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Flexibility of brain dynamics is increased  
and predicts clinical impairment in 
relapsing–remitting but not in secondary 
progressive multiple sclerosis

Lorenzo Cipriano,1,† Roberta Minino,1 Marianna Liparoti,2 Arianna Polverino,3

Antonella Romano,1 Simona Bonavita,4 Maria Agnese Pirozzi,4 Mario Quarantelli,5

Viktor Jirsa,6 Giuseppe Sorrentino,1,3,7 Pierpaolo Sorrentino6,8

and Emahnuel Troisi Lopez7,†

† These authors contributed equally to this work.

Large-scale brain activity has long been investigated under the erroneous assumption of stationarity. Nowadays, we know that rest
ing-state functional connectivity is characterized by aperiodic, scale-free bursts of activity (i.e. neuronal avalanches) that intermittently 
recruit different brain regions. These different patterns of activity represent a measure of brain flexibility, whose reduction has been 
found to predict clinical impairment in multiple neurodegenerative diseases such as Parkinson’s disease, amyotrophic lateral sclerosis 
and Alzheimer’s disease. Brain flexibility has been recently found increased in multiple sclerosis, but its relationship with clinical dis
ability remains elusive. Also, potential differences in brain dynamics according to the multiple sclerosis clinical phenotypes remain 
unexplored so far. We performed a brain dynamics study quantifying brain flexibility utilizing the ‘functional repertoire’ (i.e. the num
ber of configurations of active brain areas) through source reconstruction of magnetoencephalography signals in a cohort of 25 mul
tiple sclerosis patients (10 relapsing–remitting multiple sclerosis and 15 secondary progressive multiple sclerosis) and 25 healthy 
controls. Multiple sclerosis patients showed a greater number of unique reconfigurations at fast time scales as compared with healthy 
controls. This difference was mainly driven by the relapsing–remitting multiple sclerosis phenotype, whereas no significant differences 
in brain dynamics were found between secondary progressive multiple sclerosis and healthy controls. Brain flexibility also showed a 
different predictive power on clinical disability according to the multiple sclerosis type. For the first time, we investigated brain dy
namics in multiple sclerosis patients through high temporal resolution techniques, unveiling differences in brain flexibility according 
to the multiple sclerosis phenotype and its relationship with clinical disability.
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Graphical Abstract

Introduction
Multiple sclerosis (MS) is a chronic inflammatory disease of the 
central nervous system characterized by a complex association 
of both demyelination and diffuse neurodegeneration of the 
grey and white matter.1 MS occurs most often with a clinical 
phenotype characterized by a relapsing–remitting course 
(RRMS). However, around 50% of MS patients can evolve 
to a secondary progressive form (SPMS), and a minority may 
show worsening from the onset, the primary progressive form 

(PPMS).1,2 Recent studies support the idea that RRMS and 
SPMS are part of a disease continuum, in which the phase tran
sition is driven by the change in the balance between inflamma
tory and neurodegenerative mechanisms.3 The different clinical 
presentations, which are a consequence of distinct underlying 
pathophysiological mechanisms, may also explain the large 
variability of responses to the currently available immunosup
pressive and immunomodulatory treatments.1,3,4

MRI is currently established as a key diagnostic tool in 
MS5 due to its ability to detect the spatial and temporal 
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distribution of MS-associated lesions. Nevertheless, years of 
use of MRI have shown that only a small fraction of MS clin
ical features and outcomes can be explained by the lesion 
load. This mismatch is called the clinical–radiological para
dox and highlights our lack of understanding of this complex 
disease.6

Many functional MRI (fMRI) studies deployed neural net
work theory in the attempt to shed light on the functional ef
fects of the neuropathological processes that characterize the 
different clinical phenotypes. Taken together, these studies 
demonstrated relationships between changes in functional 
connectivity (FC) among specific brain regions and clinical 
features of the disease.7-9 However, these results were intern
ally inconsistent, as they often failed to replicate. For in
stance, some studies found that increased resting-state FC 
(RS-FC) of selected brain regions/networks was related to 
better cognitive performances,7,10 while others showed an 
increased RS-FC of the same regions/networks in cognitively 
impaired individuals.8,9

