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Abstract. In the context of classi�cation, robustness veri�cation of a
neural network is the problem which consists in determining if small
changes of inputs lead to a change of their assigned classes. We investigate
such a problem on binarized neural networks via an integer linear programming
perspective. We namely present a constraint generation framework based
on disjunctive programming and complete descriptions of polytopes related
to outputs of neuron pairs. We also introduce an alternative relying on
speci�c families of facet de�ning inequalities. Preliminary experiments
assess the performance of the latter approach against recent single neuron
convexi�cation results.
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1 Introduction

Nowadays Deep Neural Networks (DNNs) turn out to be successful in diverse
domains such as computer vision, natural language processing, machine translation,
etc. (see, e.g., [8,15]). One of the reasons for this is their great expressiveness [10],
which comes however at the price of being hard to reason about [21]. The latter
motivated research directed towards the assessment and improvement of the
robustness of DNNs for their use in the context of critical AI systems. Another
important drawback of many DNNs lies in the fact that they resort to important
amounts of computational and energy resources. Through the use of binarized
weights and a simple activation function, binarized neural networks (BNNs)
appear as an interesting option in the context of resource-constrained systems.
However, already challenging optimization problems in the context of ReLU
DNNs (such as veri�cation or training) may seem even harder for BNNs due to
their inherent discrete features. In this paper we focus on robustness veri�cation
of BNNs. Our main contributions are
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� the presentation of a constraint generation algorithm based on disjunctive
programming and complete descriptions established for polytopes related to
outputs of neuron pairs,

� the design and evaluation of a constraint generation algorithm relying on
speci�c families of facet de�ning inequalities to solve a robustness veri�cation
problem for BNNs.

The paper is organized as follows. In Section 2 we introduce a robustness veri�cation
problem for BNNs and point out works related to ours. Polyhedral results are
reported in Section 3. Preliminary computational experiments are presented in
Section 4 before we conclude in Section 5. Due to length restrictions proofs are
omitted from this extended abstract.

2 Robustness veri�cation problem in BNNs

2.1 Description of BNNs

A BNN is a special type of DNN having for activation function:

sign(x) =

{
1 if x ≥ 0
−1 otherwise

for all x ∈ R.

Given a vector x ∈ Rn, σ(x) ∈ Bn, with B = {−1; 1}, denotes the vector such
that (σ(x))i = sign (xi), for all i ∈ [n], where [n] = {1, 2, . . . , n}.

A BNN has some number s + 1 of ordered layers, the last one being called
the output layer and the others hidden layers. Each layer k, with k ∈ [s+1], has
some number nk of neurons and an associated weight matrixW k ∈ Bnk ×Bnk−1

which is computed during a training phase. Given an input vector y0 ∈ Bn0 , an
output vector xs+1 ∈ Zns+1 is computed using the recursion

xk =W kyk−1,∀k ∈ [s+ 1]
yk = σ(xk),∀k ∈ [s].

In the context of classi�cation, each entry of the output vector xs+1 is associated
to one class and the input y0 is assigned to the class corresponding to the largest
entry of xs+1. (In what follows, we may assume ties are broken arbitrarily.)
Given a BNN B, the output vector obtained with the input y0 will be denoted
by B

(
y0
)
.

2.2 Robustness veri�cation problem

Let B represent a BNN as described above, and let z ∈ Bn0 be an input vector
whose class is ` and satisfying (B (z))` > (B (z))j for all j ∈ [ns+1] \ {`}. Given
a target class t ∈ [ns+1] \ {`} and a neighborhood Ω(z) of z in Rn0 , the BNN
B will be said locally robust at z w.r.t. the target t if, for all y0 ∈ Ω(z), the `th
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entry of B
(
y0
)
is larger than the tth entry. So, checking local robustness of B at

z w.r.t. target t reduces to solving the following problem

max
xk,yk

xs+1
t − xs+1

` (1a)

s.t. xk =W kyk−1,∀k ∈ [s+ 1] (1b)

yk = σ(xk),∀k ∈ [s] (1c)

y0 ∈ Ω(z) (1d)

xk ∈ Rnk , k ∈ [s+ 1] (1e)

yk ∈ Bnk , k ∈ {0} ∪ [s] (1f)

B is locally robust at z w.r.t. target t if and only if the optimal objective of
(1) is negative. Note that even though the chosen neighborhood Ω(z) may be
convex, problem (1) is not, due to constraints (1c).

