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Abstract 
We derive a next generation neural mass model of a population of quadratic-integrate-and-fire neurons, 

with slow adaptation, and conductance-based AMPAR, GABAR and nonlinear NMDAR synapses. We 

show that the Lorentzian ansatz assumption can be satisfied by introducing a piece-wise polynomial 

approximation of the nonlinear voltage-dependent magnesium block of NMDAR current. We study the 

dynamics of the resulting system for two example cases of excitatory cortical neurons and inhibitory 

striatal neurons. Bifurcation diagrams are presented comparing the different dynamical regimes as 

compared to the case of linear NMDAR currents, along with sample comparison simulation time series 

demonstrating different possible oscillatory solutions. The omission of the nonlinearity of NMDAR 

currents results in a shift in the range (and possible disappearance) of the constant high firing rate 

regime, along with a modulation in the amplitude and frequency power spectrum of oscillations. 

Moreover, nonlinear NMDAR action is seen to be state-dependent and can have opposite effects 

depending on the type of neurons involved and the level of input firing rate received. The presented 

model can serve as a computationally efficient building block in whole brain network models for 

investigating the differential modulation of different types of synapses under neuromodulatory 

influence or receptor specific malfunction. 
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Introduction 
“N-methyl-D-aspartate (NMDA) and dopamine (DA) receptors and their interactions control an 

incredible variety of functions in the intact brain and, when abnormal, these interactions underlie and 

contribute to numerous disease states. These receptor interactions are relevant in such diverse 

functions as motor control, cognition and memory, neurodegenerative disorders, schizophrenia, and 

addiction.” (VanDongen, 2008) 

Our work has branched out of an effort to develop a biophysical mechanistic framework for 

incorporating dopaminergic neuromodulation in whole brain network models (Sanz Leon et al., 2013), 

particularly with the aim to create personalized models for Parkinson’s disease (PD) patients, in the 

spirit of what has been done for the case of epilepsy (Jirsa et al., 2017). PD is associated with loss of 

dopamine in the dorsal Striatum due to degeneration of dopaminergic neurons of the Substantia Nigra 

Pars Compacta. The resulting dopamine depletion in the Basal ganglia (BG) is accompanied by changes in 

firing rates, as well as patterns of firing and levels of synchronization of neurons in the BG subcortical 

circuit (Bergman, 2021).  However, the dynamic alterations are not merely a local phenomenon but are 

instead distributed across the macroscopic BG–thalamocortical networks (Tinkhauser et al., 2018); the 

increase in beta burst prevalence is accompanied by greater concurrence in time of beta burst activity 

across the network, during which highly stable phase locking is observed between the activity of cortical 

regions and BG nuclei (Yu et al., 2021). This motivates us to develop needed mathematical formulation 

for incorporating dopaminergic neuromodulatory processes in the Virtual Brain Modeling platform (Sanz 

Leon et al., 2013), in which parcellated brain areas are represented as a set of nodes on a network, each 

endowed by a dynamical system describing the aggregate neuronal activity in a given brain region. A 

first step towards this aim is to devise a way to capture the effects of dopamine on a mesoscopic 

(neuronal population) level.  

We take as a starting point the seminal work in (Humphries et al., 2009) which argued that dopamine 

action on medium spiny neurons of the striatum can be captured in spiking neuron models as a scaling 

in the maximal conductances of NMDA, AMPA and GABA receptors. A similar framework was also 

suggested in (Durstewitz et al., 2000) for modeling dopamine action on pyramidal cells of the prefrontal 

cortex. More specifically, in the striatum, it is reported that dopamine enhances NMDA receptor 

(NMDAR) currents in neurons with D1-type dopamine receptors and attenuates AMPA receptor 

(AMPAR) currents in neurons with D2-type dopamine receptors, and that the balance between the two 

is at the core of the proper functioning of the striatum (Humphries et al., 2009; Lindahl & Kotaleski, 

2016). Dopamine is also reported to enhance NMDAR currents via D1-receptors in the prefrontal cortex, 

while attenuating AMPAR currents and simultaneously enhancing GABA receptor (GABAR) currents 

(Durstewitz et al., 2000). As such, the effect of dopamine is, in fact, state-dependent and can switch 

from a predominantly net inhibitory effect (in low-activity states) to a net excitatory effect (in high-

activity states) (Durstewitz et al., 2000). This special feature of dopamine action is facilitated by a unique 

property of NMDAR, which is its voltage-dependent nonlinear magnesium (Mg2+) block, a different 

mechanism than that governing the voltage-gated channels that generate the action potential. At the 

resting membrane potential, extracellular Mg2+ binds tightly to a site in the pore of the channel, 

preventing any ionic current flow, even in the presence of glutamate. It is only when the membrane is 

already depolarized enough (such as due to the opening of AMPAR channels) that the Mg2+ block is 

removed and ionic currents can flow (Jahr & Stevens, 1990; Nowak et al., 1984). As such, NMDARs are 



often referred to as “coincidence detectors”, allowing maximal current flow when two conditions are 

met: glutamate is present and the cell is already depolarized.  

This Mg2+ block-induced nonlinear voltage-dependence of NMDAR conductivity, which is at the core of 

the role that NMDAR plays in neuronal dynamics, is often either omitted, for mathematical convenience, 

from traditional neural mass models (Wilson & Cowan, 1972) or reduced to a linearization around a local 

working point of mean membrane voltage (Brunel et al., 2001). More recently, a novel approach was put 

forward to derive exact mean field models of populations of quadratic-integrate-and-fire neurons by 

invoking the Lorentzian ansatz for describing the distribution of membrane voltage values (Montbrió et 

al., 2015). The resulting models, coined “next generation neural mass models”, offer the advantage of 

retaining the mean membrane voltage of the population as an explicit dependent variable, along side 

the mean firing rate, in the final mean field equations (Coombes, 2023). In the work we present here, we 

show that this allows us to incorporate in the derivation the full nonlinearity of the NMDAR 

conductance. This is done by rewriting the expression for the nonlinear NMDAR conductance as a piece-

wise quadratic polynomial to maintain the applicability of the Lorentzian ansatz. This consequently 

permits the analysis of the effect of NMDAR across the full range of dynamical regimes of the system. 

We consider a population of what is often referred to as an Izhikevich spiking neuron, which was derived 

as a canonical model for spiking neurons and, for different values of its four parameters, can reproduce 

different spiking and bursting behaviour of known types of neurons (Izhikevich, 2018). The Izhikevich 

neuron is basically a quadratic-integrate-and-fire (QIF) neuron with an added membrane recovery 

(adaptation) variable that provides negative feedback (Izhikevich, 2003). While the next generation 

neural mass models that exploited the Lorentzian ansatz where first derived for populations of simple 

QIF neurons (Byrne et al., 2017; Coombes & Byrne, 2019; Montbrió et al., 2015),  the same approach 

was soon thereafter shown to be applicable for the case of Izhikevich neurons (Chen & Campbell, 2022) 

and the closely related QIF neurons with slow adaptation (Ferrara et al., 2023). We will here build on 

these efforts and extend this approach to include NMDAR type synaptic currents with nonlinear voltage-

dependent conductance in the derivation of a mean-field model for a population of Izhikevich type 

neurons. 

