Denote by D the
central division algebra over F with invariant 1/n. Let DefXb

be the formal scheme over Ŏ parametrizing
deformations of the formal O-module Xb. The Lubin-Tate space of GLn,F at level GLn(O) is the rigid
generic fiber LT F̆ of DefXb

. The space LT F̆ has a dual given by the Drinfeld space ΩF̆ ⊂ Pn−1

F̆
defined as

the complement of the F -rational hyperplanes of Pn−1

F̆
. These are particular examples of Rapoport-Zink

spaces [RZ96] which are themselves special cases of local Shimura varieties [RV14] [SW20].
The spaces LT F̆ and ΩF̆ are intimately related via perfectoid geometry in a very clean way: let LT ∞,F̆ be

the Lubin-Tate space at infinite level obtained by trivializing the Tate module of the universal deformation of
Xb. It was shown in [SW13] that LT ∞,F̆ has a natural structure of a perfectoid space which, by construction,
is a proétale GLn(O)-torsor over LT F̆ . Furthermore, a Hodge-Tate period map is constructed in loc. cit.

πHT : LT ∞,F̆ → Pn−1

F̆
.

The image of the Hodge-Tate period map is the Drinfeld space ΩF̆ , and the map πHT : LT ∞,F̆ → ΩF̆

is a proétale D×-torsor. When composing LT ∞,F̆ → LT F̆ with the Grothendieck-Messing period map
LT F̆ → Pn−1

F̆
, the morphism

πGM : LT ∞,F̆ → Pn−1

F̆

becomes a proétale GLn(F )-torsor.
Summarizing, we have a perfectoid space LT ∞,F̆ endowed with an action of GLn(F )×D

× fitting in an
equivariant diagram

LT ∞,F̆

Pn−1

F̆
ΩF̆

πHTπGM (1.1)

such that:

• πHT is a GLn(F )-equivariant D×-torsor for the natural action of GLn(F ) on ΩF̆ .
• πGM is a D×-equivariant GLn(F )-torsor where D× acts on Pn−1

F̆
via its embedding into GLn(F̆ ).

• The diagram carries a suitable Weil descent over F . Thus, its base change to Cp carries an action
of the Weil group WF .

The diagram (1.1) actually encodes the isomorphism of the Lubin-Tate and Drinfeld towers which was
previously established by Fargues in [Far08] and envisioned by Faltings in [Fal02].

In particular, there is an action of GLn(F ) ×D
× ×WF on the infinite level Lubin-Tate space LT ∞,Cp

which makes natural the expectation that both the Jacquet-Langlands correspondence, relating GLn(F )
and D×-representations, and the Langlands correspondence, relating GLn(F ) and WF -representations,
can be realized in different cohomologies attached to LT ∞,Cp, see for example [Far08], [DLB17], [CDN20],
[CDN21], [CDN23].

In [Sch18], Scholze used the diagram (1.1) to construct a p-adic Jacquet-Langlands functor sending
smooth admissible representations of GLn(F ) to smooth admissible representations of D×. Let us be more
precise; let π be an admissible representation of GLn(F ) over an artinian ring A which is p-power torsion.
Since πGM is a proétale GLn(F )-torsor the representation π gives rise an étale sheaf Fπ on the rigid space
Pn−1
Cp

. Furthermore, this étale sheaf descends to the v-stack [Pn−1
Cp

/D×] and so its cohomology carries a
natural action of D×. The Jacquet-Langlands functor JL is the functor sending a smooth admissible
representation π of GLn(F ) to the complex of smooth D×-representations over A

JL(π) = RΓét(P
n−1
Cp

,Fπ).
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By [Sch18, Theorem 1.1] the cohomology groups JLi(π) of JL(π) are smooth admissible representations of
D× over A and JLi(π) = 0 for i > 2(n− 1). In addition, [Sch18, Theorem 1.3] says that this construction
satisfies a local-global compatibility for GL2 (though the main ideas should hold for general GLn), justifying
the compatibility with a more classical Jacquet-Langlands correspondence.

One can naturally extend the Jacquet-Langlands functor to unitary Banach representations and it is
not hard to see that it also preserves admissible Banach representations, see Corollary 5.3.5. On the other
hand, Schneider-Teitelbaum introduced a class of admissible locally analytic representations for p-adic Lie
groups in [ST03]. A natural question arises:

Question 1.1. Is there a Jacquet-Langlands functor π 7→ J L(π) for admissible locally analytic represen-
tations of GLn(F )? If so, is it compatible with the Jacquet-Langlands functor of Banach representations?

In this paper we give a partial answer to this question, namely, that the Jacquet-Langlands functor for ad-
missible Banach representations is compatible with the passage to locally analytic vectors, see Theorem 1.8
for a more precise statement.

In a different direction, the works of Lue Pan [Pan22a, Pan22b] studying the locally analytic vectors
of perfectoid modular curves use some special sheaves of locally analytic functions at infinite level. These
sheaves encode, via the localization theory of Beilinson-Bernstein on the flag variety [BB81] and the Hodge-
Tate period map, many aspects of the p-adic Hodge theory of Shimura varieties. In [RC23, RC24b] some
of these features have been generalized to arbitrary global Shimura varieties under the name of geometric
Sen theory ; part of the goals of this paper is to extend the results in geometric Sen theory from the global
to the local set up. It is then natural to ask what additional properties local Shimura varieties acquire after
taking locally analytic vectors, in particular one can ask the following question:

Question 1.2. Let LT ∞,Cp be the infinite level Lubin-Tate space and let ÔLT be its structural sheaf as a
perfectoid space. Let U∞ ⊂ LT ∞,Cp be an affinoid perfectoid and let KU ⊂ GLn(F ) and KU,D ⊂ D× be
the (open) stabilizers of U∞. Do we have an equality of locally analytic vectors

ÔLT (U∞)KU−la = ÔLT (U∞)KU,D−la

as subspaces of ÔLT (U∞)? Equivalently, are the locally analytic vectors of the structural sheaf at infinite
level independent of the tower?

For the case of GL2 this is proven by Pan in [Pan22b, Corollary 5.3.9] via explicit power series expansions.
In this paper we prove a much more general result that holds for an arbitrary duality of local Shimura
varieties and arbitrary period sheaves appearing in the affinoid charts of relative Fargues-Fontaine curves,
see Corollary 1.2 for a precise statement. Then, the partial result towards Question 1.1 mentioned above will
be a rather formal consequence of this independence of locally analytic vectors at infinite level, after applying
enough technology coming from the theory of solid locally analytic representations [RJRC22, RJRC23]. We
also apply this independence of locally analytic vectors to construct an equivariant isomorphism for the
compactly supported de Rham cohomology between the two towers of a duality of local Shimura varieties,
see Theorem 1.7.

In order to present the main results of this paper we have separated the introduction in different para-
graphs, going from the general results on towers of rigid spaces, passing to the applications to local Shimura
varieties, and finishing with the most specific applications to the Lubin-Tate and Drinfeld towers.

Main results.

Cohomology of towers of rigid spaces. In this paragraph we explain the results of Section 5.1 about locally
analytic vectors of period sheaves in towers of rigid spaces. Let Perfd be the category of perfectoid spaces and
Perf ⊂ Perfd the full subcategory of perfectoid spaces in characteristic p. Following [Sch22] we see Perfd and
Perf as sites endowed with the v-topology. Let Perf̟ be the category of perfectoid spaces in characteristic
p endowed with a fixed pseudo-uniformizer ̟, and with maps preserving the pseudo-uniformizer. We can
define different period sheaves as follows:

i. We have the structural sheaves Ô and Ô+ mapping an affinoid perfectoid Spa(R,R+) ∈ Perfd to
Ô(R,R+) = R and Ô+(R,R+) = R+ respectively.
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ii. We have the tilted sheaves O♭ and O♭,+ mapping an affinoid perfectoid Spa(R,R+) ∈ Perfd to
O♭(R,R+) = R♭ and O♭,+(R,R+) = R♭,+ respectively.

iii. We have the period sheaf Ainf mapping an affinoid perfectoid Spa(R,R+) ∈ Perfd to Ainf(R,R
+) =

W (R♭,+) where W (−) is the functor of p-typical Witt vectors.
iv. For I = [s, r] ⊂ (0,∞) a compact interval with rational ends we define the period ring BI mapping

an affinoid perfectoid Spa(R,R+) ∈ Perf̟ in characteristic p with fixed pseudo-uniformizer to the
rational localization

BI(R,R
+) = Ainf(R,R

+)

(
p

[̟]1/r
,
[̟]1/s

p

)
[
1

[̟]
].

The period sheaves in (i)-(iii) above are standard in p-adic Hodge theory. The sheaves in (iv) give rise to
affinoid charts of families of Fargues-Fontaine curves as in [SW20] and [FS24].

Let K be a perfectoid field in characteristic 0 containing the p-th powers roots of unit and let X be a qcqs
smooth rigid space over K. Let H be a compact p-adic Lie group acting on X. Let G be another compact
p-adic Lie group and suppose we are given with an H-equivariant pro-finite-étale G-torsor X̃ → X♦ of the
diamond attached to X. In particular, X̃ is endowed with an action of the p-adic Lie group G ×H. The
following theorem relates the locally analytic vectors of the v-cohomologies of period sheaves at infinite
level.

Theorem 1.3 (Theorem 5.1.1). Let I ⊂ (0,∞) be a compact interval with rational ends. Then the G-locally

analytic vectors of the solid Qp-linear representation RΓv(X̃,BI) are H-locally analytic. More precisely, the
natural map of solid G×H-representations

RΓv(X̃,BI)
RG×H−la ∼

−→ RΓv(X̃,BI)
RG−la

is an equivalence.

Remark 1.1. Theorem 1.3 holds for a larger class of BI-modules, including BI and Ô-vector bundles, see
Remark 5.1.5.

As a corollary, in the case when G = 1, we prove that proétale cohomologies of qcqs rigid varieties X
endowed with actions of p-adic Lie groups H tent to be locally analytic:

Corollary 1.1 (Corollary 5.1.6). Let X be a qcqs smooth rigid space endowed with the action of a p-adic Lie
group H. Then for I ⊂ (0,∞) a compact interval with rational ends the solid H-representation RΓv(X,BI)
is H-locally analytic.

Remark 1.2. Corollary 1.1 implies that the cohomology groups of period sheaves on X admit an action of
the Lie algebra of H obtained by derivations, we found this fact surprising since there is no finiteness or
Hausdorff assumptions in the cohomology groups. This also suggests that there is a deeper structure in the
period sheaves of rigid spaces that witness the locally analytic properties of their cohomologies. In a work
in progress of Johannes Anschütz, Arthur-César le Bras, Peter Scholze and the second author we expect to
give a conceptual explanation of these facts via the analytic prismatization.

Geometric Sen theory over local Shimura varieties. In the next paragraph we state the main results of
Section 4 extending those of [Pan22a] and [RJRC22] about the Sen operators of local Shimura varieties.
In order to be more precise we need to introduce some notation, we shall follow [SW20]. Let (G, b, µ) be
a local Shimura datum as in Lecture XXIV of loc. cit., let E be the field of definition of µ and Ĕ the
completion of the maximal unramified extension of E. Let FLG,µ,E and FLG,µ−1,E be the algebraic flag
varieties parametrizing decreasing and increasing µ-filtrations of the trivial G-torsor respectively. We let
FℓG,µ,E and FℓG,µ−1,E be the analytification of the flag varieties to adic spaces [Hub94]. For K ⊂ G(Qp)

open compact subgroup we let M
G,b,µ,K,Ĕ be the local Shimura variety over Ĕ at level K.

Let E′/E be a finite extension where the group G is split and let us fix once and for all a cocharacter
µ : Gm,E′ → GE′ representing the conjugacy class of µ. Let Pµ and Pµ−1 be the parabolic subgroups
parametrizing decreasing and increasing filtrations of µ, let Nµ ⊂ Pµ and Nµ−1 ⊂ Pµ−1 be their unipotent
radicals respectively, and let M = Mµ = Mµ−1 be the centralizer of µ (eq. of µ−1) in GE′ . We have
presentations for the flag varieties FLG,µ,E′ = GE′/Pµ and FLG,µ−1,E′ = GE′/Pµ−1 , these presentations
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give rise to an equivalence of G-equivariant quasi-coherent sheaves on FLG,µ,E′ and FLG,µ−1,E′ and algebraic
representations of Pµ and Pµ−1 respectively.

Let nµ ⊂ pµ ⊂ g be the Lie algebras of Nµ ⊂ Pµ ⊂ GE′ and mµ = pµ/nµ the Lie algebra of the Levi
quotient. We see these Lie algebras endowed with the adjoint action of Pµ and consider their corresponding
G-equivariant Lie algebroids n0µ ⊂ p0µ ⊂ g0µ = OFL

G,µ,E′ ⊗Qp g and m0
µ = p0µ/n

0
µ appearing in the localization

theory of Beilinson-Bernstein [BB81]. We denote in the same way their pullbacks to vector bundles over
the analytic flag varieties, and use similar notation for the Lie algebras of the opposite parabolic and their
associated Lie algebroids in FLG,µ−1,E′.

Let M♦

G,b,µ,∞,Ĕ
= lim
←−K

M♦

G,b,µ,K,Ĕ
be the infinite level local Shimura variety seen as a diamond over Ĕ

and consider the Grothendieck-Messing and Hodge-Tate period maps

M♦

G,b,µ,∞,Ĕ

Fℓ♦
G,µ,Ĕ

Fℓ♦
G,µ−1,Ĕ

.

πHTπGM

Let G̃b be the group of automorphisms of the constant G-torsor Eb over the curve, see [FS24, III.5.1]. Then
M♦

G,b,µ,∞,Ĕ
is endowed with an action of G(Qp) × G̃b for which both maps πGM and πHT are equivariant

in a suitable sense (see Section 3 for more details).
By [SW20, Corollary 23.3.2], when b is basic there is a dual local Shimura datum (Ǧ, b̌, µ̌), an isomorphism

Gb = G̃b = Ǧ(Qp) and a G(Qp)× Ǧ(Qp)-equivariant isomorphism of infinite level local Shimura varieties

M
G,b,µ,∞,Ĕ

∼=M
Ǧ,b̌,µ̌,∞,Ĕ

that exchanges the Grothendieck-Messing and Hodge-Tate period maps (see also Proposition 3.2.3).
On the other hand, the map πK :M♦

G,b,µ,∞,Ĕ
→M♦

G,b,µ,K,Ĕ
is a proétale K-torsor. Thus, for any ind-

system V = “ lim
−→i

”Vi of p-adically complete continuous representations of K we can construct a v-sheaf
FV onM♦

G,b,µ,K,Ĕ
by first constructing the p-complete v-sheaves FVi via descent Vi along πK and then by

extending by colimits FV = lim
−→i
FVi (see Definition 3.3.3). In particular, for V an algebraic representation

of G we have automorphic local systems FV , and for π a smooth admissible representation of G(Qp)
over a p-power torsion ring A the sheaf Fπ is the étale local system considered in [Sch18] for the p-adic
Jacquet-Langlands functor.

Let Fg∨ be the local system over the local Shimura tower (M
G,b,µ,K,Ĕ′)K⊂G(Qp) attached to the dual of

the adjoint representation of G. Let us write by OM for the structural sheaf of a finite level local Shimura
variety and let Ω1

M be its cotangent bundle. We now state the first theorem concerning the computation
of the geometric Sen operators of local Shimura varieties extending [RC24b, Theorem 5.2.5].

Theorem 1.4 (Theorem 4.3.1). The geometric Sen operator θM : Fg∨ ⊗Qp Ô → Ω1
M ⊗OM

Ô(−1) of the
tower (M

G,b,µ,K,Ĕ′)K⊂G(Qp) in the sense of [RC23, Theorem 3.3.4] is given by the pullback along πHT of

the G-equivariant map of vector bundles on FℓG,µ−1,E′

g0,∨ → n
0,∨
µ−1

where the identification π∗HT(n
0,∨
µ−1) ∼= Ω1

M ⊗OM
Ô(−1) is through the opposite of the Kodaira-Spencer iso-

morphism, see Section 4.1. Here F (n) is the n-th Hodge-Tate twist of F by the n-th power of the cyclotomic
character.

Remark 1.3. The previous theorem was stated for the base change of flag varieties and local Shimura
varieties to E′. This base change can be avoided if one works without fixing a Hodge cocharacter µ, indeed,
the flag varieties and the Hodge-Tate period maps are already defined over E. Moreover, the Lie algebroids
n0µ−1 , p0µ−1 and m0

µ−1 are also defined over E, see Remark 2.5.1.

A first consequence of the computation of the geometric Sen operator is the vanishing of the higher locally
analytic vectors of the structural sheaf Ô at infinite level, as well as the computation of the arithmetic Sen
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operator in terms of representation theory. Let C/E′ be a completed algebraically closed extension and
consider the C-base change MG,b,µ,K,C of the local Shimura varieties. Let VK = C la(K,Qp)⋆1 be the
space of locally analytic functions of K endowed with the left regular action and let FVK

be the v-sheaf
over MG,b,µ,K,C obtained by descent from infinite level. We have the following theorem, analogue to
Proposition 6.2.8, Corollary 6.2.12 and Theorem 6.3.5 of [RC24b].

Theorem 1.5 (Theorem 4.3.3). Let U ⊂MG,b,µ,K,C be an open affinoid subspace admitting an étale map

to a product of tori Td
C that factors as a finite composition of rational localizations and finite étale maps.

Let U∞ ⊂M
♦
G,b,µ,∞,C be the pullback of U , then the v-cohomology

RΓv(U, Ô⊗̂QpFVK
) (1.2)

sits in degree 0 and is equal to the locally analytic vectors Ô(U∞)G−la of Ô(U∞). Here the completed tensor
product is a filtered colimit of p-completed tensor products obtained by writing FVK

as a colimit of Banach
sheaves (equivalently a solid tensor product as in [AM24]).

Furthermore, the action of g0µ−1 = OFℓ
G,µ−1,C

⊗Qp g on Ô(U∞)G−la by derivations kills n0µ−1 . Thus,

we have an horizontal action of m0
µ−1 on Ô(U∞)G−la. Moreover, the space Ô(U∞)G−la has an arithmetic

Sen operator as in [RC24b, Theorem 6.3.5] given by the opposite of the derivative of the Hodge cocharacter
−θµ = θµ−1 ∈ m0

µ−1 .

Locally analytic vectors of local Shimura varieties. In this paragraph we apply Theorem 1.3 to prove the
independence of locally analytic vectors for a duality of local Shimura varieties, generalizing a theorem of
Pan for the Lubin-Tate tower of GL2 [Pan22b, Corollary 5.3.9]. Let C/E be a complete algebraically closed
field, we write G = G(Qp) and let Gb be the profinite quotient of G̃b.