2.3 Related work

The importance of robustness veri�cation problems of DNNs stimulated much
research e�orts leading to the development of solution approaches relying on
diverse search strategies, optimization methods and satis�ability modulo theories
(SMT), see e.g. [2,4,16,17] and references therein. Among the vast literature in
the �eld, the share dedicated to BNNs seems rather limited.

A BNN can be represented as a Boolean formula, a feature allowing the
use of SAT solvers to verify robustness [5,12,19,20]. An SMT based approach
extending the Reluplex method [13] is proposed by Amir et al. [1] to support
sign activation functions (in addition to ReLU or max-pooling). Khalil et al.
[14] design a heuristic to identify adversarial examples for BNNs that is based
on the solution of several integer linear programs associated with the layers.
This procedure aims at identifying adversarial examples, namely in the context
of adversarial training to strengthen robustness of BNNs. However, it does not
solve the veri�cation problem exactly and it is rather proposed as an alternative
to the solution of an exact formulation of the problem as a mixed integer linear
program (MILP) introduced in the same reference but which does not scale to
handle large BNNs. E�orts have been dedicated to strengthen relaxations based
on such MILP formulations so as to improve performance further by leveraging
BNN speci�cities. Building upon similar techniques to the ones used by Anderson
et al. [2] who introduced strong MILP formulations for robustness veri�cation
of ReLU based networks, Han and Gómez [9] derive an ideal formulation of a
polytope related to the output of a single neuron in BNNs (details are given
in �3.1). Their work is concurrent with the one (we became aware of later) by
Lyu and Huchette [18], the latter investigating also some extensions, such as
handling zero weights (in addition to weights in B). Han and Gómez's work [9]
is the closest to and originally motivated ours: overall objective is to investigate
MILP techniques and polyhedral structures to take into account correlations
between the outputs of pairs of neurons in the same layer of a BNN.
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3 Disjunctive programming based view to neuron pairs

in BNNs

In this section, after recalling Han and Gómez results about single neuron
convexi�cation [9], we present a disjunctive programming based framework to
deal with neuron pairs and also present speci�c families of facet de�ning inequalities
for a polytope related to neuron pairs. Due to length restrictions, we focus on
the case when the number of inputs and the number of neurons of each hidden
layer in the BNN are even, i.e. nk is even, for all k ∈ {0} ∪ [s]. Given a set
X ⊆ Rn, conv(X) stands for its convex hull.

3.1 Single neuron convexi�cation

Let n denote a positive integer. We de�ne the set

S1 =

{
(y, t) ∈ Bn × B : t = sign

(
n∑

i=1

yi

)}

corresponding to all the possible input/output pairs of the sign function with
n binarized inputs and all the weights of value one on the inputs. Note that
assuming all the weights have value one instead of possibly di�erent values in B
is with no loss of generality (resorting to simple substitutions). Han and Gómez
determined a complete description of conv(S1)

Theorem 1. [9] If n is even, then the convex hull of S1 is given by

n

2
(t− 1) ≤

n∑
i=1

min {yi, t} (2a)

n∑
i=1

max {yi, t} ≤ −2 + (n+ 2)
t+ 1

2
(2b)

(y, t) ∈ [−1, 1]n+1 (2c)

Although the number of linear inequalities corresponding to (2) is exponential
in n, the separation problem can be solved e�ciently (in linear time). These
inequalities were used in [9] to strengthen a linear relaxation of (1). However,
they do not account for potential correlations between the outputs of di�erent
neurons. We introduce hereafter a framework aiming at the generation of inequalities
taking into account such correlations to strengthen relaxations of (1).

