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Fine-grained vital sign monitoring in emergency care is crucial for accurately assessing patient conditions, predicting disease
progression, and formulating effective rescue plans. In non-hospital settings, limited equipment often necessitates manual observation
of respiration and heartbeat, which can lead to significant errors. Contactless monitoring using wireless signals offers a promising
alternative. Unlike traditional systems that require stationary devices for contactless sensing, handheld devices are more practical
for rescuers during emergency care. However, sensing performance can be severely compromised by involuntary hand movements.
Previous research has achieved respiration monitoring with handheld devices, but the randomness of hand motion still prevents
reliable heartbeat monitoring. In this paper, we first demonstrate that the key to mitigating the effects of device motion lies in
accurately estimating the motion direction. We then introduce a novel method that uses two static objects, i.e., corner reflectors, to
precisely estimate the random motion direction of the device. These reflectors can be quickly and easily deployed by the rescuer before
initiating vital sign monitoring, enabling a more thorough elimination of device motion effects. Comprehensive experiments validate
the effectiveness of our solution using mmWave radar. Real-world tests demonstrate that our system can accurately monitor both
respiration and heartbeat with handheld devices, significantly enhancing emergency medical response by improving the accuracy and
feasibility of vital sign monitoring in urgent situations.

Additional Key Words and Phrases: Vital sign monitoring; MmWave radar; Device motion

Correspending authors: Daqing Zhang and Fusang Zhang

Authors’ Contact Information: Zhaoxin Chang, SAMOVAR, Telecom SudParis, Institut Polytechnique de Paris, Palaiseau, France, zhaoxin.chang@telecom-
sudparis.eu. Fusang Zhang, State Key Laboratory of Computer Sciences, Institute of Software, Chinese Academy of Sciences; University of Chinese
Academy of Sciences, Beijing, China, fusang@iscas.ac.cn. Xujun Ma, SAMOVAR, Telecom SudParis, Institut Polytechnique de Paris, Palaiseau, France,
xujun.ma@telecom-sudparis.eu. Pei Wang, SAMOVAR, Telecom SudParis, Institut Polytechnique de Paris, Palaiseau, France, pei.wang@telecom-
sudparis.eu. Weiyan Chen, China Mobile Research Institute, Beijing, China, chenweiyan@chinamobile.com. Duo Zhang, Key Laboratory of High
Confidence Software Technologies (Ministry of Education), School of Computer Science, Peking University, Beijing, China, zhangduo@stu.pku.edu.cn.
Badii Jouaber, SAMOVAR, Telecom SudParis, Institut Polytechnique de Paris, Palaiseau, France, badii.jouaber@telecom-sudparis.eu. Daqing Zhang,
SAMOVAR, Telecom SudParis, Institut Polytechnique de Paris, Palaiseau, France; Key Laboratory of High Confidence Software Technologies (Ministry of
Education), School of Computer Science, Peking University, Beijing, China, daqing.zhang@telecom-sudparis.eu.

2025. Manuscript submitted to ACM

Manuscript submitted to ACM 1

HTTPS://ORCID.ORG/0000-0002-7516-0055
HTTPS://ORCID.ORG/0000-0002-2529-8021
HTTPS://ORCID.ORG/0000-0002-6984-8611
HTTPS://ORCID.ORG/0000-0002-7174-4846
HTTPS://ORCID.ORG/0000-0003-2004-1136
HTTPS://ORCID.ORG/0000-0002-9977-7244
HTTPS://ORCID.ORG/0000-0003-1457-1800
HTTPS://ORCID.ORG/0000-0002-6608-1267
https://orcid.org/0000-0002-7516-0055
https://orcid.org/0000-0002-2529-8021
https://orcid.org/0000-0002-6984-8611
https://orcid.org/0000-0002-7174-4846
https://orcid.org/0000-0003-2004-1136
https://orcid.org/0000-0002-9977-7244
https://orcid.org/0000-0003-1457-1800
https://orcid.org/0000-0002-6608-1267


2 Chang et al.

ACM Reference Format:
Zhaoxin Chang, Fusang Zhang, Xujun Ma, Pei Wang, Weiyan Chen, Duo Zhang, Badii Jouaber, and Daqing Zhang. 2025. MmECare:
Enabling Fine-grained Vital Sign Monitoring for Emergency Care with Handheld MmWave Radars. 1, 1 (January 2025), 25 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction

Monitoring fine-grained vital signs, such as respiration rate (RR) and heartbeat rate (HR), plays a crucial role in
healthcare. Various methods and devices are available for monitoring these vital signs both in hospital and home
settings. However, in emergency care scenarios, such as patient rescue and first aid, the lack of specialized equipment
often hinders accurate monitoring. Accurate vital sign monitoring can significantly improve patient outcomes, as RR
and HR are early indicators of illness or injury progression. For example, an RR exceeding 25 beat-per-minute (bpm)
can predict trauma-induced mortality [16], while an RR of 8 bpm or less increases the risk of death within 24 hours by
18.1 times compared to the normal range of 12-20 bpm [33]. Similarly, HR irregularities indicate the risk of mortality
after hospitalization, with 29% of patients showing HR irregularities before cardiac arrest [27]. Therefore, accurate RR
and HR estimation is important in emergency care. According to [20], an RR monitoring error of less than 4 bpm is
required. Another research indicates that an HR estimation error of 5 bpm and an RR estimation error of 2 bpm would
not result in changes to medical treatment [46].

Despite the importance of accuratemonitoring, current emergency caremethods generally rely onmanual observation,
which is both inefficient and prone to errors [9, 10, 25]. Even professionally trained nurses often measure RR and
HR with significant errors [26]. While wearable devices have been developed for continuous monitoring [25], their
deployment can be time-consuming and impractical in high-pressure situations. Moreover, they may not be suitable
for certain medical conditions, such as burns or severe bleeding in areas where the device needs to be attached.
To address these limitations, contactless vital sign monitoring using wireless signals has emerged as a promising
alternative. Various wireless signals have been shown to be effective for contactless respiration monitoring, including
Wi-Fi [42, 56], RFID [53, 54], LoRa [48, 60], LTE [19, 39], mmWave [41, 55] and Ultra-Wideband (UWB) [38, 61]. Among
these signals, mmWave and UWB further demonstrate the capability to monitor heartbeat due to high frequency and
large bandwidth [45, 65]. Most existing methods, however, require stationary devices (e.g., placed on a table or mounted
on a wall). In emergency situations, the patient is often lying on the ground, making it difficult to position the device
in one static location for monitoring. Handheld devices offer a more practical solution, allowing rescuers to monitor
vital signs by simply pointing the device at the patient as illustrated in Figure 1. This real-time RR and HR data can
then assist professional doctors in making accurate decisions and help non-professionals relay critical information to
medical personnel.

Fig. 1. Illustration of contactless vital sign monitoring using a handheld device.
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Previous research has revealed that involuntary hand movements, when holding the device by hand, significantly
interfere with vital sign monitoring. To address this issue, a recent work, Mobi2Sense [63], proposes eliminating device
motion by using a static object such as a chair in the environment as reference. Although it has shown good performance
in respiration monitoring, its ability to simultaneously detect heartbeat has not been explored. Note that heartbeat
monitoring is more challenging than respiration monitoring. This is because heartbeat-induced chest displacement is at
the sub-millimeter level, while respiration-induced displacement is at the millimeter level. We implement Mobi2Sense
using mmWave radar and conduct experiments to test the feasibility of heartbeat detection. Experiments show that
although respiration rate can be accurately estimated, heartbeat rate estimation is not feasible (Section 2.2). The failed
heartbeat estimation indicates that previous work does not completely eliminate device motion information.

In this paper, our goal is to push the limit of vital sign monitoring under device motion to achieve fine-grained
heartbeat rate monitoring. To this end, we first investigate why previous methods have failed to sufficiently eliminate
device motion for accurate heartbeat monitoring. The past work assumes that the direction of hand movements remains
constant over short time intervals. This assumption is the basis for strategies to cancel out the effects of device motion
on vital sign monitoring. However, our research reveals that this assumption does not hold due to the inherently random
nature of hand movements. While the subtle motion-induced interferences from this incorrect assumption have minimal
impact on respiration monitoring, they pose significant challenges for the precise measurement of heartbeats. To this
end, in this paper, we propose a novel approach for estimating the motion direction of devices. Specifically, we utilize
two low-cost corner reflectors as reference objects for direction estimation. Before starting the emergency procedure,
the rescuer can quickly place the reflectors on both sides of the patient’s body and then start vital sign monitoring using
a handheld radar. The key intuition is that the distance changes of two reference objects are both induced by the same
device motion since they are static. Then, the difference between them is only caused by the direction difference. Thus,
we use the difference between the distance changes of two references to infer the device motion direction. Once the
motion direction is estimated, we can accurately convert the device motion at the reference points to the motion at the
target without relying on assumptions about the device motion’s direction changes. This allows us to remove the device
motion-induced distance change from the target reflection path, enabling accurate monitoring of both respiration and
heartbeat.