Let ÔM be the restriction of the structural sheaf Ô in the v-site of M♦
G,µ,b,∞,C to the underlying

topological space |M♦
G,µ,b,∞,C |. Let O

G−la
M ⊂ ÔM be the subsheaf whose values in a qcqs open subspace

U∞ ⊂M
♦
G,µ,b,∞,C are given by the G = G(Qp)-locally analytic sections of ÔM, namely, given by

O
G−la
M (U∞) = Ô(U∞)KU∞−la

where KU∞
⊂ G is the stabilizer of U∞. We have the following corollary:

Corollary 1.2 (Corollary 5.1.9). For any p-adic Lie group H ⊂ G̃b and any qcqs open subspace U∞ ⊂

M♦
G,b,µ,∞,C the natural map

O
G−la
M (U∞)RH−la ∼

−→ O
G−la
M (U∞)

from the derived H-locally analytic vectors is an equivalence. In particular, if b is basic we have an equality

of subsheaves of ÔM

O
G−la
M = O

Gb−la
M .

More generally, for b basic and I ⊂ (0,∞) a compact interval with rational ends, we have an equivalence
of derived solid locally analytic representations of G×Gb

RΓv(U∞,BI)
RGb−la ∼

−→ RΓv(U∞,BI)
RG×Gb−la ∼

←− RΓv(U∞,BI)
RG−la.

From now on we shall focus in the case when b is basic. We will identify the G and Gb-locally analytic
vectors of the structural sheaf ÔW at infinite level and simply write O la

W . We can then identify the horizontal
actions of the Levi Lie algebras of Theorem 1.5. For this, we need some additional notation.

By Corollary 3.3.7 we have a naturalG×Gb-equivariant isomorphism of ÔM-vector bundles onM♦
G,b,µ,∞,C

m0
µ−1 ⊗OFℓ

G,µ−1,C
ÔM
∼= ÔM ⊗OFℓG,µ,C

m0
µ.

By taking locally analytic vectors we obtain an O la
M-vector bundle which we shall denote as m0,la, endowed

with G×Gb-equivariant isomorphisms

m0
µ−1 ⊗OFℓ

G,µ−1,C
O

la
M
∼= m0,la ∼= O

la
M ⊗OFℓG,µ,C

m0
µ. (1.3)

We have the following theorem:



A JACQUET-LANGLANDS FUNCTOR FOR p-ADIC LOCALLY ANALYTIC REPRESENTATIONS 7

Theorem 1.6 (Theorem 5.1.10). The actions of n0µ and n0µ−1 on O la
M vanish. Furthermore, the actions

of m0
µ and m0

µ−1 on O la
M by derivations are identified via (1.3). In particular, the central character of the

actions of m0
µ and m0

µ−1 on O la
M agree under the natural isomorphism of the center of the enveloping algebras

Z(mµ,C) ∼= Z(mµ−1,C), where mµ,C and mµ−1,C are the Levi subalgebras of LieGb ⊗Qp C and LieG ⊗Qp C
respectively.

De Rham cohomology of towers of local Shimura varieties. Our next result is the comparison between
compactly supported de Rham cohomologies of the two towers in a duality of local Shimura varieties. This
theorem has been also independently obtained by Guido Bosco, Wiesława Nizioł and the first author. Let
(G, b, µ) be a local Shimura datum with b basic and let (Ǧ, b̌, µ̌) be the dual local Shimura datum. Consider
the towers of rigid spaces (M

G,b,µ,K,Ĕ)K⊂G(Qp) and (M
Ǧ,b̌,µ̌,Ǩ,Ĕ)K⊂Ǧ(Qp)

. We have the following theorem:

Theorem 1.7 (Theorem 5.2.2). There is a natural G(Qp)× Ǧ(Qp)-equivariant isomorphism of compactly
supported de Rham cohomology groups

lim
−→

K⊂G(Qp)

H i
dR,c(MG,b,µ,K,C) ∼= lim

−→
Ǩ⊂Ǧ(Qp)

H i
dR,c(MǦ,b̌,µ̌,Ǩ,C).

Remark 1.4. Theorem 1.7 should be seen as an evidence of the fact that there is a well defined analytic de
Rham stack (in the sense of [RC24a]) for the infinite level Shimura variety, together with G(Qp)× Ǧ(Qp)-
equivariant equivalences

lim
←−
K

MdR
G,b,µ,K,Ĕ

=M♦,dR

G,b,µ,∞,Ĕ
∼=M

♦,dR

Ǧ,b̌,µ̌,∞,Ĕ
= lim
←−
Ǩ

MdR
Ǧ,b̌,µ̌,Ǩ,Ĕ

.

Indeed, as it was explained by Scholze to the second author, one can prove sufficient descent for the
formation of the analytic de Rham stack to be well defined for (suitable nice) diamonds, where the previous
equivalence holds as analytic stacks. It is likely that purely motivic techniques as those appearing in [Vez19]
are enough to show the equivalence of the de Rham cohomologies for the two towers, see Proposition 4.5
in loc. cit.; we thanks Arthur-César le Bras for this observation.

Locally analytic Jacquet-Langlands functor in the Lubin Tate case. We finish the presentation of the main
results with the principal motivation that initiated this project, that is, the p-adic Jacquet-Langlands
functor of the Lubin-Tate tower treated in [Sch18]. We shall keep the notation of the beginning of the
introduction regarding the Lubin-Tate and Drinfeld towers. We have the following compatibility with the
passage to locally analytic vectors:

Theorem 1.8 (Theorem 5.3.6). Let π be an admissible Banach representation of GLn(F ) and let Π =

(π[1p ])
GLn(F )−la be the space of locally analytic vectors seen as a colimit of Banach spaces. Let FΠ be the

proétale sheaf over Pn−1
Cp

constructed via descent along πGM of the continuous representation Π. There is a

natural equivalence of solid locally analytic H-representations

(JL(π)[
1

π
])RH−la ∼= RΓproét(P

n−1
Cp

,FΠ).

Furthermore, this equivalence induces an isomorphism of cohomology groups:

(JLi(π)[
1

p
])H−la ∼= H i

proét(P
n−1
Cp

,FΠ).

As a corollary of Theorems 1.6 and 1.8 we can show that the Jacquet-Langlands functor preserves central
characters for the locally analytic vectors of admissible Banach representations.

Corollary 1.3 (Corollary 5.3.7). Let π be an admissible Banach representation of GLn(L) over a finite

extension of Qp and suppose that Π = πGLn(L)−la has central character χ. Then, for all i ∈ Z, the locally

analytic H-representation JLi(π)H−la has central character χ under the natural identification Z(LieH) ∼=
Z(LieG).



8 GABRIEL DOSPINESCU AND JUAN ESTEBAN RODRÍGUEZ CAMARGO

Outline of the paper. Section 2 is a preliminary section where we introduce the main objects and tools
used in the paper. In Section 2.1 we recall the definition of period sheaves and the construction of the
different incarnations of families of Fargues-Fontaine curves following [SW20, §11.2] and [FS24, §II.1]. In
2.2 we briefly recall the construction of the categories of solid almost quasi-coherent sheaves on diamonds
of [Man22b], and its relation with smooth representation theory of profinite groups. In 2.3 we recall the
construction of the décalage operator of [BMS18] which will be relevant to perform a technical dévisage
in the proof of Theorem 1.3. Then, in Section 2.4 we briefly recall the basics of the theory of solid
locally analytic representations of [RJRC22, RJRC23], in particular we state the locally analytic criterion
of Lemma 2.4.1 which is key in the proof of Theorem 1.3. Finally, in Section 2.5 we briefly summarize the
relationship between representations of reductive groups and equivariant sheaves over flag varieties, making
special emphasis in the Lie algebroids appearing in the localization theory of Beilinson-Bernstein [BB81].

We continue with Section 3 which concerns the definition of the local Shimura varieties and some basic
Hodge theoretic features of them, we follow [SW20, Lecture XXIII] and [FS24, §III.4 and 5]. In Section 3.1
we discuss some facts about torsors on families of Fargues-Fontaine curves. In Section 3.2 we recall the
definition of the moduli space of shtukas of one leg as well as the construction of the Grothendieck-Messing
and Hodge-Tate period maps. Then, in Section 3.3 we specialize the previous construction to the situation
of local Shimura varieties where we deduce from the general theory of [SW20, Lecture XXIII] a p-adic
Riemann-Hilbert correspondence for automorphic local systems in Proposition 3.3.4; this formulation of
the theory of Scholze-Weinstein will be useful in the computation of the geometric Sen operator of the next
section.

Next, in Section 4 we compute the geometric and arithmetic Sen operators for local Shimura varieties. In
Section 4.1 we explain the purely representation theoretic construction of the Kodaira-Spencer isomorphism
for Shimura varieties which is essentially a reinterpretation of the anchor map of the reductive group acting
on the flag variety. This point of view of the Kodaira-Spencer map will allow us to compute the pullback
of equivariant sheaves of flag varieties via the Hodge-Tate period maps in terms of automorphic vector
bundles and the Faltings extension in Section 4.2, see Theorem 4.2.1. Finally, we use this description
of the pullbacks of automorphic vector bundles to compute the geometric and arithmetic Sen operators
of Theorems 1.4 and 1.5. The analogue of these theorems for global Shimura varieties were achieved in
[RC23, RC24b], and the proofs in the local situation follow exactly the same line of arguments.

We conclude with Section 5 were most of the main theorems stated in the introduction are proven.
In Section 5.1 we prove Theorem 1.3; the strategy of the proof is to use the locally analytic criterion
of Lemma 2.4.1. For this one has to implement a long dévisage up to the point where one is reduced
to showing that the proétale (eq. v-) cohomology of O+/p on a qcqs smooth rigid space is small after
applying a décalage operator Lηpε for some ε > 0, see Dévisage 4. As an immediate consequence we obtain
Corollary 1.1. We conclude this section with the application of Theorem 1.3 to local Shimura varieties; we
first obtain the independence of locally analytic vectors at infinite level for b basic of Corollary 1.2, then,
with a more careful study of the horizontal actions arising from the two towers, we prove Theorem 1.6. In
Section 5.2 we compare the de Rham cohomology of the two towers proving Theorem 1.7; here the strategy
is to relate the de Rham complexes of each tower with a suitable de Rham complex of the sheaf O la

M
arising from the derivations of both groups G and Gb. Finally, in Section 5.3 we prove the compatibility
of Scholze’s Jacquet-Langlands functor with the passage to locally analytic vectors for admissible Banach
representations proving Theorem 1.8; here the key strategy is to rewrite the proétale cohomology of the
sheaf Fπ in terms of period sheaves BI and then to exploit the independence of locally analytic vectors at
infinite level of Corollary 1.2 in order to jump between towers. Finally, using the proof of Theorem 1.8 and
the compatibility of the horizontal characters for the sheaf O la

M of Theorem 1.6, we obtain the compatibility
of central characters of the Jacquet-Langlands functor of Corollary 1.3.

Conventions. In this paper we use the v-site of perfectoid spaces as introduced in [Sch22]. We use the
theory of solid almost quasi-coherent sheaves of [Man22b], [AM24] and [AMLB]; the use of these cohomology
theories is important in order to properly keep track to the condensed or topological structure of cohomology
complexes. In particular, this work heavily depends on the theory of condensed mathematics of Clausen
and Scholze [CS19, CS20], and in higher category theory for which we refer to [Lur09, Lur17]. A different
reason to use condensed mathematics is to have access to the theory of solid locally analytic representations
of [RJRC22, RJRC23]. This is important since, even though most of the main theorems involve classical
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topological representations, the proofs will make appear very general solid representations which are not
classical.

Acknowledgements. We thank Johannes Anschütz, Guido Bosco, Arthur-César le Bras, Pierre Colmez,
Wiesława Nizioł, Lue Pan and Peter Scholze for enlightening conversations in different stages of this work.
We also thank Johannes Anschütz, Guido Bosco and Arthur-César le Bras for corrections and comments
in a first draft of the paper. Part of this project was done during the trimester program in Bonn: “The
Arithmetic of The Langlands Program” during the summer of 2023, we heartily thank the organizers and the
Hausdorff Research Institute for Mathematics for the excellent environment for mathematical discussions
and exchanges. The second author wants to thank Columbia University and the Simons Society of Fellows
for the wonderful working conditions and support as a postdoc and Junior Fellow.

2. Preliminaries

In this section we introduce the main objects and techniques used in the paper. In Section 2.1 we recall
the definition of families of Fargues-Fontaine curves following [SW20, §11.2] and [FS24, §II.1]. Some period
sheaves associated to affinoid charts of the curves will be explicitly introduced for reference in later sections.
Then in Section 2.2, we recall the definition of the derived categories of solid almost quasi-coherent sheaves
of [Man22b]; we shall not need all the power of the six functor formalism, only the existence of these
categories and their relation with smooth representations after [Man22b, §3.4]. We continue in Section 2.3
with some basic properties of the décalage operator LηI of [BMS18, §6]; their importance for us will be to
kill some small enough torsion in order to apply a locally analytic criterion discussed in the next section. In
Section 2.4 we briefly introduce the theory of solid locally analytic representations of [RJRC22, RJRC23],
in particular we recall the criterion of [RJRC23, Proposition 3.3.3] for a solid representation of a p-adic Lie
group to be locally analytic. Finally, in Section 2.5 we state the classical dictionary between representation
theory and equivariant quasi-coherent sheaves on flag varieties; in particular we make emphasis in the Lie
algebroids over the flag variety appearing in the localization theory of [BB81].

Apart (but not disjoint!) from condensed mathematics, we also use different aspects of p-adic Hodge
theory. The main objects we study are period sheaves on diamonds [RC23] and the computation of the
geometric Sen operators of Shimura varieties [RC24b]. Finally, in order to realize our cohomology groups
as honest solid abelian groups we use the categories of solid quasi-coherent sheaves of diamonds of Mann
[Man22b] though the full six functor formalism will not be necessary.

2.1. The Fargues-Fontaine curve and sheaves of periods. Let Perfd be the category of perfectoid
spaces over Zp and let Perf ⊂ Perfd be the full subcategory of perfectoid spaces over Fp. Following [Sch22],
we consider the v-site Perfdv of perfectoid spaces. Let Fp((̟

1/p∞)) be the perfectoid field parametrizing
pseudo-uniformizers in Perf and let Perf̟ be the slice category Perf/SpaFp((̟1/p∞ )), equivalently, Perf̟
is the category of perfectoid spaces in characteristic p with fixed pseudo-uniformizer ̟, and with maps
preserving the pseudo-uniformizer. We let Ô and Ô+ be the v-sheaves on Perfd mapping an affinoid
perfectoid Spa(R,R+) to R and R+ respectively. Similarly, we let O♭ and O♭,+ be the v-sheaves mapping
Spa(R,R+) to R♭ and R♭,+ respectively. Given S = Spa(R,R+) ∈ Perfd we let Ainf(S) := Ainf(R

+) :=

W (R♭,+) be the period ring of Fontaine, and denote by [−] : R♭,+ → Ainf(S) the Teichmüller lift.
For S = Spa(R,R+) ∈ Perf̟ consider the sous-perfectoid analytic adic space [SW20, Proposition 11.2.1]

YFF
S := {|[̟]| 6= 0} ⊂ Spa(Ainf(S)),

consisting on the locus where [̟] is a pseudo-uniformizer, we call this adic space the YFF-curve over S.
The space YFF

S has pseudo-uniformizer [̟]. Furthermore, the following properties hold (see [SW20, §11]
and [FS24, §II.1])

• We have a natural equivalence of diamonds

YFF,♦
S = S × SpdZp

where SpdZp is the diamond parametrizing untilts of perfectoid spaces. In particular the formation
of YFF

S is independent of the pseudo-uniformizer of S. Moreover, YFF
S has a natural Frobenius

automorphism ϕS lifting the Frobenius of S.
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• Let |YFF
S | be the underlying topological space of the adic space. There is a (unique) continuous

radius map

rad : |YFF
S | → [0,∞)

sending a rank 1 point x to

rad(x) = logp |[̟]|x/ logp |p|x = log|p|x |[̟]|x.

The radius map and the Frobenius endomorphism are related by the formula

rad ◦ϕS = p rad .

• For I = [s, r] ⊂ [0,∞) a compact interval with rational ends one defines affinoid subspaces

YFF
S,I = YFF

S (
p

[̟]1/r
,
[̟]1/s

p
).

One has rad(|YFF
S,I |) ⊂ I but the inclusion YFF

S,I ( rad−1(I) is strict.
• For I ⊂ (0,∞) an open interval we let YFF

S,I ⊂ Y
FF
S be the inverse image of I by rad. This space can

be also described as

YS,I =
⋃

J⊂I

YFF
S,J

where J runs over all the compact subintervals of I with rational ends.
• The relative Fargues-Fontaine curve over S is the sous-perfectoid space

XFF
S = YFF

S,(0,∞)/ϕ
Z
S .

We shall call this space the XFF-curve over S.

Convention 2.1.1. From now on all closed rational intervals I = [s, r] ⊂ [0,∞) will be assumed to have
rational ends.

Lemma 2.1.2. Let S, S′ ∈ Perf̟ be affinoid perfectoids of characteristic p with fixed pseudo-uniformizer
̟, let f : S′ → S be a map in Perf̟ and let fFF : YFF

S → YFF
S′ be the corresponding map of YFF-curves.

(1) We have equivalences of sites YFF
S,ét
∼= Y

FF,♦
S,ét and YFF

S,fét
∼= Y

FF,♦
S,fét .

(2) fFF is an open immersion if and only if f is so. If f is a rational localization then so is fFF.
(3) For I ⊂ [0,∞) a closed or open interval, the map f induces a cartesian square

YFF
S′,I YFF

S,I

YFF
S′ YFF

S .

Proof. Part (1) is a particular case of [Sch22, Lemma 15.6]. The first assertion of (2) follows from (1) and
the fact that open immersions of analytic adic spaces are the same as étale maps f : Y → X such that
the diagonal Y → Y ×X Y is an equivalence. The second assertion of (2) follows from the fact that if
S′ = S

(
f1,...,fn

g

)
then

YFF
S′ = YFF

S

(
[f1], . . . , [fn]

[g]

)
.

For part (3) it suffices to deal with the case where I is closed, then it follows from the definition of YFF
S,I as

it is a rational localization involving only p and [̟]. �

Some of the main players in this paper are the sheaves of periods defined by the affinoid subspaces YFF
S,I

for I closed.
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Definition 2.1.3. Let I ⊂ [0,∞) be a compact interval. We define the v-sheaves BI and B+
I on Perf̟ to

be the v-sheafification of the presheaves mapping an affinoid perfectoid S = Spa(R,R+) ∈ Perf̟ to the
rings

B+
I (S) = B+

I (R,R
+) := O

+(YFF
S,I),

BI(S) = BI(R,R
+) := O(YFF

S,I).

We also define the v-sheaf Ainf as the sheaf mapping S to Ainf(S).

In the following lemma we consider almost mathematics with respect to the (p, [̟])-completion of the
Ainf-ideal generated by ([̟]1/p

n
)n∈N.