Potential explanations for these discrepancies include the 
temporal neuropathological evolution of the disease (i.e. dif
ferent studies were performed in different disease stages), its 
clinical heterogeneity, the methodological differences across 
fMRI studies and, finally, the intrinsic limitations of the 
fMRI, including its low temporal resolution. The low tem
poral resolution represents a weak point of the fMRI, be
cause the temporal smoothing induced by the slow 
haemodynamic response reduces the ability to evaluate brain 
reconfigurations at fast time scales. Conversely, magneto- 
and encephalography (MEG, EEG) provides a more direct 
assessment of the brain’s fast activities.11

Large-scale brain scans have been processed typically un
der the assumption of stationarity. However, now we know 
that RS-FC evolves over time in a non-linear fashion.12 In 
particular, brain activity is characterized by aperiodic, scale- 
free bursts of activity (i.e. neuronal avalanches) that inter
mittently interconnect brain regions13-15 and that account 
for most of the time-averaged FC.16 In particular, aperiodic 
bursts reconfigure over time, giving rise to rich, non- 
stereotyped dynamics. In fact, healthy brains constantly re
cruit different brain regions, generating a high number of 
patterns of activations. Thus, the number of such patterns re
presents a measure of brain flexibility dynamics, whose re
duction has been found to predict clinical impairment in 
multiple neurodegenerative diseases.17,18

Based on our previous observations about brain dynam
ics in neurodegenerative diseases such as probable 
Alzheimer’s disease,19 Parkinson’s disease17 and amyo
trophic lateral sclerosis,18 in the present work, we hypothe
size that MS could also be characterized by variations in 
brain flexibility, which would be related to, and predictive 
of, the subject-specific clinical impairment. We also won
dered whether the underlying disease mechanisms that 
characterize the two distinct forms of MS (relapsing–remit
ting and progressive) could reflect itself in different brain 
dynamics and if this difference could help in predicting clin
ical disability.

To test these hypotheses, we source-reconstructed MEG 
scans performed in 25 MS patients (10 RRMS and 15 
SPMS) and 25 healthy controls (HC). To estimate flexibility, 
we calculated the number of unique patterns of neuronal ava
lanches expressed in each MEG recording. Operationally, a 
neuronal avalanche is defined as an event starting when at 
least one brain region deviates from its baseline activity and 
ending when all regions return to their normal level of activity. 
An avalanche pattern is defined as the set of all the brain areas 
that were recruited at any moment during an avalanche. The 
functional repertoire is defined as the set of the unique pat
terns that occurred over time, and its size can be seen as a sur
rogate marker of brain flexibility. Finally, we implemented a 
multilinear regression model with ‘k-fold cross-validation’ to 
verify the ability of the size of the functional repertoire to pre
dict, at individual level, the clinical impairment assessed by the 
Expanded Disability Status Scale (EDSS).

Materials and methods
Participants
Twenty-five MS patients (7 males and 18 females) and 25 
age-, sex- and education-matched HC were recruited from 
1 April 2018 to 9 November 2018. MS was diagnosed in ac
cordance with the 2017 revision of the McDonald criteria.5

MS individuals were further classified in RRMS and SPMS. 
The eligibility of the patients was defined according to the 
following exclusion criteria: (i) use of illicit drugs, stimu
lants, amphetamines, barbiturates and cannabis; (ii) a his
tory of CNS disorder other than MS; (iii) severe mental 
illness; and (iv) other systemic disorders with possible sec
ondary involvement of the CNS.

MS patients underwent a clinical examination performed 
by an experienced neurologist. The EDSS20 was used to 
evaluate disease-related disability. Fatigue was assessed by 
the Fatigue Severity Scale (FSS),21 while neurocognitive func
tion was evaluated by the Symbol Digit Modalities Test 
(SDMT).22 Key symptoms of depression were studied 
through the Beck Depression Inventory (BDI) self-rated 
scale.23 The study protocol was approved by the Local 
Ethics Committee (ASL-NA1) with protocol number 
Prot.n.93C.E./Reg. n.14-17OSS. All procedures performed 
were in accordance with the ethical standards of the institu
tional research committee, and all participants provided 
written informed consent in accordance with the 
Declaration of Helsinki.