In the next section, we present the equations governing the population of neurons and the main steps 

involved in the derivation of the corresponding mean-field model. We then present the results of the 

numerical analysis of the dynamics for two example cases, that is, with parameter sets corresponding to 

two different types of neurons: 1) a population of excitatory regular spiking (cortical) neurons 

(Izhikevich, 2003) and 2) a population of inhibitory striatal neurons (Humphries et al., 2009). We 

generate bifurcation diagrams that show transitions in stability of constant firing rate states, as 

parameters vary, and emergence of oscillatory limit cycle solutions. We also present sample time series 

of simulations displaying the different types of possible oscillatory solutions. All results are contrasted to 

the case of omitting the nonlinear Mg2+ block from the NMDAR term, that is, the case of assuming linear 

NMDAR conductance-type current with the same slow synaptic decay time constant. The analysis shows 

that the NMDAR nonlinearity can lead to a voltage-dependent shift in the bifurcation diagram and a 

change in the relative size of the different operating regimes, with possible disappearance of the high 

constant firing rate states. In conjunction, in the oscillatory regime, the NMDAR nonlinearity can lead to 

alterations in oscillation amplitudes, frequency power profile, as well as the level of neuronal synchrony 

within the population. Ultimately, the presented mean-field model exhibits a rich range of dynamical 

behaviors and can serve as a building block for computationally efficient mechanistic whole brain 



models the explicitly incorporate the differential effects of neuromodulatory forces as a heterogeneous 

modulation of AMPAR, NMDAR and GABAR synaptic currents.  

Derivation of mean-field equations 
We consider a population of all-to-all coupled Izhikevich neurons with conductance type synapses. The 

single neuron equations are of the form (Izhikevich, 2018):  

𝐶𝑚
𝑑𝑉

𝑑𝑇
= 𝑘(𝑉 − 𝑉𝑟)(𝑉 − 𝑉𝑡) − 𝑈 + 𝐼̅ + 𝐼𝑠𝑦𝑛𝑎𝑝𝑡𝑖𝑐                            (1a) 

𝜏𝑢  
𝑑𝑈

𝑑𝑇
= 𝛽(𝑉 − 𝑉𝑟) − 𝑈                    (1b) 

where 𝑉 is the membrane potential, 𝑈 is the recovery current, 𝐶𝑚  is the membrane capacitance, 𝑉𝑟  is 

the resting membrane potential, 𝑉𝑡 is a threshold potential, 𝛽 and 𝑘 are scaling factors, 𝜏𝑢 is a time 

constant for the recovery variable, and 𝐼  ̅ is an external applied current. The equations are 

complemented with the following spike reset condition: 𝑖𝑓 𝑉 > 𝑉𝑝𝑒𝑎𝑘 ∶  𝑉 ← 𝑉𝑟𝑒𝑠𝑒𝑡   &  𝑈 ← 𝑈 + 𝑈𝑗𝑢𝑚𝑝 , 

whenever the membrane potential grows beyond the set peak value, 𝑉𝑝𝑒𝑎𝑘, it is reset back to the value, 

𝑉𝑟𝑒𝑠𝑒𝑡 , and the recovery current is augmented by a constant value 𝑈𝑗𝑢𝑚𝑝.  

The synaptic currents can include excitatory AMPAR and NMDAR currents as well as inhibitory GABAR 

currents, such that: 𝐼𝑠𝑦𝑛𝑎𝑝𝑡𝑖𝑐 = 𝐼𝐴𝑀𝑃𝐴 + 𝐼𝑁𝑀𝐷𝐴 + 𝐼𝐺𝐴𝐵𝐴  

𝑊𝑖𝑡ℎ 𝐼𝐺𝐴𝐵𝐴 = 𝐺𝐺(𝐸𝐺 − 𝑉)  ,   𝐼𝐴𝑀𝑃𝐴 = 𝐺𝐴(𝐸𝐴 − 𝑉) 

& 𝐼𝑁𝑀𝐷𝐴 = 𝐺𝑁𝐵(𝑉) ∙ (𝐸𝑁 − 𝑉)  𝑤ℎ𝑒𝑟𝑒   𝐵(𝑉) = [1 +
[𝑀𝑔2+]

0

𝑘0
 𝑒𝑥𝑝 (

𝑉

𝑉0
)]

−1

 

Here, 𝐵(𝑉) is the nonlinear 𝑀𝑔2+ block, with [𝑀𝑔2+]0 = 1𝑚𝑀, 𝑘0 = 3.57 &  
1

𝑉0
= −0.062 , for normal 

operating conditions (Jahr & Stevens, 1990).  (𝐸𝐺 , 𝐺𝐺), (𝐸𝐴, 𝐺𝐴), (𝐸𝑁 , 𝐺𝑁) correspond to the reversal 

potential and amplitude of conductance for GABAR, AMPAR and NMDAR, respectively. Ignoring the rise 

time for synaptic channel opening, the conductance amplitudes are governed by the following 

equations: 

𝜏𝑠𝑦𝑛,𝑠

𝑑𝐺𝑠

𝑑𝑇
= −𝐺𝑠 +

𝐺𝑗𝑢𝑚𝑝,𝑠

𝑁
∑ ∑ 𝛿(𝑡 − 𝑡𝑠𝑝𝑖𝑘𝑒

𝑖 )

𝑠𝑝𝑖𝑘𝑒𝑠

𝑁

𝑖=1

 

with subscript 𝑠 ∈ {𝐴, 𝑁, 𝐺}, referring to AMPAR, NMDAR and GABAR, respectively; 𝜏𝑠𝑦𝑛,𝑠 is the synaptic 

decay time constant, 𝐺𝑗𝑢𝑚𝑝,𝑠 is the increment in conductance per spike received by a neuron, and 𝑁 is 

the total number of neurons in the population. After non-dimensionalization, the equations take the 

following simpler form:  

𝑑𝑣𝑖

𝑑𝑡
= 𝑣𝑖(𝑣𝑖 − 𝛼) − 𝑢𝑖 + 𝜂𝑖 + 𝐼 + 𝑔𝐴(𝑒𝐴 − 𝑣𝑖) + 𝑔𝐺(𝑒𝐺 − 𝑣𝑖) + 𝑔𝑁𝑓𝑁(𝑣𝑖) 

𝑑𝑢𝑖

𝑑𝑡
= 𝑎(𝑏𝑣𝑖 − 𝑢𝑖 )    ,    𝑖𝑓 𝑣𝑖 > 𝑣𝑝𝑒𝑎𝑘 ∶  𝑣𝑖 ← 𝑣𝑟𝑒𝑠𝑒𝑡   &  𝑢𝑖 ← 𝑢𝑖 + 𝑢𝑗𝑢𝑚𝑝  

𝜏𝑠

𝑑𝑔𝑠,𝑖

𝑑𝑡
= −𝑔𝑠,𝑖 +

𝐽𝑠

𝑁
∑ ∑ 𝛿(𝑡 − 𝑡𝑠𝑝𝑖𝑘𝑒

𝑗 )