Lemma 2.1.4. Let S = Spa(R,R+) ∈ Perf̟ be affinoid perfectoid.

(1) We have an almost equivalence of derived (p, [̟])-adically complete complexes

Ainf(R
+) =a RΓv(S,Ainf).

(2) Let I = [0, r], then we have an isomorphism of v-sheaves

B+
I /([̟

1/r ]) = Ô
+/(̟1/r)[T ]

where the RHS term is a polynomial algebra with T the residue class of p/[̟]1/r.
(3) Suppose that I = [0, r], we have a natural almost equivalence of derived [̟]-adically complete com-

plexes

B+
I (S) =

a RΓv(S,B
+
I ).

(4) For I ⊂ [0,∞) a compact interval we have a natural equivalence

BI(S) = RΓv(S,BI)

Proof. By [Sch22, Proposition 8.8] we have a natural almost equivalence R+ =a RΓv(S,O
+) and so an

almost equivalence modulo any pseudo-uniformizer. Since Ainf/(p, [̟]) =a Ô+/̟ as almost v-sheaves, by
derived Nakayama’s lemma we have an almost equivalence of derived (p, [̟])-complexes

Ainf(R
+) =a RΓv(S,Ainf)

proving (1).
Suppose that I = [0, r], we have a short exact sequence of (p, [̟])-adically complete v-sheaves

0→ Ainf〈T 〉
[̟]1/rT−p
−−−−−−→ Ainf〈T 〉 → B+

I → 0 (2.1)

where Ainf〈T 〉 is the (p, [̟])-adic completion of the polynomial algebra over Ainf . Indeed, this follows from
the fact that one has the presentation for the ring B+

I (S) for any affinoid perfectoid S = Spa(R,R+):

B+
I (S) = {

∑

n∈N

[an]
pn

[̟]n/r
: an ∈ R

+ and |an| → 0 as n→∞}, (2.2)

endowed with the [̟]-adic topology, see [SW20, proof of Proposition 11.2.1]. The equation (2.2) shows that
[̟]1/r is a regular element of B+

I , and taking quotients in (2.1) by [̟]1/r yields an isomorphism of sheaves

B+
[0,r]/([̟

1/r ]) = Ô
+/̟1/r[T ]

proving (2).
Then, part (2), the almost acyclicity of Ô+ and derived Nakayama’s lemma imply that

B+
I (S) =

a RΓv(S,B
+
I )

proving (3).
Finally, part (4) for I = [0, r] follows from (3) by inverting pseudo-uniformizers. Moreover, as B+

[0,r]〈T 〉

is the ̟-adic completion of B+
[0,r][T ], part (3) also implies that

B+
[0,r](S)〈T 〉 =

a RΓv(S,B
+
[0,r]〈T 〉)
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and B[0,r](S)〈T 〉 = RΓv(S,B[0,r]〈T 〉). Let us now consider I = [s, r] with s > 0. By [KHH+19, Lemma
1.8.2], for all affinoid perfectoid Spa(A,A+) ∈ Perf̟ we have a short exact sequence

0→ B[0,r](A,A
+)〈T 〉

pT−[̟]1/s

−−−−−−→ B[0,r](A,A
+)〈T 〉 → B[r,s](A,A

+)→ 0.

This gives rise to a short exact sequence of v-sheaves

0→ B[0,r]〈T 〉
pT−[̟]1/s
−−−−−−→ B[0,r]〈T 〉 → B[s,r] → 0. (2.3)

Part (4) follows from part (3) after taking v-cohomology of (2.3). �

Lemma 2.1.5. Let X be a locally spatial diamond over an affinoid perfectoid space S in characteristic p.
Let I ⊂ [0,∞) be a compact interval and ̟ a fixed pseudo-uniformizer of S. Then B+

I /[̟] arises from an
étale sheaf of X via the fully faithful embedding Sh(Xét,Λ)→ Sh(Xv ,Λ) of [Sch22, Proposition 14.10] with
Λ = B+

I (S)/[̟].

Proof. This follows from [Sch22, Theorem 14.12] since Λ = B+
I /[̟] is clearly an étale sheaf on perfectoid

spaces. Indeed, it suffices to show that B+
I /[̟]b is an étale sheaf for a suitable b. If I = [0, r] this follows

from Lemma 2.1.4 (2). For I = [s, r] with s > 0 consider the short exact sequence of v-sheaves

0→ B[0,r]〈T 〉
pT−[̟]1/s
−−−−−−→ B[0,r]〈T 〉 → B[s,r] → 0.

Then, B+
[s,r]/[̟] is a subquotient of B[0,r]〈T 〉/[̟]B+

[0,r]〈T 〉 which is étale by the previous case, proving that

B+
[s,r]/[̟] is étale itself. �

2.2. Solid almost quasi-coherent sheaves. In this paper we shall work with cohomologies of Banach
sheaves on locally spatial diamonds such as BI . However, the sheaves we shall consider are not arbitrary;
they are actually solid quasi-coherent sheaves over the YFF -curve in the sense of [AMLB]. This promotion
to solid sheaves helps to naturally endow their v-cohomologies with the structure of solid abelian groups
as in [AM24, §4]. Since the sheaves we shall consider will be generic fibers of completed sheaves, it will be
enough to use the formalism of solid almost quasi-coherent sheaves with torsion coefficients of [Man22b, §3]
that we briefly recall in this section.

Let Perf̟ be the category of perfectoids in characteristic p with fixed pseudo-uniformizer ̟. Let I =
[0, r] ⊂ [0,∞) be a compact interval and b > 0 a positive rational number. Consider the sheaf of coefficients
B+
I,b := B+

I /([̟]b) on Perf̟ with almost structure generated by ([̟]1/p
k
)k∈N.

Definition 2.2.1. Let X be a small v-stack with fixed pseudo-uniformizer ̟. The ∞-category of solid
almost quasi-coherent B+

I,b-modules Da
�(X,B

+
I,b) is the hypercompletion of the functor mapping an affinoid

perfectoid Spa(R,R+) ∈ Xv to the almost category of solid B+
I,b(R,R

+)-modules Da(B+
I,b(R,R

+)�).

The category of almost solid modules satisfies strong descent properties:

Proposition 2.2.2. Let X = Spa(R,R+) be a totally disconnected perfectoid space. Then the natural map

D
a(B+

I,b(R,R
+)�)→ D

a
�(X,B

+
I,b)

is an equivalence of ∞-categories.

Proof. This follows essentially from [Man22b, Theorem 3.1.27]. Indeed, let Y• → X be an hypercover of
X by totally disconnected perfectoid spaces, we want to show that the natural map

D
a(B+

I,b(R,R
+)�)→ lim

←−
[n]∈∆

D
a(B+

I,b(Yn)�)

is an equivalence. Concretely, this amounts to show the following:
i. For M ∈ Da(B+

I,b(R,R
+)�) the natural map

M → lim
←−
[n]∈∆

(M ⊗L
B+
I,b(R,R+)�

B+
I,b(Yn)�)

is an equivalence.
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ii. For (Mn)[n]∈∆ a cocartesian section of lim
←−[n]∈∆

Da(B+
I,b(Yn)�) with totalization M the natural map

M ⊗L
B+
I,b(R,R+)�

B+
I,b(Yn)� →Mn

is an equivalence for all n ∈ N.
Suppose first that b = 1/r, then by Lemma 2.1.4 (3) we have that B+

I,r = O+/̟1/r[T ] is a polynomial al-
gebra over O+/̟1/r where T is the class of p/[̟]1/r. By [Man22b, Theorem 3.1.27] we have an equivalence
of categories

D
a(R+

�
/̟1/r)

∼
−→ lim
←−
[n]∈∆

D
a(O+(Yn)�/̟

1/r). (2.4)

Consider the maps of augmented cosimplicial diagrams of analytic rings (O+(Yn)�/̟
1/r)[n]∈∆+

→ (B+
I,b(Yn)�)[n]∈∆+

with Y−1 = X. For any map α : [n]→ [m] consider the commutative square provide by base change

Da((O+(Yn)�/̟
1/r) Da((O+(Ym)�/̟

1/r)

Da(B+
I,b(Yn)�) Da(B+

I,b(Ym)�).

f∗
α

h∗
n h∗

m

g∗α

Let hn,∗ be the right adjoint of h∗n given by the forgetful functor. Since any map of discrete Huber
pairs is steady [Man22b, Proposition 2.9.7 (ii)], the natural transformations f∗αhn,∗

∼
−→ hm,∗g

∗
α of functors

Da(B+
I,b(Yn)�) → Da((O+(Ym)�/̟

1/r) is an equivalence. Therefore, the forgetful functors hn,∗ preserve
cocartesian sections and induce a functor

(hn,∗)[n] : lim
←−
[n]∈∆

D
a(B+

I,b(Yn)�)→ lim
←−
[n]∈∆

D
a(O+(Yn)�/̟

1/r) ∼= D
a(R+/̟1/r)

which is the right adjoint of the natural base change along (O+(Yn)�/̟
1/r)[n]∈∆ → (B+

I,b(Yn)�)[n]∈∆, and
that fits in a commutative square

Da(B+
I,b(R,R

+)�) lim
←−[n]∈∆

Da(B+
I,b(Yn)�)

Da(R+/̟1/r) lim
←−[n]∈∆

Da(O+(Yn)�/̟
1/r).

h∗ (hn,∗)[n]

∼

Therefore, since the functors hn,∗ are conservative, in order to show (i) or (ii) we can apply (hn,∗)[n] where
the claim follows from (2.4).

The case of general b follows from derived Nakayama’s lemma: for either (i) or (ii) above we have to
show that a map of solid B+

I,b(R,R
+)-modules N → N ′ is an equivalence. For this, it suffices to check that

it is an equivalence after taking derived quotients by [̟]1/r where it was already proven. �

Finally, we recall how smooth representation theory appears in terms of solid almost quasi-coherent
sheaves.

Proposition 2.2.3. Let X = Spa(R,R+) be a totally disconnected perfectoid space with pseudo-uniformizer
̟. Let Π be a locally profinite group acting on X and consider the v-stack X/Π. Then the pullback along
the map f : X → X/Π realizes Da

�(X/Π,B
+
I,r) as the derived ∞-category of semilinear smooth almost

representations Repsm,a

B+
I,b(R,R+)�

(Π) of Π (denoted as Dsm,a(B+
I,b(R,R

+)�,Π) in [Man22b, Definition 3.4.11]).

Proof. This follows from the same argument of [Man22b, Lemma 3.4.26]. �

Remark 2.2.4. By construction the ∞-category Repsm,a

B+
I,b(R,R+)�

(Π) is the derived category of its heart

Repsm,a,♥

B+
I,b(R,R+)�

(Π). There is an obvious forgetful functor

Repsm,a,♥

B+
I,b(R,R+)�

(Π)→ Moda(B+
I,b(R,R

+)�[Π])
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to the category of almost solid modules over the semilinear solid group algebra B+
I,b(R,R

+)�[Π]. This gives
rise a map of derived ∞-categories

Repsm,a

B+
I,b(R,R+)�

(Π)→ D
a(B+

I,b(R,R
+)�[Π]).

This map is not in general fully faithful, see Remark [Man22b, 3.4.18] for a counter example when Π =∏
N Fp. However, the fully faithfulness is expected when Π has a basis of compact open subgroups with

uniformly bounded finite p-cohomological dimension, eg. when Π is a p-adic Lie group.

2.3. The décalage functor. In the next section we recall some facts about the décalage functor LηI
of [BMS18]. For us it will suffice to consider this functor at the level of the homotopy category of the
∞-derived category of modules of an algebra in a topos as in loc. cit.

Let (T,OT ) be a ringed topos. Let K(OT ) be the category of complexes of OT -modules up to homotopy,
and D(OT ) the derived category of OT -modules obtained by inverting quasi-isomorphisms in K(OT ).

Let I ⊂ OT be an invertible ideal, and let KI−free(OT ) denote the full subcategory of K(OT ) whose
objects are I-torsion free complexes. By [BMS18, Lemma 6.1] the (non ∞!) derived category D(OT ) is the
localization of KI−free(OT ) along quasi-isomorphisms.

Definition 2.3.1 ([BMS18, Definition 6.2]). Let C• ∈ KI−free(OT ). Define a new object ηIC• = (ηIC)• ∈
KI−free(OT ) with terms

(ηIC)i = {x ∈ Ci|dx ∈ ICi+1} ⊗OT
I⊗i,

and differentials
dηIC,i : (ηIC)i → (ηIC)i+1

making the following diagram commute

(ηIC)i ICi+1 ⊗ I⊗i

(ηIC)i+1 Ci+1 ⊗ I⊗i+1.

dCi⊗I⊗i

d(ηIC)i ≃

By [BMS18, Corollary 6.5] the operator LηI preserves quasi-isomorphisms and extends to a filtered
colimit preserving functor

LηI : D(OT )→ D(OT ).

Moreover, the following properties hold:
• For C ∈ D(OT ) there are natural isomorphisms [BMS18, Lemma 6.4]

H i(LηIC) ∼= H i(C)/H i(C)[I]⊗OT
I i.

• LηI is lax symmetric monoidal, i.e. for C,D ∈ D(OT ) there is a natural map

LηIC ⊗
L
OT

LηID → LηI(C ⊗
L
OT

D)

functorial in C and D, and symmetric in C and D [BMS18, Lemma 6.7].
• Suppose that the topos is replete. Let C ∈ D(OT ), then the natural maps

(LηIC)∧I → LηI(C
∧I)→ R lim

←−
n

(LηI(C ⊗
L
OT

OT /I
n))

are equivalences [BMS18, Lemma 6.20]. Here for an objectM ∈ D(OT ) we letM∧I = R lim
←−n

(M⊗L
OT

OT /I
n) be the derived I-adic completion.

Remark 2.3.2. The functor LηI preserves filtered colimits but is not exact, i.e. it does not preserves cones.
For example, we have the short exact sequence

0→ I/I2 → OT /I
2 → OT /I → 0

but we also have that
LηI(I/I

2) = LηI(OT /I) = 0

and
LηI(OT /I

2) = OT /I.
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We shall need the following behavior of the décalage operator with respect to the passage to the special
fiber.

Lemma 2.3.3. Let C ∈ D(OT ) and k ≥ 1, then the natural map

LηIC ⊗
L
OT

OT /I
k = LηIC ⊗

L
OT

LηI(OT /I
k+1)

∼
−→ LηI(C ⊗

L
OT

OT /I
k+1) (2.5)

is an equivalence.

Proof. Let C• be an I-torsion free complex representing C. Then, C ⊗L
OT

OT /I
k+1 is represented by the

complex D• with terms
Di = Ci ⊕ Ci+1 ⊗OT

Ik+1

and differentials

dDi =

(
dCi idCi+1 ⊗ι
0 (−1)idCi+1 ⊗ Ik+1

)

where ι : Ik+1 → OT . Therefore, LηI(C ⊗L
OT

OT /I
k+1) is represented by the complex D̃• with

D̃i = {(a, b) ∈ Di|dDi(a, b) ∈ IDi+1} ⊗OT
I i.

More explicitly, we have
dDi(a, b) = (dCi(a) + b, (−1)ndCi+1(b)).

Since b ∈ Ci+1 ⊗ Ik+1 ⊂ ICi+1, one deduces that

D̃i = {(a, b) ∈ Ci ⊕ Ci+1 ⊗OT
Ik+1|dCi(a) ∈ ICi+1 and dCi+1(b) ∈ ICi+1 ⊗OT

Ik+1} ⊗ I i

= {a ∈ Ci|dCi(a) ∈ ICi+1} ⊗ I i ⊕ {b ∈ Ci+1 ⊗OT
Ik|dCi+1(b) ∈ ICi+1 ⊗OT

Ik} ⊗OT
I i+1

= (ηIC
•)i ⊕ (ηIC

•)i+1 ⊗OT
Ik.

It is straightforward to check that the differentials of D̃• are those arising from the cone of ηIC•⊗OT
Ik →

ηIC
•, and that the resulting quasi-isomorphism

LηIC ⊗
L
OT

OT /I
k ∼= LηI(C ⊗

L
OT

OT /I
k+1)

is the one induced by the map (2.5). �

2.4. Solid locally analytic representations. Throughout this paper we will use the theory of solid
locally analytic representations of [RJRC22, RJRC23]. In this section we briefly recall some of the main
definitions and properties that will be needed later.

Let Solid be the abelian category of solid abelian groups and let ⊗� be its solid tensor product. for a
ring R ∈ Solid we let SolidR be the abelian category of solid R-modules. We write D(R) for the derived
∞-category of SolidR. Let G be a compact p-adic Lie group and let Zp,�[G] = lim

←−H
Zp[G/H] be the free

solid Zp-algebra generated by G; it coincides with the Iwasawa algebra of G with coefficients in Zp. We set
Qp,�[G] = Zp,�[G][

1
p ]. The group G has a space C la(G,Qp) of locally analytic functions, it can be written

as the filtered colimit
C la(G,Qp) = lim

−→
h→∞

Ch(G,Qp)

where Ch(G,Qp) = O(G(h)) is the affinoid algebra of a decreasing sequence of affinoid groups over Qp

G ⊂ · · · ⊂ G(h+1) ⊂ G(h) ⊂ · · ·

with lim
←−h

G(h) = G.
Given C ∈ D(Qp,�[G]) a derived solid G-representation, its (derived) locally analytic vectors [RJRC23,

Definition 3.1.4] is the solid G-representation

CRG−la := RΓ(G,C ⊗L
Qp,� C

la(G,Qp)⋆1)

where
• C la(G,Qp)⋆1 is endowed with the left regular G-action.
• The tensor C ⊗L

Qp,�
C la(G,Qp)⋆1 is endowed with the diagonal G-action.

• The G-action on CRG−la arises from the right regular action on C la(G,Qp).
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We say that C is (derived) locally analytic if the natural map

CRG−la → C

is an equivalence. We let ReplaQp,�
(G) ⊂ D(Qp,�[G]) be the full subcategory of locally analytic representa-

tions. This category satisfies the following properties:
• ReplaQp,�

(G) is stable under colimits and Qp,�-linear tensor products in D(Qp,�[G]) [RJRC23, Propo-
sition 3.2.3].
• The t-structure of D(Qp,�[G]) induces a t-structure on ReplaQp,�

(G) [RJRC23, Proposition 3.2.5].

Moreover, ReplaQp,�
(G) is the derived category of its heart [RJRC23, Proposition 3.2.6].

• The functor C 7→ CRG−la is the right adjoint of the inclusion ReplaQp,�
(G) ⊂ D(Qp,�[G]) [RJRC23,

Corollary 3.2.7].
The key lemma that we will use in this paper is the following criterion of locally analyticity:

Lemma 2.4.1. Let C ∈ D≥0(Zp,�[G]) be a connective derived p-adically complete solid representation of
G. Suppose that there is an open compact subgroup G0 ⊂ G, and a finite extension OK/Zp with pseudo-
uniformizer π, such that for all g ∈ G0 the map

1− g : V ⊗L
Zp,� OK/π → V ⊗L

Zp,� OK/π

is homotopic to zero as OK/π-module. Then V [1p ] is a locally analytic representation of G.