MEG and MRI acquisition, 
preprocessing, and source 
reconstruction
MRI and MEG acquisition, preprocessing, source recon
struction and connectivity estimation (Fig. 1A) have been 
performed according to our previous studies.24-29 In particu
lar, patients and HC underwent MRI recorded by a 1.5 T GE 
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Medical System (GE Healthcare, Milwaukee, MI, USA) 
scanner, obtaining T1-weighted images for MEG data core
gistration. Three-dimensional high-resolution T1-weighted 
(3D-T1) inversion recovery prepared fast spoiled gradient re
called sequence [IR-FSPGR, repetition time (TR) =  
8.216 ms, T1 = 450 ms, echo time (TE) = 3.08 ms, flip 
angle = 12, voxel size = 1 × 1 × 1.2 mm3) was acquired in 
23 out of 25 patients in order to extract volumetric data. 
The 3D images were processed on MATLAB version 
R2022a (The MathWorks, Natick, USA) using Statistical 
Parametric Mapping 12 (SPM12) (Wellcome Trust Centre 
for Neuroimaging, London, UK; www.fil.ion.ucl.ac.uk/ 
spm). Following lesion detection by the Lesion 
Segmentation Tool (https://www.applied-statistics.de/lst. 
html), lesions filling and brain segmentation into GM, WM 
and CSF has been performed through the segmentation 
tool provided by the Computational Anatomy Toolbox 12 
(CAT12). The Automated Anatomical Labelling (AAL) at
las30 has been then applied to normalized segmented brain 
tissue maps to extract volumetric information of regions of 
interest (ROIs) labelled according to the same atlas used in 
the MEG analysis (see below). To this end, normalization 
of the brains to the Montreal Neurological Institute (MNI) 
template space was performed using Diffeomorphic 
Anatomical Registration Through Exponentiated Lie alge
bra (DARTEL).31 The normalized images of each tissue 
were modulated in order to preserve regional and global vo
lumes. The volumes were exported for external statistical 
analysis on the RStudio platform (RStudio Team, 2021, 
Boston, MA; http://www.rstudio.com/).

Concerning the MEG acquisition, preprocessing and 
source reconstruction, data were acquired using a MEG sys
tem composed of 154 magnetometers Superconductive 
Quantum Interference Device (SQUID) and 9 reference sen
sors.32 The acquisition took place in a magnetically shielded 
room (ATB, Biomag, ULM, Germany) to reduce external 
noise. Two consecutive, resting-state, closed eyes, 3.5 min- 
long recordings, separated by a roughly 2 min-long break, 
were acquired. The length of the recording was a trade-off 
between the need to have enough cleaned temporal series 
and avoid drowsiness.33,34 ECG and electro-oculography 
(EOG) were also coregistered during the scan. Data 
were sampled at 1024 Hz after antialiasing filtering. 
Preprocessing and source reconstruction were performed 
by filtering the MEG data in the 0.5–48 Hz range by apply
ing a fourth-order Butterworth IIR band-pass filter using the 
FieldTrip toolbox in MATLAB.35 After that, a principal 
component analysis (PCA)36 was performed to orthogona
lize signals with respect to the reference signals to reduce en
vironmental noise. Independent component analysis (ICA)37

was used to remove any ECG and EOG artefacts. MEG data 
were coregistered with the native MR T1-weighted images of 
each subject. We extracted the time series of 116 
AAL-derived ROIs exploiting the volume conduction model 
introduced by Nolte38 and applying the linearly constrained 
minimum variance39 beamformer algorithm in the FieldTrip 
toolbox.35 Finally, we removed the cerebellar ROIs due to 

poor reliability. Hence, 90 ROIs were used for further ana
lyses. For one HC that refused to undergo MRI, a standard 
template was used to reconstruct the time series of specific 
ROIs.