We implement the proposed system using commodity mmWave radar. We focus on conducting comprehensive
benchmark experiments to validate the effectiveness of device motion direction estimation and devicemotion elimination.
We further evaluate the performance of respiration and heartbeat monitoring in several real-world environments
and verify the generalizability of the system across different conditions. The results show that our system achieves
a respiration rate estimation error of 0.11 bpm, and a heartbeat rate estimation error of 3.68 bpm. Compared to the
baseline work, the estimation errors for RR and HR are reduced by 38.9% and 77.6%, respectively. The main contributions
of this work are summarized as follows.

• Through theoretical and practical analysis, we reveal the challenge of eliminating device motion for fine-grained
heartbeat monitoring.

• We propose a novel signal processing approach to estimate the device motion direction before motion elimination.
Then, the device motion can be eliminated from the target-reflected signals.
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• We implement the proposed solution on the commodity mmWave radar and conduct comprehensive experiments.
For the first time, we achieve simultaneous respiration and heartbeat monitoring under device motion in real-
world environments. The proposed system can be quickly deployed and used to monitor a patient’s vital signs in
emergency scenarios.

2 Preliminary

In this section, we first introduce the background of mmWave radar-based sensing and then present the sensing model
under device motion.

2.1 MmWave Radar Based Sensing

MmWave radar operates in the millimeter wave frequency band. Most commercial mmWave radars currently modulate
the signal utilizing frequency-modulated continuous wave (FMCW). The transmitted FMCW signal is composed of a
series of chirps. A chirp is defined by its starting frequency 𝑓𝑐 , bandwidth 𝐵, and duration 𝑇 . As shown in Figure 2, the
mmWave radar transmits signals, which are then reflected by objects in the environment and return to the radar with a
time delay. This delay leads to consistent frequency differences in the frequency domain. The FMCW radar receiver
combines the transmitted and received signals to generate an intermediate frequency (IF) signal, which is represented
as:

𝑠 (𝑡) =
𝑁∑︁
𝑛=1

𝐴𝑛𝑒
𝑗 (2𝜋 2𝐵𝑅𝑛

𝑐𝑇
𝑡+ 4𝜋 𝑓𝑐𝑅𝑛

𝑐
) , (1)

where 𝑁 is the number of objects in the environment, 𝐴𝑛 is the amplitude of the signal reflected by the 𝑛-th object, 𝑅𝑛
is the distance of the 𝑛-th object to radar and 𝑐 is the speed of light. Equation 1 shows that the IF signal’s frequency
components ( 2𝐵𝑅𝑛

𝑐𝑇
) are related to the distances of objects that reflect the signal. This enables distance estimation by

analyzing the signal in the frequency domain using the Fourier transform, known as Range-FFT. By applying Range-FFT
to the IF signals at different times, we can create a range profile. This profile shows the distances of objects from the
radar. However, Range-FFT has limited distance resolution due to the signal bandwidth. The distance resolution, which
is 𝑅𝑟𝑒𝑠 = 𝑐

2𝐵 [6], determines how precisely we can distinguish between objects. Objects with a distance difference
smaller than 𝑅𝑟𝑒𝑠 will appear in the same range bin on the range profile. After Range-FFT, the signal reflected from a
static object (i.e., the 𝑖-th static object) is converted to:

𝑦𝑖 (𝑡) = 𝐴𝑖𝑒 𝑗𝐾𝑅𝑖 , (2)