Proof. We can assume without loss of generality thatG is an uniform pro-p-group. By [RJRC23, Proposition
3.3.2] to show that V [1p ] is G-locally analytic, it suffices to show that for all g ∈ G it is Γg = gZp-locally
analytic. Then, we can assume that G ∼= Zp. The lemma follows from the same argument of [RJRC23,
Proposition 3.3.3] applied to V ⊗Zp OK and π instead of V and p respectively. �

With this criteria one can show that actions of p-adic Lie groups on rigid spaces are always locally
analytic:

Corollary 2.4.2. Let K be a complete non-archimedean field of characteristic zero. Let A be a Tate
algebra of finite type over K and G a compact p-adic Lie group acting continuously on A. Then A is a
locally analytic representation of G.

Proof. Let A0 ⊂ A be a ring of definition of A, we can suppose without loss of generality that A0 is stable
under the action of G and that A0 is topologically generated over OK by finitely many variables T1, . . . , Tn.
Thus, since the action of G on A0/p is smooth, there is some open subgroup G0 ⊂ G leaving the variables
Ti fixed. But then G0 acts trivially on A0/p and by Lemma 2.4.1 A is a locally analytic representation of
G. �

2.5. Equivariant sheaves over flag varieties. Let G be a reductive group over Qp and let µ be a
conjugacy class of cocharacters of G with field of definition E. We denote by FLG,µ,E the flag variety over
E parametrizing decreasing µ-filtrations on G-representations seen as an algebraic variety, we let FℓG,µ,E

denote its analytification as an adic space over Spa(E,OE) as in [Hub96]. Note that FLG,µ−1,E is also the
flag variety parametrizing increasing µ-filtrations.

Let C/E be a complete algebraically closed non-archimedean field an let us write FLG,µ and FℓG,µ for
the base change of the flag varieties to C. We fix a cocharacter µ : Gm → GC so that FLG,µ

∼= GC/Pµ

where Pµ ⊂ GC is the parabolic subgroup parametrizing decreasing µ-filtrations. We let Nµ ⊂ Pµ be its
unipotent radical and let Mµ be the Levi subgroup, i.e. the centralizer of µ in GC . We have a semi-direct
product decomposition Pµ = Nµ ⋊Mµ.

Set ∗ = SpecC. We have an isomorphism of Artin stacks

[1] : ∗/Pµ
∼
−→ GC\(GC/Pµ) = GC\FLG,µ .

Therefore, pullback along [1] gives rise an equivalence of quasi-coherent sheaves on the stacks. The previous
translates in the classical equivalence of representation categories:

[1]∗ : G−QCoh(FLG,µ)
∼
−→ RepalgC Pµ (2.6)
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from G-equivariant quasi-coherent sheaves on FLG,µ and algebraic C-linear representations of Pµ. We
write WG,µ for the inverse of (2.6).

Next, we introduce some notation appearing in the localization theory of Beilinson-Bernstein [BB81].
Let g = LieG be the Lie algebra of G over Qp and let gC be its base change to C. Let pµ, nµ and mµ be
the Lie algebras of Pµ, Nµ and Mµ respectively. We let g0µ = OFLG,µ

⊗Qp g, and let p0µ, n
0
µ and m0

µ be the
G-equivariant sheaves over FLG,µ corresponding to the adjoint action of Pµ via (2.6). Note that we have
inclusions of G-equivariant sheaves n0µ ⊂ p0µ ⊂ g0µ and an isomorphism p0µ/n

0
µ = m0

µ. The action of G on
FLG,µ can be differentiated to a G-equivariant OFLG,µ

-linear map

α : g0µ → TFLG,µ
(2.7)

where TFLG,µ
is the tangent space of FLG,µ. The map (2.7) induces an isomorphism

α : g0µ/p
0
µ

∼
−→ TFLG,µ

. (2.8)

Similarly, let πMµ : FL+
G,µ → FLG,µ be the natural Mµ-torsor over FLG,µ given by FL+

G,µ = GE/Nµ. The
action of G induces a G×Mµ-equivariant OFL+

G,µ
-linear map

α+ : OFL+
G,µ
⊗Qp g→ TFL+

G,µ

with TFL+
G,µ

the tangent space of FL+
G,µ. Taking pushforward along πMµ and Mµ-invariants, we get a

G-equivariant map
α+ : g0µ → (πMµ,∗(TFL+

G,µ
))Mµ

that induces an isomorphism
α+ : g0µ/n

0
µ

∼
−→ (πMµ,∗(TFL+

G,µ
))Mµ .

Remark 2.5.1. (1) In order to construct the equivalence (2.6) it suffices to consider a base change to
F/E such that the conjugacy class µ admits a representative. Then the groups Pµ,Nµ and Mµ are
defined over F .

(2) The Lie algebroids g0µ, pµ, nµ and m0
µ as well as the anchor map (2.7) admit natural descent to E.

Indeed, the descent of the Lie algebroid g0µ is nothing but g0µ,E = OFLG,µ,E
⊗Qp g. One has a sub

Lie algebroid g
der,0
E ⊂ g0µ,E induced by the derived Lie algebra gder ⊂ g. Since G acts on FℓG,µ,E

one has an anchor map by taking derivations

g
der,0
E ⊂ g0µ,E → TFLG,µ,E

with kernels p
der,0
µ,E and p0µ,E respectively. One can then define n0µ,E as the unipotent radical of

p
der,0
E ⊂ g

der,0
E and m0

µ,E = p0µ,E/n
0
µ,E (the reason to take the derived Lie algebra gder is that g

cannot distinguish the Lie algebra of an unipotent group and a torus).

We finish by introducing some notation that will be relevant in Section 5. Given the cocharacter µ of
GC we also have an opposite parabolic subgroup parametrizing increasing µ-filtrations. It is equivalently
obtained as Pµ−1 . Then, we have the following subgroups of GC : Nµ−1 ⊂ Pµ−1 with Levi quotient
Mµ−1 . Note that Mµ = Mµ−1 as the centralizers of µ and µ−1 are the same, if the Levi subgroup is clear
from the context we will write M instead. We have another flag variety FLG,µ−1 and the inverse of the
equivalence (2.6) is written as WG,µ−1 . To stress the difference between the Lie algebroids we shall write
g0µ−1 := OFL

G,µ−1 ⊗Qp g. We also have Lie algebroids over FLG,µ−1 given by n0µ−1 ⊂ p0µ−1 ⊂ g0µ−1 and
m0

µ−1 = p0µ−1/n
0
µ−1 .

3. Local Shimura varieties

In this section we introduce local Shimura varieties following [SW20]. We first recall some facts about
torsors on the Fargues-Fontaine curve, cf. [FS24, §III.4 and 5]. Then, we recall the definition of moduli
spaces of shtukas of one leg from [SW20, Lecture XXIII] as well as the construction of the Grothendieck-
Messing and Hodge-Tate period maps. Finally, we specialize the set up to local Shimura varieties and
deduce a p-adic Riemann-Hilbert correspondence for automorphic proétale local systems. This last result
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is a direct consequence of the theory developed in [SW20], and we only reformulate it in the version that is
more convenient for this paper.

Throughout this section we use the notation of [Sch22]. Let SpdZp denote the v-sheaf parametrizing
untilts S♯ of objects S ∈ Perf, we let SpdQp ⊂ SpdZp be the open subspace parametrizing untilts in
characteristic zero. Given an analytic adic space X over Zp we let X♦ denote its diamond over SpdZp. We
let k = Fp be an algebraic closure of Fp and let Perfk be the category of perfectoid spaces over k. We let
Q̆p = W (k)[1p ] be the completion of the maximal unramified extension of Qp. For E/Qp a finite extension

we write Ĕ = EQ̆p. We let σ denote the Frobenius automorphism of k and Q̆p.

3.1. G-torsors over Fargues-Fontaine curves. In this section we recall some facts about torsors over
the Fargues-Fontaine curve that we will need throughout the paper. Let G be a reductive group over Qp

and let B(G) be the Kottwitz set of Frobenius-conjugacy classes of elements in G(Q̆p) [Kot97]. Given
b ∈ B(G) and S ∈ Perfk a perfectoid space we let Eb denote the G-torsor on XS obtained via descent from
the trivial torsor G×YFF

(0,∞),S with Frobenius b×ϕ (in the definition of torsor we take the Tannakian point

of view of [SW20, Appendix to Lecture XIX]). Let (E≥r
b )r∈Q be the Harder-Narasimhan filtration of Eb. We

take the following definition from [FS24, §5.1].

Definition 3.1.1. Let b ∈ B(G). The automorphism group of Eb is the v-sheaf on groups

G̃b = AutG(Eb) : (S ∈ Perfk) 7→ Aut
G×XFF

S
(Eb|XFF

S
).

Let Gb be the reductive group over Qp mapping a ring R to

Gb(R) = {g ∈ G(R ⊗Qp Q̆p)|gb = bσ(g)}.

By [Kot97, §3.3] Gb = Gb(Qp) is the automorphism group associated to the G-isocrystal attached to b. We
have the following structure theorem for the group G̃b.

Proposition 3.1.2 ([FS24, Proposition III.5.1]). One has

G̃b = G̃>0
b ⋊Gb

where G̃>0
b is the subgroup of unipotent automorphisms with respect to the Harder-Narasimhan filtration of

Eb. In particular, if b is basic, G̃b = Gb is the Qp-valued points of a pure inner form of G.

In order to construct the period maps we need to introduce the B+
dR-affine Grassmannian.

Definition 3.1.3 ([SW20, Definition 19.1.1]). Let S ∈ Perfk /SpdE be an affinoid perfectoid with untilt
S♯ over Ĕ. Given H an algebraic variety over E we shall write L+H for the v-sheafification of the presheaf

S 7→ H(B+
dR(O(S♯))).

Similarly we define LH to be the v-sheafification of

S 7→ H(BdR(O(S♯))).

The B+
dR-affine Grassmannian of G is the v-sheaf over SpdQp given by the quotient of groups

GrG = LG/L+
G.

We shall write Gr
G,Ĕ for the base change of GrG from SpdQp to SpdE.

Let S ∈ Perfk be a perfectoid and let S♯ be an untilt over Q̆p. By [FS24, Proposition II.1.18] the map

ι : S♯ → XFF
S

is an effective Cartier divisor. The pullback of Eb to the completion XFF,∧,ι
S of XFF

S at ι is a trivial G-torsor.
The automorphism group of the trivial G-torsor over XFF,∧,ι

S is then equal to L+
G(S). Thus, pullback

along the formal completion gives rise to a group homomorphism of v-sheaves

G̃b × SpdQp → L+
G. (3.1)
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3.2. Moduli space of shtukas of one leg. In the following section we recall the definition of moduli
space of shtukas of one leg and the construction of the Grothendieck-Messing and Hodge-Tate period maps.
We shall follow [SW20, §23.3].

Let (G, b, µ) be a local shtuka datum of one leg, namely, a triple consisting on a reductive group G

over Qp, an element b ∈ B(G), and a conjugacy class of cocharacters µ : Gm → GQp
. Let E be the field

of definition of µ. Recall the equivalent definition of the moduli space of shtukas of one leg from [SW20,
Proposition 23.3.1].

Definition 3.2.1. Let K ⊂ G(Qp) be a compact open subgroup. The moduli space ShtG,b,µ,K of stukas
associated to (G, b, µ) at level K is the presheaf on Perfk mapping S ∈ Perfk to the isomorphism classes of
quadruples (S♯, E , α,P) where

• S♯ is an until of S over Ĕ,
• E is a G-torsor on XFF

S , which is trivial at every geometric point of S,
• α is an isomorphism of G-torsors

α : E|XFF
S \S♯

∼
−→ Eb|XFF

S \S♯ ,

which is meromorphic at S♯ and bounded by µ, and finally
• P is a K-lattice in the proétale G(Qp)-torsor corresponding to E via [SW20, Theorem 22.5.2].

By [SW20, Theorem 23.1.4] the spaces ShtG,b,µ,K are diamonds living over Spd Ĕ. We also define the
moduli space of shtukas at infinite level.

Definition 3.2.2. Let ShtG,b,µ,∞ = lim
←−K⊂G(Qp)

ShtG,b,µ,K be the infinite level moduli space of shtukas.

By construction, ShtG,b,µ,∞ is the presheaf on Perfk parametrizing tuples (S♯, α) where

• S♯ is an untilt of S over Ĕ.
• α is an isomorphism of G-torsors

α : E1|XFF
S \S♯

∼
−→ Eb|XFF

S \S♯

which is meromorphic at S♯ and bounded by µ.

Let S ∈ Perfk be a perfectoid space and let (S♯, α) be an S-point of ShtG,b,µ,∞. Let ι : S♯ → XFF
S be the

closed Cartier divisor defined by the untilt. The pullbacks of E1 and Eb to the formal completion XFF,∧,ι
S

at ι are trivial G-torsors. Therefore, the modification α is defined by an element gα ∈ LG(S) = BdR(S
♯).

The automorphisms G(Qp) of E1 act on gα by right multiplication while the automorphisms G̃b of Eb act
by left multiplication. Therefore, we have two maps to the affine BdR-grassmannian

ShtG,b,µ,∞

LG/L+
G = Gr

G,Ĕ Gr
G,Ĕ = L+

G\LG

πGM πHT (3.2)

by taking a left or right coset respectively. In particular, since α is bounded by µ by hypothesis, the diagram
(3.2) actually restricts to

ShtG,b,µ,∞

Gr
G,Ĕ,≤µ Gr

G,Ĕ,≤µ−1 .

πGM πHT (3.3)

When b is basic we have a duality for the diagram (3.3), cf. [SW20, Corollary 23.3.2].

Proposition 3.2.3. Let (G, b, µ) be a local shtuka datum with b basic. Define a shtuka datum (Ǧ, b̌, µ̌) via

Ǧ = Gb, b̌ = b−1 ∈ Gb(Q̆p) = G(Q̆p) and µ̌ = µ−1 under the identification GQp

∼= ǦQp
. Then there is a

natural G(Qp)× Ǧ(Qp)-equivariant isomorphism

ShtG,b,µ,∞
∼= Sht

Ǧ,b̌,µ̌,∞ (3.4)
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interchanging the maps πGM and πHT of (3.3).

Proof. Let S ∈ Perfk and (S♯, α) an S-point of ShtG,b,µ,∞. The equivariant isomorphism is [SW20, Corollary
23.3.2]. It is given by mapping a modification

α : E1|XFF
S \S♯

∼
−→ Eb|XFF

S \S♯

to the modification of Gb-torsors
α̌ : F1|XFF

S \S♯
∼
−→ Fb̌|XFF

S \S♯

obtained by mapping a G-torsor E to the Gb-torsor F = AutG(E , Eb). Then, since the pullback of the
torsors E1 and E2 to BdR(S

♯) are trivial, the map α̌ seen as an object in G(BdR(S
♯)) ∼= Ǧ(BdR(S

♯)) is just
the inverse of the map α, proving that the period morphisms πGM and πHT are exchanged. �

3.3. Local Shimura varieties. Recall the definition of a local Shimura datum [SW20, Definition 24.1.1]

Definition 3.3.1. A local Shimura datum is a triple (G, b, µ) consisting of a reductive group G over Qp,
a conjugacy class µ of minuscule cocharacters Gm → GQp

, and an element b ∈ B(G, µ−1).

Let (G, b, µ) be a local Shimura datum and let E be the field of definition of µ. We keep the representation
theory notation of Section 2.5. Let K ⊂ G(Qp) be an open compact subgroup and consider ShtG,b,µ,K the
moduli space of shtukas associated to (G, b, µ) at level K. By [SW20, Proposition 23.3.3] the period map

πGM : ShtG,b,µ,K → Gr
G,Ĕ,≤µ

is étale. On the other hand, since µ is minuscule, the Bialynicki-Birula map

πµ : Gr
G,Ĕ,≤µ = Gr

G,Ĕ,µ → Fℓ
♦

G,µ,Ĕ

is an isomorphism [SW20, Proposition 19.4.2]. This produces an étale map

πGM : ShtG,b,µ,K → Fℓ
♦

G,µ,Ĕ
. (3.5)

Definition 3.3.2. For K ⊂ G(Qp) let MG,b,µ,K be the unique smooth rigid space over Ĕ endowed with
an étale map MG,b,µ,K → FℓG,µ,Ĕ such that

ShtG,b,µ,K
∼=M♦

G,b,µ,K

as diamonds over Fℓ♦
G,µ,Ĕ

. We shall writeM♦
G,b,µ,∞ = lim

←−K
M♦

G,b,µ,K for the infinite level Shimura variety.

By (3.2) we get a G(Qp)× G̃b-equivariant diagram of period maps

M♦
G,b,µ,∞

Fℓ♦
G,µ,Ĕ

Fℓ♦
G,µ−1,Ĕ

.

πHTπGM (3.6)

In the rest of the section we will translate the diagram (3.6) in terms of p-adic Hodge theory of Shimura
varieties. More precisely, we shall deduce a Riemann-Hilbert correspondence for proétale local systems
arising from algebraic G-representations.

Let Fℓa
G,µ,Ĕ

⊂ Fℓ
G,µ,Ĕ be the admissible locus of the flag variety. By [SW20, Corollary 23.5.3] the map

πGM factors through Fℓa
G,µ,Ĕ

and the map

πGM :M♦
G,b,µ,∞ → Fℓ

a
G,µ,Ĕ

is a proétale G(Qp)-torsor.

Definition 3.3.3. For K ⊂ G(Qp) a closed subgroup we denote

M♦
G,b,µ,K :=M♦

G,b,µ,∞/K.
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Let V be a p-adically complete or Qp-Banach continuous representation of K. We let FV be the v-sheaf on
M♦

G,b,µ,K obtained via descent from the constant K-equivariant sheaf V onM♦
G,µ,∞ with

V (S) = Cont(|S|, V )

for S ∈ M♦
G,b,µ,∞,v affinoid perfectoid. For V = “ lim

−→
′′
i
Vi an ind-system of p-adically complete or Banach

representations we define FV := lim
−→i
FVi .

We let E′ be a finite extension over E over which G is split and consider the pullback of the local
Shimura varieties and flag varieties to Ĕ′. Furthermore, we fix a Hodge cocharacter µ : Gm,E′ → GE′ which
determines parabolic subgroups Pµ and Pµ−1 of GE′ , as well as their unipotent radicals Nµ and Nµ−1 , and
the Levi subgroup Mµ = Mµ−1 = M

1.
Let V ∈ RepalgQp

(G) be a Qp-linear algebraic representation of G. Let VdR be the G-equivariant flat
connection over Fℓ

G,µ,Ĕ′ given by

VdR = OFℓG,µ,Ĕ′ ⊗Qp V

with Hodge filtration induced by the Pµ-filtration of V⊗QpE
′ via the functorWG,µ of (2.6), see Remark 2.5.1

(1). By an abuse of notation we will also write VdR for the restriction to the admissible locus.
Let FV be the v-sheaf over Fℓa

G,µ,Ĕ′
associated to the G(Qp)-representation V via Definition 3.3.3. Let

Vproét be the restriction of FV to a sheaf on the proétale site Fℓa
G,µ,Ĕ′,proét

of [Sch13]. We have the following
Riemann-Hilbert correspondence for local Shimura varieties.