Analysis of brain dynamics
Neuronal avalanches and branching parameter
To quantify the spatiotemporal fluctuations of brain activity, 
we estimate neuronal avalanches (Fig. 1B). A single neuronal 
avalanche is defined as an event starting with a fluctuation of 
the regional brain activity in at least one ROI and ending 
with the return of all the involved ROIs to their normal 
activity.40

Each of the source-reconstructed signals (derived from the 
90 ROIs) was Z-transformed and thresholded according to a 
cut-off of 3 SDs (i.e. z > |3|).17 A confirmation of the results’ 
independence from the chosen threshold was performed by 
changing the threshold from 2.5 to 3.5.

To capture the critical dynamics, we binned the time ser
ies17 by estimating the suitable time bin length by computing 
the branching ratio σ for each individual, for each avalanche 
and for each time bin duration.13 Specifically, the branching 
ratio was calculated as follows:

σi =
􏽙Nbin−1

j=1

nevents ( j + 1)
nevents (j)

􏼒 􏼓 1
Nbin−1 

where σ is the branching parameter of the i-th avalanche in 
the data set, Nbin is the total number of bins in the i-th ava
lanche and nevents j is the total number of events in the j-th 
bin. After that, we geometrically averaged the results over 
all avalanches as follows:

σ =
􏽙Naval

i=1

(σi)
1

Naval 

Critical processes are represented by σ = 1 that was present 
at bin length = 3. However, we repeated our analysis varying 
time bins from 1 to 5 and obtained similar results. Each ava
lanche had an avalanche pattern defined as the set of all ROIs 
that were above the threshold.

Functional repertoire
For each individual, we calculated the functional repertoire 
as the number of unique avalanche patterns expressed during 
the recording.17 Unique indicates that each avalanche pat
tern is counted only once over the extent of the functional 
repertoire (i.e. repetitions are discarded).

Multilinear regression analysis
Starting from the assumption that fluctuations in brain dy
namics could predict clinical impairment, we performed a 
multilinear regression model. The latter was performed by 
including a clinical feature (EDSS, FSS, SDMT, or BDI) as 
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a dependent variable and MS type and functional repertoire 
as independent variables. Multicollinearity was assessed 
through the variance inflation factor (VIF). To validate our 
approach, we performed k-fold cross-validation, with 
k = 5.41 Specifically, k iterations were performed to train 
our model and at each iteration, and the kth subgroup was 
used as a test set.

Statistical analysis
Statistical analysis was carried out in MATLAB 2021a and R 
Studio (http://www.rstudio.com/). A t-test and a χ2 were used 
to compare patients and controls for age, educational level 
and sex. A Wilcoxon rank sum test was used to compare 
HC and MS groups. The Kruskal–Wallis test was performed 
to compare HC, RRMS and SPMS groups. The results were 
corrected by the false discovery rate, and the significance le
vel was set at P-value < 0.05. The relationship between the 
size of the functional repertoire and the clinical scores was in
vestigated in the MS group using the Spearman’s correlation 
coefficient. The predictive power of the flexibility parameter 

on clinical features has been investigated through a multi
linear regression model.

Results
Cohort characteristics
Sociodemographic and clinical characteristics of our cohort 
(as also reported in Cipriano et al.24) are reported in 
Table 1 (and Supplementary Table 1).

Analysis of brain dynamics: the 
functional repertoire
The comparison between MS and HC showed a larger func
tional repertoire in MS patients (P = 0.006) (Fig. 2A). We 
also performed a Kruskal–Wallis test to evaluate differences 
in the size of the functional repertoire according to the MS 
clinical form (χ2(2) = 9.8, P = 0.007) (RRMS and SPMS). 
As shown in Fig. 2B, the difference in brain flexibility 

Figure 1 Pipeline overview and neuronal avalanche representation. (A: Ai) Registration of neuronal activity through MEG. (Aii) 
Cleaned sensor signals (without physiological artefacts) coregistered with structural MRI of each participant. (Aiii) Through a beamformer 
algorithm, the time series of the sources were estimated in ROIs within the brain according to a parcellation based on the AAL atlas. (B) The 
highlighted boxes represent the time frame in which a neuronal avalanche occurred. Specifically, the bold dots indicate the frame in which the time 
series was above threshold (Z-score > 3). In the bottom section of the panel, a schematic representation of a neuronal avalanche is depicted.
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between MS and HC was primarily driven by the RRMS pa
tients (P = 0.02).

