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The process of inference on networks of spiking neurons is essential to
decipher the underlying mechanisms of brain computation and function.
In this study, we conduct inference on parameters and dynamics of a
mean-field approximation, simplifying the interactions of neurons. Esti-
mating parameters of this class of generative model allows one to predict
the system’s dynamics and responses under changing inputs and, indeed,
changing parameters. We first assume a set of known state-space equa-
tions and address the problem of inferring the lumped parameters from
observed time series. Crucially, we consider this problem in the setting
of bistability, random fluctuations in system dynamics, and partial obser-
vations, in which some states are hidden. To identify the most efficient
estimation or inversion scheme in this particular system identification,
we benchmark against state-of-the-art optimization and Bayesian estima-
tion algorithms, highlighting their strengths and weaknesses. Addition-
ally, we explore how well the statistical relationships between parameters
are maintained across different scales. We found that deep neural den-
sity estimators outperform other algorithms in the inversion scheme, de-
spite potentially resulting in overestimated uncertainty and correlation
between parameters. Nevertheless, this issue can be improved by incor-
porating time-delay embedding. We then eschew the mean-field approx-
imation and employ deep neural ODEs on spiking neurons, illustrating
prediction of system dynamics and vector fields from microscopic states.
Overall, this study affords an opportunity to predict brain dynamics
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Inference on the Macroscopic Dynamics of Spiking Neurons 2031

and responses to various perturbations or pharmacological interventions
using deep neural networks.

1 Introduction

Neural computation involves the complex information processing per-
formed by spiking neurons, where their interactions within neural circuits
contribute to higher-level computations and cognitive functions. Conse-
quently, the cornerstone of theoretical neuroscience lies in the use of mathe-
matical models to understand the intricacies of neural computation (Dayan
& Abbott, 2005; Hertz, 2018). This approach enables researchers to explore
the complexities of neural processes, thereby revealing insights into the
mechanisms that drive brain function and behavior. These mathematical
models can range from simple idealized representations of single neurons
(Hopfield, 1982; Izhikevich, 2003) to complex network models that simulate
the interactions within neural circuits (Marder, 1998; Sussillo, 2014; O’Leary
et al., 2015; Bittner et al., 2021). The biological neural computation forms the
basis for the brain’s ability to execute various inference tasks, such as recog-
nizing patterns, making decisions, and generating responses to stimuli. This
capability relies on the collective behavior of spiking neurons, where the
interactions and coordination among these neurons within neural circuits
enable the brain to process, integrate, and interpret sensory information,
ultimately leading to higher-level cognitive functions and adaptive behav-
ior (Kandel et al., 2000; Gerstner et al., 2014; Friston & Kiebel, 2009; Friston
et al., 2017).

Mean-field (MF) models serve as effective computational abstractions
that represent the collective behavior of large populations of neurons while
maintaining a degree of mathematical tractability (Amari, 1977; Wilson &
Cowan, 1973; Jirsa & Haken, 1996; David & Friston, 2003; Deco et al., 2008;
Hutt et al., 2015; Coombes & Byrne, 2018; Bandyopadhyay et al., 2021; Cook
et al., 2022). Hence, MF models facilitate the study of information process-
ing and computation within the brain, which underlie cognitive processes
such as perception, memory, and learning. Nevertheless, deriving and vali-
dating MF models from spiking neural networks present many challenges,
particularly when assessing how the interaction between individual neu-
rons and parameters leads to macroscopic behavior that aligns with the av-
eraged activity of neural populations.

Recently, an analytically driven MF model of spiking neurons has been
formulated that can effectively describe all potential macroscopic dynam-
ical states of the network, including states of synchronous spiking activity
(Montbrió et al., 2015). However, the operation of such complex systems
(governed by coupled nonlinear differential equations) is determined by
the selection of (biological or phenomenological) parameters that, when
set in a specific configuration, give rise to a measurable signature of a
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2032 N. Baldy et al.

computation (Achard & De Schutter, 2006; Sussillo, 2014). Analyzing MF
models and comparing their emergent dynamics against a network of neu-
rons involves solving inverse problems to ascertain the optimal param-
eter setting. This process requires swift and robust outcomes to inform
real-time decisions and also to deal with observation and dynamical noise.
Yet even in the simplest models, there can be a degenerate relationship be-
tween the model parameters and its overall emergent function (Edelman &
Gally, 2001; Prinz et al., 2004; Alonso & Marder, 2019), making the inverse
problem more challenging.

Maintaining the interdependency between parameters by traversing
across scales adds a layer of complexity to the validation process. It is
crucial to distinguish between genuine, biologically relevant correlations
and artificial correlations that may arise from the inference process or mod-
eling assumptions. Furthermore, due to the intricate nature of computation
within neural circuits, it becomes intractable to analytically derive MF
models that include more biological realism (such as adaption, neuromod-
ulation, extra-synaptic transmission, and E/I ratios). Statistical inference
offers an efficient and adaptable approach to solving the inverse problem by
identifying approximate parameter distributions that are responsible for
generating computations in a biologically realistic model (Achard &
De Schutter, 2006; Liepe et al., 2014; Lueckmann et al., 2017; Gonçalves
et al., 2020; Bittner et al., 2021; Młynarski et al., 2021).

The performance of statistical inference algorithms depends on the task,
and there is no universally best algorithm for different inverse problems.
Therefore, we conducted a benchmarking analysis against state-of-the-art
optimization and Bayesian estimation algorithms to discern their respec-
tive advantages and limitations. In practice, optimization methods are com-
monly used to quickly determine unknown quantities through a single
point estimate (Mendes & Kell, 1998; Nocedal & Wright, 1999; Kelley, 1999;
Floudas & Gounaris, 2009). These methods involve iteratively adjusting
parameters to minimize or maximize an objective function, scoring the
model’s performance against observed data—for example, through min-
imizing distance errors or maximizing correlation (Banga & Balsa-Canto,
2008; Tashkova et al., 2011; Svensson et al., 2012; Hashemi et al., 2018).

The Bayesian approach offers a principled method for making inferences
and predictions, establishing relationships between parameters, and quan-
tifying uncertainty in the decision-making process (Gelman et al., 1995,
2020; Bishop, 2006; van de Schoot et al., 2021). In Bayesian modeling, all
model parameters are treated as random variables, and their values are sub-
ject to variation based on their underlying probability distributions. Such
probabilistic techniques provide the full posterior distribution of unknown
quantities hidden in the underlying data-generating process. The uncer-
tainty and interdependency in Bayesian estimation are naturally quanti-
fied by assigning a probability distribution to each parameter (known as
the prior distribution), which is then updated based on the information
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Inference on the Macroscopic Dynamics of Spiking Neurons 2033

provided by the data (referred to as the likelihood function). To conduct
a fully Bayesian procedure, the state-of-the-art MCMC method is adaptive
Hamiltonian Monte Carlo (HMC; Duane et al., 1987; Neal, 2010; Hoffman &
Gelman, 2014), which utilizes gradient information to avoid random walk
behavior. This enables efficient sampling from high-dimensional distribu-
tions that may exhibit strong correlations (Betancourt, 2017).

Simulation-based inference (SBI; Cranmer et al., 2020; Brehmer, 2021)
or likelihood-free inference (Papamakarios & Murray, 2016; Brehmer et al.,
2020) leverages deep generative models to conduct approximate Bayesian
estimation, using low-dimensional data features that are generated by ran-
dom simulations (Gonçalves et al., 2020; Lueckmann et al., 2021; Boelts
et al., 2022). In this efficient approach, a simple base probability distribution
(prior) is transformed into a more complex distribution (posterior) through
a sequence of invertible transformations (i.e., normalizing flows; Rezende
& Mohamed, 2015; Papamakarios, Nalisnick, et al., 2019). Notably, it allows
for direct estimation of joint posterior distributions, bypassing the need
for MCMC sampling (Greenberg et al., 2019; Papamakarios, Sterratt, et al.,
2019). Moreover, expressive deep generative models have the potential to
capture parameter nonlinear relationships between parameters and multi-
modalities in the distributions (Hashemi et al., 2023).

