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bUniversité Cadi Ayyad, Faculté des Sciences Semlalia, EA2(SI), Marrakech Maroc.
cSyndicat interdépartemental pour l’assainissement de l’agglomération parisienne, 82 avenue Kléber, 92700 Colombes France.

Abstract

Biological wastewater treatment processes are essential in the sustainable management of water resources, offering
an efficient method for removing contaminants and pollutants, such as ammonium, from wastewater to protect both
public health and the environment. Among various treatment methods, submerged aerated biofilters stand out for their
efficiency in converting high ammonium concentrations into nitrate. This process stimulates the growth of specific
microorganisms on filtering materials, aiding in efficient pollutant conversion.

However, the complexity of biological wastewater treatment processes presents significant modeling challenges, es-
pecially under varying operational conditions. Linear Parameter-Varying (LPV) models have emerged as a promising
solution to accurately represent these nonlinear systems. Despite their potential, constructing LPV models remains
complex, especially for intricate biological treatment processes like wastewater treatment.

This paper presents a novel methodology within the global approach framework for estimating continuous-time
LPV models. The proposed approach addresses the challenge of initializing iterative procedures due to the lack of
prior knowledge about LPV model parameters. By extending the reinitialized partial moment approach to LPV mod-
els, the methodology provides an effective pre-estimate for initializing parameter estimation algorithms. Validation of
the proposed methodology through simulation examples establishes a robust foundation for extending the approach to
real-world applications, such as estimating LPV models for the nitrification process in wastewater treatment plants.

Keywords: Biofiltration, global approach estimation, instrumental variable, LPV models, nitrification, output-error
algorithm, reinitialized partial moment, wastewater treatment

1. Introduction

In nitrification processes, biological wastewater treat-
ment plants need to run continuously to meet strict envi-
ronmental regulations and deal with varying flows and
pollutant concentrations. One of the goals of these pro-
cesses is to reduce ammonium levels in treated water.
A good solution for this is using submerged aerated
biofilters. A key advantage of this technology is the
high yield/footprint ratio. This process allows the ef-
ficient conversion of high fluxes of ammonium into ni-
trate thanks to microbial metabolism and growth on the
filtering media (Payraudeau et al., 2000; Canler et al.,
2003). Implementing such methods not only ensures
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compliance with regulations but also promotes sustain-
able water management, which is crucial for protecting
the environment.

Nitrification processes can be designed by us-
ing dynamic mathematical models. Considering the
strong nonlinearity of these processes, linear parameter-
varying (LPV) models are a promising option. LPV
models, characterized by dynamics that vary with the
operating point (Lee and Poolla, 1999; Verdult and Ver-
haegen, 2005; Toth, 2008; Laurain et al., 2010), offer
high precision in approximating nonlinear systems with
lower order compared to linear model approximations.
Nonetheless, constructing an LPV model for a specific
nonlinear plant remains a significant challenge. The ex-
isting LPV identification approaches predominantly op-
erate within discrete-time frameworks, typically assum-
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ing a dependence only on the instantaneous value of the
scheduling variable. These methods are distinguished
by the type of LPV model structure employed, such
as Input-Output (Bamieh and Giarré (2002); Wei and
Del Re (2006); Giarré et al. (2006)), State space (Lee
and Poolla (1999); van Wingerden et al. (2007); Felici
et al. (2007); Lovera and Mercère (2007)), or models
based on orthogonal basis functions (Toth, 2008).

In the literature, two primary approaches are recog-
nized for the identification of LPV models. The first
approach is the global approach, which operates on the
assumption that a global identification experiment can
be conducted, effectively stimulating all nonlinearities
of the system while persistently altering the system dy-
namics through scheduling variable changes (Lee and
Poolla, 1999; Bamieh and Giarré, 2002; Verdult and
Verhaegen, 2005; Giarré et al., 2006; Felici et al., 2007;
van Wingerden et al., 2007; Toth, 2008; Laurain et al.,
2010; Chouaba et al., 2011). The second approach,
the local approach, relies on interpolating local linear
time-invariant models corresponding to fixed operating
points of the system, i.e. for constant values of the
scheduling variables (Steinbuch et al., 2003; Lovera and
Mercère, 2007; De Caigny et al., 2009; Mercère et al.,
2011).

This paper introduces a methodology within the
framework of the global approach for estimating a
continuous-time LPV model which is more realistic
for the considered nitrification application in terms of
experimental measurements. Output-error algorithms
serve as efficient tools in this context. However, these
iterative procedures, based on nonlinear optimizations,
require an initial parameter vector. Given the difficulty
to have a priori knowledge about parameters in LPV
models, initializing these algorithms poses a significant
challenge. Inadequate initialization can result in conver-
gence towards a local optimum or divergence of the op-
timization algorithm. To address this issue, we propose
a novel equation-error estimate, derived from extend-
ing the reinitialized partial moment approach to LPV
models (Ouvrard and Trigeassou, 2011; Ouvrard et al.,
2024), which provides a pre-estimate serving as the ini-
tial parameter vector.

The paper is organized as follows. The biofiltration
process, the considered application and the LPV frame-
work are presented in Sections 2 and 3. The proposed
methodology is described in Section 4 for the parame-
ters estimation. Then, an initial objective is to validate
our proposed approach by applying it to a simulation
example in Section 5. In this simulation context, the
proposed output-error algorithm is compared with an in-
strumental variable approach. Following this validation

step, we intend to apply in Section 6 our methodology
to estimate an LPV model for the nitrification process
of the Seine Aval wastewater plant, with the perspective
of optimizing this process.