3.2 Disjunctive programming based approach for neuron pairs

Consider the following set de�ned similar to S1 but for neuron pairs.

S2 =

{
(y, t1, t2) ∈ Bn × B× B :

t1 = sign (
∑n

i=1 yi)

t2 = sign
((∑k

i=1 yi

)
−
(∑n

i=k+1 yi
))} (3)
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where k ∈ {0} ∪ [n]. Note that any set of the form{
(y, t1, t2) ∈ Bn × B× B :

t1 = sign (
∑n

i=1 w1,iyi)
t2 = sign (

∑n
i=1 w2,iyi)

}
with weights wq,j ∈ B for all q ∈ {1, 2} and j ∈ [n], can be represented as (3)
(resorting to substitutions and a reordering of the variable indices).

Computational experiments on small instances illustrate the fact that the
size of an ideal description of S2 may be signi�cantly much larger (in terms of
the number of inequalities) than S1, at least when restricted to the original space
of variables (see Table 1).

Table 1. Number of facet-de�ning inequalities of conv (S2) for n ∈ {4, 6, 8, 10} and
k ∈ {0} ∪ [n] obtained with PORTA [6]. The number of facets of conv (S1) for n =
4, 6, 8, 10 is 26, 78, 274, 1046, respectively.

@
@@n
k

0 1 2 3 4 5 6 7 8 9 10

10 1299 2191 10793 11455 25485 27276 21769 19107 3300 1092 1046
8 345 555 1799 2097 2923 2650 857 292 274
6 99 149 311 337 223 87 78
4 33 39 35 21 26

This may suggest that families of inequalities that are valid for conv (S2)
could contribute to strengthen further relaxations of (1) already including (2). So
far we could not derive a complete description of conv (S2) and we alternatively
present hereafter a disjunctive programming based approach to solve the separation
problem w.r.t. conv (S2) in polynomial time. (Given a polyhedron P ⊆ Rn and
a point x ∈ Rn, the corresponding separation problem is to determine whether
x ∈ P , and, if not, to �nd an inequality that is valid for P and violated by x.)
The proposed method is based on complete descriptions of polytopes derived
from disjunctions of S2 using the following inequalities.

n∑
i=1

yi ≥ 0 (t1+)

n∑
i=1

yi ≤ −2 (t1−)(
k∑

i=1

yi

)
−

(
n∑

i=k+1

yi

)
≥ 0 (t2+)(

k∑
i=1

yi

)
−

(
n∑

i=k+1

yi

)
≤ −2 (t2−)
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Inequalities (t1+) and (t1−) (resp. (t2+) and (t2−)) lead to a disjunction of
S2 w.r.t. the sign of t1 (resp. t2). Note that, due to the assumed even parity of
n, the right-hand side can be decreased from -1 to -2 in (t1−) and (t2−). The
four inequalities above lead us to consider the sets

Z•I =

(y, t1, t2) ∈ Bn × B× B :

y satis�es inequalities (t1•) and (t2 I)
t1 = sign (

∑n
i=1 yi)

t2 = sign
((∑k

i=1 yi

)
−
(∑n

i=k+1 yi
))


with •,I∈ {+,−}. An important property which was used in [9] to get an
ideal description of conv (S1) was the fact that the matrix corresponding to the
system of constraints composed of −1 ≤ t ≤ 1, −1 ≤ y ≤ 1 and (t1+) or (t1−)
is totally unimodular. This, however, no longer holds if either inequality (t2+)
or (t2−) is added to such a system. Anyhow, we can show that a simple ideal
description can still be determined for all of the above sets Z•I.