Data-driven methods for learning dynamical models from time-series
data have been extensively researched for several decades (Juang, 1994;
Ljung, 1998; Brunton et al., 2016; Linderman et al., 2017; Duncker et al., 2019;
Koppe et al., 2019; Sip et al., 2023). Instead of relying on discretized maps,
neural ordinary differential equations (neural ODEs; Chen et al., 2018) form
a new family of deep neural network models for modeling continuous-
time dynamics. Neural ODEs define the vector fields and ODE solution as a
black-box differential equation solver, allowing for uncovering the dynam-
ics of a system even when the governing equations are unknown (Dupont
et al., 2019; Biloš et al., 2021). This data-driven approach involves param-
eterizing system dynamics as continuous functions, enabling smooth and
uninterrupted modeling of temporal evolution (Yan et al., 2019; Kim et al.,
2021). Neural ODEs naturally adapt to varying time intervals and can ac-
commodate fluctuations in the frequency of data observations (Zhu et al.,
2022; Goyal & Benner, 2023).

Through an exploration of the aforementioned methods, we demon-
strate that global optimization algorithms, such as differential evolution
algorithm, offer fast and accurate point estimation of the true generative pa-
rameters when the dynamical noise is absent. However, when dealing with
dynamic evolution subject to noise, SBI, using deep neural density estima-
tors, emerges as the superior approach, outperforming other algorithms,
such as adaptive HMC sampling. Additionally, when dealing with missing
data (such as population firing rate) in state-space modeling, HMC fails to
capture the dynamics of bistable switching behavior. Instead, SBI is able to
accurately recover the diverse dynamics in the phase-space representation.
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2034 N. Baldy et al.

Nevertheless, this approach may lead to an overestimation of uncertainty
and correlation between parameters, which can be mitigated by using a
time-delay embedding technique to improve the results. We validate this
by employing an MF model of quadratic integrate-and-fire (QIF) neurons,
which demonstrates that the interdependencies of parameters are main-
tained when traversing across scales. Finally, we demonstrate that train-
ing deep neural ODEs on spiking neurons enables the inference of vector
fields at macroscopic level. This allows for the prediction of emergent be-
haviors and system dynamics based on the microscopic state of the spiking
neurons. Note that we use the following abbreviations throughout this arti-
cle: MF, mean-field; QIF, quadratic Integrate-and-fire; SBI, simulation-based
inference; SNPE, sequential neural posterior estimation; MCMC, Markov
chain Monte Carlo; HMC, Hamiltonian Monte Carlo; MAP, maximum a
posteriori; DE, differential evolution; PSO, particle swarm optimization;
BO, Bayesian optimization; ODEs, ordinary differential equations; SDEs,
stochastic differential equations; neural ODEs, neural ordinary differential
equations.

2 Materials and Methods

2.1 Macroscopic Description of Spiking Neurons. The quadratic
integrate-and-fire (QIF) neurons are a class of simplified computational
models that are extensively used to study the dynamics of spiking neurons
(Gerstner & Kistler, 2002; Izhikevich, 2007). In the QIF model, the membrane
potential of each neuron evolves according to a quadratic differential equa-
tion until it reaches a threshold, at which point the neuron emits a spike and
the potential is reset.

Montbrió et al. (2015) have proposed an MF model that accurately de-
scribes macroscopic states of populations of firing neurons. This mechanis-
tic model derives the firing rate equations for networks of heterogeneous,
all-to-all coupled QIF neurons, which is exact in the thermodynamic limit,
that is, for large numbers of neurons. Specifically, when considering spe-
cific distributions of heterogeneity, the Lorentzian ansatz yields a nonlinear
system of two ordinary differential equations for the firing rate r and mean
membrane potential v of the neuronal population,

ṙ = 2rv + �/π, (2.1a)

v̇ = v2 − π2r2 + Jr + η + I(t), (2.1b)

where η is the average excitability, J denotes the synaptic weight, and �

indicates the spread of the neuronal excitability distribution in the neu-
ral population. Depending on the parameter settings and exogenous input
current I(t), the phase diagram exhibits three qualitatively distinct regions:
a single stable node, which represents a low-activity state; a single stable
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focus (spiral), which generally corresponds to a high-activity state; and a
region of bistability, where both low and high firing rates can coexist (see
Figure S1; note that figure numbers that begin with “S” are in the appendix).
This model has succeeded in establishing an exact correspondence between
the time evolution of firing rate of the network and the underlying micro-
scopic state of the spiking neurons (Montbrió et al., 2015).

2.2 Inference Methods. We validate the MF approximation by compar-
ing it against detailed spiking neurons using various parameter estimation
inference methods. To evaluate these methods, we use synthetic data gener-
ated from the MF model and a network of QIF neurons. Inference methods
investigated in this work can be broadly divided into two classes, optimiza-
tion and Bayesian methods.

Optimization methods return a point estimate of best fit based on the
minimizing of a cost function, such as chi-squared error criterion defined
by

χ2(θ ) =
Nt∑

i=1

(x̂(ti, θ ) − x(ti))
2
, (2.2)

where x(ti) denotes the observed data at time points ti with i ∈ {1, 2, . . . , Nt},
and x̂(ti, θ ) represents the corresponding model prediction. Here θ ∈
{η, J,�} is the set of unknown parameters, and the set of observation com-
bines activity of both r, v (unless it is missing). Assuming no prior informa-
tion and a gaussian likelihood function with uncorrelated noise, this casts
as a maximum likelihood estimation (MLE) problem (Hashemi et al., 2018).

Bayesian methods return a posterior distribution of parameters, p(θ | x),
which represents an ensemble of parameter sets that are plausible given
the observed data. Given the data x and model parameters θ , Bayes’s rule
defines the posterior distribution as

p(θ | x) = p(θ )p(x | θ )
p(x)

. (2.3)

The prior information p(θ ) is typically determined before seeing the data
(through beliefs and previous evidence). The likelihood function p(x | θ )
represents the probability of some observed outcomes given a certain set of
parameters (the information provided by the observed data). The denom-
inator p(x) = ∫

p(x | θ )p(θ )dθ represents the model evidence or marginal
likelihood, which amounts to simply a normalization factor.

From the optimization methods, we use the global search algorithms
that incorporate a bio-inspired random search principle: differential evo-
lution (DE; Storn & Price, 1997; Price, 1999), and particle swarm optimiza-
tion (PSO; Kennedy & Eberhart, 1995; Eberhart & Kennedy, 1995). These
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algorithms do not require an initial guess for the parameters or the gradi-
ent information of the objective function. We also consider Bayesian opti-
mization (BO; Snoek et al., 2012; Shahriari et al., 2015), an algorithm that
constructs a probabilistic model for the objective function using gaussian
processes. This approach allows for the integration of uncertainty in the
optimization process.

From the Bayesian methods, we compare the results of two state-of-
the-art Bayesian computation algorithms: Hamiltonian Monte Carlo (HMC;
Duane et al., 1987; Neal, 2010) which is unbiased and exact in infinite runs,
and a simulation-based inference (SBI; Cranmer et al., 2020; Brehmer, 2021),
which approximates (or parameterizes) the posterior using deep generative
models. Here, generative modeling is an unsupervised machine learning
method to model a probability distribution based on the samples drawn
from that distribution. From the Bayesian methods, we also report the re-
sults of maximum a posteriori (MAP) estimation.

2.3 Hamiltonian Monte Carlo. Markov chain Monte Carlo (MCMC) is
a powerful class of computational algorithms used for sampling from a dis-
tribution, in which the sampling process does not require knowledge of the
entire distribution, making it a versatile tool (Andrieu et al., 2003; Murphy,
2022; McElreath, 2020). MCMC is unbiased and asymptotically exact in the
limit of infinite runs. Hamiltonian Monte Carlo (HMC; Duane et al., 1987;
Neal, 2010) is a gradient-based MCMC designed to avoid random walk be-
havior, and it can efficiently sample from high-dimensional distributions
that may exhibit strong correlations (Betancourt, 2017). However, the effi-
ciency of HMC is sensitive to the algorithm parameters.

In this study we use a self-tuning variant of HMC, known as the No-U-
Turn Sampler (NUTS; Hoffman & Gelman, 2014) from a high-level statisti-
cal modeling tool called Stan (Carpenter et al., 2017). In particular, the NUTS
calibrates the number of steps and step size of the leapfrog integrator (in
solving the Hamiltonian equations of motion) during a warm-up phase to
achieve a target Metropolis acceptance rate. For more details, see Betancourt
(2013) and Baldy et al. (2023). Moreover, Stan offers alternative methods
such as MAP estimation using gradient-based optimization, automatic dif-
ferentiation for efficient gradient computation, and various diagnostics to
assess the convergence of the inference process (see https://mc-stan.org).