2. The biofiltration process

2.1. Plant description

The SIAAP (Syndicat Interdépartemental pour
l’Assainissement de l’Agglomération Parisienne (Inter-
departmental Syndicate for the Sanitation of Greater
Paris)) treats the wastewater of almost 9 million peo-
ple living in Paris metropolitan area (France), as well as
rainwater and water polluted by industry.

The Seine Aval wastewater treatment plant, located
in Achères (Yvelines, France), has been studied within
the scope of this project. This facility, covering an
area of 600 hectares, processes daily 1,500,000 m3 of
wastewater, discharging it into the Seine River. Its wa-
ter treatment process begins with a pretreatment phase,
a physical process aiming at removing the largest ma-
terials from the effluent including various units in the
installation such as grit removal, degreasing and de-
oiling. This is followed by a primary treatment phase,
which separates suspended solids and floatable mate-
rials via sedimentation, consequently reducing chemi-
cal/biochemical oxygen demand and phosphate (Rich,
1961). The process continues with a secondary treat-
ment phase, which employs biological methods to elim-
inate mostly dissolved pollutants such as organic com-
pounds (represented as biological oxygen demand) or
ammonium from wastewater post-primary treatment.
Processes like activated sludge use suspended bacterial
growth, while fixed culture methods, like biofiltration
process, utilize surfaces for microbial attachment, en-
hancing treatment efficiency and low footprint. The fol-
lowing section provides an in-depth explanation of the
biofiltration process.

2.2. Biofiltration process

Biofiltration is a fixed-bed culture process that can be
employed for secondary biological treatment (Stensel
and Reiber, 1983). The biofiltration process is carried
out with the biological reactors also known as biofil-
ters (BAF, Biological Aerated Filter or Biological Ac-
tive Filter). They facilitate both biological treatment and
a certain level of liquid-solid separation within a sin-
gle reactor. A biofilter comprises a column filled with
granular filter media colonized by purifying biomasses
(Rocher et al., 2008). As wastewater passes through the
filter media, organic matter and nutrients are degraded
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by the biomasses, while particles are trapped within the
media. Typically, the height of filter media (media bed)
used in biofilters ranges between 2 and 4 m (Stensel
et al., 1988; Pujol et al., 1992). The media, having a
diameter between 2 and 5 mm (Metcalf & Eddy et al.,
2003), can be fabricated from various materials (clay,
pumice, polystyrene, etc.). Based on their density, me-
dia can be classified as ”heavy” media, which have a
density greater than that of water, and floating media,
which are less dense than water. This media categoriza-
tion influences the choice of water feed configuration.
A biofilter filled with ”heavy” media can be fed with
either downward or upward flow, whereas a biofilter us-
ing floating media can only operate with upward flow
(Mendoza-Espinosa and Stephenson, 1999). Presently,
the majority of biofilters are fed with upward flow, al-
lowing them to handle higher influent flow rates (Rocher
et al., 2008).

Several companies have developed various technolo-
gies of biofilters applied to wastewater treatment. In
the Seine Aval wastewater treatment plant, there are 58
pre-denitrifying biofilters, 84 nitrifying biofilters, and
12 post-denitrifying biofilters.

2.3. Nitrification

The nitrification unit studied in this work is divided
into three blocks of 28 biofilters (Biostyr), each block
comprising two sets of 14 biofilters. Each Biostyr filter
has an area of 173 m2 and is filled with 3.5 m of fil-
tering material. The filter media consists of expanded
polystyrene beads with an average diameter of 4 mm
(biostyrene).

Nitrification involves the biochemical conversion of
ammoniacal nitrogen (NH+4 ) into nitrate (NO−3 ), requir-
ing a sufficient concentration of dissolved oxygen.

This conversion is carried out by two types
of autotrophic bacteria: ammonium-oxidizing bac-
teria (AOB) and nitrite-oxidizing bacteria (NOB).
Ammonium-oxidizing bacteria oxidize NH+4 as an en-
ergy source and utilize CO2 as a carbon source for their
growth. During the metabolism of nitrite-oxidizing bac-
teria, ammoniacal nitrogen is oxidized to nitrite. Nitrite-
oxidizing bacteria further oxidize nitrite to nitrate, using
the nitrite produced by ammonium-oxidizing bacteria as
an energy source, while also utilizing CO2 as a carbon
source (Henze et al., 2008). The two basic reactions for
nitrification are the following (Henze et al., 2008)

NH+4 + 3/2 O2 → NO−2 + H2O + 2H+, (1)

NO−2 + 1/2 O2 → NO−3 . (2)

During this process, protons (H+) are produced, con-
suming the alkalinity of the medium. This consumption
of alkalinity can subsequently impact the nitrification
rate, as the process is significantly slowed when the pH
of the medium drops below 7 (Metcalf & Eddy et al.,
2014). Maintaining an optimal pH is therefore essential
to ensure efficient nitrification, as acidic conditions can
inhibit the activity of both AOB and NOB communities.

In addition to pH, the availability of dissolved oxy-
gen is another crucial factor affecting nitrification. As
nitrifying bacteria are aerobic, they depend on suffi-
cient oxygen levels for energy production and growth.
In aerobic biological reactors, these autotrophic nitri-
fying bacteria must compete with heterotrophic bacte-
ria for available dissolved oxygen. Heterotrophs, which
break down organic compounds in the wastewater, often
consume oxygen more quickly than autotrophs, creat-
ing a competitive environment that can limit nitrification
rates, especially under high organic loading conditions
(Zhu, 2020).