Proposition 3.3.4. The proétale local system Vproét is de Rham in the sense of [Sch13, Definition 8.3]
with associated filtered flat connection VdR

2. More precisely, we have a G̃b-equivariant map of filtered
BdR-sheaves on Fℓa

G,µ,Ĕ′,proét

Vproét ⊗Qp BdR
∼= V ⊗Qp BdR, (3.7)

where the B+
dR-filtration in the left hand side is the trivial one, and the filtration in the right hand side is

given by

Fili(V ⊗Qp BdR) := (Fili(VdR ⊗OFℓa
G,µ,Ĕ′

OBdR))
∇=0.

The action of G̃b is trivial on Vproét in the left hand side and it factors through G̃b → LG and the natural
action on V ⊗Qp BdR in the right hand side.

Remark 3.3.5. By [SW20, Corollary 17.1.9], for a smooth rigid variety X there is no distinction between
filtered B+

dR-vector bundles on the proétale site Xproét of [Sch13] or filtered B+
dR-vector bundles on Xv .

Thus, the equivariant isomorphism (3.7) can also be stated as a G̃b-equivariant isomorphism of filtered BdR

sheaves on the v-site
FV ⊗Qp BdR

∼= V ⊗Qp BdR.

Proof of Proposition 3.3.4. Let us denote X = Fℓa
G,µ,Ĕ′,proét

. Since VdR has horizontal sections V , we have
an isomorphism

V ⊗Qp BdR = (VdR ⊗OX
OBdR)

∇=0

in Xproét. By [Sch13, Theorem 7.6] M′ := (Fil0(VdR ⊗OX
OBdR))

∇=0 is a B+
dR-lattice of V ⊗Qp BdR in the

proétale site of X. By [SW20, Corollary 17.1.9] we can view M′ as a B+
dR-lattice in the v-site of X. Thus,

we will view V ⊗Qp BdR as a filtered B+
dR-module in the v-site with Fili(V ⊗Qp BdR) = ξiM′ for ξ a local

generator of the kernel of θ : B+
dR → Ô.

1Taking this finite extension is unnecessary for the forthcoming discussion but it allows us to use the dictionary between
representations of the chosen parabolic Pµ and G-equivariant quasi-coherent sheaves on the flag variety of Section 2.5. We
left to the reader the cocharacter-free formulation of the statements in terms of filtered G-representations.

2Strictly speaking this notion is only defined for lisse Zp-local systems and Vproét over Fℓa
G,µ,Ĕ′

is not of this form. However,

it becomes lisse after pulling back to any finite level local Shimura variety.
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Now let S ∈ Perfk and take (S♯, α) an S-point of M♦

G,b,µ,∞,Ĕ′
. Given V ∈ RepalgQp

G an algebraic

representation, let V1 and Vb be the G-equivariant vector bundles over XFF
S defined by the torsors E1 and

Eb respectively. By definition of the modification we have a G(Qp)× G̃b-equivariant isomorphism

(FV ⊗Qp BdR)(S
♯) = V1 ⊗O

XFF
S

BdR(S
♯) ∼= Vb ⊗O

XFF
S

BdR(S
♯) = V ⊗Qp BdR(S

♯)

where G(Qp) acts trivially on V and via the projection G(Qp)→ LG on FV ⊗Qp BdR, and G̃b acts trivially
on FV and via the projection G̃b → LG on V ⊗Qp BdR. This produces the desired equivariant isomorphism
(3.7). The fact that the isomorphism (3.7) is compatible with the filtration follows from the definition of
the Bialynicki-Birula map and [SW20, Proposition 19.4.2]. �

Given V ∈ RepalgQp
G let M = FV ⊗Qp B+

dR and let M0 = V ⊗Qp B+
dR. The Hodge-Tate filtration of

FV ⊗Qp Ô is given by

Filn(FV ⊗Qp Ô) = (M ∩ Fil−iM0)/(Fil
1M ∩ Fil−iM0).

Let WG,µ−1 be the inverse of the functor (2.6) for the cocharacter µ−1. As corollary we deduce that the
Hodge-Tate period map encodes the Hodge-Tate filtration.

Corollary 3.3.6. There is a G(Qp)× G̃b-equivariant isomorphism of Ô-modules over M♦

G,b,µ,∞,Ĕ′

Filn(FV ⊗Qp Ô) ∼= π∗HT(WG,µ−1(Filn(V ⊗Qp E
′)))),

where Fil•(V ⊗Qp E
′) is the (increasing) Pµ−1-filtration of V ⊗Qp E

′.

Proof. This is a consequence of Proposition 3.3.4, the definition of the Bialynicki-Birula map and [SW20,
Proposition 19.4.2] �

Moreover, taking graded pieces in Corollary 3.3.6 one deduces the isomorphism of M-torsors on the
infinite level Shimura variety, cf. [CS17, Theorem 2.1.3].

Corollary 3.3.7. Let W ∈ RepalgE′ M be an irreducible algebraic representation of the Levi subgroup. There

is a natural G(Qp)× G̃b-equivariant ⊗-isomorphism of Ô-modules over M♦

G,b,µ,∞,Ĕ′

π∗HT(WG,µ−1(W )) ∼= π∗GM(WG,µ(W ))⊗
Ô

Ô(−µ(W ))

where µ(W ) ∈ Z is the weight of W with respect to µ. In particular, if Mµ,GM and Mµ−1,HT denote the

natural M-torsors living over Fℓ
G,µ,Ĕ′ and Fℓ

G,µ−1,Ĕ′ respectively (see Section 2.5), we have a G(Qp)×G̃b-

equivariant isomorphism of M-torsors over the ringed site (M♦

G,b,µ,∞,Ĕ′,v
, Ô)

π∗HT(Mµ−1,HT) ∼= π∗GM(Mµ,GM)×Gm,µ Gm(−1),

where Gm injects into the center of M via µ, and Gm(−1) is the Gm-torsor of trivializations of the Tate

twist Ô(−1).

Proof. This follows after taking graded pieces of the isomorphisms in Corollary 3.3.6 and [Sch13, Proposition
7.9], see also [RC24b, Theorem 4.2.1]. �

4. Geometric Sen operators of local Shimura varieties

In this section we compute the geometric Sen operator of local Shimura varieties, proving the local
analogue of [RC24b, Theorem 5.2.5]. We keep the notation of Section 3.3, namely we let (G, b, µ) be a local
Shimura datum with reflex field E/Qp. We let E′/E be a finite extension of E over which G is split and
fix a representative of the Hodge-cocharacter µ : Gm,E′ → GE′ . For K ⊂ G(Qp) compact open subgroup
we letMG,b,µ,K be the local Shimura variety over Ĕ at level K, we denote by OM its structural sheaf as a
rigid space, and let Ω1

M be its cotangent bundle.
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4.1. The Kodaira-Spencer map. In the next paragraph we make explicit the Kodaira-Spencer isomor-
phism for local Shimura varieties in terms of representation theory over the flag variety. We follow [RC24b,
Proposition 5.1.3].

Let g be the adjoint representation of G over Qp, and let g∨dR = OFℓ
G,µ,E′ ⊗Qp g

∨ = g
0,∨
µ be its associated

G-equivariant vector bundle with flat connection over FℓG,µ,E′. Since µ is minuscule, g∨dR has Hodge
filtration concentrated in degrees [−1, 1] given by

(gdR/p
0
µ)

∨ ⊂ p0,∨µ ⊂ g∨dR

such that

gri g∨dR =





(gdR/p
0
µ)

∨ if i = 1,

m
0,∨
µ if i = 0,

n
0,∨
µ if i = −1.

Then, the flat connection ∇ : g∨dR → g∨dR ⊗OFℓ
G,µ,E′

Ω1
Fℓ

G,µ,E′
induces a map in gr1-pieces

(gdR/p
0
µ)

∨ → m0,∨
µ ⊗OFℓ

G,µ,E′
Ω1
Fℓ

G,µ,E′
.

Taking adjoints we get a G-equivariant map

K̃S : (gdR/p
0
µ)

∨ ⊗OFL
G,µ,E′

m0
µ → Ω1

FℓG,µ
. (4.1)

Looking at the fiber at [1] ∈ FℓG,µ,E′ the map (4.1) is nothing but the natural adjoint action of mµ on
(gE′/pµ)

∨ with gE′ = g⊗Qp E
′:

(gE′/pµ)
∨ ⊗E′ mµ

ad
−→ (gE′/pµ)

∨ ∼= Ω1
Fℓ

G,µ,E′
|[1].

Therefore, the map K̃S induces the G-equivariant Kodaira-Spencer isomorphism over the flag variety

KS : (gdR/p
0
µ)

∨ ∼
−→ Ω1

Fℓ
G,µ,E′

. (4.2)

which is the inverse of the dual of the anchor map α of (2.8). Note that in particular KS is already defined
over E as the anchor map is so, see Remark 2.5.1 (2).

We deduce the following proposition.

Proposition 4.1.1. Let K ⊂ G(Qp) be an open compact subgroup. The Kodaira-Spencer map ofM
G,b,µ,K,Ĕ′

K̃S : gr1(g∨dR)⊗OM
gr0(gdR)→ Ω1

M

constructed in analogue fashion as (4.1) factors through an isomorphism

KS : gr1(g∨dR)
∼
−→ Ω1

M

which is noting but the pullback along M
G,b,µ,K,Ĕ′ → FℓG,µ,Ĕ′ of the Kodaira-Spencer isomorphism (4.2).

Proof. This follows from the Kodaira-Spencer isomorphism (4.2) and the fact that the map MG,b,µ,K →
Fℓ

G,µ,Ĕ is étale, namely, the filtered vector bundle with flat connection g∨dR over MG,b,µ,K is the pullback
of the analogue filtered vector bundle with flat connection over the flag variety. �

We finish this section by rewriting the Kodaira-Spencer map in the form that will be used in the paper.
Let K ⊂ G(Qp) be a compact open subgroup. By Proposition 3.3.4 the local system Fg∨ on the admis-
sible locus Fℓa

G,µ,Ĕ′
(see Definition 3.3.3) is de Rham with associated filtered flat connection g∨dR. Then,

Corollaries 3.3.6 and 3.3.7 give rise G(Qp)× G̃b-equivariant Ô-sheaves on M
G,b,µ,∞,Ĕ′

π∗HT(n
0,∨
µ−1) ∼= gr1(Fg∨ ⊗Qp Ô) ∼= gr1(g∨dR)⊗OM

Ô(−1) ∼= π∗GM((gdR/p
∨
µ)

∨)(−1). (4.3)

Composing (4.2) and (4.3) we get the following incarnation of the Kodaira-Spencer map

KS′ : π∗HT(n
0,∨
µ−1)

∼
−→ Ω1

M ⊗OM
Ô(−1) (4.4)

as G(Qp)× G̃b-equivariant Ô-sheaves on M
G,b,µ,∞,Ĕ′,v.
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4.2. Pullbacks of equivariant vector bundles along πHT. In this section we compute the Faltings
extension of the local Shimura varieties in terms of the representation theory of the Hodge-Tate flag variety.
For this computation we need to introduce some sheaves. We keep the representation theory notation of
Section 2.5.

Let OB+
dR and OBdR be the big proétale de Rham sheaves of Fℓa

G,µ,Ĕ′
as in [Sch13]. Let gr1 OB+

dR be

the Faltings extension, it is an Ô-vector bundle in the proétale site and so it defines naturally a v-vector
bundle that we denote in the same way. We can write

gr0 OBdR = Sym
Ô
(gr1 OB+

dR(−1))/(1 − e(1))

where 1 is the unit in the symmetric algebra, and where e : Ô → gr1 OB+
dR(−1) is the natural map.

Therefore, we can see gr0 OBdR as a v-sheaf which is a filtered colimit of v-vector bundles. See also
[RJRC22, Remark 2.1.2].

Let Nµ−1 ⊂ Pµ−1 be the unipotent radical of the opposite to the standard parabolic and let O(Nµ−1)
be its space of algebraic functions. We endow O(Nµ−1) with the unique action of Pµ = Nµ−1 ⋊Mµ−1 such
that

• The restriction to Nµ−1 is the left regular action, i.e

(n1 · f)(n2) = f(n−1
1 n2)

for n1, n2 ∈ Nµ−1 and f ∈ O(Nµ−1).
• The restriction to Mµ−1 is the adjoint action, i.e.

(m · f)(n) = f(m−1nm)

for m ∈Mµ−1 , n ∈ Nµ−1 and f ∈ O(Nµ−1).

By [RC24b, Proposition 3.3.1] the algebra O(Nµ−1) has an increasing Pµ−1 -filtration O(Nµ−1)≤n with
graded pieces grn(O(Nµ−1)) ∼= Symn

E′n∨µ−1 .
Recall that for an algebraic Pµ−1 -representation W we let WG,µ−1(W ) denote the G-equivariant quasi-

coherent sheaf over FℓG,µ−1,E′ associated to W via (2.6). We have the following theorem.

Theorem 4.2.1. There is a natural G(Qp)× G̃b-equivariant isomorphism of Ô-algebras overM♦

G,b,µ,∞,Ĕ′,v

gr0(OBdR) ∼= π∗HT(WG,µ−1(O(Nµ−1))).

More precisely, we have a G(Qp)× G̃b-equivariant isomorphism of extensions

0 Ô π∗HT(WG,µ−1(O(Nµ−1))) π∗HT(n
0,∨
µ−1) 0

0 Ô gr1 OB+
dR(−1) Ω1

M ⊗OM
Ô(−1) 0

id α −KS′

where KS′ is the Kodaira-Spencer isomorphism of (4.4).

Proof. The proof follows exactly the same lines of the proof of [RC24b, Theorem 5.1.4] where the key inputs
are the Riemann-Hilbert correspondence of Proposition 3.3.4 and the Kodaira-Spencer isomorphism (4.4).
Note that in loc. cit. we denoted OClog,Sh = gr0(OBdR), and we have identified g ∼= g∨, mµ−1

∼= m∨
µ−1 and

n∨µ−1
∼= gE′/pµ−1 via the Killing form of the derived Lie algebra of g 3. �

4.3. Computation of the geometric Sen operators. We finish this section with the computation of
the geometric Sen operators. By [RC23, Theorem 3.3.4], for any compact open subgroup K ⊂ G(Qp), there
is a natural geometric Sen operator

θM : Fg∨ ⊗Qp Ô → Ω1
M ⊗OM

Ô(−1) (4.5)

seen as a morphism of Ô-vector bundles over M
G,b,µ,K,Ĕ′,v. We have the following theorem.

3Strictly speaking one has to use the Killing form of the derived group gder to obtain the self duality.
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Theorem 4.3.1. The geometric Sen operator (4.5) is the descent along the K-torsor πK :M♦

G,b,µ,∞,Ĕ′
→

M♦

G,b,µ,K,Ĕ′
of the G(Qp)× G̃b-equivariant map of Ô-vector bundles obtained by pulling back along πHT the

map

g
0,∨
µ−1 → n

0,∨
µ−1

over Fℓ
G,µ−1,Ĕ′, where π∗HT(n

0,∨
µ−1) ∼= Ω1

M ⊗OM
Ô(−1) is the Kodaira-Spencer isomorphism (4.4).

Proof. The proof is the same as the one of [RC24b, Theorem 5.2.5] where Theorem 4.2.1 replaces [RC24b,
Theorem 5.1.4]. �

Corollary 4.3.2. The geometric Sen operator (4.5) is a G(Qp) × G̃b-equivariant map of Ô-sheaves over

M♦

G,b,µ,∞,Ĕ′
.

Proof. This follows from the fact that the pullback along πHT of the map g0µ−1 → n
0,∨
µ−1 is G(Qp) × G̃b-

equivariant. �

We finish this section with the vanishing of higher locally analytic vectors for the sheaf Ô and the
computation of its arithmetic Sen operator. Let C/E′ be the p-adic completion of an algebraic closure. Let
K ⊂ G(Qp) be a compact open subgroup, and let VK = C la(K,Qp)⋆1 be the left regular locally analytic
representation of K. Consider the v-sheaf FVK

overM
G,b,µ,K,Ĕ of Definition 3.3.3 which is a filtered colimit

of Banach Qp-linear v-sheaves.

Theorem 4.3.3. Let U ⊂ MG,b,µ,K,C be an open affinoid subspace admitting an étale map to a product

of tori Td
C that factors as a finite composition of rational localizations and finite étale maps. Let U∞ ⊂

M♦
G,b,µ,∞,C be the pullback of U , then

RΓv(U, Ô⊗̂QpFVK
) = Ô(U∞)G−la (4.6)

sits in degree 0 and is equal to the locally analytic vectors of Ô(U∞). Here the completed tensor product is
a filtered colimit of p-completed tensor products obtained by writing FVK

as a colimit of Banach sheaves, it
coincides with the solid tensor product of [AM24, Section 4.1].

Furthermore, the action of g0µ−1,C = OFℓ
G,µ−1,C

⊗Qp g on Ô(U∞)G−la by derivations kills n0µ−1,C . In

particular we have an horizontal action of m0
µ−1,C on Ô(U∞)G−la. Moreover, the space Ô(U∞)G−la has an

arithmetic Sen operator as in [RC24b, Theorem 6.3.5] given by the opposite of the derivative of the Hodge
cocharacter −θµ = θµ−1 ∈ m0

µ−1,C .