2.4 Simulation-Based Inference. Simulation-based inference (SBI)
conducts efficient Bayesian inference for complex models when the calcu-
lation of the likelihood function is either analytically or computationally
intractable (Cranmer et al., 2020; Brehmer, 2021). In computational mod-
els, where the data can be generated through stochastic simulations, SBI
leverages repeated simulations from the generative model and employs
probabilistic machine learning to estimate a target probability distribution.
Instead of directly sampling from distributions using MCMC or explicitly
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evaluating the likelihood function, SBI overcomes these challenges by
using deep neural density estimators, such as masked autoregressive
flows (MAF; Papamakarios et al., 2017). These density estimators learn
an invertible transformation between the distributions of parameters
and low-dimensional data features at a very low computational cost to
efficiently sample from distributions.

Taking the prior distribution p(θ ) over the parameters θ , a limited num-
ber of N simulations are generated for a training step from the generative
model: {(θi, xi)}N

i=1 ∼ p(θ, x). After the training step, we are able to quickly
estimate the approximated posterior qφ (θ | x) with learnable parameters
φ, so that for the observed data, xobs: qφ (θ | xobs) � p(θ | xobs). (For details,
see Gonçalves et al., 2020; Hashemi et al., 2023.) Minimizing the Kullback-
Leibler divergence between the parameterized (approximate) posterior and
the true posterior is also the objective in dynamical causal modeling (Friston
et al., 2003; Blei et al., 2017), which is based on maximizing a lower bound
on the marginal likelihood of the data, or equivalently, minimizing the free
energy.

The methods for SBI often include a sequential training procedure, which
adaptively guides simulations to yield more informative estimates (Papa-
makarios, Sterratt, et al., 2019; Lueckmann et al., 2019; Durkan et al., 2020;
Wiqvist et al., 2021; Deistler et al., 2022). In particular, sequential neural pos-
terior estimation (SNPE; Greenberg et al., 2019; Gonçalves et al., 2020) dy-
namically refines the proposals, network weights, and posterior estimates
to learn the relationships between model parameters and the observed sum-
mary statistics of the data. In this study, we used SNPE with a single round
to take advantage of an amortized strategy; After incurring an initial com-
putational cost for the simulation and training steps to learn all the joint
posterior distributions, the posterior can be quickly estimated from any new
observations (by a forward pass through neural networks) without any ad-
ditional computational overhead or further simulations.

2.5 Time-Delay Embedding. Time-delay embedding is a commonly
used technique for characterizing dynamical systems based on limited mea-
surements, time-series analysis, and prediction (Takens, 1981). In time-
delay embedding, the reconstruction of a latent high-dimensional system
relies on incorporating incomplete measurements, along with a temporal
history of preceding measurements to create a comprehensive representa-
tion (Kennel et al., 1992; Hirsh et al., 2021). In a subsequent analysis, we
challenge the inference process by assuming that the firing rate activity r is
not directly observed (missing data problem). Instead, to improve the infer-
ence, we recovered the latent time series rrec from the observed activity v,
which is coupled to r according to equation 2.1. By expanding on a method
introduced by Abarbanel et al. (1994), which primarily focuses on predict-
ing physical variables in time-delay embedding, we removed the assump-
tion that we have the access to training data points from the hidden time
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series. Instead, we leverage our understanding of the generator to simulate
data pairs (r, v) that can be used for training purposes.

Time-delay embedding requires the setting of hyperparameters, such as
the delay (time lag), T, and the dimension of the embedding space, d. These
hyperparameters are typically set prior to training, often based on the min-
imization of mutual information to determine the appropriate delay and
the false nearest neighbors method to determine the number of embedding
dimensions (Kennel et al., 1992; Tan et al., 2023). However, in the our ap-
plication here, we have found that the hyperparameters suggested by these
methods were not the most effective in achieving an accurate fit. Instead,
we select hyperparameters that minimize the mean square error of the fit to
simulated data, with T = 160 points (i.e., 0.16 sec) and d = 12. To do this, a
set of 100 pairs of coupled time series (r, v) was simulated, with an obser-
vation noise intensity of 0.1 and varying parameters (�, η, J). These pairs
were then used to infer regression coefficients that closely match r to the
delay embedding space representation of v.

2.6 Neural ODEs. Neural ODEs are a set of machine learning tech-
niques that allow reconstructing the phase-space of a dynamical system
from a training set of observations (Chen et al., 2018). In a first analysis,
we trained a neural ODE on time series from the MF model and then ap-
plied the same method to the data generated by a network of QIF spiking
neurons. If x(t) is the vector of state variables governed by the dynamical
system ẋ = f (x, θ, Iext ), one can use a neural ODE to approximate the func-
tion f with an artificial neural network Fφ , yielding the corresponding dy-
namical equation ˙̂x = Fφ (x̂, θ, Iext ). Fφ is learned through backpropagation,
minimizing the loss function for each training example of length T,

Lφ (x̂, x) =
T∑

t=0

(x̂(t, θ ) − x(t))2,

where x̂ and x are times series generated by Fφ and f , respectively, with
the same integration scheme (e.g., Heun’s method). In this study, a neural
ODE was implemented in JAX (Bradbury et al., 2018a) by constructing a
multilayer perceptron (MLP) with one hidden layer of 16 units and with
hyperbolic tangent activation functions. The cost function was the average
loss functions across training examples Lφ = 1

NT

∑N
n=1 Lφ,n. At each training

iteration, the initial (r, v) values of each segment are fed to the neural ODEs
and the forecast trajectory according to current state of the Fφ enters the
cost function, then minimized through backpropagation using the Adam
optimizer.

2.7 Software and Algorithmic Setup. We use Python implementations
of the optimization and Bayesian algorithms: DE from SciPy (Virtanen et al.,
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2020), PSO from the toolkit PySwarms (Miranda, 2018), and BO from the
package Bayesian optimization (Nogueira et al., 2014). DE is set with a pop-
ulation size of 10 and the maximum iterations of 500. PSO is set with 10
particles and 500 iterations. BO is set with 50 random initialization, 500 it-
erations, and kappa = 100 (higher values increase exploration).

The MAP estimation is obtained using a quasi-Newton L-BFGS opti-
mizer from Python interface to Stan (Carpenter et al., 2017), an open-source
probabilistic programming language for Bayesian modeling and statistical
inference. We also use Stan’s implementation of the NUTS for fully Bayesian
estimation by HMC, with a Metropolis acceptance rate of 0.8, maximum tree
depth of 10, warm-up iterations of 1000, and 500 sampling phase iterations.

Finally, for SBI, we used SNPE from the PyTorch–based SBI toolkit
(Tejero-Cantero et al., 2020). SNPE was run for a single round with 100,000
simulations, unless specified otherwise. For training step, we used an MAF,
with five autoregressive layers, each with two hidden layers of 50 units. The
set of data features includes the statistical moments of time series up to the
fourth order (mean, standard deviation, skewness, and kurtosis) and the
peak properties (number and location of first peak, as shown in Figure S2).

Parameter bounds for optimization and uniform prior for Bayesian in-
ference were set as � ∈ [0.1, 5], η ∈ [−10,−3], J ∈ [5, 20]. For the simulation
of equation 2.1, we used Euler-Maruyama integration for t = 100 sec with a
time step of dt = 1 msec. The ground truth parameters were set as η = −4.6,
J = 14.5, and � = 0.7, ensuring that the system is in a bistable regime, unless
specified otherwise, with a one-step current with amplitude of 3 v applied
from time 30 sec to time 60 sec. The input current was considered known
and not included in the inferred quantities unless otherwise specified. Each
simulation took around 0.01 sec to run using a just-in-time (JIT) compiler.
To generate stochastic dynamics, a zero-mean gaussian noise with σ = 0.1
was added to the both the r and v variables. The prior on dynamical noise
was set as σ ∈ [0, 1]. For comparison with the MF model, we ran a network
of 104 all-to-all connected QIF neurons using the Brian simulator (Stimberg
et al., 2019).

The model simulation and parameter estimation were performed on a
Linux machine with 3.60 GHz Intel Core i7-7700 and 8 GB of memory.