In the literature, several models, such as the Activated
Sludge Model No. 1 (ASM1) (Henze et al., 1987), pro-
vide a detailed, mechanistic representation of nitrogen
transformations during the nitrification process, mak-
ing it valuable for biochemical analysis. However, from
a control point of view, these mechanistic models are
too complex for the synthesis of control laws. We have
therefore chosen to use an input-output model capable
of capturing the main dynamics and non-linearities. To
this end, we have chosen to use an LPV model as de-
scribed in the next section.

2.4. The input-output considered model

In this paper, we aim to characterize the nitrifica-
tion process as a continuous-time SISO system, where
the air flow rate Qair is designated as the input, while
the ammonium concentration at the process output Cout

serves as the system output.
To effectively control ammonia removal, it is essen-

tial to establish a sufficiently accurate model for the ni-
trification system (Figure 1). Based on various experi-
mental tests, it has been observed that the transfer func-
tion Cout/Qair is nonlinear and dependent on the oper-
ating conditions specified by the water flow rate Qwater,
the ammonium concentration at the process entrance Cin

and the air flow rate Qair. Hence, we opt to model the
transfer function Cout/Qair using an LPV model, with
Qwater, Cin and Qair as scheduling variables. Unlike a
mechanistic model, this LPV model is a blackbox struc-
ture well-suited to capture the nonlinear dynamics. In
this way, the nitrification process is approximated with

3



a varying linear representation with the operating con-
ditions. In addition to providing an input-output repre-
sentation of the system over its operating range, these
models are widely used in the development of advanced
control strategies.

-

-

-

-Nitrification process

Qair

Qwater

Cin

Cout

Figure 1: Input-output representation of the nitrification process

3. System and continuous-time LPV model

Toth (2010) proposes various formulations for the
discrete-time or continuous-time LPV systems. In this
paper, we consider the input-output representation of
continuous-time SISO LPV systems with order na also
described in (Laurain et al., 2011). In such a case, the
na-th derivative of the true system output y0(t) can be
defined by

y(na)
0 (t) = −

na−1∑
i=0

ai(ρ)y
(i)
0 (t) +

nb∑
i=0

bi(ρ)u(i)(t), (3)

with na ≥ nb and ρ = ρ(t), the scheduling variable
bounded to the operating domain. Let us assume that the
scheduling variable ρ(t) and its derivatives are known,
measurable or computable. The varying parameters
ai(ρ) and bi(ρ) are assumed to be meromorphic func-
tions1 of the scheduling variable ρ(t) with no singularity
on the considered domain. These parameters are defined
with the following structure

ai(ρ) = a0
i +

r f∑
ℓ=1

aℓi fℓ(ρ),

bi(ρ) = b0
i +

rg∑
ℓ=1

bℓi gℓ(ρ).
(4)

fℓ(ρ) and gℓ(ρ) are assumed to be functions with a static
dependence of ρ(t), i.e. no derivative of ρ(t). The values
of these functions can be calculated directly from ρ(t)
or via a mathematical function.

The considered system is assumed to be globally
bounded-input/bounded-output stable for all trajecto-
ries ρ(t). The signals u(t) and ρ(t) are known at sam-
pled instants with a sampling period ∆t, and y(t) is

1A function g is meromorphic if g = h/q where h and q are holo-
morphic (analytic) functions and q is not null.

the measurement of the true output y0(t) with an ad-
ditive zero-mean disturbance v(t) at the same instants,
i.e. y(k∆t) = y0(k∆t) + v(k∆t). The disturbance v(t) is
supposed to be uncorrelated with signals u(t) and ρ(t).

4. The methodology for parametric estimation

4.1. Problem statement
By assuming known na, nb, r f and rg, the goal is to

estimate the constant parameter set{
aℓi

}ℓ=0,··· ,r f

i=0,··· ,na−1
,

{
bℓi

}ℓ=0,··· ,rg

i=0,··· ,nb
, (5)

from the data set {u(k∆t), y(k∆t), ρ(k∆t) }k=0,··· ,Nt
.

Let us define the quadratic criterion

J =
1

Nt + 1

Nt∑
k=0

∥y(k∆t) − ŷ(k∆t, θ)∥22, (6)

where ŷ(k∆t, θ) is the response corresponding to the
continuous-time LPV model for the input u(k∆t) and the
scheduling variable ρ(k∆t), with the parameter vector to
be identified

θ = [a0
0, . . . , a

r f

0 , . . . , a
0
na−1, . . . , a

r f

na−1,

b0
0, . . . , b

rg

0 , . . . , b
0
nb
, . . . , brg

nb ]⊤
(7)

of size Nθ = na r f + (nb + 1) rg.

4.2. Continuous-time LPV reinitialized partial
moment-based model

The main problem with the direct continuous-time
system identification is to approximate the unmeasur-
able input-output derivates, i.e. y(i)

0 (t) and u(i)(t) with
i > 0 in (3). Ouvrard and Trigeassou (2011) (see also
Ouvrard et al. (2024)) have shown that, by applying in-
tegrals and more specifically partial moments to an or-
dinary differential equation (ODE), it is possible to re-
move all derivatives and to formulate the ODE output in
a linear regression form. Moreover, they prove that the
ODE output can be represented by an embedded finite
impulse response (FIR) filter models by introducing the
na-th order reinitialized partial moment filter defined by

mna (t) =


(T̂ − t)na tna−1

(na − 1)!T̂ na
, for t ∈ [0, T̂ ],

0 elsewhere,
(8)

where T̂ is the design parameter called the reinitializa-
tion parameter. T̂ is the width of the sliding interval
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of integration of the partial moments to preserve the
minimum variance property of the model at each time t
(see Ouvrard and Trigeassou (2011) and Ouvrard et al.
(2024) for more details).