Impairment prediction according to 
MS type
We performed a k-fold cross-validated multilinear regression 
analysis setting the clinical variables (FSS, EDSS, SDMT, 
BDI) as dependent variables and tried to predict them by 
the means of the size of the functional repertoire. We also in
cluded the MS phenotype as a further predictor and its inter
action with the size of the functional repertoire to account 
for a possible different behaviour in the relationship between 
the functional repertoire and the EDSS score. We obtained a 
significant regression model (F(3,21) = 3.61, P = 0.03) able 
to predict 34% of the EDSS variance, with a normalized 
root mean squared error of the prediction equal to 25%. 
The significant contribution was determined by the MS 
type and its interaction with the size of the functional reper
toire (beta coefficient = 0.461, P = 0.018, and beta coeffi
cient = −0.456, P = 0.0419, respectively) (Fig. 3A). The 
interaction effect between MS type and functional repertoire 
suggests that the MS type is worthy in obtaining a significant 
prediction. Indeed, when removing the interaction effect, the 
model was not predictive anymore, while the MS type only, 
as a categorical variable, was not enough to predict the EDSS 
score. Given the MS type relevance, we observed the com
parison between actual and predicted EDSS in each group 
separately (Fig. 3B). It can be noticed that while the predicted 
values of the RRMS group (yellow) showed a direct agree
ment with the actual values, this was not the case with the 
SPMS predictions (red). The distribution of the standardized 

residuals was then observed (Fig. 3C), and its absolute value 
was compared between RRMS and SPMS (Fig. 3D). The 
statistical comparison confirmed the higher error in the pre
diction of the EDSS of the SPMS group (P = 0.017). We 
found no significant results when trying to predict the FSS, 
the SDMT and the BDI.

The relationship highlighted by the regression model was 
confirmed through a Spearman correlation test, performed in 
each MS group, separately (Fig. 4). For SPMS patients, no 
significant relationship was found between dynamics and 
clinical features (r = −0.13, P = 0.64). Conversely, in 
RRMS subjects, the functional repertoire was significantly 
and positively related to the EDSS (r = 0.7, P = 0.024). 
Similar results were evident also with the other clinical char
acteristics, but again, only in the RRMS group. In particular, 
SDMT and BDI showed respectively a significant negative 
(r = −0.64, P = 0.044) and positive (r = 0.65, P = 0.049) 
correlation with the size of the functional repertoire. A trend 
towards a positive statistically significant correlation was 
found for the fatigue scale. No significant (or nearly signifi
cant) relationships between clinical data and brain flexibility 
were found in the SPMS group.

We also searched for a potential relationship between dis
ease duration and brain flexibility in SPMS, performing a 
Spearman’s correlation that showed a trend towards a nega
tive correlation between brain dynamics and disease dur
ation (r = −0.48, P = 0.067).

A multilinear model with the size of the functional reper
toire as the dependent variable; age, gender and education as 
covariates; and each ROI-specific volume as an independent 
variable has been built. The same model has been used by re
placing volume data with LL. In none of the performed 

Table 1 Sociodemographic and clinical characteristics of the cohort

Parameters MS patients (n = 25), mean (±SD) HC (n = 25), mean (±SD) P-values

Demographic data
Age 45.68 ± 9.47 45.8 ± 11.83 ns
Male/female 7/18 7/18 ns
Education (years) 13.36 ± 4.28 13.93 ± 3.91 ns

MS-specific clinical characteristics
RRMS SPMS

MS phenotype (n) 10 15
DD (months ± SD) 101.20 ± 75.61 221.27 ± 161.78 0.020
EDSS (mean) 3.75 5.10 ns
EDSS (range) 1.5–6 2.5–7
FSS (mean ± SD) 29.80 ± 13.54 42.80 ± 12.45 0.025
FSS (range) 9–49 19–59
BDI (mean ± SD) 11.70 ± 6.70 10.87 ± 10.11 ns
BDI (range) 0–19 0–36
SDMT (mean ± SD) 41.80 ± 13.93 35.00 ± 13.59 ns
SDMT (range) 15–59 11–58
LL 10.85 ± 17.14 19.55 ± 18.14 0.03
GM 666.07 ± 96.14 596.54 ± 72.30 ns
WM 346.56 ± 54.04 330.66 ± 70.84 ns