𝑠𝑝𝑖𝑘𝑒𝑠

𝑁

𝑗=1

 



Where 𝑖 ∈ 𝑁 and  𝑓𝑁(𝑣) = (𝑒𝑁 − 𝑣) [1 +
[𝑀𝑔2+]

0

𝑘0
 𝑒𝑥𝑝 (

|𝑉𝑟|(𝑣−1)

𝑉0
)]

−1

 

We have here included the 𝜂𝑖  term, as a background current that introduces a heterogeneity among the 

neurons of the population. The scaled variables and parameters are related to the dimensional ones as 

follows: 

𝑣 = 1 +
𝑉

|𝑉𝑟|
, 𝑢 =

𝑈

𝑘|𝑉𝑟|2, 𝑡 =
𝑘|𝑉𝑟|

𝐶𝑚
𝑇, 𝛼 = 1 +

𝑉𝑡

|𝑉𝑟|
, 𝑔𝑠 =

𝐺𝑠

𝑘|𝑉𝑟|
 , 𝐽𝑠 =

𝐺𝑗𝑢𝑚𝑝,𝑠

𝑘|𝑉𝑟|
 

𝑒𝑠 = 1 +
𝐸𝑠

|𝑉𝑟|
, 𝐼 =

𝐼 ̅

𝑘|𝑉𝑟|2 , 𝑎 =
𝐶𝑚

𝜏𝑢𝑘|𝑉𝑟|
, 𝑏 =

𝛽

𝑘|𝑉𝑟|
, 𝑢𝑗𝑢𝑚𝑝 =

𝑈𝑗𝑢𝑚𝑝

𝑘|𝑉𝑟|2 , 𝜏𝑠 =
𝑘|𝑉𝑟|

𝐶𝑚
𝜏𝑠𝑦𝑛,𝑠  

 

The expression for the 𝑀𝑔2+ voltage dependent nonlinear NMDAR current was, historically, obtained 

empirically by numerical fitting of experimental data (Jahr & Stevens, 1990; Nowak et al., 1984), so we 

can take a step back and instead rewrite it as a piece-wise polynomial. It can be seen in Figure 1 that 

𝑓𝑁(𝑣) can be well approximated as:  

𝑓𝑁(𝑣) ≈ 𝑝0 + 𝑝1𝑣 + 𝑝2𝑣2   = {

𝑎0 + 𝑎1𝑣 + 𝑎2𝑣2  𝑓𝑜𝑟 𝑣𝑐𝑢𝑡 < 𝑣 < 𝑣0

𝑏0 + 𝑏1𝑣 + 𝑏2𝑣2 𝑓𝑜𝑟 𝑣0 < 𝑣 < 𝑣1

𝑐0 + 𝑐1𝑣 𝑓𝑜𝑟 𝑣 > 𝑣1

            (2) 

with 𝑣𝑐𝑢𝑡 = −1.2; the range of values for 𝑣 was chosen to be wide enough to cover the range of 𝑉 

presented in the original empirical fit (Nowak et al., 1984). Given the reversal potential for NMDA is 

𝐸𝑁 = 0, 𝑒𝑁 = 1, then the coefficients of the polynomial fit will only vary with the choice of 𝑉𝑟 . For the fit 

in figure 1, we used  𝑉𝑟 = −82.66𝑚𝑉 (as in the first example case presented in the following Numerical 

Analysis section).  

The polynomial fit, as well as the discrete interval boundaries, were obtained by minimizing square 

errors over the range of values 𝑣 ∈ [−1.2,2] while ensuring smoothness at the boundaries (that is, 

ensuring continuity in 𝑓𝑁(𝑣) and 
𝜕𝑓𝑁

𝜕𝑣
); the fitting was done using the “scipy.optimize.leastsq” python 

function and the goodness of fit was not found to be sensitive to the choice of 𝑉𝑟  value. 

Given that the time scale of the 𝑢 dynamics is much slower than that of 𝑣, we can invoke the adiabatic 

approximation and consider that all neurons experience a common mean adaptation current, 𝑢 = 〈𝑢𝑖〉. 

(stable –green, unstable ∙∙red) Figure 1: left: ( ∙∙red) piece-wise approximation of (–blue)  𝑓(𝑣). 𝑅𝑖𝑔ℎ𝑡: (∙∙ 𝑟𝑒𝑑) smooth 
approximation of (–blue) 𝑝2(𝑣); for parameter values for the example case of excitatory regular spiking neurons reported in 
the next section. 

. 



We follow the same rigorous derivation presented in (Chen & Campbell, 2022), so for brevity, we only 

provide the main steps here and refer the reader to the latter reference for more elaborate details.  

In the limit of 𝑁 → ∞, the distribution of the membrane potential is governed by the following 

continuity equation:  

𝜕𝜌

𝜕𝑡
+

𝜕

𝜕𝑉
(𝜌

𝑑𝑣

𝑑𝑡
) = 0  ⟹

𝜕𝜌

𝜕𝑡
+ �̇�

𝜕𝜌

𝜕𝑣
+ 𝜌

𝜕

𝜕𝑣
(�̇�) = 0 

We assume a Lorentzian distribution for each of the membrane voltage and the heterogeneous 

background current: 

𝜌(𝑣|𝜂, 𝑡) =
1

𝜋

𝑥(𝜂,𝑡)

[𝑣−𝑦(𝜂,𝑡)]2−𝑥(𝜂,𝑡)2   ,   𝑔(𝜂) =
1

𝜋

Δ

[𝜂−�̅�]2−Δ2 

𝑥(𝜂, 𝑡) and Δ correspond to the widths of the respective distribution, while 𝑦(𝜂, 𝑡) and �̅� correspond to 

the respective centers. 

The different terms of the continuity equation can be expanded as follows: 

𝜕𝜌

𝜕𝑡
=

1

𝜋
[

�̇�

(𝑣 − 𝑦)2 − 𝑥2
+

2𝑥�̇�𝑣 − 2𝑥𝑦�̇� − 2𝑥2�̇�

[(𝑣 − 𝑦)2 − 𝑥2]2
] 

𝜕𝜌

𝜕𝑣
=

1

𝜋
(

−2𝑥𝑣 + 2𝑥𝑦

[(𝑣 − 𝑦)2 − 𝑥2]2
) 

𝜕

𝜕𝑣
(�̇�) = 2𝑣 − 𝛼 − 𝑔𝐴 − 𝑔𝐺 − 𝑔𝑁

𝜕𝑓𝑁

𝜕𝑣
 

Plugging the above expressions in the continuity equation and balancing coefficients of 𝑣2& 𝑣, 

respectively, we get: 

�̇� = 𝑥(−𝛼 − 𝑔𝐴 − 𝑔𝐺 + 𝑔𝑁𝑝1) + 2𝑥𝑦(1 + 𝑔𝑁𝑝2) 