The aim of the present section is to extend the reinial-
ized partial moment (RPM) approach and to define the
continuous-time LPV RPM-based model. To do this,
let us calculate the convolution product mna (t) ∗ (3). By
considering the property given by

m(i)
na

(t) ∗ ( fℓ(ρ)y0(t)) = mna (t) ∗ ( fℓ(ρ)y0(t))(i)

= mna (t) ∗
i∑

k=0

(
i
k

)
( fℓ(ρ))(i−k) y(k)

0 (t)
, (9)

with the binomial coefficients(
i
k

)
=

i!
k!(i − k)!

, (10)

and noting that

mna (t) ∗ y(na)
0 (t) = m(na)

na
(t) ∗ y0(t)

= y0(t) −
(
δ(t) − m(na)

na
(t)

)
∗ y0(t)

, (11)

where δ(t) is the Dirac function, it is possible to rewrite
this convolution product with the following linear re-
gression formulation

y0(t) = φ⊤(t)θ +
(
δ(t) − m(na)

na
(t)

)
∗ y0(t), (12)

where

φ(t) =



...
i∑

k=0

(−1)k+1m(i−k)
na

(t) ∗
(

i
k

)
F(k)(t)y0(t)

...
j∑

k=0

(−1)km( j−k)
na (t) ∗

(
j
k

)
G(k)(t)u(t)

...


,

(13)
with i = 0 . . . na − 1, j = 0 . . . nb,

F(t) =
[

1 f1(ρ) . . . fr f (ρ)
]⊤

and

G(t) =
[

1 g1(ρ) . . . grg (ρ)
]⊤
.

The linear regression (12) can be reformulated as fol-
lows

y0(t) = φ⊤(t)θ + γy0 (t), (14)

where

φ(t) =



...
i∑

k=0

(−1)kα
zi

k
i−k(t)

...
j∑

k=0

(−1)kβ
w j

k
j−k(t)

...


, (15)

and zi
k(t) and w j

k(t) are signal vectors defined by

zi
k(t) =

(
i
k

)
F(k)(t)y0(t),

w j
k(t) =

(
j
k

)
G(k)(t)u(t),

(16)

with i = 0 . . . na − 1, j = 0 . . . nb,

β
g
i (t) = m(i)

na
(t) ∗ g(t),

α
g
i (t) = −m(i)

na
(t) ∗ g(t),

γy0 (t) =
(
δ(t) − m(na)

na
(t)

)
∗ y0(t).

(17)

In practice, we must consider the measurement y(t)
of the true output y0(t) in the above formulation. There-
fore, let us define the output of the continuous-time LPV
RPM-based model

y(t, θ̂RPM) = ϕ⊤(t)̂θRPM + γy(t), (18)

where ϕ(t) is given by φ(t) defined in (15) by substitut-
ing y0(t) for y(t), and

θ̂RPM = [â0
0, . . . , â

r f

0 , . . . , â
0
na−1, . . . , â

r f

na−1,

b̂0
0, . . . , b̂

rg

0 , . . . , b̂
0
nb
, . . . , b̂rg

nb ]⊤

(19)
is the estimated parameter vector.

4.3. The parameter estimators

4.3.1. The least-squares estimate
Considering the measured data set

{u(k∆t), y(k∆t), ρ(k∆t)}k=0,··· ,Nt
, the least-squares

estimate is given by

θ̂RPM = [
Nt∑

k=T̂

ϕ(k∆t)ϕ⊤(k∆t)]−1

Nt∑
k=T̂

ϕ(k∆t)(y(k∆t) − γy(k∆t)),

(20)
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where T̂ = T̂∆t is the design parameter, i.e the reinitial-
ization parameter.

Details how to choose T̂ and to implement the RPM
approach are given in (Ouvrard and Trigeassou, 2011;
Ouvrard et al., 2024). The presence of the noisy out-
put in the regresssor ϕ(t) leads to a bias in the estimate
θ̂RPM . There are several ways to reduce the bias of the
Least Squares estimation. To stay with an equation-
error approach, the use of an instrumental variable re-
duces the bias. A second solution is to initialize an
output error approach with the Least Squares estimate.
In this work, we have opted for the output error ap-
proach. To demonstrate the relevance of this choice, we
have carried out stochastic simulations comparing the
results obtained by implementing an instrumental vari-
able with those obtained with output error. Before pre-
senting these results in Section 5, we recall the principle
behind these two approaches.

4.3.2. The instrumental variable approach
The Instrumental Variable (IV) approach is widely

applied to reduce estimation bias caused by mea-
surement noise in system identification (Young, 1970;
Söderström and Stoica, 1983), especially for LPV mod-
els estimation (Tóth et al., 2012). By introducing an
auxiliary model that serves as an instrument, uncorre-
lated with noise yet correlated with the system’s dy-
namic variables, the IV effectively reduces the effect of
noise on parameter estimates (Ouvrard and Trigeassou,
2011; Ouvrard et al., 2024).