Proposition 1. Assuming n is even the following holds.

conv (Z++) =

{
(y, 1, 1) :

(t1+) , (t2+) ,y ∈ [−1, 1]n∑k
i=1 yi ≥ 1 if k is odd

}

conv (Z+−) =

{
(y, 1,−1) : (t1+) , (t2−) ,y ∈ [−1, 1]n∑n

i=k+1 yi ≥ 2 if k is even

}

conv (Z−+) =

{
(y,−1, 1) : (t1−), (t2+),y ∈ [−1, 1]n∑n

i=k+1 yi ≤ −2 if k is even

}

conv (Z−−) =

{
(y,−1,−1) :

(t1−), (t2−),y ∈ [−1, 1]n∑k
i=1 yi ≤ −3 if k is odd and k ≥ 3

}
Proof. We just report here the proof for conv (Z++) since it is similar for the
other convex hulls. Let T denote the set

T =

{
(y, 1, 1) :

(t1+), (t2+),y ∈ [−1, 1]n∑k
i=1 yi ≥ 1 if k is odd

}
.

Firstly, we show Z++ ⊆ T which implies then conv (Z++) ⊆ T because T is
convex. Let (y, 1, 1) ∈ Z++. By de�nition, y satis�es (t1+) and (t2+), implying∑k

i=1 yi ≥ 0. If k is odd, then, due to y ∈ Bn, we have
∑k

i=1 yi ≥ 1, and thus
(y, 1, 1) ∈ T .

We now prove T ⊆ conv (Z++). Obviously, T ∩ Bn+2 ⊆ Z++. It is then
su�cient to prove that all the extreme points of T belong to Bn+2. Let (ŷ, 1, 1)
denote an extreme point of T . Then ŷ must verify with equality n linearly
independent inequalities from the system S composed of (t1+),(t2+), −1 ≤ y ≤
1, and, if k is odd:

∑k
i=1 yi ≥ 1. We can distinguish the following cases.
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� Case 1: k is even, or k is odd with
∑k

i=1 ŷi > 1.

• Subcase 1.1: 1>ŷ = 0. Then ŷ is also an extreme point of the polyhedron
Q11 ⊆ Rn de�ned by the system: 1>y = 0,

∑n
i=k+1 yi ≤ 0,−1 ≤ y ≤ 1,

which is totally unimodular. Thus ŷ is integral, has at least n−2 entries
in B and at most two zero entries. Since n is even and 1>ŷ = 0, the
number of zero entries cannot be odd. If ŷ has two zero entries: ŷp =
ŷq = 0 with (p, q) ∈ [n]2, p 6= q, then necessarily

∑n
i=k+1 ŷi = 0 and

(using our assumptions on k with 1>ŷ = 0), k must be even and either
{p, q} ⊆ [k] or {p, q} ⊆ {k + 1, . . . , n}. Now, let ŷ1 = ŷ+ε (ep − eq) and
ŷ2 = ŷ−ε (ep − eq), where ei stands for the ith unit vector and ε ∈]0, 12 [.
We can check that ŷ1 and ŷ2 belong to Q11 and ŷ = 1

2

(
ŷ1 + ŷ2

)
, i.e.

a contradiction with ŷ being an extreme point of Q11. Consequently, ŷ
has no zero entries and ŷ ∈ Bn.

• Subcase 1.2: 1>ŷ > 0. Then ŷ is an extreme point of the polyhedron
de�ned by the system: (t2+) , −1 ≤ y ≤ 1, which is totally unimodular.
Thus, ŷ is integral with at least n−1 entries in B and at most one entry
with value zero. If ŷ has one entry equal to zero, then (t2+) must be
veri�ed with equality, which is not possible because n is assumed to be
even. So, ŷ ∈ Bn.

� Case 2: k is odd and
∑k

i=1 ŷi = 1.