P-value from Wilcoxon–Mann–Whitney or Student’s t-test, according to the sample data distribution checked with the Kolmogorov–Smirnov test. No significant difference in age, 
gender and education was found between the two groups. BDI, Beck Depression Inventory; DD, disease duration; EDSS, Expanded Disability Status Scale; FSS, Fatigue Severity Scale; 
GM, grey matter; HC, healthy controls; LL, lesion load; MS, multiple sclerosis; RRMS, relapsing–remitting MS; SDMT, Symbol Digit Modalities Test; SPMS, secondary progressive MS; 
WM, white matter. ROI volumes in the SPMS group were available only for 13 patients. Volumes of each ROI are provided in the supplementary materials (Supplementary Table 1). 
Volumes are defined in mL.
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models, either LL or volumes had a significant impact on the 
number of unique brain reconfigurations.

Comparable analyses were performed using clinical mar
kers of active disease (e.g. 2 years with no evidence of disease 
activity NEDA and the number of clinical relapses) without 
finding any statistically significant impact of disease activity 
on the size of the functional repertoire.

We also assessed the impact of the EDSS nonlinearity on 
our results. To study weather this nonlinearity affects the 
prediction model and if the relationship between EDSS and 
functional repertoire was also valid in both lower disability 
and higher disability, we split the sample into two smaller 
ones according to the EDSS cut-off of 6. In the cohort with 
EDSS ≤ 6, we performed a Spearman’s test according to the 
MS type. A positive correlation was evident in RRMS 
(P-value = 0.02), whereas no relationship was found in the 
SPMS (r = 0.3, P-value = 0.4). In the sample with EDSS 
over 6, composed only of SPMS patients, the absence of a re
lationship between the functional repertoire size and the 
EDSS was confirmed. To assess again whether these differ
ences were valid for both lower and higher disability (and 
not dependent on the particular cut-off value we chose), 
we also divided the cohort according to the median EDSS va
lue. In both the samples (under and over EDSS of 4.5), we 
found the same behaviour previously found in the non-split 
cohort but this time without reaching statistical significance 
(Supplementary Fig. 2).

Discussion
In the present study, we investigated the flexibility of the brain 
dynamics in MS and its relationship with the clinical pheno
types. In particular, following our previous studies carried 

out on neurodegenerative diseases, including amyotrophic 
lateral sclerosis,18 Alzheimer’s disease19 and Parkinson’s 
disease,17 where a reduction of the functional repertoire has 
been consistently found, we hypothesized that MS could ex
press different behaviours as a function of the prevalence of 
neuroinflammation or neurodegeneration. When we looked 
at the different MS clinical phenotypes, we found that the sig
nificant differences in the flexibility of the brain dynamics 
were mainly attributable to the RRMS phenotype. In particu
lar, RRMS patients showed a larger number of unique 
patterns when compared with HC, whereas the dynamics 
in SPMS patients did not differ significantly as compared 
with HC.

In the second part of our work, we searched for relation
ships between flexibility and MS clinical features. Even in 
this case, RRMS and SPMS behaved in two opposite ways. 
The size of the functional repertoire did not show significant 
predictive power on EDSS. Nevertheless, the interaction be
tween the size of the functional repertoire and MS phenotype 
showed significant predictive power. That is to say that brain 
dynamics show different predictive power according to the 
MS phenotype. In particular, brain dynamics positively cor
related with disability in RRMS patients without showing a 
significant relationship in SPMS patients. This means that 
only for the RRMS, the increased number of patterns was as
sociated with a worse clinical condition. Accordingly, in the 
RRMS group, a significant correlation between increased 
brain flexibility and other clinical signs such as depression 
and cognitive impairment (assessed by BDI and SDMT, re
spectively) was also found.