Fig. 2. Scenario of mmWave radar-based sensing. Fig. 3. The basis of device motion elimination.
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where 𝐾 =
4𝜋 𝑓𝑐
𝑐 . Here, 𝑦𝑖 (𝑡) remains constant over time since the distance of this object to radar (𝑅𝑖 ) does not change

over time. On the contrary, the reflected signal from a target exhibiting micro-motions (e.g., breathing-induced chest
movement) is expressed as:

𝑦𝑡 (𝑡) = 𝐴𝑡𝑒 𝑗𝐾 (𝑅𝑡𝑖𝑛𝑖+𝑅𝑡𝑚𝑜𝑣 (𝑡 ) ) , (3)

where 𝑅𝑡𝑖𝑛𝑖 is the initial distance of the sensing target and 𝑅𝑡𝑚𝑜𝑣 (𝑡) represents the displacement of target movement.
Thus, by extracting the phase change (𝜑𝑡 (𝑡)) of the range bin where the target is located, the target displacement can
be obtained as:

𝑅𝑡𝑚𝑜𝑣 (𝑡) =
1
𝐾
𝜑𝑡 (𝑡) − 𝑅𝑡𝑖𝑛𝑖 =

𝑐

4𝜋 𝑓𝑐
𝜑𝑡 (𝑡) − 𝑅𝑡𝑖𝑛𝑖 . (4)

Since 𝑅𝑡𝑖𝑛𝑖 is constant, by observing the variation of 𝑅𝑡𝑚𝑜𝑣 (𝑡), the target motion can be recovered. This is the basic
principle behind mmWave radar-based sensing in static conditions.

2.2 Sensing Under Device Motion

In this section, we present the sensing model in the presence of the device motion. When the device is in motion, the vari-
ation of distance between the target and the radar is also affected by device motion-induced distance change (𝑅𝑡𝑑𝑒𝑣 (𝑡)).
Consequently, the target-reflected signal should be modified to:

𝑦𝑡 (𝑡) = 𝐴𝑡𝑒 𝑗𝐾 (𝑅𝑡𝑖𝑛𝑖+𝑅𝑡𝑚𝑜𝑣 (𝑡 )+𝑅𝑡𝑑𝑒𝑣 (𝑡 ) ) . (5)

This modification implies that the distance change in the target-reflected signal cannot be directly used to deduce the
target motion (𝑅𝑡𝑚𝑜𝑣 (𝑡)), owing to the typically random and large-scale nature of the movements of the device. To
eliminate the effect of device motion on target motion extraction, a recent work Mobi2Sense [63] proposes to employ a
static object in the environment as a reference to cancel out the device motion component in the distance change of
target-reflected signal. As shown in Figure 3, the basic idea behind this solution is that device motion also induces a
distance change in the static object-reflected signal. Furthermore, the distance change induced by device motion in
target-reflected and static object-reflected signals exhibit similar patterns. Therefore, by estimating the distance change

(a) Scenario of sensing under device mo-
tion.

(b) Result in a static condition. (c) Result when device is held in
hand.

(d) Result after device motion elim-
ination [63].

Fig. 4. The feasibility of heartbeat monitoring under device motion induced by involuntary hand movement. (a) Experiment scenario.
(b) When the device is static, both respiration and heartbeat can be monitored. (c) When the device is held in hand, raw signal is
overwhelmed by hand motion, causing failure of respiration and heartbeat monitoring. (d) Respiration waveform can be recovered by
eliminating device motion based on [63]. However, heartbeat still cannot be sensed.
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caused by device motion from the reference-reflected signal, it can then be eliminated from the target-reflected signal.
The signal reflected by the reference static object in the presence of device motion can be written as:

𝑦𝑟 (𝑡) = 𝐴𝑟𝑒 𝑗𝐾 (𝑅𝑟𝑖𝑛𝑖+𝑅𝑟𝑑𝑒𝑣 (𝑡 ) ) , (6)

where 𝑅𝑟𝑑𝑒𝑣 (𝑡) denotes the device motion-induced distance variation of the reference static object, and 𝑅𝑟𝑖𝑛𝑖 is the
initial distance of the reference. Mobi2Sense has shown effectiveness in respiration monitoring, but its capability to
monitor heartbeats remains unexplored. It should be noted that the chest displacement induced by respiration (4 -
12 mm [17]) is much larger than that of heartbeat (0.2 - 0.5 mm [36]). Therefore, extracting the heartbeat from the
chest-reflected signal is much more difficult than extracting respiration. We quickly conduct an experiment to study the
feasibility of heartbeat monitoring using the methods proposed by Mobi2Sense.