Therefore, to eliminate the bias on θ̂RPM , we use an
iterative IV approach initialized with the reinitialized
partial moment-based model (RPM) estimate θ̂RPM . In
this process, we iteratively update an estimation vector,
θ̂IV

iter, starting from θ̂IV
0 = θ̂RPM . At each iteration, we

calculate an instrument denoted ŷ(t, θ̂IV
iter), which is in-

dependent of the noise v(t) and derived from simulating
the LPV system (Equation 3) using the parameter vector
θ̂IV

iter−1 obtained at the previous iteration and the follow-
ing vector

ψ(t) =



...

i∑
k=0

(−1)kα

 i
k

F(k)̂y

i−k (t)

...

j∑
k=0

(−1)kβ

 j
k

G(k)u

j−k (t)

...



. (21)

A new parameter vector can be estimated as follows

θ̂IV
iter = [

Nt∑
k=T̂

ψ(k∆t)ϕ⊤(k∆t)]−1

Nt∑
k=T̂

ψ(k∆t)(y(k∆t) − γy(k∆t)).

(22)

This iterative procedure is repeated four or five times
as recommended in (Ouvrard et al., 2024)).

4.3.3. An initialization for an output-error algorithm
The Levenberg-Marquardt algorithm (Nocedal and

Wright, 2006) is an output-error algorithm which is
asymptotically unbiased. The main difficulty is the pos-
sible convergence towards local minima of the criterion
(6). Facing this problem, an alternative is to initialize
the iterative procedure close to the optimal parameter
vector.

Let us consider the Levenberg-Marquardt algorithm
implemented as follows

θ̂OE
iter+1 = θ̂

OE
iter −

{(
J′′θθ + µINθ×Nθ

)−1 J′θ
}
θ=θ̂OE

iter
, (23)

with µ, a tuning parameter, INθ×Nθ , an identity matrix,
and the gradient and the pseudo-Hessian respectively
defined by

J′θ =
−2

Nt + 1

Nt∑
k=0

(y(k∆t) − ŷ(k∆t, θ))σ(k∆t, θ),

J′′θθ ≈
2

Nt + 1

Nt∑
k=0

σ(k∆t, θ)σ⊤(k∆t, θ),

(24)

where σ(t, θ) =
[
. . . , σaℓj

(t), . . . , σbℓj
(t), . . .

]⊤
is the vec-

tor of the sensitivity functions deduced from ∂̂y(t,θ)
∂θ . The

model output ŷ(t, θ) is obtained by the simulation of (3)
with the estimated parameter θ̂OE

iter. The sensitivity func-
tions are simulated similarly as follows

σ(na)
aℓj

(t) = −
na−1∑
i=0

ai(ρ)σ
(i)
aℓj

(t) − fℓ(ρ)̂y( j)(t, θ), (25)

σ(na)
bℓj

(t) = −
na−1∑
i=0

ai(ρ)σ
(i)
bℓj

(t) + gℓ(ρ)u( j)(t), (26)

with f0(ρ) = 1 and g0(ρ) = 1.

θ̂RPM , obtained with equation (20), is a good initial-
ization for θ̂OE

0 of the iterative procedure (23).
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5. Simulation example

Before applying the proposed approach to the nitri-
fication process, we will first test it on a simplified nu-
merical example with a system structure similar to that
used in the nitrification model. The purpose of this ex-
ample is to validate our algorithms within a framework
that employs the same LPV model structure and param-
eter configuration as the nitrification process. This en-
sures that the equations and methods we use in the ex-
ample are directly applicable to the nitrification process,
demonstrating the relevance and effectiveness of the ap-
proach in real-world scenarios.

5.1. The true system

Consider a continuous-time SISO LPV system de-
scribed as follows

y(1)
0 (t) = −a0y0(t) + b0u(t) + b1u(1)(t). (27)

Here, the coefficients depend on scheduling variables
ρ1, ρ2, and ρ3 through polynomial functions

a0 = 1 + 3ρ1(t) + 2ρ2(t) − ρ3(t),
b0 = 1 − ρ1(t) − 2ρ2(t) − 0.5ρ3(t),
b1 = 1 + ρ1(t) + ρ2(t) + 2ρ3(t).

(28)

The continuous-time noise-free output y0(t) is sam-
pled with a period of ∆t = 0.1s and a total length of Nt =

1000. The initial condition for y0(t) is y0(0) = −5.45.
A zero-mean white noise, denoted as v(k∆t), added to
the output samples, with a specified signal-to-noise ra-
tio (S NR). The input signal is a pseudo-random binary
sequence. The sequence was generated with pulse dura-
tions ranging from 5 to 30 sampling periods, alternating
between two amplitude levels with -5 and 5. The noise-
free scheduling signals are defined by

ρ1(t) = 0.3 sin(0.2t) − 0.01t − 0.01,
ρ2(t) = 0.03t − 0.1,
ρ3(t) = 0.2 sin(0.5t) − 0.01t + 0.1.

(29)

These signals along with the corresponding output
y0(t) are visualized in Figure 2. The parameter varia-
tions are illustrated in Figure 3.

5.2. Monte Carlo simulation

A Monte Carlo simulation is executed to demon-
strate the performance of the approach, comprising
nruns = 100 with the design parameter T̂ = 2 s. This
design parameter is chosen in relation to the main time
constant as presented in (Ouvrard et al., 2024). The sim-
ulation is carried out for three different SNR: 10 dB,
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Figure 2: The simulated data set

20 dB, and 30 dB. These SNR values are selected to
represent high, medium, and low levels of noise, re-
spectively, allowing us to evaluate the robustness of the
proposed estimation method under various noise condi-
tions.