• Subcase 2.1: 1>ŷ = 0. Then ŷ is also an extreme point of the polyhedron
Q21 de�ned by the system:

∑k
i=1 yi = 1,

∑n
i=k+1 yi = −1, −1 ≤ y ≤

1. Since the matrix de�ning this system is totally unimodular we can
deduce that ŷ is integral with at least n − 2 entries in B and at most
2 entries with value zero. Since 1>ŷ = 0 and n is even, the number of
zero entries must be even. If ŷ has two zero entries ŷp = ŷq = 0, with
(p, q) ∈ [n]2, p 6= q, then the equations in the de�nition of Q21 imply
that either {p, q} ⊆ [k] or {p, q} ⊆ {k + 1, . . . , n}. But either case leads
to a contradiction, similar to Subcase 1.1 above. Thus, ŷ ∈ Bn.

• Subcase 2.2: 1>ŷ > 0. Then, ŷ is an extreme point of the polyhedron
Q22 de�ned by the system:

∑k
i=1 yi = 1,

∑n
i=k+1 yi ≤ 1, −1 ≤ y ≤ 1,

which is totally unimodular. We can deduce that ŷ is integral with at
least n− 2 entries in B and at most 2 entries with value zero. Using the
odd parity of k, we can deduce that ŷ cannot have exactly one entry
with value zero. If ŷ has two zero entries ŷp = ŷq = 0, with (p, q) ∈ [n]2,
p 6= q, then the equation in the de�nition of Q22 implies that either
{p, q} ⊆ [k] or {p, q} ⊆ {k + 1, . . . , n}. The rest of the proof is similar to
Subcase 1.1 above.

ut

Note that conv (S2) = conv
(
∪•,I∈{+,−}conv (Z•I)

)
= conv

(
∪•,I∈{+,−}Z•I

)
.

Thus, the derivation of an extended formulation of conv (S2) from Proposition 1
with disjunctive programming techniques is straightforward. The latter can be
used to design a separation procedure w.r.t. conv (S2).
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3.3 Separation procedure w.r.t. conv (S2)

We describe hereafter a generic procedure to solve the separation problem w.r.t.
the convex hull of a �nite number of nonempty polytopes and that we used in
our experiments w.r.t. conv (S2).

Let (Pi)
`
i=1 denote a �nite family of polytopes in Rn with

Pi = {x ∈ Rn : Aix ≤ bi} for all i ∈ [`],

with Ai ∈ Rmi×n, bi ∈ Rmi , mi ∈ N. Let P stand for the convex hull of the
union of the polytopes (Pi)

`
i=1: P = conv

(
∪`i=1Pi

)
. The problem of determining

whether some given point x̂ ∈ Rn belongs to P reduces to solving the linear
program

(SEP)



minλ,y,ε+,ε−
∑n

i=1 ε
+
i + ε−i

x̂ =
∑`

i=1 yi + ε
+ − ε−

Aiyi ≤ λibi, i = 1, . . . , `∑`
i=1 λi = 1

λ ∈ R`
+, ε

+, ε− ∈ Rn
+,

yi ∈ Rmi , i = 1, . . . , `.

One can check that x̂ ∈ P holds if and only if the optimal objective value of
(SEP) is zero. Consider then the dual problem:

(DSEP)


maxc,α,γ c

>x̂+ γ
c = A>i αi,∀i ∈ [`]
α>i bi + γ ≤ 0,∀i ∈ [`]
c ∈ [−1; 1]n, γ ∈ R,αi ∈ Rmi

+ .

Note that for any feasible solution (c,α, γ) of (DSEP) the inequality c>x ≤ −γ
is valid for Pi,∀i ∈ [`]. Let Z?

DSEP denote the optimal objective of (DSEP). Using
strong duality in linear programming, the separation problem w.r.t. P reduces
to solving (DSEP): either Z?

DSEP = 0 and in that case x̂ ∈ P. Otherwise Z?
DSEP > 0

and a violated inequality is given by an optimal solution (c,α, γ) of (DSEP):
c>x̂ > −γ. Taking for Pi the polytopes conv (Z•I) with •,I∈ {+,−}, the
approach described above leads to the next result.