�̇� = 𝑦(−𝛼 − 𝑔𝐴 − 𝑔𝐺 + 𝑔𝑁𝑝1) + (𝑦2 − 𝑥2)(1 + 𝑔𝑁𝑝2) + 𝑔𝐺 𝑒𝐺 + 𝑔𝐴𝑒𝐴+𝑔𝑁𝑝0 − 𝑢 + �̅� + 𝐼 

We then define 𝑤 = 𝑥 + 𝑖𝑦 , such that −𝑖𝑤2 = 𝑖(𝑦2 − 𝑥2) + 2𝑥𝑦 and �̇� = �̇� + 𝑖�̇�, then the above �̇� 

and �̇� equations can be combined into: 

�̇� = 𝑤(−𝛼 − 𝑔𝐴 − 𝑔𝐺 + 𝑔𝑁𝑝1) − 𝑖𝑤2(1 + 𝑔𝑁𝑝2) + 𝑖(𝑔𝐺𝑒𝐺 + 𝑔𝐴𝑒𝐴+𝑔𝑁𝑝0 − 𝑢 + �̅� + 𝐼) 

The firing rate can be obtained as the flux probability at 𝑣𝑝𝑒𝑎𝑘, as 𝑣𝑝𝑒𝑎𝑘 → ∞; for a given 𝜂: 

𝑟(𝜂, 𝑡) = ∫ (𝜌(𝑣|𝜂, 𝑡) ∙
𝑑𝑣

𝑑𝑡
)|

𝑣→∞
=

𝑥(𝜂, 𝑡)

𝜋
 

Here, we have used the fact that as 𝑣 → ∞, 𝑓𝑁(𝑣) → 𝑐0 + 𝑐1𝑣  

Then the mean firing rate is:  𝑟(𝑡) =
1

𝜋
∫ 𝑥(𝜂, 𝑡)𝑔(𝜂)𝑑𝜂 

For a given value of 𝜂, the variable 𝑦 can be computed as the Cauchy principal value of ∫ 𝜌(𝑣|𝜂, 𝑡𝑐)𝑣𝑑𝑣. 

Then, the mean membrane potential can be expressed as: 



𝑣(𝑡) = ∫ 𝑝. 𝑣. ∫ 𝜌(𝑣|𝜂, 𝑡)𝑣𝑑𝑣 𝑔(𝜂)𝑑𝜂 = ∫ 𝑦(𝜂, 𝑡)𝑔(𝜂)𝑑𝜂  

The residue theorem can be applied in a closed contour integral in the lower half complex plane 

containing the pole of 𝑔(𝜂), 𝜂∗ = �̅� − 𝑖Δ, then: 

𝑟(𝑡) =
1

𝜋
𝑥(𝜂 = 𝜂∗, 𝑡)  &  𝑣(𝑡) = 𝑦(𝜂 = 𝜂∗ , 𝑡) , such that  𝜋�̇�(𝑡) + 𝑖�̇�(𝑡) = �̇�(𝜂 = 𝜂∗, 𝑡) 

Here, we have neglected the 𝑔�̇�  contribution since the NMDAR dynamics is an order of magnitude 

slower than the 𝑣 dynamics.  

Then, evaluating the equation for �̇� at 𝜂 = �̅� − 𝑖Δ, we arrive at the equations governing the mean firing 

rate and mean membrane potential: 

�̇� = 𝑟(−𝛼 − 𝑔𝐴 − 𝑔𝐺 ) + 2𝑟𝑣 + 𝑔𝑁(𝑝1 + 2𝑝2𝑣)𝑟 +
Δ

𝜋
  

�̇� = 𝑣(𝑣 − 𝛼) − 𝑢 + �̅� + 𝐼 − (1 + 𝑔𝑁𝑝2)𝜋2𝑟2 + 𝑔𝐴(𝑒𝐴 − 𝑣) + 𝑔𝐺 (𝑒𝐺 − 𝑣) + 𝑔𝑁(𝑝0 + 𝑝1𝑣 + 𝑝2𝑣2)  

Noting that 𝑝0 + 𝑝1𝑣 + 𝑝2𝑣2 = 𝑓𝑁(𝑣) and 𝑝1 + 2𝑝2𝑣 =
𝜕𝑓𝑁

𝜕𝑣
, the final mean field equations can more 

compactly be written as: 

�̇� = 𝑟(−𝛼 − 𝑔𝐴 − 𝑔𝐺 ) + 2𝑟𝑣 + 𝑔𝑁
𝜕𝑓𝑁

𝜕𝑣
𝑟 +

Δ

𝜋
              (3a) 

�̇� = 𝑣(𝑣 − 𝛼) − 𝑢 + �̅� + 𝐼 − (1 + 𝑔𝑁𝑝2)𝜋2𝑟2 + 𝑔𝐴(𝑒𝐴 − 𝑣) + 𝑔𝐺 (𝑒𝐺 − 𝑣) + 𝑔𝑁  𝑓𝑁(𝑣)                      (3b) 

In addition, the equations governing the mean adaptation current and mean synaptic conductances take 

the following form: 

�̇� = 𝑎(𝑏𝑣 − 𝑢) + 𝑢𝑗𝑢𝑚𝑝𝑟                (3c) 

𝜏𝑠𝑔�̇� = −𝑔𝑠 + 𝐽𝑠𝑟 for 𝑠 ∈ {𝐴, 𝑁, 𝐺}              (3d) 

Here, the 𝑟 in the 𝑔𝑠 equation is the mean firing rate of the population in the case of recurrent synapses, 

or the mean firing rate received by the population in the case of an external input signal.  

The coefficient 𝑝2 appearing on the right-hand side of the �̇� equation is defined piecewise as in eq.2, but 

to avoid discontinuity in the mean-field equations, we replace it with the following smooth approximate 

function: 

𝑝2(𝑣) ≈
𝑎2

2
(1 + tanh (

𝑣 − 𝑣𝑐𝑢𝑡

𝜎
)) +

𝑏2 − 𝑎2

2
(1 + tanh (

𝑣 − 𝑣0

𝜎
)) +

−𝑏2

2
(1 + tanh (

𝑣 − 𝑣1

𝜎
)) 

With 𝜎 = 0.15 

The right panel of figure 1 shows the small error that we incur by making this step. We also replace the 

piece-wise expression for 
𝜕𝑓𝑁

𝜕𝑣
 with its smooth equivalent by taking the derivative of the continuous 

𝑓𝑁(𝑣), such that:  



𝜕𝑓𝑁

𝜕𝑣
= − [1 +

[𝑀𝑔2+]0

𝑘0
 𝑒𝑥𝑝 (

|𝑉𝑟|(𝑣 − 1)

𝑉0
)]

−1

−
[𝑀𝑔2+]0

𝑘0

|𝑉𝑟|

𝑉0

(𝑒𝑁 − 𝑣)𝑒𝑥𝑝 (
|𝑉𝑟|(𝑣 − 1)

𝑉0
) [1 +

[𝑀𝑔2+]0

𝑘0
 𝑒𝑥𝑝 (

|𝑉𝑟|(𝑣 − 1)

𝑉0
)]

−2

 