3 Results

We present the results of the optimization and Bayesian algorithms for
three cases: (1) inferring from exact deterministic synthetic data, (2) infer-
ring from stochastic synthetic data driven by dynamical (a.k.a. state) noise,
and (3) inferring with stochastic synthetic data when the activity for r is un-
known (missing data). We report and compare the goodness-of-fit using the
root mean square error (RMSE) to the true (observed or hidden) time series
and parameters, the variance in the estimation process, and the computa-
tional cost.
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Before running inference process, we conduct a sensitivity analysis to as-
sess the structural identifiability of the parameters. This analysis involves
calculating local sensitivity coefficients, which measure the effect of small
adjustments in a parameter on the model’s output while keeping all other
parameters constant. A small change in a sensitive parameter leads to
a significant alteration in the model output, indicating its identifiability.
Conversely, when there are no alterations in the model output despite ad-
justments in a parameter, it suggests the parameter’s nonidentifiability. To
assess the identifiability of the parameters, we used the profile likelihood
(Raue et al., 2009; Wieland et al., 2021) and Hessian matrix, a metric describ-
ing the local curvature of a function based on its second partial derivatives
(Hashemi et al., 2018, 2023). Our results indicate that all three parameters �,
η, and J can be identifiable; however, the profile likelihood obtained using
equation 2.2 reveals the presence of numerous local minima (see Figure S3).
This highlights the difficulty in attaining the global minimum during the
inference process.

3.1 Inference on Deterministic Data. Here, we compare the inference
results of different algorithms when we have complete observations of both
state variables (r, v), and the system operates without any noise (see Fig-
ure 1). The observed time series and trajectories in phase-plane, which ex-
hibit a bistability between a stable node and a stable focus, driven by the
input current, are illustrated in Figure 1A. From the results demonstrated
in Figure 1B, it can be seen that all the algorithms qualitatively reproduce
the bistability behavior in the phase-plane. However, when evaluating their
performance by estimating the true generative parameters, all optimiza-
tion methods except DE get stuck in a local minima (see Figure 1C). The
results indicate that DE, SBI, and HMC algorithms correctly recover the
ground-truth parameters, the former as an almost exact point estimate (see
Figure 1C, top panels), while the latter two, SBI and HMC, yield full pos-
terior distributions (see Figure 1C, bottom panels). In terms of uncertainty
quantification, HMC offers a slightly more informative posterior distribu-
tion compared to SBI (see Figure S4).

When it comes to matching the observed time series, the optimization al-
gorithms such as PSO and BO deviate significantly from true values, while
other approaches equally retrieve an almost perfect fit to the observed time
series (see Figure 1D, top panel). Nevertheless, MAP largely fails to accu-
rately estimate model parameters due to overfitting (see Figure 1D, bottom
panel). This type of overfitting emphasizes the importance of quantifying
uncertainty to verify the reliability of inference, going beyond a point es-
timation. Note that for HMC and SBI, we report the results using poste-
rior predictive check that is, re-generating data using random parameters
drawn from the estimated posterior and then comparing simulations with
the observed data.
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Figure 1: Inference on deterministic data. (A) The trajectories in phase-plane
exhibiting bistable dynamics and the corresponding time series of firing rate
(r) and membrane potential (v), used as the observations for inference (ground
truth: � = 0.7, η = −4.6, J = 14.5). (B) The estimated trajectories in phase-plane,
along with the corresponding parameters displayed in the top panels. All the
algorithms capture the bistable dynamics in a qualitative manner. (C) For pa-
rameters �, η, and J, the point estimations are displayed in the top panels
along with the profile likelihood (in gray), while the full posterior distributions
are shown in the bottom panels. The colors are matched to the corresponding
algorithms in panel B, and vertical black lines show the true values used to
generate the data. HMC leads to more precise parameter estimates with lower
uncertainty compared to SBI. (D) Accuracy in estimation based on the sum over
RMSE values. The bootstrap uncertainty is calculated for time series (top panel)
and parameters (bottom panel) through multiple runs. (E) Computational cost
for each inference algorithm. Overall, DE excels in both speed and accuracy, but
it offers only a point estimate. HMC is exact and provides informative posterior
estimates, but it is computationally prohibitive. Rather, SBI effectively provides
accurate estimates along with associated uncertainties at a reasonable compu-
tational cost. DE: differential evolution; PSO: particle swarm optimization; BO:
Bayesian optimization; MAP, maximum a posteriori; HMC: Hamiltonian Monte
Carlo; SBI: simulation-based inference; RMSE: root mean squared error.
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Table 1: Benchmark on Deterministic Data.

RMSE Parameters RMSE Time Series

Method Mean SD Mean SD Running Time

DE 5.256098e-16 1.662124e-15 6.757684e-19 1.114034e-18 0:0:51
PSO 7.181840e-01 8.508900e-01 3.221500e-04 2.887217e-04 0:0:35
BO 6.516364e-01 2.919346e-01 5.639526e-04 1.182884e-04 0:23:14
MAP 4.033716e+00 6.842649e-02 4.545021e-09 4.865735e-10 0:2:29
HMC 1.114323e-03 3.530420e-04 3.989852e-07 1.493006e-08 98:33:13
SBI 1.332644e-02 7.094355e-03 2.866951e-07 2.034953e-07 1:36:21

In terms of computational cost for inference, DE has a clear advantage
with its rapid performance, typically taking less than a minute to complete
(see Figure 1E). Despite a high precision, the computational cost of HMC
in this example is prohibitively expensive, taking almost 100 hours to com-
plete the inference process. On the other hand, SBI was terminated in nearly
one and a half hours (including 100,000 random simulations, training, and
sampling), making it approximately 60 orders of magnitude faster than
HMC. Additionally, due to the amortized approach adopted by SBI, each
sampling process takes less than 1 minute to estimate the joint posterior
distributions from new data.

In summary, DE demonstrates superior speed and accuracy, but it only
provides a point estimate. Among Bayesian methods, HMC is exact and
provides certain estimates, but it is computationally prohibitive. SBI effec-
tively provides accurate estimates along with associated uncertainties at a
reasonable computational cost (see Table 1).

3.2 Inference on Stochastic Data. The inherent randomness in stochas-
tic systems introduces uncertainty into the behavior of the system under
study, which makes it challenging to accurately identify its underlying
dynamics. In particular, the presence of dynamical noise significantly in-
creases the complexity of the inference process and necessitates the use of
robust probabilistic methodologies that can effectively account for and han-
dle the stochastic nature of the data.

Here, we report the results of inference on synthetic data with zero-
centered gaussian dynamical noise, where the intensity is σ = 0.1 (see Fig-
ure 2). The observed noisy time series and trajectories in phase-plane,
exhibiting a bistable behavior between a stable node and a stable focus, are
illustrated in Figure 2A. From the results demonstrated in Figure 2B, we
can see that all the algorithms qualitatively replicate the bistable behavior
in the phase-plane. Yet when assessing how well they recover the true pa-
rameters, only DE yields an accurate point estimate among the optimization
algorithms (see Figure 2C, top panels).
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Figure 2: Inference on stochastic data. (A) The generated bistable dynamics in
the phase-plane and the corresponding time series of firing rate (r) and mem-
brane potential (v) used as the observations for inference (ground truth: � = 0.7,
η = −4.6, J = 14.5). (B) The estimated trajectories in the phase-planes, along
with the corresponding parameters displayed in the top panels. All the al-
gorithms qualitatively capture the bistable behavior. (C) The point estimation
along with the profile likelihood (top panels) and the full posterior (bottom pan-
els) for parameters �, η, and J. The colors are matched to the corresponding
algorithms in panel B, and vertical black lines show the true values used to gen-
erate the data. SBI leads to more precise parameter estimates with lower uncer-
tainty compared to HMC. (D) Accuracy in estimation based on the sum over
RMSE values for the time-series (top panel) and parameters (bottom panel).
The bootstrap uncertainty is calculated through multiple runs. (E) Computa-
tional cost for each inference algorithm. When evaluating overall accuracy, un-
certainty quantification, and computational cost, then SBI outperforms all other
algorithms.
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Table 2: Benchmark on Stochastic Data.

RMSE Parameters RMSE Time Series

Method Mean SD Mean SD Running Time

DE 0.672351 0.617302 0.000533 9.850079e-05 0:2:50
PSO 1.362540 0.852908 0.000717 1.116449e-04 0:1:8
BO 1.021078 0.519784 0.000888 8.232933e-05 0:15:36
MAP 3.883882 0.302616 0.000250 1.228436e-04 0:3:23
HMC 0.121416 0.081035 0.000004 1.427944e-08 15:56:28
SBI 0.052948 0.024310 0.000002 2.178518e-07 1:47:37

In terms of uncertainty quantification, SBI generates posteriors that are
tightly centered on the ground-truth parameters, in comparison to the HMC
sampling (see Figure 2C, bottom panels and Figure S5). A detailed compar-
ison of convergence diagnostics indicates that both SBI and HMC methods
provide ideal Bayesian estimation (see Figure S6). Regarding the proximity
to the observed time series and true parameters, both HMC and SBI of-
fer a closer match compared to the other algorithms (see Figure 2D). This
highlights the challenges inherent in inferring stochastic systems via opti-
mization algorithms, as the error metrics such as RMSE used to define the
objective function may not reliably gauge accuracy.