Proof. The equivalence of (4.6) follows from the same proof of Proposition 6.2.8 (1) in [RC24b]. The
vanishing of the action of n0µ−1 on Ô(U∞)G−la is Corollary 6.2.12 of loc. cit.. Finally, the existence and
computation of the arithmetic Sen operator is Theorem 6.3.5 of loc. cit.. Note that in [RC24b] the statement
of the theorem involves proétale cohomology and not v-cohomology, these two are naturally the same thanks
to the v-decent results of [AM24, Theorem 5.6]. �

5. Locally analytic vectors at infinite level

In this last section we show the main results of this paper. First, in Section 5.1 we study the locally
analytic vectors of period sheaves at infinite level local Shimura varieties. In particular, we prove that
when b is basic the locally analytic vectors are independent of the two towers of local Shimura varieties
(Corollary 5.1.9), generalizing a result of Pan for the Lubin-Tate tower [Pan22b, Corollary 5.3.9]. Then, in
Section 5.2 we prove that, for b basic, the colimit of compactly supported de Rham cohomologies as the
level goes to 1 are independent of the two towers (Theorem 5.2.2), this result has also been independently
obtained by Guido Bosco, Wiesława Nizioł and the first author. Finally, in Section 5.3 we prove that
the p-adic Jacquet-Langlands functor of Scholze [Sch18] for the Lubin-Tate tower is compatible with the
passage to locally analytic vectors (Theorem 5.3.6).
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5.1. Locally analytic vectors of towers of rigid spaces. Let us fix K a perfectoid field in characteristic
zero with tilt K♭, we let ̟ ∈ K♭ be a pseudo-uniformizer with |̟|K♭ = |p|K . Throughout this section we
suppose that K contains all p-th power roots of unit. For all b rational we shall take pb ∈ K an element
with |pb|K = |p|bK whenever it exists (similarly for ̟ ∈ K♭). Let G and H be two compact p-adic Lie
groups and X a smooth qcqs rigid space over K endowed with an action of H. Suppose we are given with
an H-equivariant proétale G-torsor X̃ → X♦ seen as a diamond over Spd(K), so that X̃ has a commuting
action of G×H.

Let I = [s, r] ⊂ (0,∞) be a compact interval with rational ends and let BI be the period sheaf on the
v-site X♦

v as in Definition 2.1.3. We can write BI = B+
I [

1
[̟] ] with B+

I a [̟]-adically complete sheaf. Set

B+
I,b = B+

I /[̟]b. Consider the solid Qp-vector space RΓv(X̃,BI) with solid structure induced from the
presentation

RΓv(X̃,BI) = R lim
←−
b

RΓv(X̃,B
+
I,b)[

1

[̟]
]

where RΓv(X̃,B
+
I,b) is a discrete B+

I,b(K
♭,K+,♭)-complex, equal to the étale cohomology

RΓv(X̃,B
+
I,b) = RΓét(X̃,B

+
I,b)

by [Sch22, Proposition 14.7]. Equivalently, it is the pushforward along X̃ → SpdK of BI seen as a solid
sheaf as in [AM24, §4].

The action of G × H on X̃ gives rise to the structure of an almost smooth G × H representation on
RΓv(X̃,B

+
I,b) by Proposition 2.2.3 which then can be seen as an almost module over B+

[0,r],b(K
♭,K+,♭)�[G×

H] via Remark 2.2.4. Then, after taking limits and colimits, the solid Qp-vector space RΓv(X̃,BI) has a
natural action of G×H, and so it gives rise an object in the derived category D(Qp,�[G×H]) of solid Qp-
linear G×H-representations (even an object in the derived∞-category of semilinear solid representations of
G×H over the Huber pair (BI(K

♭),B+
I (K

+,♭)), namely the∞-category D((BI(K
♭),B+

I (K
+,♭))�[G×H])).

We want to prove the following theorem:

Theorem 5.1.1. The natural map

RΓv(X̃,BI)
R(G×H)−la ∼

−→ RΓv(X̃,BI)
RG−la

from G×H-locally analytic vectors to G-locally analytic vectors is an equivalence.

Proof. We can assume without loss of generality that both G and H are uniform pro-p-groups. We shall
consider almost mathematics with respect to ([̟]1/p

n
)n.

The strategy to prove Theorem 5.1.1 is to apply the locally analytic criterion of Lemma 2.4.1 for the
group H for suitable “lattices” of RΓv(X̃,BI)

RG−la. We employ this strategy in different steps. We first
make some formal reductions.

Lemma 5.1.2. Suppose that Theorem 5.1.1 holds for smooth affinoid rigid spaces Y admitting toric coor-
dinates ψ : Y → Td

K. Then it holds for general qcqs smooth rigid space X.

Proof. We first show that Theorem 5.1.1 holds for a quasi-compact and separated rigid space X. Let
{Xi}

k
i=1 be an affinoid cover of X by subspaces admitting toric charts and let {XJ}J⊂{1,...,d} be the poset

of finite intersections of the Xi. Any finite intersection XJ is then affinoid and admits a toric chart. For
all J let us write X̃J = XJ ×X X̃ . Thus, we have that

RΓv(X̃,BI) = lim
←−

J⊂{1,...,d}

RΓv(X̃J ,BI).

The claim follows since the functor of locally analytic vectors commutes with finite limits (being an exact
functor of stable ∞-categories). Now, for general X qcqs, we argue as before by taking a finite affinoid
cover {Xi}

n
i=1, and noticing that any finite intersection XJ is a quasi-compact separated rigid space. �

From now on we suppose that X has toric coordinates ψ : X → Td
K .
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5.1.1. Modifying the locally analytic functions. First, we can write the left regular representation C la(G,Qp)⋆1 =

lim
−→h→∞

Vh as a colimit of analytic Banach representations of G with Vh = Ch(G,Qp)⋆1 a suitable space
of h-analytic functions endowed with a left regular action. We can fix compatible Zp-lattices V +

h ⊂ Vh
and define the p-adically complete v-sheaf FV +

h
over Xv obtained by proétale descent along the G-torsor

X̃ → X♦, see Definition 3.3.3. We set FVh
= FV +

h
[1p ].

Lemma 5.1.3. There is a natural G×H-equivariant isomorphism of solid abelian groups

RΓv(X̃,BI)
RG−la = lim

−→
h→∞

RΓv(X,B
+
I ⊗̂ZpFV +

h
)[

1

[̟]
],

where the completed tensor in the RHS term is a p-adically complete tensor product.

Proof. Recall that both p and [̟] are pseudo-uniformizers in BI . Since X̃ is qcqs we can write

RΓv(X̃,BI) = RΓv(X̃,B
+
I )[

1

[̟]
]

Thus, since G is compact, we get that

RΓv(X̃,BI)
RG−la = RΓ(G,RΓv(X̃,BI)⊗

L
Qp,� C

la(G,Qp)⋆1)

= lim
−→
h

RΓ(G,RΓv(X̃,B
+
I )⊗

L
Zp,� V

+
h )[

1

[̟]
]

where the spaces C la(G,Qp)⋆1 and Vh have the left regular action of G, the first equality is solid group
cohomology as in [RJRC22, Definition 5.1 (1)], and in the second equality we use that the trivial repre-
sentation is a compact Zp,�[G]-module thanks to the Lazard resolution which exists since G is an uniform
pro-p-group.

Now, since both V +
h and RΓv(X̃,B

+
I ) are almost bounded to the right and derived p-complete, we have by

[Man22b, Proposition 2.12.10 (i)] that the solid tensor product RΓv(X̃,B
+
I )⊗

L
Zp,�

V +
h is derived p-complete

and almost equal to

R lim
←−
k,s

(RΓv(X̃,B
+
I /[̟]k)⊗L

Z/ps V
+
h /p

s) = R lim
←−
k,s

(RΓv(X̃,B
+
I /[̟]k ⊗L

Z/ps FV +
h
/ps)) (5.1)

where in the second term we use that X is qcqs and that V +/ps is a discrete Z/ps-module. We get that

RΓv(X̃,BI)
RG−la = lim

−→
h

(
R lim
←−
k,s

RΓ(G,RΓv(X̃,B
+
I /[̟]k ⊗L

Z/ps FV +
h
/ps))

)
[
1

[̟]
]

= lim
−→
h

(
R lim
←−
k,s

RΓsm(G,RΓv(X̃,B
+
I /[̟]k ⊗L

Z/ps FV +
h
/ps))

)
[
1

[̟]
]

= lim
−→
h

(
R lim
←−
k,s

RΓv(X,B
+
I /[̟]k ⊗Z/ps FV +

h
/ps)

)
[
1

[̟]
]

= lim
−→
h

RΓv(X,B
+
I ⊗̂ZpFV +

h
)[

1

[̟]
]

(5.2)

where in the first equality we use (5.1), the fact group cohomology for G commutes with limits, and that
is also commutes with colimits since G is uniform pro-p. The second equality we use Proposition 2.2.3
and [Man22b, Remark 3.4.12] to compare solid and smooth cohomology. In the third equality we also
use Proposition 2.2.3 and the fact that v-cohomology is the pushforward along the map X♦ = X̃/G →
(SpdK)/G→ SpdK. In the last equality we use that cohomology commutes with derived limits of sheaves
and that B+

I ⊗̂ZpFV +
h

is derived ([̟], p)-complete. This proves the lemma. �

The objects RΓv(X,B
+
I ⊗̂ZpFV +

h
) are ̟-adically complete solid G×H-representations over B+

I (K), where

the H-action arises from the action on X and the G-action is induced by the right regular action on V +
h .

To prove Theorem 5.1.1 it suffices to show the following:
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Dévisage 1. The solid H-representation

RΓv(X,B
+
I ⊗̂ZpFV +

h
)[

1

[̟]
] (5.3)

is locally analytic.

To prove Dévisage 1, we need to modify a little bit more the lattices RΓv(X,B
+
I ⊗̂ZpFV +

h
).

5.1.2. Modifying the sheaf of periods. Let us write I = [s, r] ⊂ (0,∞).Consider the [̟]-adically complete
complex

B̃+
I := [B+

[0,r]〈T 〉
pT−[̟]1/s

−−−−−−→ B+
[0,r]〈T 〉] (5.4)

and take the lattice of (5.3) given by

RΓv(X, B̃
+
I ⊗̂

L
Zp
FV +

h
). (5.5)

5.1.3. Modifying the level. For G0 ⊂ G an open compact normal subgroup let XG0 = X̃/G0. Then

RΓv(X, B̃
+
I ⊗̂

L
Zp
FV +

h
)[

1

[̟]
]

is just a finite colimit (given by the invariants of G/G0) of

RΓv(XG0 , B̃
+
I ⊗̂

L
Zp
FV +

h
)[

1

[̟]
].

Since the category of solid locally analytic representations is stable under colimits by [RJRC23, Propo-
sition 3.2.3], to show Dévisage 1 it suffices to prove the following statement:

Dévisage 2. There is an open compact subgroup G0 ⊂ G such that

RΓv(XG0 , B̃
+
I ⊗̂

L
Zp
FV +

h
)[

1

[̟]
] (5.6)

is a locally analytic representation of H.

We shall take G0 such that the G0-module V +
h /p

b is isomorphic to the trivial representation
⊕

I Z/p
b

for some fixed b that we shall choose in Section 5.1.5.

5.1.4. Applying the decalage functor. Finally, it is well known that the proétale cohomology of Ô+ has some
junk torsion (eg. see [BMS18]), this makes difficult to apply the analyticity criterion of Lemma 2.4.1 to
the lattice of Dévisage 2. A way to solve this problem is to modify the lattice a little bit by applying a
décalage functor. First, we need to guarantee that the décalage functor preserves the structure of a solid
representation, for this it suffices to see that the category of solid representations of a profinite group Π
can be obtained as the derived category of abelian sheaves on a ringed topos. This is a consequence of the
next lemma:

Lemma 5.1.4 ([Man22a, Lemma 10.3]). Let Π be a profinite group, and Λ a nuclear Zp-algebra. Then
there is a natural equivalence of ∞-categories

D�(∗/Π,Λ) ∼= D�(Λ,Zp)
BG = D(Λ�[G])

between solid sheaves on the proétale site of the v-stack ∗/Π with Zp-coefficients, and the category of Λ-linear
solid representations of Π.

Proof. The result in loc. cit. is only stated for ℓ 6= p, let us see that this is actually not necessary. Indeed,
the proétale site of ∗/G is independent of the prime p used in the definition of v-stacks where ∗/G is
considered. So we could have taken ∗/G as an object in v-stacks for perfectoid spaces in characteristic
ℓ 6= p and still get the same conclusion. �



A JACQUET-LANGLANDS FUNCTOR FOR p-ADIC LOCALLY ANALYTIC REPRESENTATIONS 29

By taking Λ = B+
I (K

♭) we can apply the décalage functor Lη[̟]ε for any rational ε to Λ-linear solid
representations of Π.

For ε > 0 rational, to be determined in Section 5.1.5, we shall consider the following lattice of (5.6)

Lη[̟]εRΓv(XG0 , B̃
+
I ⊗̂

L
Zp
FV +

h
). (5.7)

In this way, to show Dévisage 2 it suffices to prove the following:

Dévisage 3. There exits G0 and ε > 0 such that the [̟]-complete lattice

Lη[̟]εRΓv(XG0 , B̃
+
I ⊗̂

L
Zp
FV +

h
)

satisfies the hypothesis of Lemma 2.4.1 for the action of H.

5.1.5. Reduction to O
+
X/p

1/r. We finally perform the last dévisage in the proof of Theorem 5.1.1. Let us
write I = [s, r] ⊂ (0,∞) so that |[̟]|1/s ≤ |p| ≤ [̟]1/r. Thus, we shall make the following choices:

i. We take G0 such that the action of G0 on V +
h ⊗Zp B

+
[0,r](K

♭)/[̟]1/s is trivial. In particular, as V +
h

is a torsion free p-adically complete Zp-module, the G0-representation V +
h ⊗Zp B

+
[0,r](K

♭)/[̟]1/s is

isomorphic to a direct sum of copies of B+
[0,r](K

♭)/[̟]1/s.
ii. We take ε < 1/r.

Step 1. We first have to guarantee that Lη[̟]εRΓv(XG0 , B̃
+
I ⊗̂

L
Zp
FV +

h
) is [̟]-adically complete and

bounded to the right. The first claim follows from [BMS18, Lemma 6.20] and the fact that RΓv(XG0 , B̃
+
I ⊗̂

L
Zp
FV +

h
)

is ̟-adically complete. To see that it is bounded to the right, by [̟]-adically completeness and since the
décalage functor kills [̟]ε-torsion, it suffices to see that

RΓv(XG0 , B̃
+
I ⊗̂

L
Zp
FV +

h
)/L[̟]1/r

is almost bounded to the right. By (5.4), the complex B̃+
I is constructed with terms given by B+

[0,r]〈T 〉.
Thus, it suffices to show that

RΓv(XG0 , (B
+
[0,r]/[̟]1/r)⊗L

Zp
FV +

h
)

is bounded to the right. By the choice of G0, we know that B+
[0,r]/[̟]1/r)⊗L

Zp
FV +

h
is isomorphic to a direct

sum of copies of B+
[0,r]/[̟]1/r which by Lemma 2.1.4 (2) is almost isomorphic to a polynomial algebra

B+
[0,r]/[̟]1/r ∼=a

O
+
X/̟

1/r[S]. (5.8)

Hence, we are reduced to see that

RΓv(XG0 ,O
+
X/p

1/r)

is almost bounded to the right, which is clear as XG0 is an affinoid smooth rigid space.
Step 2. Since [̟] and p are both pseudo-uniformizers of BI , if the hypothesis of Lemma 2.4.1 holds for

a power [̟]δ of [̟] then, after base change by a sufficiently ramified extension K of Qp, the hypothesis will
hold for the pseudo-uniformizer of π of K. Indeed, we just need to pick π such that |π| = |p|δr ≤ |[̟]|δ .

Step 3. We will show that there is an open compact subgroup H0 ⊂ H such that for all h ∈ H0 the
map 1− h on

Lη[̟]εRΓv(XG0 , B̃
+
I ⊗̂

L
Zp
FV +

h
)/L[̟]1/r−ε (5.9)

is homotopic to zero as B+
[0,r](K

♭,K+,♭)/[̟]1/r−ε-module.
By Steps 1 and 2 and Lemma 2.4.1 we will obtain that the H-representation (5.6) is locally analytic

proving Theorem 5.1.1.
By Lemma 2.3.3 the object (5.9) is equivalent to

Lη[̟]εRΓv(XG0 , (B̃
+
I /

L[̟]1/r)⊗L
Zp
FV +

h
). (5.10)
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By the choice of G0, the proétale sheaf (B̃+
I /

L[̟]1/r) ⊗L
Zp
FV +

h
is isomorphic to a direct sum of copies of

B̃+
I /

L[̟]1/r. Therefore, since the décalage functor commutes with direct sums [BMS18, Corollary 6.5], it
suffices to show that for all h ∈ H0 the operator 1− h is homotopically equivalent to zero when acting on

Lη[̟]εRΓv(XG0 , (B̃
+
I /

L[̟]1/r)).

By the definition of B̃+
I in (5.4), and since p and [̟]1/r are divisible by [̟]1/r in B+

[0,r]
, we have that

B̃+
I /

L[̟]1/r = B+
[0,r]/[̟]1/r[T ][1]⊕ B+

[0,r]/[̟]1/r[T ].

Finally, by (5.8) and since Lη[̟]ε preserves shifts and direct sums, we are reduced to show the following
dévisage:

Dévisage 4. There is an open compact subgroup H0 ⊂ H such that for all h ∈ H0 the operator 1− h on

LηpεRΓv(XG0 ,O
+
X/p

1/r)

is homotopic to zero as OK/p
1/r-module.

5.1.6. Final computation. We now prove Dévisage 4. We can assume without loss of generality that G0 = G
and so XG0 = X. By Lemma 5.1.2 we can also assume that X has toric coordinates Ψ : X → Td

K . Let
Td
K,∞ be the perfectoid torus and let Γ = Zp(1)

d the Galois group of Td
K,∞ over Td

K . For n ∈ N we let
Td
K,n = Td

K,∞/Γ
pn and Xn = X ×Td

K
Td
K,n, similarly we let X∞ = X ×Td

K
Td
K,∞. By [RC23, Proposition

3.2.3] the pair (O(X∞),Γ) is a strongly decomposable Sen theory in the sense of [RC23, Definition 2.2.6]. In
particular, we have Sen traces Trn : O(X∞)→ O(Xn) with kernel Cn. Thus, by letting C+

n = Cn∩O(Xn)
+,

there is some n >> 0 such that the cokernel of the map

C+
n ⊕O

+(Xn)→ O
+(X∞)

as well as the group cohomology RΓ(Γ, C+
n ) are killed by pε. Since we have an almost equivalence

RΓ(Γ,O+(X∞)/p1/r) ∼=a RΓv(X,O
+
X/p

1/r),

there exists some n >> 0 depending on ε such that we have an equivalence

Lηpε(R(Γ,O
+(Xn)/p

1/r)) ∼= LηpεRΓv(X,O
+
X/p

1/r) (5.11)

of OK/p
1/r-complexes. Let us now justify that (5.11) can be promoted to an equivalence of smooth H0-

representations for some H0 ⊂ H small enough. Indeed, by [Sch18, Lemma 2.3] there is an open subgroup
H0 ⊂ H such that the action of H0 can be lifted from X to an action σ on Xn. Moreover, since for all
γ ∈ Γ/Γpn the conjugation γ−1 ◦ σ ◦ γ is another lift of the action of H0 to Xn, by refining H0 and using
[Sch18, Lemma 2.3] again we can suppose that both the actions of H0 and Γ/Γpn on Xn commute. This
shows that the map (5.11) can be upgraded to a map of smooth H0-representations as wanted.