Finally, we note that there is a well-known link between QIF neurons and what is referred to as a 𝜃-

neuron which is described by a phase variable and can be used to describe excitable and spiking 

behavior. For a population of 𝜃-neurons, the Kuramoto order parameter is defined as: 

 𝑍(𝑡) =
1

𝑁
∑ 𝑒𝑖𝜃𝑗(𝑡)𝑁

𝑗=1 = 𝑅(𝑡)𝑒𝑖Ψ(𝑡) 

where 𝑅 is a measure of the degree of synchrony within the network and Ψ is the average phase of the 

population, 𝑅 = 0 & 𝑅 = 1 correspond to a fully asynchronous and fully synchronized states, 

respectively (Byrne et al., 2017). A conformal transformation has been reported that allows one to move 

from the plane of the mean firing rate and mean membrane potential of a QIF population to the 

complex plane of the Kuramoto order parameter. Defining 𝑊 = 𝜋𝑟 + 𝑖𝑣, then the Kuramoto order 

parameter can be computed as: 𝑍 =
1−�̅�

1+�̅�
 

This allows us to have insight on the internal state of synchrony within the population and probe how it 

is affected with variation in the dynamical regime or parameter values, all the while staying on the level 

of a mesoscopic mathematical description of the population dynamics. 

Numerical Analysis 
We numerically analyze the dynamics of the presented neural mass model for two example cases with 

typical sets of parameters. The bifurcation analysis as well as the numerical integration of the system of 

equations was performed using PyDSTool (Clewley et al., 2007), a time step of 0.1 was used for the 

timeseries simulation, and the power spectral density was obtained using the scipy.signal.periodogram 

python function.  

The case of excitatory regular spiking neurons 
We analyze the resulting mean-field equations for the case of a population of excitatory regular spiking 
neurons with recurrent AMPAR synapses.  
The equations for the Izhikevich regular spiking neuron are often written in the following form in the 
literature: 
𝑑𝑉

𝑑𝑡
= 0.04𝑉2 + 5𝑉 + 140 − 𝑢 + 𝐼,  

𝑑𝑢

𝑑𝑡
= 𝑎[𝑏𝑉 − 𝑢]               𝑖𝑓 𝑉 > 30𝑚𝑉 ∶  𝑉 ←  𝑐 &  𝑢 ← 𝑢 + 𝑑  

The part 0.04𝑉2 + 5𝑉 + 140 came from fitting the spike initiation dynamics of a cortical neuron so that 

the membrane potential has 𝑚𝑉 scale, and the time has 𝑚𝑠 scale (Izhikevich, 2003). After factorization, 

this will correspond to the following parameter values for the original form of eq.1: 

𝐶𝑚 = 1, 𝑉𝑟 = −82.656, 𝑉𝑡 = −42.344, 𝑘 = 0.04, 𝑎 = 0.02, 𝑏 = 0.2, 𝑢𝑗𝑢𝑚𝑝 = 8 − 𝑏𝑉𝑟 = 24.532,  

𝐼 = −𝑏𝑉𝑟 = 16.532. For the corresponding non-dimensional system, this corresponds to 𝛼 = 0.488.  

Note that here we shift the slow current variables to add a 𝑉𝑟  term in the 𝑢 equation for non-

dimensionalization, such that we have a (𝑉 − 𝑉𝑟) term to replace with 𝑣|𝑉𝑟|. Accordingly, we add the 

non-zero external current term in the 𝑣 equation to correct for the shift in 𝑢. 



Figure3: Bifurcation diagram for eqs.4a-d, with ∆= 0.002, 𝜂 = 0.01, 𝐽𝑟𝑒𝑐,𝐴 = 6. The plots show the value of mean firing rate (r, 
left) and mean membrane potential (v, right) of the fixed points of the system as a function of the external input firing rate 
(𝑟𝑖𝑛𝑝𝑢𝑡),  for three different cases:  𝐽𝐴 = 6, 𝐽𝑁 = 0 (stable –blue, unstable –red);  𝐽𝐴 = 6, 𝐽𝑁 = 3, with linear NMDA (stable –

green, unstable ∙∙red); 𝐽𝐴 = 6, 𝐽𝑁 = 3, with nonlinear NMDA (stable –black, unstable -.-red) 

We consider the case in which the population receives external excitatory input that drives both AMPAR 

and NMDAR synapses. The system of equations becomes: (from now on, we drop the bar from �̅�) 

�̇� = 𝑟(−𝛼 − 𝑔𝐴) + 2𝑟𝑣 + 𝑔𝑁
𝜕𝑓𝑁

𝜕𝑣
𝑟 +

Δ

𝜋
                             (4a)       

�̇� = 𝑣(𝑣 − 𝛼) − 𝑢 + 𝜂 + 𝐼 − (1 + 𝑔𝑁𝑝2)𝜋2𝑟2 + 𝑔𝐴(𝑒𝐴 − 𝑣) + 𝑔𝑁  𝑓𝑁(𝑣)          (4b) 

�̇� = 𝑎(𝑏𝑣 − 𝑢) + 𝑢𝑗𝑢𝑚𝑝𝑟                (4c) 

𝜏𝐴𝑔�̇� = −𝑔𝐴 + 𝐽𝑟𝑒𝑐,𝐴𝑟 + 𝐽𝐴𝑟𝑖𝑛𝑝𝑢𝑡    ,      𝜏𝐴𝑔𝑁̇ = −𝑔𝑁 + 𝐽𝑁𝑟𝑖𝑛𝑝𝑢𝑡             (4d) 

 𝐽𝑟𝑒𝑐,𝐴 is the strength of the recurrent AMPAR synapses, whereas 𝐽𝐴& 𝐽𝑁 are the strengths of the input 

AMPAR & NMDAR synapses and the corresponding reversal potentials are 𝐸𝐴 = 𝐸𝑁 = 0, such that 𝑒𝐴 =

𝑒𝑁 = 1. The synaptic time constants for AMPAR & NMDAR are taken to be 6𝑚𝑠 & 160𝑚𝑠, respectively, 

corresponding to 𝜏𝐴 = 19.83 & 𝜏𝑁 = 529. 

For 𝑉𝑟 = −82.66, the coefficients for the 𝑓𝑁(𝑣) piecewise fit are as follows: (we set 𝑣𝑐𝑢𝑡 = −1.0) 

𝑎0 = 0.027, 𝑎1 = 0.106 , 𝑎2 = 0.089, 𝑏0 = −0.396,  𝑏1 = 1.559,  𝑏2 = 1.158 , 𝑐0 = 1.038 ,  𝑐1 =

−1.018, along with 𝑣0 = 0.582 , 𝑣1 = 1.112. 