In terms of computational efficiency for inference, the running time of
all algorithms increases when the noise is present, except for HMC (see
Figure 2E). Nevertheless, when considering the entire process (including
random simulations, training, and sampling), SBI remains approximately
eight orders of magnitude faster than HMC. Interestingly, SBI is also able
to accurately and efficiently estimate the dynamical noise in the system (see
Figure S7).

In summary, these results demonstrate that when considering overall ac-
curacy in the presence of noise and bistability, uncertainty quantification,
and computational cost, the SBI outperforms all other algorithms, includ-
ing HMC (see Table 2).

Next, we investigate how varying the intensity of dynamical noise af-
fects the inference on stochastic data. Our results indicate that the overall
quality of fit to the noisy data (see Figure 3A) and the accuracy of recovered
parameters (see Figure 3B) remain stable up to σ ≤ 10−1 for all algorithms.
However, both metrics exhibit a significant increase beyond this threshold,
particularly for optimization methods.

The MAP estimation is robust with regard to the amount of dynamical
noise, but it tends to overfit. This is because the MAP estimation consis-
tently provides the least accurate inference on parameters, even though its
fit to the time-series data is almost perfect. In contrast, Bayesian inference
methods such as HMC and SBI are overall more accurate and significantly
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Figure 3: The performance of inference algorithms with increasing the intensity
of dynamical noise using the sum over (A) RMSE of the time series, and (B)
RMSE of the model parameters. Overall, with a sufficient number of simulations
for training, the SBI emerges as the most accurate and robust method in our
algorithmic benchmark.

more robust compared to optimization methods. Both HMC and SBI exhibit
significantly lower error than others, even at high noise levels (e.g., σ = 1).

Interestingly, SBI appears to be more resilient to high levels of noise com-
pared to HMC. Given a sufficient number of simulations for training (e.g.,
100,000), SBI demonstrates the most accurate and robust fit to the data,
consistently staying close to a perfect fit across various noise values. (See
Figure S8 for a systematic investigation on the impact of the number of sim-
ulations on the performance of SBI.) Overall, these results indicate that SBI
is the most accurate and robust algorithm in our benchmark.

3.3 Inference on Missing Data in the State-Space. Here, we explore
the performance of inference methods in situations where data are available
for only one of the variables in the state-space modeling. We consider the
mean membrane potential v as the observed data, which is simulated with
dynamic noise of intensity σ = 0.1, while the firing rate r remains latent (see
Figure 4A). The noise intensity is fixed for inference process.

From Figure 4B, we observe that only DE and SBI were capable of retriev-
ing the true dynamics in the phase-plane when r was missing. As shown in
Figure 4C (top panel), among optimization algorithms, only DE correctly es-
timates the true parameters. Notably, HMC fails considerably in this prob-
lem by proposing overly confident posterior distributions that are far from
the ground truth (see Figure 4C, bottom panel). In contrast, the estimated
posteriors using SBI are centered on the ground-truth parameters, but they
exhibit a more diffuse uncertainty compared to the previous results (see
Figure S9). Note that HMC fails to accurately reconstruct the latent vari-
able r from observed v (see Figure S10), even though its error on the fitted
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Figure 4: Inference on noisy observation with missing data. The gener-
ated bistable dynamics in the phase-plane and the corresponding time se-
ries of observed membrane potential (v) and hidden firing rate (r), with
ground truth: � = 0.7, η = −4.6, J = 14.5. (B) The estimated trajectories in
the phase-planes, along with the corresponding parameters displayed in
the top panels. Only DE and SBI provide a close agreement with the ob-
served bistable trajectories. (C) The point estimation along with the pro-
file likelihood (top panels), and the full posterior (bottom panels) for pa-
rameters �, η, and J. The colors are matched to the corresponding algo-
rithms in panel B, and vertical black lines show the true values used to
generate the data. (D) The accuracy of estimation is evaluated by sum-
ming the RMSE values for both the true time series (top panel) and param-
eters (bottom panel), while considering the bootstrap uncertainty through
multiple iterations. (E) The computational cost for each inference algorithm.
Overall, DE and SBI outperform other algorithms in inferring the bistable dy-
namics when dealing with missing data.
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Table 3: Benchmark on Missing Data.

RMSE Parameters RMSE Time Series

Method Mean SD Mean SD Running Time

DE 0.426 0.388 0.218 0.102 0:4:7
PSO 1.495 0.720 0.406 0.054 0:1:0
BO 0.716 0.407 0.384 0.050 0:17:52
MAP 3.539 0.029 1.838 0.185 0:0:30
HMC 3.181 1.271 0.545 0.179 100:6:57
SBI 0.427 0.296 0.609 0.213 1:27:34

trajectories is comparable to that of SBI (see Figure 4D, top panel). Never-
theless, the unreliability in the results produced by HMC becomes evident
when observing the RMSE values for model parameters (see Figure 4D, bot-
tom panel).

In terms of computational cost for inference (see Figure 1E), optimiza-
tion by DE still has a clear advantage with its rapid performance. Interest-
ingly, SBI remains efficient, approximately 68 orders of magnitude faster
than HMC (see Table 3). Overall, SBI outperforms HMC in the recovery of
the bistable dynamics, including the hidden firing rate. However, this ap-
proach can lead to an overestimation in the associated uncertainty, when
compared to the full observed state-space dynamics (see Figure 2 versus
Figure 4).

3.4 Phase-Space Reconstruction. As demonstrated in the previous sec-
tion, the inference process posed a challenge when only the membrane po-
tential v was observed and the firing rate r was missing. To improve the
inference in such cases, we approximately reconstruct the hidden r from
the observed counterpart v using the time-delay embedding technique (see
Figure 5).

As it can be seen from Figure 5A, the reconstructed firing rates closely
follow the original time series (RMSE = 0.151). This leads to accurately
capturing the bistable switching behavior in the phase-plane, as shown in
Figure 5B. We subsequently explored how the access to the trajectories of
state variables influences the statistical relationships between parameters.
When both the firing rate (r) and membrane potential (v) are observed, both
HMC and SBI algorithms reveal a strong correlation between the average
excitability η and the synaptic weight J (ρη,J ≈ −0.78), while the other pa-
rameters exhibit no codependency (see Figure 5C).

When the firing rate is latent and only the membrane potential is ob-
served, the correlation between parameters is more pronounced, as esti-
mated by HMC, while SBI tends to overestimate this codependency as fully
degenerate (see Figure 5D). This highlights the challenges in the inference or
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Figure 5: Reconstruction of firing rate r from mean membrane potential v and
comparison of interdependency between parameters. (A) Original and recon-
structed mean firing rate. (B) Observed (left) and reconstructed (right) system
dynamics in phase-plane. Correlations between estimated joint posterior distri-
butions, using HMC (left) and SBI (right), when (C) both r and v are observed,
(D) only v is observed and r is hidden, and (E) reconstructed r from the observed
v using time-delay embedding.

parameter estimation process when lacking access to complete knowledge
of the system dynamics. This issue can be improved by using time-delay
embedding to reconstruct the full phase-space dynamics and inform the in-
ference process, as shown by the reduced correlation between parameters
in the joint Bayesian posterior in panel 5E.

3.5 Interdependency between Generative Parameters. In the previ-
ous sections, we performed inference against the system dynamics derived
from the MF model given by equation 2.1. We now aim to investigate how
the inference of the posterior distribution and the relationships between pa-
rameters remain consistent by traversing across scales. This can be achieved
by conducting inference using observed data generated by QIF neurons (at
the microscopic level) versus the data generated by the MF model (at the
macroscopic level).