Proposition 2. The separation w.r.t. conv (S2) can be solved in polynomial
time.

3.4 Facet de�ning inequalities

Designing a cutting-plane algorithm based on the separation procedure described
above (�3.3) to generate constraints can lead to poor performance in terms of
computational time, as we could observe in preliminary experiments. This led us
to consider the alternative of proceeding to the separation over speci�c families of
inequalities. We introduce hereafter four families of inequalities stemming from
studies based on the framework described in �3.2-3.3 and that we used in our
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experiments. We also provide su�cient conditions for these inequalities to be
facet de�ning and study the corresponding separation problem. In what follows,
we assume n ≥ 4, n even.

Proposition 3. The following inequalities, together with the speci�ed conditions
on the set I are valid for conv (S2).(

|I| −
⌈
k − 1

2

⌉)
(t1 + t2)−

∑
i∈I

yi ≤ |I| , I ⊆ [k], |I| ≥
⌈
k − 1

2

⌉
(5)

(⌈
k − 3

2

⌉
− |I|

)
(t1 + t2) +

∑
i∈I

yi ≤ |I| , I ⊆ [k], |I| ≥
⌈
k − 3

2

⌉
(6)

(
|I| −

⌈
n− k − 2

2

⌉)
(t1 − t2)−

∑
i∈I

yi ≤ |I| , I ⊆ [n]\[k], |I| ≥
⌈
n− k − 2

2

⌉
(7)

(⌈
n− k − 2

2

⌉
− |I|

)
(t1 − t2)+

∑
i∈I

yi ≤ |I| , I ⊆ [n]\[k], |I| ≥
⌈
n− k − 2

2

⌉
(8)

Proposition 4. The following properties hold.

(i) Assume k < n
2 , and let I ⊆ [k] such that |I| > dk−12 e. Then (5) is facet

de�ning for conv (S2).
(ii) Assume 3 ≤ k < n

2 , and let I ⊆ [k] such that |I| > dk−32 e. Then (6) is
facet de�ning for conv (S2).

(iii) Assume n
2 + 1 < k ≤ n − 2, and let I ⊆ [n] \ [k] such that |I| > dn−k−22 e.

Also assume k < n − 2 if |I| > 1. Then (7)-(8) are facet de�ning for
conv (S2).

Proposition 5. The separation problem w.r.t. (5)-(8) can be solved in polynomial
time.

4 Computational experiments

In this section we provide preliminary computational results to assess the performance
of constraint generation procedures relying on results from [9] and the families
of inequalities (5)-(8) to verify robustness of BNNs.

4.1 Evaluated methods and setup

We consider solving (1) with a constraint generation algorithm, starting with
the relaxation:

max
xs+1,yk

xs+1
t − xs+1

` (9a)

s.t. xs+1 =W s+1ys (9b)

‖y0 − z‖1 ≤ ε (9c)

xs+1 ∈ Rns+1 (9d)

yk ∈ Bnk , k ∈ {0} ∪ [s] (9e)
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for some �xed value ε > 0. Starting with (9), two options to generate constraints
at each iteration are considered:

� single: for each inequality of type (2a) and (2b), we check if one is violated,
and if so, one with largest violation is generated (for each type).

� approx: in addition to the procedure single, for each pair of neurons and
for each of the four types of inequalities (5)-(8), we check if one is violated,
and if so, one with largest violation is generated (for each type).

Due to length restrictions we only report results for three con�gurations of BNNs:
64 × 2, 128 × 2 and 256 × 1, where the �rst number denotes the number of
neurons per hidden layer (common to all hidden layers) and the second number
is the number of layers. Each BNN has 784 inputs and 10 outputs (each one
corresponding to a digit). The BNNs have been trained on the MNIST dataset
as described in [7], using the methodology from [11]. The training process of
BNNs was conducted on the DAS-5 cluster [3]. All networks have been trained
to an accuracy rate of approximately 75%. 25 images from the MNIST dataset
are used when performing robustness veri�cation, and the target class is always
selected so that it di�ers from the predicted class. The reported results are
always averaged over this set of instances. The reported results were obtained
using a computer with an Apple M1 processor and 8GB of RAM. Gurobi 10
(with default options) is used to solve the optimization problems.