 

For 𝑟𝑖𝑛𝑝𝑢𝑡 = 0, we fix ∆ & 𝐽𝑟𝑒𝑐,A and analyze the stability of the equilibrium points as 𝜂 is varied and 

obtain the bifurcation diagrams shown in figure 2. The plots show the value of the mean firing rate and 

mean membrane potential corresponding to the fixed-point solution of eqs.4a-d. For small enough 𝜂, 

Figure 2: Bifurcation diagram for eqs.4a-d. with ∆= 0.002, 𝐽𝑟𝑒𝑐,𝐴 = 6, 𝑟𝑖𝑛𝑝𝑢𝑡 = 0. The plots show the value of 

mean firing rate (r, left) and mean membrane potential (v, right) corresponding to the stable fixed points (– blue) 
and unstable fixed point (--red) as a function of the value of the mean background current (𝜂). 



the system has a stable equilibrium point as a low constant firing rate that loses stability through a Hopf 

bifurcation giving rise to a limit cycle solution of multiscale oscillations (of similar nature as that shown 

in figure 4). For intermediate values of 𝜂, the constant firing rate fixed point regains stability at high 

firing rate values, before losing stability again at a higher critical value of 𝜂 and leading way to a stable 

limit cycle solution of the fast spiking-like oscillation type (as that shown in figure 5). 

We then fix ∆, 𝜂, 𝐽𝑟𝑒𝑐,A, 𝐽𝐴  &  𝐽𝑁  and vary 𝑟𝑖𝑛𝑝𝑢𝑡 . Figure 3 shows the bifurcation diagrams for three 

configurations:  𝐽𝑁 = 0 (AMPAR only),  𝐽𝑁 = 3 with linear NMDAR (the nonlinear Mg2+ block is omitted), 

and 𝐽𝑁 = 3 with nonlinear NMDAR. In all cases, we have the following different dynamical regimes: 

stable fixed point with a low constant firing rate, multiscale oscillation limit cycle, stable fixed point with 

high constant firing rate, and fast spiking-like oscillation limit cycle. With AMPAR only synapses, the 

latter regime persists for larger values of 𝑟𝑖𝑛𝑝𝑢𝑡 , that is, for the two cases of linear and nonlinear 

NMDAR, the curve is shifted to the left such that the fast spiking-like limit cycle loses stability at a 

significantly smaller value of 𝑟𝑖𝑛𝑝𝑢𝑡 . It can also be seen that in the presence of nonlinear NMDAR 

synapses, the regime of stable high firing rate fixed point is significantly reduced and shifted towards 

higher levels of 𝑟𝑖𝑛𝑝𝑢𝑡  when compared to the case of linear NMDAR. 

In figure 4, we show a sample simulation time series for the mean firing rate, the synchrony measure 

𝑅𝑠𝑦𝑛𝑐 , and the total synaptic current 𝐼𝑠𝑦𝑛𝑎𝑝𝑡𝑖𝑐  for sample parameter values in the regime of multiscale 

oscillations.  

Figure 4: Simulated time series of eqs.4a-d with 𝜂 = 0.01, 𝛥 = 0.002, 𝐽𝑟𝑒𝑐,𝐴 = 6, 𝐽𝐴 = 6, 𝐽𝑁 = 3, 𝑟𝑖𝑛𝑝𝑢𝑡 = 0.06; the mean firing 

rate vs. time (r, top left), population synchrony measure vs. time (𝑅𝑠𝑦𝑛𝑐, top right), total synaptic current vs. time (𝐼𝑠𝑦𝑛𝑎𝑝𝑡𝑖𝑐, 

bottom left); power spectral density of the total synaptic current (bottom right); in all the plots, (–blue) is the case of nonlinear 
NMDA and (--green) is the case of linear NMDA. 



It can be seen that in the presence of nonlinear NMDAR, the oscillation is larger in amplitude with 

augmented slow and fast components. Figure 4 also shows the power spectrum density of the total 

synaptic currents indicating a downward shift in the main slow frequency and an upward shift in the 

dominant high frequencies. 

Figure 5 shows another sample simulation data for parameter values in the regime of fast spiking-like 

oscillation. Here, the presence of nonlinear NMDA, instead, causes a smaller oscillation amplitude as 

compared to the case of linear NMDA, while still shifting frequency components of the total synaptic 

current towards lower values. 

The case of inhibitory striatal neurons 
The second example case is that of a population of inhibitory striatal medium spiny neurons (MSNs), the 

specific parameters are taken from (Humphries et al., 2009) in which an Izhikevich neuron model was fit 

to capture neurocomputational properties of MSNs as well as the effect of dopamine on MSNs as a 

linear scaling in the AMPAR and NMDAR maximal conductances. The all-to-all coupled population of 

MSNs has recurrent inhibitory GABAR synapses and receives external excitatory AMPAR and NMDAR 

synapses. The resulting mean-field equations are: 

�̇� = 𝑟(−𝛼 − 𝑔𝐴 − 𝑔𝐺 ) + 2𝑟𝑣 + 𝑔𝑁
𝜕𝑓𝑁

𝜕𝑣
𝑟 +

Δ

𝜋
                            (5a)       

�̇� = 𝑣(𝑣 − 𝛼) − 𝑢 + 𝜂 + 𝐼 − (1 + 𝑔𝑁𝑝2)𝜋2𝑟2 + 𝑔𝐺(𝑒𝐺 − 𝑣) + 𝑔𝐴(𝑒𝐴 − 𝑣) + 𝑔𝑁  𝑓𝑁(𝑣)                      (5b) 

Figure 5: Simulated time of eqs.4a-d with 𝜂 = 0.01, 𝛥 = 0.002, 𝐽𝑟𝑒𝑐 = 6, 𝐽𝐴 = 6, 𝐽𝑁 = 3, 𝑟𝑖𝑛𝑝𝑢𝑡 = 0.17; the mean firing rate vs. 

time (r, top left), population synchrony measure vs. time (𝑅𝑠𝑦𝑛𝑐, top right), total synaptic current vs. time (𝐼𝑠𝑦𝑛𝑎𝑝𝑡𝑖𝑐, bottom left); 

power spectral density of the total synaptic current (bottom right); in all the plots, (–blue) is the case of nonlinear NMDA and (--
green) is the case of linear NMDA. 
 
 



�̇� = 𝑎(𝑏𝑣 − 𝑢) + 𝑢𝑗𝑢𝑚𝑝𝑟                (5c)  

𝜏𝐺𝑔�̇� = −𝑔𝐺 + 𝐽𝑟𝑒𝑐,𝐺𝑟,    𝜏𝐴𝑔�̇� = −𝑔𝐴 + 𝐽𝐴𝑟𝑖𝑛𝑝𝑢𝑡    ,      𝜏𝐴𝑔𝑁̇ = −𝑔𝑁 + 𝐽𝑁𝑟𝑖𝑛𝑝𝑢𝑡           (5d) 

 𝐽𝑟𝑒𝑐,𝐺 is the strength of  recurrent GABAR synapses, whereas 𝐽𝐴& 𝐽𝑁 are the strengths of the input 

AMPAR & NMDAR synapses and the corresponding reversal potentials are 𝐸𝐺 = −74𝑚𝑉, 𝐸𝐴 = 𝐸𝑁 = 0, 

such that 𝑒𝐺 = 0.075, 𝑒𝐴 = 𝑒𝑁 = 1. The synaptic time constants for AMPAR, NMDAR & GABAR are 

taken to be 6𝑚𝑠, 160𝑚𝑠 & 4𝑚𝑠, respectively, corresponding to 𝜏𝐴 = 31.58, 𝜏𝑁 = 842.1 & 𝜏𝐺 = 21.05 

after non-dimensionalization. The remaining parameters are as follows: 𝐶𝑚 = 15.2, 𝑉𝑟 = −80, 𝑉𝑡 =

−29.7, 𝑘 = 1, 𝑎 = 0.01, 𝑏 = −20, 𝑢𝑗𝑢𝑚𝑝 = 91, 𝐼 = 0. 