First, we compared the simulated membrane potential v and firing rate
r using an MF model given by equation 2.1 to the averaged activities of a
network of 104 all-to-all connected QIF neurons (see the raster plot in Fig-
ure 6A). Figure 6B demonstrates that the MF model can accurately gener-
ate the (smoothed) transient dynamics that emerge from an ensemble of
spiking neurons. However, the first spike emitted by the MF model after
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Figure 6: Comparing the transient dynamics of an MF model with the emer-
gent dynamics of a network of QIF neurons and exploring the interdependency
among parameters. (A) Raster plot of QIF neurons. (B) The membrane potential
v (top panel) and firing rate r (bottom panel) generated by MF model (in cyan)
versus averaged activities of QIF neurons, as the raw simulations (in light gray)
and smoothed (dark gray). At time t = 30 sec, a current I0 = 3 mv is applied
to all neurons and set to zero again at t = 60 sec. (C) The Pearson correlation
coefficients between parameters in the MF model, estimated using Bayesian al-
gorithms (HMC and SBI), against data generated by different models (MF and
QIF). The strong negative linear correlation between excitability and synaptic
weight (ρη,J ≈ −0.78) persists across algorithms and data sets.

stimulation may exhibit a short lag compared to the averaged QIF neurons.
Then we used the data generated by the MF and QIF models as the ob-
servation and conducted inference using the MF model through Bayesian
estimation algorithms, such as HMC and SBI. Specifically, we compared the
correlations between the estimated joint posteriors of model parameters in
each case, as shown in Figure 6(C).

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/36/10/2030/2469857/neco_a_01701.pdf by guest on 16 January 2025



2050 N. Baldy et al.

Figure 7: SBI on the stimulus current. (A) Step current as I(t) = I0 · 1stim(t).
(B) Sinusoidal current as I(t) = sin(ω0t) · 1stim(t). Dashed red line represents a
perfect fit.

We observed consistent correlations between parameters across the two
types of data sets (macroscopic MF and microscopic QIF) when fitted using
the MF model. Our results indicate that the strong negative linear correla-
tion between excitability and synaptic weight (ρη,J ≈ −0.78) persists when
using HMC and SBI against both data sets. Considering the agreement
between HMC and SBI across two data sets, we can conclude that the con-
sistent high correlation between parameters η and J is intrinsic and not in-
duced by the inference process or model assumptions.

3.6 SBI on the Stimulus Current. Here, we challenge the SBI approach
in inferring system dynamics while also accounting for an unknown input
current, which plays a crucial role in emerging the bistable behavior. Given
only the position or waveform of input currents, we estimate the intensity or
angular velocity across various ground-truth values: I0 in a step current as
I(t) = I0 · 1stim(t) and ω0 in a sinusoidal current as I(t) = sin(ω0t) · 1stim(t), as
shown in Figures 7A, and 7B, respectively. Our results demonstrate that in
both cases, the SBI approach accurately recovers the unknown parameters
in the input currents. The posterior credibility intervals, visualized as error
bars, indicate certain estimates that are close to a perfect fit (y = x, in red)
across all different values. See Figure S11 for the observed and predicted
time series. This validates the capability of SBI in accurately estimating the
system dynamics, even when the characteristics of the input current are
unknown.

3.7 SBI on Stability of System Dynamics. Here, we show that SBI
can be used to investigate the stability of system dynamics from low-
dimensional summary statics of observed time-series. Figure 8 shows a
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Figure 8: SBI over the stability of system dynamics in phase diagram. In the
wedge-shaped region (shaded in cyan), bistability exists between a high and a
low activity state. On the right side, a stable focus is indicated (shaded in red),
while on the left side, a stable node is depicted (shown in blue). By training a
deep neural density estimator on data features, the posterior samples generated
using SBI accurately capture the bistable dynamics (shown in yellow), aligning
closely with results from linear stability analysis. The black asterisk denotes the
observation point used for inference. The insets display observed (dark blue)
and predicted (light blue) time series in different regimes: (A) bistability, (B)
stable focus, and (C) stable node.

phase diagram of the system as a function of the mean η and synaptic
weight J, both normalized by the width of the input distribution �. Us-
ing linear stability analysis, there are three qualitatively distinct regions of
the phase diagram: (1) a single stable node corresponding to a low-activity
state (shown in blue), (2) a single stable focus generally corresponding to
a high-activity state (shown in red), and (3) a region of bistability between
low and high firing rate (shown in cyan).

Interestingly, a similar basin of bistability in phase diagram can be read-
ily reproduced using deep neural density estimators (such as MAF model)
in the SBI approach. By training on the low-dimensional data features ex-
tracted from the time series (such as the presence or absence of damped
oscillations before, during, and after stimulation), the generated posterior
samples display a very close agreement with the results obtained from lin-
ear stability analysis. This demonstrates the capability of SBI in accurately
estimating system dynamics from summary statics, including the presence
of bistability in the phase diagram.

3.8 Neural ODEs on System Dynamics. In this section, our aim is to
infer the collective dynamics of QIF neurons without making any assump-
tions about the underlying generating dynamics. To achieve this, we used
neural ODEs as a powerful tool for modeling continuous-time dynamics
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without assuming any prior knowledge of the underlying equations gov-
erning the system. Unlike traditional discrete-time models, neural ODEs
parameterize the continuous-depth formulation, allowing for seamless in-
terpolation between observed data points.

We first validate neural ODEs using the data garnered by MF model de-
scribed by equation 2.1. We generated three different data sets using the MF
model given by equation 2.1, with a set of parameters corresponding to a
bistable regime: {� = 1, J = 15, η = −5}. For each data set, we sampled the
phase-space by varying initial conditions according to a regular grid so that
r0 ∈ [0.1, 3] and v0 ∈ [−2, 2]. We then solved the system for 1000 time points
(with an integration time step of dt = 0.01 sec). To speed up training, each
trajectory was downsampled by a factor of 10 and divided into 10 segments,
each consisting of 10 time points. The training and test data were randomly
split, with 75% of the data used for training and 25% used for testing.

The first training set, comprising N = 100 deterministic trajectories, was
generated (see Figure 9A). The results indicate that the neural ODE almost
perfectly reconstructed the phase-space (see Figure 9B). In the second train-
ing set, which had the same size, a dynamical noise with a standard devia-
tion of σ = 0.1 was added during the integration process (see Figure 9C). In
this case, the estimated nullclines suffered from overfitting although with-
out affecting the overall reconstructed dynamics, as the predicted trajec-
tories were still very similar to the original data (as shown in Figure 9D).
Increasing the size of the training data set (see Figure 9E) significantly re-
duces overfitting. As a result, the reconstructed nullclines show very close
agreement with those obtained from the deterministic data (see Figure 9F).
To illustrate overfitting, Figure S12 shows the loss functions for the differ-
ent scenarios, as well as snapshots of phase-space reconstruction during
training. Overall, the neural ODE successfully reconstructs the underlying
deterministic system, even in the presence of noise.

We then trained neural ODEs using data generated by 104 QIF neurons
with a uniform stimulus (see Figure 10). The data were partitioned using the
first 400 points for training and predicting the remaining 1600 points. The
results indicate that using the dynamics of derivatives, we can achieve a re-
liable understanding and prediction of the complex behavior of a network
of spiking neurons, as illustrated in Figure 10. The emergent dynamics vary
based on different parameter settings, resulting the stable node, stable fo-
cus, and bistable regime. (See Figure S13 for the loss function in the training
and test sets.)

4 Discussion

In the ever-evolving field of computational neuroscience, accurately esti-
mating parameters that consistently govern the collective behavior of neu-
ral networks is a crucial endeavor, especially within the framework of
recurrently coupled spiking neurons. In this study, we emphasize the use of

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/36/10/2030/2469857/neco_a_01701.pdf by guest on 16 January 2025



Inference on the Macroscopic Dynamics of Spiking Neurons 2053

Figure 9: Exemplary observed phase-space in a bistable regime (top row), and
the reconstructed phase-space by neural ODE (bottom row). The trajectories are
displayed after the 10-fold split, without the downsampling step for better vi-
sualization. Corresponding fit obtained with the neural ODE for the same ini-
tial conditions and estimated phase-plane (bottom row) after 45,000 training
iterations—either (A, B) using a training set of 100 deterministic trajectories,
(C, D) using a training set with dynamical noise, (E, F) or a larger data set. The
red and green curves represent the nullclines of r and v, respectively. The dots
represent the initial values for each trace, while the dashed lines correspond to
the neural ODE trajectories. The neural ODE is prone to overfitting when noise
is introduced in the training data, although it still preserves the overall dynam-
ics. A larger data set helps in recovering smoother nullclines.

mean-field (MF) theory to streamline the inference process for networks of
spiking neurons. This choice is driven by the computational challenges in
the calculation of the likelihood function—an essential ingredient for both
frequentist and Bayesian inference methods—that becomes computation-
ally prohibitive when attempting inference using these spiking networks
in forward modeling.