4.2 Computational results

We �rst evaluate the e�ciency of the contraint generation methods to determine
(with certainty) the robustness status of a BNN, while restricting the number
of iterations to 20 and considering di�erent values for the parameter ε de�ning
the neighborhood in (9): ε ∈ {11, 12, . . . , 20}. By one iteration we mean the
application of the separation procedures for each neuron (w.r.t. (2a)-(2b)), and
also for each pair of neurons in the case of approx (w.r.t. (5)-(8)).

Figure 1 (resp. 2) displays the veri�cation accuracy, i.e. the proportion of
images for which the robustness status could be settled depending on ε (resp.
the objective value after 20 iterations).

12 14 16 18 20
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Fig. 1. Veri�cation accuracy
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Fig. 2. Objective value after 20 iterations (starting with (9))

The method approx clearly improves the veri�cation abilities of the solver
for the considered con�gurations of BNNs. Its overall veri�cation accuracy -
averaged over all epsilons and networks - equals 99.3%, whereas the single
method veri�es 86.1% with especially poor performance for 256 × 1 BNNs. It
is important to notice that when starting with the formulation (9) and keeping
the integrality constraints the used integer programming solver may add many
cuts (such as Gomory cuts). In order to better assess the potential improvement
of approx over single(i.e. independently of cuts added by the solver), in what
follows we report results obtained by relaxing the integrality contraints of (9).

Another observation from experiments we carried out is that approx may be
much more time consuming than single. This led us to investigate an alternative
constraint generation strategy denoted by approx-q with q ∈ {1, 5}. It di�ers
from approx by the fact that it generates at most q inequalities per neuron
and per iteration. We report in Figures and the evolution of the objective value
of the continuous relaxation depending on the number of iterations and time
respectively, within the limit of 20 iterations and for ε = 5. The ratio of the
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Fig. 3. Evolution of objective value of continuous relaxation (starting with (9)) w.r.t.
the number of iterations

number of cuts added compared with single is in the following ranges: [1.3, 1.57]
for approx-1, [2.45, 2.5] for approx-5 and [5.6, 8.15] for approx. The objective
value obtained wth approx-5 within 20 iterations tends to be close to approx but
with fewer cuts added. On the other hand, it seems that approx-1 delivers only
a slight improvement over single, and this is even more stressed for deeper
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Fig. 4. Evolution of objective value of continuous relaxation (starting with (9)) w.r.t.
computation time

networks (i.e. instances with two hidden layers for the results reported here).
single or approx-1 appear to converge much faster than the other methods
but they are not able to reach the bounds of the same quality.

5 Conclusion

In this paper we addressed a robustness veri�cation problem for BNNs via a
constraint generation algorithm. We namely introduced a constraint generation
framework relying on disjunctive programming and complete descriptions established
for polytopes de�ning a special disjunction related to the outputs of neuron pairs.
Considering the limitations of the latter approach due to high computation
times we proposed an alternative constraint generation algorithm relying on
speci�c families of facet de�ning inequalities. Our preliminary computational
results illustrate improvements in terms of veri�cation accuracy over recent
convexi�cation results for a single neuron. Ongoing research is directed towards
alternative constraint generation strategies and further polyhedral studies related
to the outputs of two or more neurons.