 For the corresponding non-dimensional system, we have: 𝛼 = 0.629 and the coefficients for the 𝑓𝑁(𝑣) 

piecewise fit are as follows: 𝑎0 = 0.0306, 𝑎1 = 0.113 , 𝑎2 = 0.0914, 𝑏0 = −0.349,  𝑏1 = 1.464,  𝑏2 =

−1.11 , 𝑐0 = 1.039 ,  𝑐1 = −1.019, along with 𝑣0 = 0.562 , 𝑣1 = 1.118 

Figure 6 shows the bifurcation diagram for the system of eqs.5a-d, with 𝑟𝑖𝑛𝑝𝑢𝑡 = 0, as 𝜂 is varied. The 

system has a stable constant low firing rate stable equilibrium that loses stability through a Hopf 

bifurcation for large enough 𝜂 when fast spiking-like oscillations emerge.  

Figure 6: Bifurcation diagram for eqs.5a-d with  ∆= 0.002, 𝐽𝑟𝑒𝑐,𝐺 = 1, 𝑟𝑖𝑛𝑝𝑢𝑡 = 0The plots show the value of mean firing rate (r, 

left) and mean membrane potential (v, right) corresponding to the stable fixed points (– blue) and unstable fixed point (--red) as 
a function of the value of the mean background current (𝜂). 

 



Figure 8: Simulation time series of eqs.5a-d with 𝜂 = 0.1, 𝛥 = 0.002, 𝐽𝐺𝐴𝐵𝐴 = 1, 𝐽𝐴𝑀𝑃𝐴 = 1.4, 𝐽𝑁𝑀𝐷𝐴 = 0.7, 𝑟𝑖𝑛𝑝𝑢𝑡 = 0.3;   

the mean firing rate vs. time (r, top left), population synchrony measure vs. time (𝑅𝑠𝑦𝑛𝑐, top right), total synaptic current vs. time 

(𝐼𝑠𝑦𝑛𝑎𝑝𝑡𝑖𝑐, bottom left); power spectral density of the total synaptic current (bottom right); in all the plots, (–blue) is the case of 

nonlinear NMDA and (--green) is the case of linear NMDA.  

In figure 7, we fix  ∆, 𝜂, 𝐽𝑟𝑒𝑐,𝐺 , 𝐽𝐴  & 𝐽𝑁 and vary 𝑟𝑖𝑛𝑝𝑢𝑡 . It can be seen that the presence of nonlinear 

NMDAR allows for a regime of stable constant high firing rate solutions that do not exist for the case of 

linear NMDAR. 

Figure 7: Bifurcation diagram for eqs. 5a-d with ∆= 0.002, 𝜂 = 0.1, 𝐽𝑟𝑒𝑐,𝐺 = 1, 𝐽𝐴 = 1.4,  𝐽𝑁 = 0.7; The plots show the value of 
mean firing rate (r, left) and mean membrane potential (v, right) of the fixed points of the system as a function of the external 
input firing rate (𝑟𝑖𝑛𝑝𝑢𝑡),  for two different cases:  with nonlinear NMDA (stable –blue, unstable –red) and with Linear NMDA 



Moreover, the sample simulation time series in figure 8 illustrates how nonlinear NMDAR leads to 

oscillations with a larger amplitude for 𝑟𝑖𝑛𝑝𝑢𝑡  values that are below those of the high firing rate regime, 

along with a downward shift in the main frequencies of oscillation, as compared to the case of linear 

NMDAR. Whereas for 𝑟𝑖𝑛𝑝𝑢𝑡  values that are above those of the high firing rate regime, nonlinear 

NMDAR has the opposite effect, leading to much smaller amplitude oscillations than those of the case of 

linear NMDAR with the same 𝑟𝑖𝑛𝑝𝑢𝑡  value, along with a smaller downward shift in the frequencies, as 

shown in figure 9. 

While an exhaustive parameter space exploration is beyond the scope of this work, it is worth noting 

that the effect of Nonlinear NMDA, as compared to the Linear case, was found to be qualitatively robust 

for a wide range of ∆ & 𝜂 values (results not shown here). 

 

Discussion 
We presented a next generation neural mass model of Izhikevich-type neurons that includes NMDAR 

synaptic currents with nonlinear Mg2+ block, along with APMAR and GABAR conductance-based 

synapses. We have shown how rewriting the nonlinear Mg2+ block expression as a piece-wise polynomial 

maintains applicability of the Lorentzian ansatz in the mean-field model derivation. We have then 

performed numerical analysis of the resulting equations for two example cases. The first example 

Figure 9: Simulation time series of eqs.5a-d with  𝜂 = 0.1, 𝛥 = 0.002, 𝐽𝐺𝐴𝐵𝐴 = 1, 𝐽𝐴𝑀𝑃𝐴 = 1.4, 𝐽𝑁𝑀𝐷𝐴 = 0.7, 𝑟𝑖𝑛𝑝𝑢𝑡 = 1.0;   

the mean firing rate vs. time (r, top left), population synchrony measure vs. time (𝑅𝑠𝑦𝑛𝑐, top right), total synaptic current vs. time 

(𝐼𝑠𝑦𝑛𝑎𝑝𝑡𝑖𝑐, bottom left); power spectral density of the total synaptic current (bottom right); in all the plots, (–blue) is the case of 

nonlinear NMDA and (--green) is the case of linear NMDA.  



involved a population of excitatory regular spiking neurons with recurrent AMPAR synapses and input 

AMPAR & NMDAR synapses. It was shown that the nonlinear NMDAR causes a shift in the constant high 

firing rate regime towards higher values of input and causes an amplification in amplitude of the 

multiscale oscillation solutions, while increasing the timescale separation by pushing the slow dominant 

frequencies downwards and the fast ones upwards. This is concurrent with larger intermittent dips in 

the population synchrony measure. Whereas, in the regime of fast spiking-like oscillations, nonlinear 

NMDAR exerts the opposite influence of decreasing the amplitude of oscillations in mean firing rate and 

those of the dips in population synchrony. The second example involved a population of inhibitory 

striatal medium spiny neurons with recurrent GABAR synapses and input AMPAR & NMDAR synapses. In 

this case, the nonlinearity in the NMDAR current gives rise to a constant high firing rate regime that is 

not present for the linear NMDAR case. This high firing rate regime separates two regimes of fast 

spiking-like oscillations, in which the effect of nonlinear NMDAR acts in opposite directions, for the 

lower input values, the amplitude of the fast oscillations is amplified due to the nonlinearity, while for 

the higher input values, the nonlinearity causes a significant decrease in the size of the oscillations and 

an associated curbing of the intermittent dip in population synchrony.  