The needs and objectives of researchers in the field of computational neu-
roscience are as diverse as the neural systems they aim to understand. Some
studies may prioritize rapid point estimation through optimization, seek-
ing quick outcomes to inform real-time decisions (Vattikonda et al., 2021;
Penas et al., 2023). Other studies find value in exploring the full distribu-
tion of parameters, which provides a nuanced understanding of parame-
ter uncertainty for reliable decision making (Hashemi et al., 2020; Jha et al.,
2022). This article offers a comprehensive but not exhaustive benchmarking
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Figure 10: Reconstruction and extrapolation on QIF data with various param-
eters and dynamic regimes, using neural ODEs. (A) Stable nodes, (B, C) Stable
foci, (D, E) Bistability. The gray dots represent sparse observations, blue lines
represent predictions (400 points), and orange lines represent extrapolations
(1600 points). We can see that our neural ODE has learned the system dynamics
and provides accurate predictions based on data generated at the microscopic
level.

of the state-of-the-art inference methods applied to an MF model of spiking
neurons (see Figures 1, 2, and 4). Our comparative analyses offer practical
guidance, assisting researchers in selecting the most suitable method for
their specific data sets and research inquiries. Note that the comparison of
computational cost and accuracy in parameter estimation can heavily de-
pend on the selection of hyperparameters, such as population size in DE,
warm-up phase in HMC, or the number of simulations and features in SBI.
To make an unbiased assessment, we used optimal values for these hyper-
parameters in each algorithm, tailored to the dynamical model used in this
study. Nevertheless, these optimal values may vary for different inverse
problems, depending on parameter space and data dimensions, nonlinear-
ity, sparsity, and the mapping function to measurements.

While optimization and approximate Bayesian computing methods can
construct a confidence interval for the estimation based on bootstraping or
on a threshold for accepting or rejecting the estimates, the results are highly
dependent on the chosen threshold value (Beaumont et al., 2002; Cranmer
et al., 2020). In contrast, Bayesian inference naturally provides uncertainty
quantification by placing a distribution over parameters and treating them
as random variable. Following Bayes’s rule, this distribution is updated
with evidence from observed data to form the posterior distribution, which
furnishes comprehensive information for inference and prediction.

Our results indicated that evolutionary algorithms for solving global op-
timization problems, such as DE, provide rapid and accurate point estima-
tion of the true generative parameters when there is no dynamical noise
present. Challenges arise when using optimization methods in the pres-
ence of noisy data, mainly due to the lack of an efficient form of the objec-
tive function. The selection of the objective function plays a crucial role in
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determining the estimation through optimization methods (Svensson et al.,
2012; Hashemi et al., 2018). The error explanation with distance metrics such
as RMSE is limited in accurately capturing the underlying data generation
process (Baldy et al., 2023). This is because when generative parameters re-
main unchanged but when dynamic noise is introduced, the time series can
show large fluctuations, resulting in deviations from the observed data. In
particular, the presence of noise can easily lead to unreliable estimations,
increasing the risk of overfitting where the model fits to the noise rather
than capturing the true underlying relationship. Consequently, it becomes
more conspicuous to conduct inference using distributions in the Bayesian
framework, particularly when dealing with dynamical noise. Diagnosing
of overfitting, as shown using MAP estimation (see Figures 2 and 4), can be
better understood through uncertainty quantification.

Furthermore, Bayesian inference can reveal the true relationships be-
tween parameters, capturing degeneracies in parameter space (Edelman &
Gally, 2001; Hashemi et al., 2023). For example, when we assess the agree-
ment between HMC and SBI across different scales (as shown in Figures 5,
S4, S5, and S9), it can be concluded that the persistent strong correlation
between parameters η and J is inherent and not influenced by the infer-
ence procedure or model assumptions. This is in line with previous findings
that have reported a strong and robust correlation between firing rates and
synaptic weights across different brain states, environments, and situations
(Buzsáki & Mizuseki, 2014).

One of the main findings of this study is the effectiveness of deep neu-
ral networks in generating probability distributions for parameters of net-
works of spiking neurons. This approach outperforms other computational
algorithms, such as MCMC, particularly in real-world applications involv-
ing missing data in bistable systems (see Figure 4). The effectiveness of deep
generative models for inference from the mechanistic model of networks
of spiking neurons is confirmed by the robustness of the estimation under
significant dynamic noise (see Figures 3 and S7), as well as the precise esti-
mation of input current (see Figure 7) and the consistency with linear sta-
bility analysis (see Figure 8). However, it is important to acknowledge that
the use of deep generative models can result in an overestimation of un-
certainty and correlations between parameters. To address this challenge,
incorporating time-delay embedding is an effective remedy (see Figure 5).

Using high-performance computing, model simulations can be run inde-
pendently, creating a large training data set for training deep neural density
estimators in SBI approach (Hashemi et al., 2023). In contrast, HMC is lim-
ited to embarrassingly parallel execution with only independent chains on
computational nodes (Hashemi et al., 2021). Moreover, when dealing with
bistability in the state-space representation, HMC methods require signif-
icant computational time to detect state transitions in the latent space (see
Tables 1, 2, and 3) or need to be augmented with generative models such as
normalizing flows (Hoffman et al., 2019; Gabrié et al., 2022). On the other
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hand, SBI offers efficient Bayesian estimation, even without detailed knowl-
edge of the system’s state-space representation. This aligns with findings
from recent studies that highlight the efficiency of SBI across various chal-
lenging inverse problems (Gonçalves et al., 2020; Deistler et al., 2022; Boelts
et al., 2022, 2023; Hashemi et al., 2023; Lavanga et al., 2023; Yalccinkaya et al.,
2023; Rabuffo et al., 2023; Sorrentino et al., 2023). By benchmarking and ad-
dressing questions such as computational cost, uncertainty quantification,
interdependency exploration, and data availability, we conclude that SBI
is more efficient than alternatives in making informed choices from micro-
scopic states to emergent dynamics at the macroscale.

Note that our results should not rule out the use of HMC for dynam-
ical MF models of spiking neurons. The implementation of HMC with
parameterization tricks, adaptive integrators to solve ODEs/SDEs, and
an effective initialization strategy in other tools such as Numpyro (Phan
et al., 2019) could significantly improve the computational cost of state-
space estimation. Given that the main challenge lies in the complex poste-
rior geometries (Betancourt, 2017) and integration process, substantial time
savings can be achieved through reparameterization techniques and opti-
mizing the integrator. For instance, a careful manifold reparameterization to
reorganize the model configuration space or replacing carry-over for-loops
with a more efficient evaluation method (Bradbury et al., 2018b) will facili-
tate exploration of the posterior distribution in terms of computational time
and convergence diagnostics.

Moreover, our analyses were focused on a single neural population, with
the assumption of heterogeneous all-to-all interaction between QIF neurons
in the thermodynamic limit (Montbrió et al., 2015). Considering coupled ex-
citatory and inhibitory populations and incorporating anatomical features
of cortico-cortical connections would bring us closer to traversing scales, up
to the whole-brain level (Hashemi et al., 2020, 2021). In essence, this presents
a more challenging and sensitive inversion problem, and it is necessary to
ascertain whether the competitive performance of SBI still holds in this con-
text, especially considering the exploding number of parameters.

Considering the aforementioned points, extending the generality of our
conclusions necessitates further investigation. The first part of this work has
focused on machine learning procedures for state-space modeling, some
with a Bayesian twist to approximate the posterior distribution in one way
or another. The alternative approach for the latter, which predominates in
the identification of MF approximations to neuronal networks, is based on
variational procedures, as used in dynamic causal modeling (DCM; Friston
et al., 2003). DCM rests on minimizing the free energy, that is, the Kullback-
Leibler divergence between the true and approximate posterior, minus the
log evidence (or marginal likelihood). This approach enables analytic so-
lutions to the approximated posterior, eliminating the need for sampling,
and provides a variational bound on model evidence for Bayesian model
comparison (Penny, 2012; Zeidman et al., 2023). Hence, when the computed
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posterior is sufficiently accurate, free energy serves as a reliable approxi-
mation to the negative log evidence. From the perspective of system iden-
tification (Linderman et al., 2017), DCM can be regarded as solving a triple
estimation problem, namely, inferring the latent states, parameters, and pre-
cisions of a state-space model, with a known functional form (Friston et al.,
2010; Schiff & Sauer, 2007). Consequently, this approach to network infer-
ence can be interpreted as predictive coding (Millidge et al., 2020), which
itself serves as a model or description of MF approximations to neural net-
works in the brain (Friston & Kiebel, 2009).