References

1. Amir, G., Wu, H., Barrett, C., Katz, G.: An SMT-based approach for verifying
binarized neural networks. In: Groote, J.F., Larsen, K.G. (eds.) Tools and
Algorithms for the Construction and Analysis of Systems. pp. 203�222. Springer
International Publishing, Cham (2021)

2. Anderson, R., Huchette, J., Ma, W., , Tjandraatmadja, C., Vielma, J.P.:
Strong mixed-integer programming formulations for trained neural networks.
Mathematical Programming 183, 3�39 (2020)

3. Bal, H., Epema, D., de Laat, C., van Nieuwpoort, R., Romein, J., Seinstra, F.,
Snoek, C., Wijsho�, H.: A medium-scale distributed system for computer science
research: Infrastructure for the long term. Computer 49(5), 54�63 (2016)

4. Bunel, R., Turkaslan, I., Torr, P.H.S., Kohli, P., Mudigonda, P.K.: A uni�ed view
of piecewise linear neural network veri�cation. In: Neural Information Processing
Systems (2017)



Neuron pairs in binarized neural networks via integer linear programming 13

5. Cheng, C., Nührenberg, G., Ruess, H.: Veri�cation of binarized neural networks.
CoRR abs/1710.03107 (2017), http://arxiv.org/abs/1710.03107

6. Christof, T., Löbel, A.: Porta - polyhedron representation transformation
algorithm. Available at https://porta.zib.de/

7. Deng, L.: The MNIST database of handwritten digit images for machine learning
research. IEEE Signal Processing Magazine 29(6), 141�142 (2012)

8. Goldberg, Y.: A primer on neural network models for natural language processing.
Journal of Arti�cial Intelligence Research 57, 345�420 (2016)

9. Han, S., Gómez, A.: Single-neuron convexi�cations for binarized neural networks,
University of Southern California (2021). Available at https://optimization-
online.org/?p=17148

10. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are
universal approximators. Neural Networks 2(5), 359�366 (1989)

11. Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., Bengio, Y.: Binarized neural
networks. In: Lee, D., Sugiyama, M., Luxburg, U., Guyon, I., Garnett, R. (eds.)
Advances in Neural Information Processing Systems. vol. 29. Curran Associates,
Inc. (2016)

12. Jia, K., Rinard, M.C.: E�cient exact veri�cation of binarized neural networks.
CoRR abs/2005.03597 (2020), https://arxiv.org/abs/2005.03597

13. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: a
calculus for reasoning about deep neural networks. Formal Methods in System
Design 60, 87�116 (2022), https://doi.org/10.1007/s10703-021-00363-7

14. Khalil, E.B., Gupta, A., Dilkina, B.: Combinatorial attacks on binarized neural
networks. In: International Conference on Learning Representations (ICLR) (2019)

15. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classi�cation with deep
convolutional neural networks. In: Pereira, F., Burges, C., Bottou, L., Weinberger,
K. (eds.) Advances in Neural Information Processing Systems. vol. 25. Curran
Associates, Inc. (2012)

16. Lin, W., Yang, Z., Chen, X., Zhao, Q., Li, X., Liu, Z., He, J.: Robustness veri�cation
of classi�cation deep neural networks via linear programming. In: 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). pp. 11410�
11419 (2019)

17. Liu, C., Arnon, T., Lazarus, C., Strong, C., Barrett, C., Kochenderfer, M.J.:
Algorithms for Verifying Deep Neural Networks (2021)

18. Lyu, B., Huchette, J.: Verifying binarized neural networks:
Convex relaxations, mixed-integer programming, and consistency,
https://bochuanbob.github.io/BNN_MIP.pdf

19. Narodytska, N., Kasiviswanathan, S., Ryzhyk, L., Sagiv, M., Walsh, T.: Verifying
properties of binarized deep neural networks. In: AAAI Conference on Arti�cial
Intelligence (AAAI) (2018)

20. Narodytska, N., Zhang, H., Gupta, A., Walsh, T.: In search for a sat-friendly
binarized neural network architecture. In: International Conference on Learning
Representations (ICLR) (2020)

21. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I.J.,
Fergus, R.: Intriguing properties of neural networks. In: International Conference
on Learning Representations (ICLR) (2014)