In summary, the nonlinearity of NMDAR synapses exerts a complex state-dependent effect on the 

population dynamics, that can manifest in opposite directions depending on neuronal type and level of 

input signal. This is in line with what is known on the complex state-dependent effect of dopamine 

action that utilizes the modulation of NMDAR maximal conductance as one of its routes of action. The 

presented model offers a computationally efficient building block for exploring the repercussions of 

complex NMDAR action, and associated neuromodulatory effects, on a mesoscopic and macroscopic 

brain level. By explicitly representing the different types of synaptic currents, not only with different 

timescales of action but also with the nonlinear state-dependent NMDAR feature, the model allows for 

the interrogation of mechanistic hypotheses on the role of imbalance in receptor or neuromodulator 

activity underlying mechanisms of brain disorders. That is, the formulation suggested here will permit 

going beyond the common simplifying assumptions of phenomenological sigmoidal input-output 

response functions, to a more biophysically grounded approach that expresses neuromodulatory action 

as a modulation of maximal conductance of the different synaptic currents involved. More specifically, 

the sigmoidal “firing rate vs. input current” response function, commonly used in classical mean-field 

models, is best suited to describe constant population firing rates in response to an input current that 

drives a near-constant deviation of membrane potential from its resting value (Abbott & Chance, 2005), 

a condition which is violated in the dynamical regime of oscillatory firing rate solutions representing 

complex burst-like activity as observed in the BG nuclei (Bergman, 2021). Moreover, the 

pharmacological sigmoidal function, recently proposed in the literature to account for neuromodulatory 

currents in whole brain network models (Joshi et al., 2017; Kringelbach et al., 2020), can only capture 

effects that enter as an additive current in target regions and falls short of capturing state-dependent 

parametric (i.e. multiplicative) effects as those reported in the case of dopaminergic action. 

Our formulation allows for coupling multiple populations of different types of neurons, such as those of 

the BG nuclei, and opens the path to realistically investigate the effect of different dopamine levels as 

manifesting in a scaling of different maximal conductances to match known distribution of different 

receptor types (Lindahl & Kotaleski, 2016). Building the BG circuit using the proposed mean-field model 

will permit its embedding in the larger full brain network through connectome based whole brain 

models (Breakspear, 2017; Sanz Leon et al., 2013), and thus facilitate the study of emergent effects on a 



whole brain level, while preserving computational efficiency by avoiding spiking neurons simulation that 

would be required for detailed BG modeling (Humphries et al., 2006, 2018; Meier et al., 2022). The 

presence of a conformal mapping to go from mean firing rate and mean membrane potential to the 

Kuramoto order parameter variables offers the added advantage of probing alterations in average 

internal synchrony within regions while remaining on the level of mesoscopic description, this is 

particularly of relevance to disorders like PD in which the pathology manifests not only in changes in 

mean firing rate but also in that of coherence within the target neuronal populations (Bergman, 2021). 

More broadly, NMDARs activity plays a central role in brain plasticity, learning and memory, the 

disruption of which is associated with impairment seen in a wide range of pathologies, such as 

Alzheimer’s disease, amyotrophic lateral sclerosis, Huntington’s disease, Parkinson’s disease, 

schizophrenia and major depressive disorder (Adell, 2020; Anticevic et al., 2012). We hope that the 

model proposed here will contribute to better representation and inclusion of nonlinear NMDAR action 

in the growing efforts on multiscale brain modeling, aiming to disentangle mechanisms of brain 

disorders, by bridging the gap between microscopic and macroscopic neuronal dynamics (D’Angelo & 

Jirsa, 2022; Deco & Kringelbach, 2014; Jancke et al., 2022; Joshi et al., 2017; Rolls et al., 2008; Shine et 

al., 2021)  

Appendix 
We here show sample results for the simulation of the full spiking neuron network model in comparison 

with the presented mean-field model. The simulations were implemented using the Brian2 python 

package (Goodman & Brete 2009) for sample parameter values with 5000 neurons and a timestep of 

0.1. The mean firing rate for the spiking neuron network was computed using the 

“PopulationRateMonitor” function from Brian2. 

 

Figure A1: time series for the mean firing rate of the spiking neuron network; blue is for the nonlinear NMDA case; green line is 
for the linear NMDA case. Neuron parameters are the same as in the case of excitatory regular spiking neurons presented in the 
Numerical Analysis section, with  𝜂 = 0.01, 𝛥 = 0.002, 𝐽𝑟𝑒𝑐 = 6, 𝐽𝐴 = 6, 𝐽𝑁 = 3, 𝑟𝑖𝑛𝑝𝑢𝑡 = 0.06 



 

Figure A2: time series for the mean firing rate of the spiking neuron network (blue) compared to the mean firing rate timeseries 
from the integration of the mean-field model (--red). Neuron parameters are the same as in the case of excitatory regular spiking 
neurons presented in the Numerical Analysis section, with 𝜂 = 0.1, 𝛥 = 0.002, 𝐽𝐺𝐴𝐵𝐴 = 1, 𝐽𝐴𝑀𝑃𝐴 = 1.4, 𝐽𝑁𝑀𝐷𝐴 = 0.7, 𝑟𝑖𝑛𝑝𝑢𝑡 =

0.06; 

 

Figure A3: time series for the mean firing rate of the spiking neuron network; blue is for the nonlinear NMDA case, green line is 
for the linear NMDA case. Parameter values as in The case of inhibitory striatal neurons presented in the Numerical Analysis 
section, with  𝜂 = 0.1, 𝛥 = 0.002, 𝐽𝐺𝐴𝐵𝐴 = 1, 𝐽𝐴𝑀𝑃𝐴 = 1.4, 𝐽𝑁𝑀𝐷𝐴 = 0.7, 𝑟𝑖𝑛𝑝𝑢𝑡 = 0.08; 



 

Figure A4: time series for the mean firing rate of the spiking neuron network (blue) compared to the mean firing rate timeseries 
from the integration of the mean-field model (--red). Parameter values as in The case of inhibitory striatal neurons presented in 
the Numerical Analysis section, with  𝜂 = 0.1, 𝛥 = 0.002, 𝐽𝐺𝐴𝐵𝐴 = 1, 𝐽𝐴𝑀𝑃𝐴 = 1.4, 𝐽𝑁𝑀𝐷𝐴 = 0.7, 𝑟𝑖𝑛𝑝𝑢𝑡 = 0.08; 

 

Figure A5: time series for the mean firing rate of the spiking neuron network (blue) compared to the mean firing rate timeseries 
from the integration of the mean-field model (--red). Parameter values as in the case of inhibitory striatal neurons with  𝜂 =
0.1, 𝛥 = 0.002, 𝐽𝐺𝐴𝐵𝐴 = 1, 𝐽𝐴𝑀𝑃𝐴 = 1.4, 𝐽𝑁𝑀𝐷𝐴 = 0.7, 𝑟𝑖𝑛𝑝𝑢𝑡 = 0.25; 
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