We shall compare the three estimators outlined in
Subsection 4.3 using the fitting percentage (FIT ) and
the normalized root mean square error (RMS E), which
are defined as follows

FIT = 100 ×
(
1 −

∥y0(t) − ŷ(t)∥
∥y0(t) − mean(y0(t))∥

)
(30)

and

RMS E =

√√√
1

nruns

nruns∑
i=1

θ0j − θ̂ j(i)

θ0j


2

, (31)

with θ0j the j-th parameter of θ and θ̂ j(i) the j-th param-

eter of θ̂RPM estimated with the i-th run.
Figure 4 illustrates a comparison between the true

system output y0(t) and the outputs generated by three
different parametric estimation methods: RPM, IV and
OE. This comparison is based on a single realization
out of 100 Monte Carlo runs for different SNR values.
The OE method consistently shows the highest fit per-
centage (98.16%, 97.5%, and 96.04% for 30 dB, 20 dB,
and 10 dB, respectively), followed by the IV method,
which achieves 94.2%, 93%, and 92.17% across the
same SNR levels. RPM ranks slightly lower with fit per-
centages of 92.9%, 91.4%, and 89.94%. In error analy-
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Figure 3: The parameter variations with ρ1(t), ρ2(t) and ρ3(t)

sis, OE demonstrates the lowest error variance, indicat-
ing strong robustness to noise. The IV method shows
moderate error variance, compared to RPM, that shows
the largest error spread, suggesting greater sensitivity to
noise.

The results of the Monte Carlo study are presented
in Figures 5 to 7 and Tables 1 to 4 for various signal-
to-noise ratios. When the noise level is low (refer to
Figure 5 and Table 1), the least-squares estimates θ̂RPM

are good. However, with a high noise level (refer to
Figure 7 and Table 3), a significant bias is observed in
the least-squares estimates θ̂RPM . This bias can be re-
duced by either employing IV techniques or initializ-
ing the output-error algorithm. While the IV approach
provides reliable estimates under different noise condi-
tions, the OE algorithm demonstrated superior conver-
gence properties and overall accuracy in identifying the
LPV model parameters.

This study shows that an identification strategy cou-
pling reinitialized partial moments and the Levenberg-
Marquardt algorithm yields best estimates. After thor-
ough validation of the proposed methodology using
Monte Carlo simulation, this strategy will be applied in
the next section to a practical nitrification process.

6. Application to the nitrification process: A case
study

Let us consider the parametric estimation of an LPV
model using the Levenberg-Marquardt algorithm to rep-

resent the nitrification process described in Subsection
2.4.

6.1. LPV model structure of the process

To evaluate the economical and environmental im-
pacts of their processes, the SIAAP has developed a
simulation software named SimBio to represent the
Seine Aval biofiltration processes (Bernier et al., 2014;
Rocher et al., 2014a,b). Based on this simulator, a pre-
liminary study was carried out to analyze the process
nonlinearities and to select an appropriate LPV model
structure (Boutourda et al., 2024). Thus, multiple simu-
lations have been conducted using small magnitudes of
Qair for various operating points. Figure 8 shows one
example of simulation for one operating point: Cin =

22 mgN/L, Qwater = 3 ∗ 104 m3/d and Qair varying
around 7 ∗ 104 Nm3/d (Note that the oscillations visi-
ble in the quasi-permanent regimes of Cout are linked to
the daily washing of the biofilters). These experiments
have revealed two distinct dynamics that we aim to cap-
ture within the LPV model framework: a fast dynamic
(lasting a few minutes), which can be adequately mod-
eled with a direct transfer function and a delay of one
sampling time between Qair and Cout, and a slow dy-
namic (spanning a few days). Therefore, we have opted
for the following LPV model structure :

Cout(s)
Qair(s)

= (K0 +
K1

1 + τs
)e−∆ts =

b0 + b1s
a0 + s

e−∆ts, (32)

with parameters b0, b1 and a0 depending on schedul-
ing variables Qair, Qwater and Cin. This LPV model is a
behavioral model and the parameters K0, K1, τ, a0, a1
and b1 used in the model do not have a direct physical
significance.

Various polynomial orders have been examined for
the varying parameters and compared in terms of fit-
ting percentage. Hence, a first order was selected, which
represents a good compromise between model complex-
ity and model response accuracy. Then, a0, b0 and b1 are
defined as follows

a0 = a0
0 + a1

0Qair + a2
0Qwater + a3

0Cin,

b0 = b0
0 + b1

0Qair + b2
0Qwater + b3

0Cin,

b1 = b0
1 + b1

1Qair + b2
1Qwater + b3

1Cin.