In our opinion, these results could hide two different ex
planations. On one hand, the observation that only RRMS 
patients showed larger functional repertoires as compared 
with HC (and not SPMS patients) could suggest that the 

Figure 2 Brain flexibility comparison. (A) Violin plots (HC in blue and individuals with MS in orange) of the number of unique avalanche 
patterns (i.e. functional repertoire). (B) Violin plots including MS type separation (RRMS in yellow and SPMS in red). The dots in the violins 
represent the size of the functional repertoire of each individual. The horizontal lines in the violins represent the mean value of each group. 
Significant P-values after t-test (A) and Kruskal–Wallis test (B), respectively: *P < 0.05, **P < 0.01, ***P < 0.001.
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increased number of reconfigurations observed in RRMS 
brain might represent a compensatory mechanism adopted 
by the nervous system in the early phase of disease to main
tain a proper functionality. On the other hand, the difference 
in brain dynamics between RRMS and HC could be due, at 

least partially, to the different pathophysiologies that charac
terizes RRMS and SPMS.

However, the results on the correlation between brain 
flexibility and clinical condition in RRMS subjects would 
seem to reject the compensatory hypothesis. In fact, when 

Figure 3 Clinical impairment prediction. Multilinear regression analysis with k-fold cross-validation was performed to verify the ability of the 
size of the functional repertoire to predict clinical impairment assessed by the EDSS. The clinical phenotype of MS was added as a predictor into 
the model (individually and as an interaction with the functional repertoire), to verify whether the prediction would depend upon the MS form 
(RRMS or SPMS). (A) Regression analysis data: F-test (F(3,21) = 3.61, P = 0.03) R2 = 0.34, normalized root mean square error (NRMSE) = 0.25; 
significant predictors in bold (MS type, β = 0.461, P = 0.018; MS type * functional repertoire, β = −0.456, P = 0.0419). (B) Scatter plot to compare 
actual EDSS values with the EDSS values predicted through cross-validation. Since the MS type and the interaction between the MS type and 
functional repertoire were significant, we used different colours to represent RRMS (yellow) and SPMS (red) and observe the predictions 
independently. (C) Scatter plot of the residual’s distribution. (D) Statistical comparison (permutation test with 10,000 iterations) between RRMS 
and SPMS absolute value of the residuals. Significant lower residuals indicate better prediction of the EDSS values of the RRMS group. 
*P-value < 0.05. Abbreviations: s.d., standard deviations.
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we performed statistical correlations between brain dynam
ics and clinical characteristics such as processing speed, de
pression, fatigue and disability, we found a positive 
relation between higher brain flexibility and worse clinical 
condition. All this seems to make a compensatory mechan
ism a less likely explanation unless the compensatory mech
anism is not efficient. On the contrary, the neuropathological 
differences between the two MS phenotypes could partly ex
plain the diversity in brain flexibility according to the clinical 
form of the disease. In fact, RRMS is a phenotype with pre
dominant neuroinflammation and demyelination, whereas 
neurodegeneration, independent from the inflammatory re
sponses, represents the main mechanism of SPMS disease 
progression.3,42 Hence, while the RRMS pathology is domi
nated by a peripheral immune response (brain parenchymal 
lymphocyte infiltration through a disrupted blood–brain 
barrier) that leads to the formation of new active lesions,43

progressive MS is characterized by subpial demyelinated 
lesions, with slow expansion of pre-existing white matter le
sions and, most importantly, diffuse grey matter neurode
generation.1 Speculatively, one can suppose that the 
coexistence of neuroinflammation and neurodegeneration 
could result in an unchanged level of overall flexibility in 
SPMS patients. In other words, the similar overall flexibility 
observed in SPMS with respect to HC may be the result of 
two concurrent mechanisms that affect the brain dynamics 
in opposite ways. One pattern would lead to more 

stereotyped brain dynamics, as previously found in neurode
generative diseases. A different effect, as seen in the predom
inantly focal inflammatory RRMS phenotype, would lead to 
increased heterogeneity of the repertoires. In other words, 
the disruption of the myelin sheath observed in RRMS would 
lead to a dysregulation of the overall dynamics, which would 
become less effectively controlled, resulting in more disor
dered dynamics and a higher number of states. Widespread 
degeneration, on the other hand, prevents the brain from ac
cessing certain configurations, which would result in an im
poverished repertoire. A comparable amount of both 
neurodegenerative and focal neuroinflammatory processes 
might contrast each other.40 According to this line of 
thought, we found a trend towards an inverse correlation be
tween the disease duration and the flexibility of the brain dy
namics in SPMS patients. That is to say, the more SPMS 
patients are close to the early phase of the disease (and, 
thus, the more similar they are to RRMS), the greater the 
flexibility of the brain dynamics, while longer disease dura
tions (with increased neurodegenerative load) correspond 
to impaired flexibility (Supplementary Fig. 1).