But then, by Corollary 2.4.2, we can shrink H0 so that it acts trivially on O+(Xn)/p
1/r. Thus, for h ∈ H0

the action of 1 − h on the left hand side of (5.11) is homotopic to zero as OK/p
1/r-module finishing the

proof of Theorem 5.1.1.
�

Remark 5.1.5. Theorem 5.1.1 will hold for a much larger class of v-sheaves or complexes F following
essentially the same proof. For example it holds under the following conditions which hold for BI and
Ô-vector bundles:

(a) The complex F is of the form F = F ◦[1p ] with F ◦ a connective derived p-complete sheaf such that
F ◦/Lp arises from the étale site of X (in particular F is a solid sheaf as in [AM24, §4]).

(b) There is some b > 0 such that F ◦/Lpb is a retract of a v-sheaf of the form Ô+/pb ⊗L
Zp
V with V a

complex of Zp-modules.
Indeed, one has to prove Dévisage 3 for the cohomology LηpεRΓv(XG0 ,F

+). But since XG0 is qcqs and
the décalage operator sends retracts to retracts, the criterion of Lemma 2.4.1 holds for this lattice if it does
for

LηpεRΓv(XG0 , Ô
+/pb ⊗L

Zp
V ) = Lηpε [RΓv(XG0 , Ô

+/pb)⊗L
Zp
V ]
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Using the symmetric monoidality of the décalage operator [BMS18, Proposition 6.8] one is reduced to
Dévisage 4.

An immediate corollary of Theorem 5.1.1 is that the cohomology groups of qcqs smooth rigid spaces
endowed with an action of a p-adic Lie group is locally analytic.

Corollary 5.1.6. Let X be a qcqs smooth rigid space over a perfectoid field K admitting all p-th power
roots of unit. Suppose that X is endowed with a continuous action of a p-adic Lie group H. Then for any
compact interval I ⊂ (0,∞) the v-cohomology

RΓv(X,BI)

is a solid locally analytic H-representation.

Proof. This is a particular case of Theorem 5.1.1 where G = 1. �

5.1.7. Conclusion for local Shimura varieties. In this paragraph we apply Theorem 5.1.1 to local Shimura
varieties. Recall that (G, b, µ) denotes a local Shimura datum, and for K ⊂ G(Qp) a compact open
subgroup we have the local Shimura variety MG,b,µ,K of level K. We also let M♦

G,b,µ,∞ be the infinite

level local Shimura variety seen as a diamond over Spd Ĕ. We fix C/Ĕ be a complete algebraically closed
extension, and consider the base change of local Shimura varieties to C.

Definition 5.1.7. We let ÔM be the restriction of the v-sheaf Ô to the topological space |MG,b,µ,∞,C |

and let O
G−la
M ⊂ ÔM be the subsheaf mapping a qcqs open subspace U∞ ⊂ M

♦
G,b,µ,∞,Cp

to the space of
G = G(Qp)-locally analytic vectors

O
G−la
M (Ũ∞) = ÔM(U∞)KU∞−la

where KU∞
⊂ G(Qp) is the stabilizer of U∞. If G is clear from the context we write O la

M instead of O
G−la
M .

Remark 5.1.8. The fact that O la
M is a sheaf follows from [RC24b, Lemma 6.2.2].

We obtain a generalization of a theorem of Lue Pan for the Lubin-Tate space, see [Pan22b, Corollary
5.3.9].

Corollary 5.1.9. For any p-adic Lie group H ⊂ G̃b and any qcqs open subspace U∞ ⊂ M
♦
G,b,µ,∞,C the

natural map
O

G−la
M (U∞)RH−la ∼

−→ O
G−la
M (U∞)

is an equivalence. In particular, if b is basic we have an equality of subsheaves of ÔM

O
G−la
M = O

Gb−la
M .

More generally, for b basic and I ⊂ (0,∞) a compact interval, we have an equivalence of derived solid locally
analytic representations of G×Gb

RΓv(U∞,BI)
RGb−la ∼

−→ RΓv(U∞,BI)
RG×Gb−la ∼

←− RΓv(U∞,BI)
RG−la.

Proof. The first claim follows from Theorem 5.1.1 and Remark 5.1.5, and the fact that ÔM has no higher
locally analytic vectors by Theorem 4.3.3. The claim when b is basic follows also from Theorem 5.1.1 and
the fact that for Kb ⊂ Gb a compact open subgroup, the quotientM♦

G,b,µ,∞/Kb
∼=M♦

Ǧ,b̌,µ̌,Kb
is the diamond

attached to a local Shimura variety of level Kb for the dual Shimura datum (Ǧ, b̌, µ̌). �

In the following we shall write FℓG,µ and FℓG,µ−1 for the base change to (C,OC ) of the flag varieties
FℓG,µ,E and FℓG,µ−1,E respectively. For b basic, we write O la

M for O
G−la
M , by Corollary 5.1.9 there is no

ambiguity in the locally analytic vectors for the group G or Gb. Let g0µ−1 = LieG(Qp) ⊗Qp OFℓ
G,µ−1 and

g0µ = LieGb⊗Qp OFℓG,µ
be the Lie algebroids over the Hodge-Tate and Grothendieck-Messing flag varieties

respectively. Let n0µ ⊂ p0µ ⊂ g0µ be the natural filtration on FℓG,µ with Levi quotient m0
µ−1 (resp. for

n0µ−1 ⊂ p0µ−1 ⊂ g0µ−1 over FℓG,µ−1 with Levi quotient m0
µ). They arise from the Pµ-equivariant filtration

nµ ⊂ pµ ⊂ gC and Levi quotient mµ := pµ/nµ (resp. for the Pµ−1 -equivariant filtration nµ−1 ⊂ pµ−1 ⊂ gC

and Levi quotient mµ−1 = pµ−1/nµ−1). We identify the pullback of m0
µ and m0

µ−1 to O la
M via Corollary 3.3.7
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(after taking locally analytic vectors) and denote it m0,la. The following is the generalization of [Pan22b,
Corollary 5.3.13].

Theorem 5.1.10. The actions of n0µ and n0µ−1 on O la
M vanish. Furthermore, the actions of m0

µ and m0
µ−1

on O la
M by derivations are identified via the pullback

m0
µ−1 ⊗OFℓ

G,µ−1
O

la
M = m0,la = O

la
M ⊗OFℓG,µ

m0
µ.

In particular, the central character of the actions of m0
µ and m0

µ−1 on O la
M agree under the natural isomor-

phism of the center of the enveloping algebras Z(mµ)C ∼= Z(mµ−1)C .

Proof. The vanishing for the action of the geometric Sen operators follows from Theorem 4.3.3. We now
prove the relation between the horizontal actions. In the following we forget about the action of the Galois
group of E and fix a trivialization of the Tate twist Zp(1) ∼= Zp obtained by fixing a sequence of p-th power
roots of unit (ζpn)n. In the following all completed tensor products are solid.

LetMla
∞,C be the ringed space whose underlying topological space is |MG,b,µ,∞,C | and sheaf of functions

given by the algebra O la
M. We have locally analytic Hodge-Tate period maps

Mla
∞,C

FℓG,µ FℓG,µ−1 .

πla
HTπla

GM

Let W be a representation of the Levi M(= Mµ = Mµ−1), taking locally analytic vectors in Corollary 3.3.7
we get G(Qp)×Gb-equivariant isomorphisms of vector bundles over Mla

∞,C

WG,µ−1(W )⊗OFℓ
G,µ−1

O
la
M = O

la
M ⊗OFℓG,µ

WG,µ(W ). (5.12)

Let Mµ,GM → FℓG,µ and Mµ−1,HT → FℓG,µ−1 be the natural M-torsors, the equation (5.12) gives rise to
a natural isomorphism of M-torsors over Mla

∞,C

πla,∗HT (Mµ−1,HT) ∼= πla,∗GM(Mµ,GM).

Thus, if Man
µ,GM and M

an
µ,HT denote the analytification of the algebraic torsors over the flag varieties, the

period maps refined to a mixed period map

πlaGM,HT :Mla
∞,C →M

an
µ,GM ×

Man
M

an
µ−1,HT.

Note that the Lie algebra g× gb acts on M
an
µ,GM ×

M
an

M
an
µ−1,HT by derivations, and by construction both

horizontal actions m0
µ and m0

µ−1 are identified after pullback (similarly for the infinitesimal actions of Z(mµ)C
and Z(mµ−1)C). Therefore, in order to show the theorem it suffices to show that the map of rings

πla,−1
GM,HT(OMan

µ,GM×Man
Man

µ−1,HT
)→ O

la
M

is dense in a suitable sense. To make this precise, for any compact open subgroup Kp ⊂ G(Qp) consider
the Kp-equivariant sheaf over FℓG,µ−1 given by C la(Kp,OFℓ

G,µ−1 ) and consider the colimit

C la(g0µ−1 ,OFℓ
G,µ−1 ) := lim

−→
Kp

C la(Kp,OFℓ
G,µ−1 ).

Define
C la(g0µ−1/n

0
µ−1 ,OFℓ

G,µ−1 ) = C la(g0µ−1 ,OFℓ
G,µ−1 )

n0
µ−1,⋆1

=0

to be the invariant subspace of n0µ−1-horizontal sections for the left regular action. Let O
G(Qp)−sm
M ⊂ O la

M

be the subalgebra of G(Qp)-smooth sections, equal to the colimit of the structural sheaves of the finite level
local Shimura varieties MG,b,µ,Kp,C . By the proof of [RC24b, Proposition 6.2.8] (more precisely, Lemma
6.2.9), the pullback to MG,b,µ,∞,C,v

C la(g0µ−1 , Ô) = C la(g0µ−1 ,OFℓ)⊗̂OFℓ
G,µ−1

Ô
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is a filtered colimit of ON Banach Ô-modules which are relatively locally analytic in the sense of [RC23,
Definition 1.0.1] (resp. for the pullback of C la(g0µ−1/n

0
µ−1 , Ô)). Moreover, the G(Qp)-smooth vectors of

C la(g0µ−1 , Ô) (more precisely, of its restriction C la(g0µ−1 , ÔM) to a sheaf on the topological space |MG,b,µ,∞,C |)
are well defined (by writing the module as a colimit of Kp-representations as Kp → 1), and by construction
they consist on the algebra O la

M. By [RC23, Theorem 3.3.2 (2)] and the computation of the geometric Sen
operators in Theorem 4.3.1, we have that

O
la
M = C la(g0µ−1 , ÔM)G(Qp)−sm

= C la(g0µ−1 , ÔM)
G(Qp)−sm,n0

µ−1,⋆1
=0

= C la(g0µ−1/n
0
µ−1 , ÔM)G(Qp)−sm.

But now C la(g0µ−1/n
0
µ−1 , ÔM) has trivial geometric Sen action, then [RC23, Theorem 3.3.2 (3)] implies that

the orbit map (equivariant for the right regular action in the RHS)

O
la
M → C la(g0µ−1/n

0
µ−1 , ÔM)

extends to a g-equivariant and ÔM-linear isomorphism

O
la
M⊗̂O

G(Qp)−sm

M

ÔM
∼
−→ C la(g0µ−1/n

0
µ−1 , ÔM) (5.13)

where the action of g on the right hand side term is via the right regular action.
Let us write X = M

an
µ,GM ×

M
an

M
an
µ−1,HT. Over X we also have the Lie algebroid g0µ−1,X/n

0
µ−1,X which

is nothing but the relative tangent space of X over FℓG,µ and we have an isomorphism

C la(g0µ−1,X/n
0
X ,OX)⊗̂OX

ÔM = C la(g0µ−1/n
0
µ−1 , ÔM)

equivariant for infinitesimal action of G(Qp) for the left and right regular actions, and the action on the
coefficients (by writing this sheaf as colimit of Banach sheaves where the actions integrate to compact open
subgroups). Thus, we have a commutative diagram

O la
M C la(g0µ−1/n

0
µ−1 , ÔM)

πla,−1
GM,HT(OX) πla,−1

GM,HT(C
la(g0µ−1,X/n

0
µ−1,X ,OX))

where we the horizontal maps are the orbit maps and the vertical maps are the natural inclusions. This
diagram together with (5.13) show that both horizontal Levi actions of m0

µ and m0
µ−1 agree on O la

M are they
do over OX and they transform in the natural left regular action of

m0
µ−1 ⊗OFℓ

G,µ−1
OX = m0

X = OX ⊗OFℓG,µ
m0

µ

on C la(g0µ−1,X/n
0
µ−1,X ,OX). This ends the proof of the theorem. �

5.2. De Rham cohomology of the two towers. In this section we show that the sheaf O la
M of Defi-

nition 5.1.7 produces an isomorphism between the de Rham cohomology (with compact supports) of the
two towers for a duality of local Shimura varieties. Similar results have been obtained independently by
Bosco-Dospinescu-Niziol. In order to state the theorem, wee keep the notation prior Theorem 5.1.10. Let
X = M

an
µ,GM ×

Man
M

an
µ−1,HT and consider the mixed Lie algebroid over O la

M

T la = TX ⊗OX
O

la
M

obtained as the pullback of the tangent space of X via the map πlaGM,HT. By Theorem 5.1.10 this Lie

algebroid acts by derivations on O la
M, compatible with the derivations on X. Indeed, let us write by n

0,la
µ−1 ⊂
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p
0,la
µ−1 ⊂ g

0,la
µ−1 the base change of n0µ−1 ⊂ p0µ−1 ⊂ g0µ−1 from OFℓ

G,µ−1 to O la
M. Similarly, let n0,laµ ⊂ p

0,la
µ ⊂ g

0,la
µ

be the base change of n0µ ⊂ p0µ ⊂ g0µ from OFℓG,µ
to O la

M. Theorem 5.1.10 also provides an isomorphism

m0
µ−1 ⊗OFℓ

G,µ−1
O

la
M
∼= m0,la ∼= O

la
M ⊗OFℓG,µ

m0
µ.

Then, T la is the quotient of g0,laµ ⊕ g
0,la
µ−1 by the Lie algebroid p̃0,la sitting in the cartesian square

p̃0,la m0,la

p
0,la
µ ⊕ p

0,la
µ−1 m

0,la
µ ⊕m

0,la
µ−1

(ι,−ι)

where (ι,−ι) is the anti-diagonal map. Since p̃0,la acts trivially on O la
M, the action by derivations of

g
0,la
µ ⊕ g

0,la
µ−1 on O la

M descends to T la.

Remark 5.2.1. With some additional effort one can prove that O la
M is formally smooth over C and that its

tangent space is given by T la but we will not need this fact for the applications in this paper.

We have the following theorem

Theorem 5.2.2. There are natural G(Qp)×Gb-equivariant isomorphisms of de Rham complexes over the
topological space |MG,b,µ,∞,C |

DR(O
G(Qp)−sm
M ) ∼= RΓ(T la,O la

M) ∼= DR(OGb−sm
M ), (5.14)

where:

(1) DR(OG(Qp)−sm
M ) is the de Rham complex of the colimit of structural sheaves of the finite level local

Shimura varieties MG,b,µ,Kp with Kp ⊂ G(Qp).

(2) DR(OGb−sm
M ) is the de Rham complex of the colimit of structural sheaves of the finite level local dual

Shimura varieties M
Ǧ,b̌,µ̌,Kb,p

with Kb,p ⊂ Ǧ(Qp) = Gb.

(3) RΓ(T la,O la
M) is the de Rham cohomology of O la

M with respect to the action of the Lie algebroid T la

acting by derivations.

In particular, we have a natural G(Qp) × Gb-equivariant isomorphism of de Rham cohomologies with
compact supports

lim
−→
Kp

H i
dR,c(MG,b,µ,Kp,C)

∼= lim
−→
Kb,p

H i
dR,c(MǦ,b̌,µ̌,Kb,p,C

).

Remark 5.2.3. One can use the theory of the analytic de Rham stack of [RC24a] to prove Theorem 5.2.2.
Indeed, as it was explained by Scholze to the second author, the formation of the analytic de Rham stack
descends to (a suitable notion of) diamonds and, at least for what cohomology concerns, commutes with
cofiltered limits of qcqs maps. Thus, Theorem 5.2.2 should be thought as an evidence to the fact that one
has an equivalence of analytic de Rham stacks

lim
←−
Kp

MdR
G,b,µ,Kp

∼=MdR
G,b,µ,∞

∼= lim
←−
Kb,p

MdR
Ǧ,b̌,µ̌,Kb,p

.

After taking quotients by the smooth groups G(Qp)
sm and Ǧ(Qp)

sm such an equivalence would also prove
that one has an equivalence of analytic stacks

Fℓa,dR
G(Qp),µ

/Ǧ(Qp)
sm = Fℓa,dR

G(Qp),µ−1 /G(Qp)
sm

between the analytic de Rham stacks of the quotients of the admissible locus of the flag varieties. This
gives rise to a “Jacquet-Langlands equivalence” of equivariant analytic D-modules. We shall not prove this
fact in this paper, instead we will give a first shadow of this compatibility of analytic de Rham stacks in
the locally analytic Jacquet-Langlands functor for the Lubin-Tate tower in Section 5.3.
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Proof of Theorem 5.2.2. Let Tµ and Tµ−1 be the tangent spaces of FℓG,µ and FℓG,µ−1 respectively. We
have identifications Tµ = g0µ/p

0
µ and Tµ−1 = g0µ−1/p

0
µ−1 via the anchor map (2.7). By construction of the

Lie algebroid T la, we have a short exact sequence

0→ m0,la → T la → g0,laµ /p0,laµ ⊕ g
0,la
µ−1/p

0,la
µ−1 → 0.

The pullback along the inclusion of g0,laµ /p0,laµ in the direct sum corresponds to the Lie algebroid g
0,la
µ /n0,laµ

(similarly the pullback for the inclusion of g0,la
µ−1/p

0,la
µ−1 is g

0,la
µ−1/n

0,la
µ−1). Thus, we can write the T la-de Rham

complex as the composite

RΓ(g0,la
µ−1/p

0,la
µ−1 , RΓ(g

0,la
µ /n0,laµ ,O la

M)) ∼= RΓ(T la,O la
M) ∼= RΓ(g0,laµ /p0,laµ , RΓ(g0,la

µ−1/n
0,la
µ−1 ,O

la
M)).

Therefore, in order to prove the quasi-isomorphisms (5.14) it suffices to show the two following facts:

(1) The natural map O
G(Qp)−sm
M → RΓ(g0µ−1/n

0
µ−1 ,O

la
M) is an equivalence.

(2) The natural map O
Ǧ(Qp)−sm
M → RΓ(g0µ/n

0
µ,O

la
M) is an equivalence.

These claims are symmetric with respect to the period maps, so it suffices to prove the first.
Let us write M∞ for the infinite level Shimura variety and MKp = M∞/Kp for its quotient by an

open compact subgroup. Let gr0(OBdR) be the Hodge-Tate proétale sheaf ofMKp that appeared in Theo-
rem 4.2.1, let Nµ−1 ⊂ Pµ−1 be the unipotent radical and let O(Nµ−1) be the space of algebraic functions
of endowed with the natural action of Pµ−1 as in Section 4.2. By Theorem 4.2.1 we have that

gr0(OBdR) = π∗HTWG,µ−1(O(Nµ−1)). (5.15)

Let νKp :MKp,C,proét →MKp,C,an be the projection of sites, then by [Sch13, Proposition 6.16] one has that

RνKp,∗ gr
0(OBdR,M) = OMKp,C

.