(33)

6.2. Real data set

The signals Qair, Qwater, Cin and Cout are measured
data from the Seine Aval wastewater treatment plant.
These measurements were obtained with a sampling
time period of 15 minutes throughout the winter season
of 2019 for 50 days.
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Figure 4: Comparison of the system output y0(t) and estimated outputs from RPM, IV, and OE methods

Table 1: Estimates with Monte Carlo simulations and S NR = 30dB

θ̂RPM θ̂IV θ̂OE

True Mean Std RMSE Mean Std RMSE Mean Std RMSE
a0

0 1 0.896 0.058 0.119 0.936 0.057 0.086 1.01 0.053 0.054
a1

0 3 2.593 0.121 0.141 2.714 0.123 0.104 3.004 0.121 0.04
a2

0 2 1.812 0.082 0.102 1.865 0.086 0.08 1.993 0.084 0.042
a3

0 -1 -0.603 0.17 0.432 -0.703 0.172 0.343 -1.018 0.181 0.181
b0

0 1 0.826 0.028 0.177 0.859 0.029 0.144 1.004 0.023 0.023
b1

0 -1 -0.87 0.056 0.142 -0.888 0.058 0.126 -1.006 0.058 0.058
b2

0 -2 -1.847 0.052 0.081 -1.89 0.053 0.061 -2.009 0.048 0.024
b3

0 -0.5 -0.737 0.083 0.502 -0.707 0.086 0.449 -0.516 0.081 0.164
b0

1 1 0.999 0.025 0.025 1.01 0.025 0.027 1.002 0.022 0.022
b1

1 1 0.9 0.064 0.119 0.954 0.065 0.079 1.004 0.051 0.051
b2

1 1 0.852 0.031 0.152 0.89 0.031 0.114 1.003 0.029 0.029
b3

1 2 1.845 0.079 0.087 1.864 0.082 0.079 2.003 0.078 0.039

Table 2: Estimates with Monte Carlo simulations and S NR = 20dB

θ̂RPM θ̂IV θ̂OE

True Mean Std RMSE Mean Std RMSE Mean Std RMSE
a0

0 1 0.866 0.058 0.146 0.921 0.059 0.099 0.995 0.061 0.061
a1

0 3 2.516 0.155 0.169 2.677 0.163 0.12 2.967 0.15 0.051
a2

0 2 1.793 0.088 0.112 1.866 0.093 0.082 1.989 0.096 0.048
a3

0 -1 -0.529 0.199 0.511 -0.658 0.203 0.397 -0.982 0.219 0.218
b0

0 1 0.802 0.034 0.2 0.848 0.036 0.156 0.991 0.036 0.037
b1

0 -1 -0.854 0.064 0.159 -0.878 0.066 0.139 -0.996 0.067 0.067
b2

0 -2 -1.813 0.058 0.098 -1.87 0.06 0.072 -1.988 0.06 0.03
b3

0 -0.5 -0.724 0.087 0.48 -0.683 0.092 0.409 -0.496 0.089 0.177
b0

1 1 0.994 0.028 0.029 1.009 0.029 0.03 0.999 0.026 0.026
b1

1 1 0.874 0.081 0.15 0.947 0.084 0.099 0.991 0.068 0.068
b2

1 1 0.831 0.041 0.174 0.884 0.041 0.123 0.996 0.036 0.036
b3

1 2 1.829 0.109 0.101 1.856 0.113 0.091 2.001 0.107 0.053
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Table 3: Estimates with Monte Carlo simulations and S NR = 10dB

θ̂RPM θ̂IV θ̂OE

True Mean Std RMSE Mean Std RMSE Mean Std RMSE
a0

0 1 0.829 0.088 0.192 0.938 0.092 0.111 1.01 0.088 0.088
a1

0 3 2.393 0.186 0.212 2.706 0.199 0.118 3.002 0.179 0.06
a2

0 2 1.734 0.151 0.153 1.872 0.169 0.106 2.007 0.159 0.079
a3

0 -1 -0.42 0.299 0.652 -0.661 0.337 0.477 -0.979 0.342 0.341
b0

0 1 0.77 0.047 0.235 0.857 0.05 0.151 1.001 0.044 0.044
b1

0 -1 -0.832 0.087 0.189 -0.879 0.095 0.154 -0.986 0.101 0.101
b2

0 -2 -1.763 0.074 0.124 -1.871 0.079 0.076 -1.988 0.08 0.04
b3

0 -0.5 -0.732 0.122 0.524 -0.652 0.137 0.408 -0.464 0.127 0.262
b0

1 1 0.98 0.035 0.041 1.009 0.036 0.037 1.002 0.033 0.033
b1

1 1 0.798 0.101 0.225 0.938 0.107 0.123 1.008 0.087 0.086
b2

1 1 0.787 0.054 0.22 0.887 0.056 0.126 1.004 0.057 0.057
b3

1 2 1.822 0.144 0.114 1.875 0.159 0.101 2.002 0.163 0.081

Table 4: FIT (%) vs. S NR

S NR = 30dB S NR = 20dB S NR = 10dB
Min Mean Max Min Mean Max Min Mean Max

θ̂RPM 89.89 91.51 93.26 88.77 90.71 92.44 85.97 88.82 91.78
θ̂IV 91.21 92.77 94.48 90.52 92.43 94.24 89.51 92.09 94.75
θ̂OE 97.03 97.95 98.82 96.16 97.38 98.56 94.41 96.41 97.81

(a) a0 (b) b0 (c) b1

Figure 5: Box plots of parameters estimation for S NR = 30dB
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(a) a0 (b) b0 (c) b1

Figure 6: Box plots of parameters estimation for S NR = 20dB

(a) a0 (b) b0 (c) b1

Figure 7: Box plots of parameters estimation for S NR = 10dB
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Figure 8: Selected input Qair and output Cout generated by SimBio
simulator for Cin = 22 mgN/L and Qwater = 3 ∗ 104 m3/d

During this period, the ammonium concentration Cin

fluctuated between a low value of 5.9 mgN/L and a high
value of 35.7 mgN/L. For Qwater, the variation range
spanned from 1.01e4 m3/d to 5.8e4 m3/d, while Qair

varied between 2.21e4 Nm3/d and 1.15e5 Nm3/d . This
variability ensures that the signals are sufficiently rich
to cover the operating range. It is important to note that
Qwater and Qair values represent the variation for one
biofilter.