Nevertheless, the compensatory hypothesis should not be 
completely discarded because the possibility of a partial 
compensation remains viable. Hence, to better interpret 
and quantify the role of neuroinflammation and neurodegen
eration, as well as their impact on the brain dynamics, a lar
ger sample, assessing both neurodegenerative (e.g. 
neurofilament, Tau and p-Tau, and amyloid-β 40/42, in 
both plasma and CSF) and inflammatory (such as several im
mune mediators and cytokines) biomarkers, will be neces
sary in future studies.

Overall, our results are in line with the very recent studies 
that, through different neuroimaging techniques, investi
gated brain dynamics in MS. von Schwanenflug et al.44 con
ducted an fMRI study in a cohort of almost entirely RRMS 
subjects, showing an increased flexibility of brain dynamics 
in MS patients. Similarly, by means of fMRI, Broeders 
et al.45 evaluated the brain dynamics in a cohort consisting 
of around 80% RRMS subjects. They found a greater num
ber of brain network reconfigurations in patients with higher 
cognitive impairment. These results are in agreement with 
our findings that show a positive relationship between worse 
clinical condition and higher brain flexibility in RRMS 
subjects.

In addition, it is noteworthy that the fatigue burden was 
significantly different between RRMS and SPMS individuals, 
and the fact that this difference might have had a role in de
termining different dynamics between the two groups cannot 
be ruled out. Although the performed statistical analyses 
(above all the study of the interaction effect between FSS 
and MS type in predicting the size of the functional reper
toire) do not seem to support this option, wider samples 
are needed to explore this aspect extensively. The study of 
the relationship between fatigue and the number of dynamic 
brain reconfigurations may also help to expand our knowl
edge about the aetiology of fatigue. Based on the well-known 
double nature, degenerative and inflammatory,46 of fatigue, 

Figure 4 Correlation between EDSS and brain flexibility. 
Spearman correlation test between EDSS and functional repertoire 
was performed in RRMS and SPMS, separately. Significant 
correlation was found in the RRMS group only. For SPMS individuals 
(red points and line), no significant relationship was found between 
brain flexibility and EDSS (r = −0.13, P = 0.64). In RRMS subjects 
(yellow points and line), the functional repertoire was significantly 
and positively related to the EDSS (r = 0.7, P = 0.024).
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the positive relationship between FSS score and the number 
of unique brain reconfigurations in the RRMS and its ab
sence in SPMS could hint at a shift towards a more ‘atrophy- 
driven’ fatigue along with the disease progression.

Some limitations of the current work should be pointed 
out. First is the small sample size of the studied population. 
A second limitation is the absence of CSF/serum inflamma
tory biomarkers (or neuroinflammatory PET imaging bio
markers) to support the primary role of inflammation in 
affecting brain dynamics. An adjunctive weakness is the ab
sence of a follow-up of the RRMS patients to demonstrate a 
change of brain dynamics in case of disease conversion to the 
progressive form. Future longitudinal studies evaluating the 
brain flexibility changes across the disease progression (and 
conversion) will be mandatory to confirm our hypothesis.

To our knowledge, we are the first to investigate brain 
dynamics through high temporal resolution techniques 
(M/EEG) in both RRMS and SPMS patients. These findings 
support the key role of temporal dynamics in understanding 
the link between brain connectivity and clinical features, also 
unveiling different dynamical features according to the MS 
phenotype. Additionally, if the supposed link between brain 
dynamics, inflammation and clinical outcome will be con
firmed, this could allow monitoring in a minimal invasive 
and objective way (M/EEG analyses) the efficacy of MS 
immunotherapy.4,47,48
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