On the other hand, by taking locally analytic vectors for the action of G(Qp), by the vanishing of higher
locally analytic vectors of ÔM of Theorem 4.3.3, and the group cohomology comparisons of [RJRC23,
Theorem 6.3.4], one deduces that for V ⊂MKp open affinoid and V∞ =M∞ ×MKp

V one has

OMKp,C
(V ) = RΓproét(V, gr

0(OBdR,M))

= RΓ(Kp, RΓproét(V∞, gr
0(OBdR,M)))

= RΓ(Kp, RΓproét(V∞, gr
0(OBdR,M))RKp−la)

= RΓ(Kp, RΓproét(V∞, ÔM)RKp−la ⊗OFℓ
G,µ−1

WG,µ−1(O(Nµ−1)))

= RΓ(Kp,O
la
M(V∞)⊗OFℓ

G,µ−1
WG,µ−1(O(Nµ−1)))

= RΓsm(Kp, RΓ(g,O
la
M(V∞)⊗OFℓ

G,µ−1
WG,µ−1(O(Nµ−1))))

where the second equality is decent along the Kp-torsor V∞ → V . The third equality is the comparison be-
tween solid and locally analytic group cohomology of [RJRC23, Theorem 6.3.4]. The fourth equality follows
from the projection formula of locally analytic vectors [RJRC23, Corollary 3.1.15 (3)] and the isomorphism
(5.15). The fifth equality follows from the vanishing of higher locally analytic vectors of Theorem 4.3.3.
Finally, the sixth equality is the Lie algebra/smooth vs locally analytic cohomology comparison of Theorem
[RJRC23, Theorem 6.3.4].

Taking colimits as Kp → 1, we deduce that

O
G(Qp)−sm
M = lim

−→
Kp

RνKp,∗ gr
0(OBdR) = RΓ(g,O la

M ⊗OFℓ
G,µ−1

WG,µ−1(O(Nµ−1)))). (5.16)

But since Nµ−1 is an affine space we know that

RΓ(nµ−1 ,O(Nµ−1)C) = C,

taking the associated equivariant vector bundles over the flag variety and taking pullbacks along πHT one
deduces that

RΓ(n0,la
µ−1 ,O

la
M ⊗OFℓ

G,µ−1
WG,µ−1(O(Nµ−1)))) = O

la
M.
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Combining this with (5.16), and by computing g0µ−1-lie algebra cohomology in two steps, one gets that

O
G(Qp)−sm
M = RΓ(g0,la

µ−1/n
0
µ−1 , RΓ(n

0,la
µ−1 ,O

la
M ⊗OFℓ

G,µ−1
WG,µ−1(O(Nµ−1)))

= RΓ(g0,la
µ−1/n

0,la
µ−1 ,O

la
M)

proving what we wanted.
The claim about the cohomology comparisons for the de Rham cohomology with compact supports

follows for example by using the definition of compactly supported de Rham cohomology arising from the
six functor formalism of analytic D-modules of [RC24a]. One can also argue by using the adhoc definition
of [GK00]. Indeed, the compactly supported cohomology of the de Rham complex of loc. cit. is nothing but
the compactly supported cohomology of the de Rham complex seen as a sheaf on the underlying Berkovich
space of MG,b,µ,∞,C . To see that this cohomology with compact supports is well defined one can argue as
follows: the map MG,b,µ,∞,C →MG,b,µ,Kp,C gives rise to a Kp-torsor of Berkovich spaces

MB
G,b,µ,∞,C →M

B
G,b,µ,Kp,C . (5.17)

The spaceMB
G,b,µ,Kp,C

is a locally finite dimensional Hausdorff space (being the Berkovich space of a rigid
space) and [HM24, Theorem 4.8.9 (i)] implies that MB

G,b,µ,Kp,C
has a well define functor of cohomology

with compact supports for sheaves over Qp (in the language of loc. cit. it is Qp-fine). Since (5.17) is
represented in profinite sets, MB

G,b,µ,∞,C is also a Qp-fine map (this follows from [HM24, Theorem 3.4.11
(ii)] since any maps between profinite sets is Qp-fine by construction, see Section 3.5.16 in loc. cit.), i.e. it
has a well defined functor of cohomology with compact supports. �

5.3. The Jacquet-Langlands functor for admissible locally analytic representations. In this last
section we recall the definition of the Jacquet-Langlands functor of [Sch18] for admissible Banach represen-
tations. We then proof that this functor is compatible with the passage to locally analytic vectors.

5.3.1. Scholze’s Jacquet-Langlands functor. Let n ≥ 1 be an integer and F/Qp a finite extension with ring
of integers O ⊂ F and ̟ ∈ O a uniformizer. Let F = Fq be the residue field of O. Consider the group
GLn,F , µ the cocharacter given by (1, 0, . . . , 0) with n− 1 occurrences of 0, and b corresponds to a formal
O-module Xb over F of dimension 1 and F -height n. Let D be the division algebra over F of invariant 1/n,
we have G̃b = D×. Finally, we fix Cp/F the p-completion of an algebraic closure of F .

Definition 5.3.1. We let DefX be the functor on formal schemes over Ŏ sending S to the set of isomorphism
classes of pairs (X, ρ), where X/S is a formal F -module, and ρ : X ×S S

∼
−→ X ×F S is a quasi-isogeny of

formal OF -modules, where S = S ×Spf Ŏ SpecF.

By [RZ96] the functor DefX is representable by a formal scheme MX over Spf Ŏ, which is formally smooth
and locally formally of finite type. We letMX denote the generic fiber of MX as a rigid space.

Theorem 5.3.2 ([SW20, Corollary 24.3.5]). There is a natural equivalence of diamondsM♦
X
∼=M♦

GLn,F ,b,µ,K

with K = GLn(O).

Let M♦
∞ =M♦

GLn,F ,b,µ,∞. In this situation the GLn(F )×D
×-equivariant period maps (3.6) restrict to

a diagram

M♦
∞

Pn−1

F̆
ΩF̆

πHTπGM

where
• πGM is a proétale GLn(F )-torsor and H acts on Pn−1

F̆
via the natural inclusion of the map H× ⊂

GLn(F̆ ).
• πHT is a proétale D×-torsor and ΩF̆ ⊂ Pn−1

F̆
is the GLn(F )-stable open Drinfeld space obtained by

removing all F -rational hyperplanes.
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Thus, we have an equivalence of v-stacks

[Pn−1

F̆
/D×] ∼= [ΩF̆ /GLn(F )].

The Jacquet-Langlands functor is defined as follows.

Definition 5.3.3. Let π be a p-power torsion admissible representation of GLn(F ) over Zp and let Fπ

be the étale sheaf over Pn−1

F̆
obtained by descent along πGM. The Jacquet-Langlands functor JL is the

functor mapping such π to the complex of smooth D×-representations

JL(π) = RΓét(P
n−1
Cp

,Fπ).

Theorem 5.3.4 ([Sch18, Theorem 1.1]). Let π be a p-power torsion admissible representation of GLn(F )
over Zp, then JL(π) is a complex of admissible representations of D×. In other words, for all i ∈ Z the
cohomology

JLi(π) = H i
ét(P

n−1
Cp

,Fπ)

is an admissible representation of H.

For convenience we shall consider the p-completed analogue of Theorem 5.3.4. Let π be a p-adically
complete admissible representation of GLn(F ) over Zp, we shall write by Fπ the pro-étale sheaf over Pn−1

F̆
given by the limit of étale sheaves Fπ = lim

←−s
Fπ/ps . Finally, we denote by JL(π) the p-adically complete

D×-representation
JL(π) := RΓproét(P

n−1
Cp

,Fπ) = R lim
←−
s

RΓét(P
n−1
Cp

,Fπ/ps).

Corollary 5.3.5. Let π be a p-adically complete admissible representation of GLn(F ), then JL(π) is a
complex of p-adically complete admissible representations of D×. In other words, the cohomology groups

JLi(π) = H i
proét(P

n−1
Cp

,Fπ)

are p-adically complete admissible representations of D×. Moreover, we have that

JLi(π) = lim
←−
s

JLi(π/ps).

Proof. Let KD ⊂ D
× be a compact open subgroup which we assume to be an uniform pro-p-group. Taking

Zp-duals the complex JL(π)∨ = RHom(JL(π),Zp) is a p-adically complete module over the Iwasawa
algebra Zp,�[KD] whose reduction modulo p is a perfect Fp,�[KD]-complex by Theorem 5.3.4, this implies
that JL(π)∨ is itself a perfect complex of Zp,�[KD]-modules and so JL(π) can be represented by a complex
of admissible representations of H. The rest of the statements are classical and left to the reader, see for
example [Eme06, Proposition 1.2.12]. �

5.3.2. Locally analytic Jacquet-Langlands functor. Next we show that the Jacquet-Langlands functor of
Definition 5.3.3 is compatible with locally analytic vectors. Let Π be an admissible locally analytic repre-
sentation of GLn(F ) over Qp, we let FΠ be the proétale sheaf over Pn−1

F̆
whose S-points for an affinoid

perfectoid S → P
n−1,♦

F̆
are given by

F(Π) = (C(|M∞ ×P
n−1,♦

F̆

S|,Qp)⊗̂QpΠ)
GLn(F )

where

• For a perfectoid space X the algebra C(|X|,Qp) is the space of continuous functions from |X| to
Qp.
• The completed tensor product is a tensor product of LB representations (equivalently a solid tensor

product).
• The group GLn(F ) acts via the diagonal action.

This is the same as the proétale solid sheaf on Pn−1

F̆
obtained by descent from the constant sheaf onM∞

via [AM24, Corollary 4.5].
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Theorem 5.3.6. Let π be a p-adically complete admissible representation and Π = (π[1p ])
GLn(F )−la its LB

subrepresentation of locally analytic vectors. Then there is a natural equivalence

(JL(π)[
1

p
])RD×−la ∼= RΓproét(P

n−1
Cp

,FΠ) (5.18)

where the left hand side is the complex of derived D×-analytic vectors of the solid D×-representation
JL(π)[1p ]. Moreover, for all i ∈ Z we have an isomorphism of locally analytic admissible D×-representations

(JLi(π)[
1

p
])D

×−la ∼= H i
proét(P

n−1
Cp

,FΠ). (5.19)

Proof. In the following proof we work with the derived ∞-categories of solid sheaves of diamonds as in
[AM24, §4].

Step 0. The equivalence in Eq. (5.19) follows from Eq. (5.18). Indeed, the object JL(π)[1p ] is a complex
with cohomologies given by admissible Banach representations of D×. By [RJRC22, Proposition 4.48] (see
also [RC24b, Proposition 2.3.1]) the higher locally analytic vectors of a Banach admissible representation
vanish, then by the spectral sequence of [RC24b, Theorem 1.5] one deduces that

H i((JL(π)[
1

p
])RD×−la) = (JLi(π)[

1

p
])D

×−la.

Step 1. We first reinterpret the problem using the period sheaves. By [FS24, Proposition II.2.5] we have
a short exact sequence of proétale sheaves

0→ Qp → B[1,p]
ϕ−1
−−→ B[1,1] → 0.

Taking solid (eq. p-complete in this case) tensor products with the sheaf Fπ we get a short exact sequence

0→ Fπ[
1

p
]→ B[1,p]⊗̂ZpFπ → B[1,1]⊗̂ZpFπ → 0.

Taking proétale cohomology we get an exact triangle

JL(π)[
1

p
]→ RΓproét(P

n−1
Cp

,B[1,p]⊗̂QpFπ)→ RΓproét(P
n−1
Cp

,B[1,1]⊗̂QpFπ)
+
−→ .

On the other hand, taking LB-completed tensor products we get a short exact sequence of proétale sheaves

0→ FΠ → B[1,p]⊗̂QpFΠ → B[1,1]⊗̂QpFΠ → 0.

Therefore, to prove the theorem it suffices to show that for all I ⊂ (0,∞) compact interval, we have a
natural equivalence of representations of D×

RΓproét(P
n−1
Cp

,BI⊗̂ZpFπ)
RD×−la ∼= RΓproét(P

n−1
Cp

,BI⊗̂ZpFΠ). (5.20)

Step 2. We now reduce the proof of (5.20) to affinoid subspaces of Pn−1
Cp

. Let ν : Pn−1
Cp,proét

→ Pn−1
Cp,an

be

the projection of sites and let U = {Ui}i∈I be a finite rational open cover of Pn−1
Cp

. Then, for any proétale

sheaf F over Pn−1
Cp

we have equivalences of complexes

RΓ̌an(U, Rν∗F ) ∼= RΓproét(P
n−1
Cp

,F ).

functorial on F , where the left hand side is the Čech cohomology given by

RΓ̌an(U, Rν∗F ) = lim
←−

V ∈Int(U)

RΓan(V,Rν∗F )

with Int(U) the poset of finite intersections of elements in U.
Therefore, in order to show (5.20) it suffices to prove that for U ⊂ Pn−1

Cp
a rational open subspace we

have a natural equivalence

RΓproét(U,BI⊗̂ZpFπ)
RH−la ∼= RΓproét(U,BI⊗̂ZpFΠ). (5.21)
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Step 3. Finally, we prove (5.21). We can assume without loss of generality that U is a rational subspace
admitting a section U ⊂ MX,Cp . Let KD,U ⊂ D× be a compact open subgroup stabilizing U and let
U∞ =M∞ ×MX

U . Then, we have that

RΓproét(U,BI⊗̂ZpFπ)
RD×−la ∼= RΓ(KD,U , RΓ(GLn(O), RΓproét(U∞,BI⊗̂ZpFπ)⊗̂

L
Qp
C la(KD,U ,Qp))

∼= RΓ(KD,U ×GLn(O), RΓproét(U∞,BI)⊗̂
L
Zp
π⊗̂

L
Qp
C la(KD,U ,Qp))

∼= RΓ(GLn(O), RΓproét(U∞,BI)
RKH−la⊗̂

L
Zp
π)

∼= RΓ(GLn(O), RΓproét(U∞,BI)
RG−la⊗̂

L
Zp
π)

∼= RΓ(GLn(O), RΓproét(U∞,BI)
RG−la⊗̂

L
Qp

Π)

∼= RΓ(GLn(O), RΓproét(U∞,BI)⊗̂
L
Qp

Π)

∼= RΓproét(U,FΠ).

In the first equivalence we use descent along the GLn(O)-torsor U∞ → U and write explicitly the definition
of KD,U -locally analytic vectors. The second equivalence is clear as U∞ is qcqs and π is a Banach space,
namely this follows from the analogue computations of the equation (5.2) in the proof of Lemma 5.1.3. The
third equivalence follows from projection formula of locally analytic vectors [RJRC23, Corollary 3.1.15 (3)]
and the fact that π is a trivial KD,U -representation. The fourth equivalence is Corollary 5.1.9. The fifth
equivalence follows from the projection formula of locally analytic vectors and the fact that (π)[1p ])

RG−la = Π

as π is an admissible representation. The sixth equivalence is the projection formula again. The last
equivalence is descent along the torsor U∞ → U . This finishes the proof of the theorem. �

As a corollary we can prove that the Jacquet-Langlands functor for Banach admissible locally analytic
representations preserves central characters.

Corollary 5.3.7. Let π be an admissible Banach representation of GLn(L) over Qp and suppose that

Π = πGLn(L)−la has central character χ. Then, for all i ∈ Z, the locally analytic D×-representation

JLi(π)D
×−la has central character χ under the natural identification Z(LieD×) ∼= Z(LieG).

Proof. The statement can be proven after base change to C. By [Sch18, Theorem 3.2] we have a natural
equivalence

JL(π)⊗̂QpCp = RΓproét(P
n−1
Cp

,Fπ⊗̂QpÔ).

Then, by (5.20) we deduce an D×-equivariant equivalence

(JL(π)⊗̂QpCp)
RD×−la ∼= RΓproét(P

n−1
Cp

,FΠ),

thus it suffices to show that the RHS term has central character given by χ. By picking a suitable affi-
noid cover {Ui}i of Pn−1

Cp
as in Steps 2 and 3 of the proof of Theorem 5.3.6, we are reduced to show

that for any small enough open affinoid U ⊂ MX with stabilizer KD,U ⊂ D×, the central character of
RΓproét(U,FΠ⊗̂QpÔ) for the action of KD,U is χ. Let U∞ ⊂M∞ be the pullback of U to infinite level, by
Step 3 of the proof of Theorem 5.3.6 we have that

RΓproét(U,FΠ⊗̂QpÔ) ∼= RΓ(GLn(O), RΓproét(U∞, Ô)RKD,U−la⊗̂QpΠ),

but by taking U small enough, the vanishing of higher locally analytic vectors of Theorem 4.3.3 implies
that

RΓproét(U,FΠ⊗̂QpÔ) ∼= RΓ(GLn(O),O
la
M(U∞)⊗̂QpΠ).

The corollary follows from the identification of the central horizontal actions Z(mµ)Cp
∼= Z(mµ−1)Cp on

O la
M(U∞) of Theorem 4.3.3 and the fact that the central actions of Z(LieD×) ∼= Z(LieG) factor through

the horizontal actions. �
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[BB81] Alexandre Bĕılinson and Joseph Bernstein. Localisation de g-modules. C. R. Acad. Sci. Paris Sér. I Math.,
292(1):15–18, 1981.

[BMS18] Bhargav Bhatt, Matthew Morrow, and Peter Scholze. Integral p-adic Hodge theory. Publ. Math. Inst. Hautes
Études Sci., 128:219–397, 2018.

[Bre10] Christophe Breuil. The emerging p-adic Langlands programme. In Proceedings of the International Congress of
Mathematicians. Volume II, pages 203–230. Hindustan Book Agency, New Delhi, 2010.

[CDN20] Pierre Colmez, Gabriel Dospinescu, and Wiesł awa Nizioł. Cohomologie p-adique de la tour de Drinfeld: le cas de
la dimension 1. J. Amer. Math. Soc., 33(2):311–362, 2020.

[CDN21] Pierre Colmez, Gabriel Dospinescu, and Wiesł awa Nizioł. Integral p-adic étale cohomology of Drinfeld symmetric
spaces. Duke Math. J., 170(3):575–613, 2021.

[CDN23] Pierre Colmez, Gabriel Dospinescu, and Wiesł awa Nizioł. Factorisation de la cohomologie étale p-adique de la
tour de Drinfeld. Forum Math. Pi, 11:Paper No. e16, 62, 2023.

[CDP14] Pierre Colmez, Gabriel Dospinescu, and Vytautas Paškūnas. The p-adic local langlands correspondence for
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