Figure 9 illustrates both the input and the output of
the nitrification system Qair and Cout, while Figure 10
displays the scheduling variables Qair, Qwater and Cin.

6.3. Parametric estimation and validation

In order to identify the 12 parameters in (33), we must
first use the LPV RPM-based model method, as detailed
in Subsection 4.2.

Considering Cout and Qair, the vector ϕ(t) in Eq. (18)
will be expressed as follows

ϕ(t) =


α F(t)Cout(t)

0 (t)

βG(t)Qair(t−1)
0 (t)

βG(t)Qair(t−1)
1 (t) − βG(1)(t)Qair(t−1)

0 (t)


(34)

with F(t) = G(t) =
[

1 Qair(t) Qwater(t) Cin(t)
]T

.
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Figure 9: Input Qair and output Cout of the nitrification process

An identification study was conducted using one set
of data and a validation test with another one corre-
sponding to the same conditions. The initial 25 days
of collected data (Figures 9-10) were used for paramet-
ric estimation and the last 25 days were reserved for the
purpose of validating the LPV model.

The fitting percentage (calculated by (30)) between
the LPV RPM-based model output and the identifica-
tion data output is 36.16 %. For the validation data, the
fitting percentage is 32.9%.

From the LPV RPM-based model, we have initialized
the parameter vector θ̂OE

0 in (23) to achieve an optimum
parameter vector. Following the parameter initializa-
tion, the Levenberg-Marquardt algorithm is executed,
using the equations outlined in Subsection 4.3.3. It re-
quired six iterations to converge. The estimated param-
eter values are presented in Table 5. The variations of
final parameters estimated with OE approach are shown
in Figure 11.

Figure 12 illustrates the identification results. Cout

represents the system output, whereas Ĉout is the out-
put generated by the LPV model with θ̂OE

6 . A fitting
percentage of 55.58% is observed between the two sig-
nals. As highlighted by (Muroi and Adachi, 2015), the
fitting ratio can be sensitive to high-amplitude systems,
often resulting in lower FIT values compared to low-
amplitude cases. Considering the complexity of the ni-
trification process and the wide range operating condi-
tions, the FIT percentage between the two signals is ac-
ceptable for this application. The model faithfully re-
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Figure 10: Measured scheduling variables Qair , Qwater and Cin

produces the behaviour of the nitrification process. Fig-
ure 13 shows a comparison between the measured out-
put, the LPV RPM-based model output and the consid-
ered LPV model output.

The next step is to use the second set of data to vali-
date the model. Validation results are presented in Fig-
ure 14. With a fitting percentage of 49.35% during val-
idation, we can confidently assert that the LPV model
reasonably represents the complex dynamics of the ni-
trification process.

7. Conclusion

This work has introduced a novel methodology for
estimating LPV model parameters, based on the reini-
tialized partial moment method within a global identi-
fication framework. A continuous-time LPV reinitial-
ized partial moment-based model was proposed, and
key parameter estimation techniques, such as the least-
squares estimate, instrumental variable approach, and
the output-error algorithm, specifically the Levenberg-
Marquardt algorithm, were employed.

The results from the Monte Carlo simulations demon-
strate the robustness of the proposed LPV modeling ap-
proach. The simulations effectively provide accurate
parameter estimates and system responses. They fur-
ther underscore the impact of the signal-to-noise ratio
on estimation accuracy, with increased standard devia-
tion and root mean square error, and decreased fitting
percentage observed at lower SNR levels. Despite the
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Figure 11: Estimated parameter variations with Qair(t), Qwater(t) and
Cin(t)

noise, all estimates obtained using the reinitialized par-
tial moment (RPM) approach served as reliable initial-
izations for the subsequent iterative procedures. The
Levenberg-Marquardt algorithm, in particular, demon-
strated superior performance in identifying LPV model
parameters compared to the instrumental variable (IV)
method, showing greater resilience under varying noise
conditions.

The results were promising, which allows us to apply
this methodology to the real-world problem of nitrifica-
tion in wastewater treatment.The developed continuous-
time LPV model successfully captured the complex dy-
namics of the biological nitrification process, offering a
valuable tool for understanding and controlling ammo-
nia removal. The model’s ability to adapt to varying op-
erating conditions demonstrates its practical utility for
optimizing nitrification processes in wastewater treat-
ment plants. This optimization is envisaged in future
work.

Acknowledgements

This work benefits from the financial support of
the research program MOCOPÉE (an acronym of the
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Table 5: Estimated parameter values for using RPM (first line of values) and OE (second line of values)

a0 b0 b1
a0

0 a1
0 a2

0 a3
0 b0

0 b1
0 b2

0 b3
0 b0

1 b1
1 b2

1 b3
1

6.14 2e-04 -2.48e-04 -0.43 -9.22e-04 5.41e-10 1.67e-08 2.53e-05 -2.3e-05 3.67e-10 -5.58e-10 2.13e-06
113.47 -1.7e-04 -4.53e-04 -1.93 -2.3e-03 -9.26e-09 7.89e-08 9.9e-05 3.36e-04 6.53e-10 -8.32e-09 -7.38e-06
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Figure 12: Identification output data Cout and simulated LPV model
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