The main body of this work relies on the modeling assumption of mean-
field approximation to spiking neurons. This assumption prompts ques-
tions regarding the suitability of the chosen MF approximation. Such in-
quiries are relevant to system identification, which is often framed in terms
of model selection, structure learning, or network discovery (Friedman &
Koller, 2004; Gershman & Niv, 2010; Seghier & Friston, 2013; Wipf & Rao,
2007). For instance, one might explore the possibility of replacing equa-
tion 2.1 with a chaotic system (augmented with suitable exogenous inputs)
and evaluate whether the MF model given by equation 2.1 offers a superior
explanation for the data compared to the chaotic system. Assessing model
evidence can be achieved through Bayesian model comparison by comput-
ing information criteria from a Bayesian perspective, such as the widely ap-
plicable information criterion (Watanabe, 2010) and expected log predictive
density using leave-one-out cross-validation (Vehtari et al., 2016; Gelman
et al., 2013). In this context, a thorough investigation of approaches such as
SBI is necessary in future studies. Nevertheless, HMC may be indispensable
for achieving greater accuracy in Bayesian model comparison.

Our study highlights the use of deep neural ODEs in inferring vector
fields at a macroscopic level, enabling the prediction of system dynamics
from microscopic states. This approach has the potential to make inter-
pretable predictions at larger scales from simulations at a detailed level,
aiding in the prognosis and diagnosis of brain diseases. Recently, Sip et al.
(2023) introduced a method using variational autoencoders for nonlinear
dynamical system identification at the whole-brain level to infer both the
neural mass model and the region- and subject-specific parameters from
the functional data while respecting the known network structure. The
scalability of neural ODEs at the whole-brain network level remains to be
investigated in future studies. In addition, symbolic regression applied to
the outcomes from neural ODEs may unveil closed-form equations for
neural mass models, offering promising avenues for future research. This
approach may lead to the discovery of concise data-driven MF represen-
tations of complex neural dynamics, contributing to our understanding of
brain function.

In conclusion, this work highlights the improved accuracy and efficiency
that deep learning techniques bring to the inference from networks of spik-
ing neurons. It opens up exciting possibilities for future research in neural
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computation, where the trade-off between accuracy and uncertainty needs
to be carefully considered. As we continue to explore the capabilities of SBI
and neural ODEs at larger scales, this study serves as a valuable step for-
ward in our quest to unravel the complexities of neural networks and their
computational mechanisms.

Appendix Supplementary Figures: Inference on the Macroscopic
Dynamics of Spiking Neurons

Figure S1: The phase-plane analysis of a mechanistic model of a network of
all-to-all connected QIF neurons, using linear stability analysis. The stability of
the system depends on the mean excitability (η) and synaptic weight (J), both
normalized by the width of the input distribution (�). (A) A single stable node
corresponding to a low-activity state. (B) A single stable focus (spiral) corre-
sponding to a high-activity state. (C) A bistability between low and high firing
rates (stable node and stable focus, respectively). The upper section between v-
and r-nulclines (in dark and light yellow, respectively) corresponds to an unsta-
ble focus.

Figure S2: Data features extracted from mean membrane potential data. Addi-
tional data features that are not represented on this diagram include skewness
and kurtosis.
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Figure S3: Sensitivity analysis on model parameters. The profile likelihood is
calculated using the root-mean-squared error (RMSE) between the observed
and generated data, considering either a single parameter (represented by black
curves) or multiple parameters to vary (represented by colored surfaces), while
keeping the other parameters fixed. The true parameters are shown in gray, rep-
resented by a dashed vertical line (for a single parameter) or 2D coordinates (for
multiple parameters). The value of the Hessian matrix at the global minimum
is displayed in the bar plot.

Figure S4: Paired posterior samples of model parameters inferred from deter-
ministic data using (A) HMC and (B) SBI. Samples do not exhibit significant
pair-wise correlation in parameter couples (�, η) and (�, J). HMC manifests
high linear correlation in sampling from joint parameters (η, J). In terms of un-
certainty quantification, HMC offers a more informative posterior distribution
compared to SBI. In terms of computational cost, SBI is approximately 60 orders
of magnitude faster than HMC.
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Figure S5: Paired posterior samples of model parameters inferred from noisy
data, using (A) HMC and (B) SBI. Both algorithms provide uncorrelated samples
for parameter couples (�, η) and (�, J) but exhibit the same level of strong lin-
ear correlation in sampling from joint parameters (η, J). Compared to HMC, SBI
generates posteriors that more tightly center around the ground-truth param-
eters. Moreover, SBI remains approximately eight orders of magnitude faster
than HMC.

Figure S6: Posterior z-scores versus shrinkage, as a diagnostic for the reliability
of Bayesian inference. An ideal Bayesian inference yields small z-scores (indicat-
ing less error) and high posterior shrinkage (indicating more contraction with
respect to the prior distribution after learning from data). Therefore, their con-
centration lies in the right-bottom corner of the plot. When no data are miss-
ing, both HMC (red) and SBI (blue) perform near optimally. However, SBI is
significantly faster than HMC (at least eight orders of magnitude). The poste-
rior z-scores are defined as z = | θ̄−θ∗

σpost
|, where θ̄ and θ∗ are the posterior mean

and the true values, respectively, whereas σprior, and σpost indicate the standard
deviations of the prior and the posterior, respectively. The posterior shrinkage

defined as s = 1 − σ 2
post

σ 2
prior

, where σprior, and σpost indicate the standard deviations

of the prior and the posterior, respectively.
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Figure S7: SBI over noisy data. (A) The time-series prediction of membrane po-
tential (v) and firing rate (r). (B) Estimated posteriors of parameters �, η, J, and
the intensity of dynamical noise σ . The true values are shown by vertical red
lines. The priors and estimated posteriors using SBI are shown in green and
blue respectively. Given the low-dimensional data features of time series, SBI
is able to accurately and efficiently estimate the MF parameters, including the
dynamical noise in the system.

Figure S8: Performance of SBI as a function of the number of simulations for
the training step. (A) The tendency of shrinkage toward one indicates that all
the posteriors are well identified. While the shrinkage of the posterior is sig-
nificantly improved when increasing the number of simulations from 1000 to
10,000, further increasing it beyond 100,000 results only in a marginal improve-
ment. (B) The computational cost for SBI, which includes the simulation, train-
ing, and sampling steps, increases exponentially with respect to the number of
simulations.
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Figure S9: Paired posterior samples of model parameters inferred from noisy
observation with missing data, using (A) HMC and (B) SBI, when only one vari-
able (mean membrane potential v) is available. HMC samples deviate consid-
erably from the true values, while SBI samples prove still reliable under such
conditions, although accompanied with high correlation. Interestingly, SBI is
approximately 68 orders of magnitude faster than HMC.

Figure S10: Fit to the noisy observation with missing data, that is, when only
one variable (mean membrane potential v) is available: observation v (top,
black) and hidden r (gray, bottom). The time-series fit provided by the differ-
ent inference algorithms is plotted in color.
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Figure S11: Exemplifying observed (v in blue and r in red) and predicted (v in
cyan and r in yellow) time series using SBI on (A, B) deterministic data, (C, D)
stochastic data, given the input as (E, F) Step current with I(t) = I0 · 1stim(t),
and sinusoidal current with I(t) = sin(ω0t) · 1stim(t), respectively.

Figure S12: Loss functions for the training and test data using neural ODEs on
MF model. (A, B) For the deterministic training set of size 100, the phase-space
estimation is performed at the 22,000th iteration. (C, D) Training set of size 100
with dynamical noise. (E, F) Training set of size 400 with dynamical noise. The
blue line represents the training error, while the orange line represents the test
error. The vertical red line indicates the iteration at which a snapshot of the
training is provided in the plot below.
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Figure S13: The loss function by training neural ODEs on QIF data. The train
and test quadratic loss function is calculated, when the train set is made of (A)
300 first points and (B) 400 first points. In each case, 10,000 iterations were used
for training the model.

Information Sharing Statement

All code is available on GitHub (https://github.com/ins-amu/Inference
_MFM).
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