As shown in Figure 4a, a metal plate serves as the reference to cancel out the effect of device motion induced by
hand movement on the chest-reflected signal. Initially, we place the device on a table. As shown in Figure 4b, when the
device is static, the respiration waveform is clearly visible in the raw phase, and heartbeat rate (HR) is discernible in the
frequency domain employing a classic filter-based heartbeat extraction method [8]. Subsequently, we let a person hold
the radar in hand. From Figure 4c, we can observe a random motion-polluted respiration waveform. In the frequency
domain, there are multiple frequency components with high magnitude, hindering HR extraction. This interference
stems from the random nature of hand movements, which can easily overshadow the heartbeat signal due to their larger
scale. We further utilize the device motion cancellation approach proposed by Mobi2Sense. As shown in Figure 4d, the
pattern of respiration is clear. By zooming-in the signal, we can observe that there are some irregular fluctuations on
the waveform, which is due to the hand motion that has not been completely eliminated. After eliminating the device
motion using Mobi2Sense, the respiration frequency can be clearly observed in the frequency domain. In contrast, the
heartbeat frequency is still not visible even after filtering out the respiration signal. This result implies the imperfect
elimination of device motion using the previous work. Although respiration waveform can be recovered, heartbeat
monitoring still poses a challenge.

3 Fine-grained Device Motion Elimination

In this section, we first review the sensing model under device motion to understand why the previous solution fails
to achieve heartbeat monitoring. Then, we present a fine-grained device motion elimination approach based on the
analysis.

Fig. 5. The difference between device motion-induced distance changes at the target and the reference.
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3.1 Revisiting the Sensing Model Under Device Motion

To explain the limitations of existing methods in effectively eliminating device motion for heartbeat monitoring, we
carefully examine the key details of reference object-assisted device motion elimination technique. As mentioned
earlier, the distance changes caused by device motion at both the target and the reference object follow similar patterns.
However, it should be noted that they are not exactly identical. As shown in Figure 5, the direction of the target and the
static object with respect to the device motion (𝜃𝑡 and 𝜃𝑟 ) can be different. Denote the device motion-induced distance
change between two adjacent signal samples for the two objects as Δ𝑅𝑡𝑑𝑒𝑣 (𝑡) = 𝑅𝑡𝑑𝑒𝑣 (𝑡 +Δ𝑡) −𝑅𝑡𝑑𝑒𝑣 (𝑡) = Δ𝑑𝑑𝑒𝑣 cos𝜃𝑡
and Δ𝑅𝑟𝑑𝑒𝑣 (𝑡) = 𝑅𝑟𝑑𝑒𝑣 (𝑡 + Δ𝑡) − 𝑅𝑟𝑑𝑒𝑣 (𝑡) = Δ𝑑𝑑𝑒𝑣 cos𝜃𝑟 , respectively, where Δ𝑑𝑑𝑒𝑣 (𝑡) is the displacement of device
motion and Δ𝑡 is the time difference between two signal samples. According to geometric relations, they have the
following relationship:

𝛽𝑡,𝑟 (𝑡) =
Δ𝑅𝑡𝑑𝑒𝑣 (𝑡)
Δ𝑅𝑟𝑑𝑒𝑣 (𝑡)

=
Δ𝑑𝑑𝑒𝑣 (𝑡) cos𝜃𝑡 (𝑡)
Δ𝑑𝑑𝑒𝑣 (𝑡) cos𝜃𝑟 (𝑡)

=
cos𝜃𝑡 (𝑡)
cos𝜃𝑟 (𝑡)

, (7)

where 𝛽𝑡,𝑟 (𝑡) is a coefficient. Consequently, simply subtracting the reference’s distance change from the target’s cannot
fully remove device motion. To accurately remove the effect of device motion, we need to estimate this coefficient
and then apply it to the reference distance change (𝑅𝑟𝑑𝑒𝑣 (𝑡)) through multiplication. Then, the distance change due to
device motion at the target (𝑅𝑡𝑑𝑒𝑣 (𝑡)) can be obtained. The signal reflected from the static reference object (Equation 6)
after multiplying by this compensation coefficient is:

𝑦′𝑟 (𝑡) = 𝐴𝑟𝑒 𝑗𝐾 (𝛽𝑡,𝑟 (𝑡 )𝑅𝑟𝑖𝑛𝑖+𝛽𝑡,𝑟 (𝑡 )𝑅𝑟𝑑𝑒𝑣 (𝑡 ) ) . (8)

Next, we divide the target-reflected signal (Equation 5) by this newly adjusted reference signal, leading to the following
equation:

𝑦𝑛𝑒𝑤 (𝑡) =
𝑦𝑡 (𝑡)
𝑦′𝑟 (𝑡)

=
𝐴𝑡𝑒

𝑗𝐾 (𝑅𝑡𝑖𝑛𝑖+𝑅𝑡𝑚𝑜𝑣 (𝑡 )+𝑅𝑡𝑑𝑒𝑣 (𝑡 ) )

𝐴𝑟𝑒
𝑗𝐾 (𝛽𝑡,𝑟 (𝑡 )𝑅𝑟𝑖𝑛𝑖+𝛽𝑡,𝑟 (𝑡 )𝑅𝑟𝑑𝑒𝑣 (𝑡 ) )

= 𝐴𝑛𝑒𝑤𝑒
𝑗𝐾𝑅𝑡𝑖𝑛𝑖 · 𝑒− 𝑗𝐾𝛽𝑡,𝑟 (𝑡 )𝑅𝑟𝑖𝑛𝑖 · 𝑒 𝑗𝐾 (𝑅𝑡𝑑𝑒𝑣 (𝑡 )−𝛽𝑡,𝑟 (𝑡 )𝑅𝑟𝑑𝑒𝑣 (𝑡 ) ) · 𝑒 𝑗𝐾𝑅𝑡𝑚𝑜𝑣 (𝑡 ) .

(9)

To extract the target motion, we are primarily interested in the last term (𝑒 𝑗𝐾𝑅𝑡𝑚𝑜𝑣 (𝑡 ) ). Thus, other terms, i.e.,
𝑒− 𝑗𝐾𝛽𝑡,𝑟 (𝑡 )𝑅𝑟𝑖𝑛𝑖 and 𝑒 𝑗𝐾 (𝑅𝑡𝑑𝑒𝑣 (𝑡 )−𝛽𝑡,𝑟 (𝑡 )𝑅𝑟𝑑𝑒𝑣 (𝑡 ) ) , are supposed to remain constant over time. If the compensation
coefficient 𝛽𝑡,𝑟 (𝑡) does not change, that is, the direction of device motion is constant, we can accurately restore the
target motion.

Previous methods assume that the direction of device motion remains constant for short periods and use an
optimization-based search to estimate the compensation coefficient for each period. However, involuntary hand
movements are typically random, which makes this assumption invalid. Firstly, the time interval over which the
direction of hand movements changes is uncertain, so assuming a fixed interval leads to estimation errors in the
compensation coefficient. This causes 𝑅𝑡𝑑𝑒𝑣 (𝑡) − 𝛽𝑡,𝑟 (𝑡)𝑅𝑟𝑑𝑒𝑣 (𝑡) to deviate from zero, introducing interference into
Equation 9. Secondly, since the compensation coefficient continues to change with time, 𝛽𝑡,𝑟 (𝑡)𝑅𝑟𝑖𝑛𝑖 also changes,
causing additional phase fluctuations. In summary, previous methods introduce irrelevant fluctuations in the signal after
attempting to eliminate device motion due to twomain reasons: (i) the change in the direction of device motion is random,
and assuming a fixed time interval introduces error, and (ii) the time-varying compensation coefficient, when multiplied
by the initial reference distance 𝑅𝑟𝑖𝑛𝑖 , leads to extraneous phase changes. Although these residual interferences are
subtle and do not significantly affect respiration monitoring, they prevent accurate heartbeat monitoring.
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(a) The direction of the object
with respect to device motion.

(b) The principle behind AoA estimation. (c) Using two references for direction estimaiton.

Fig. 6. Illustration of device motion direction estimation.

3.2 Device Motion Direction Estimation

From the previous analysis, we know that the key to eliminating device motion lies in accurately estimating the
compensation coefficient 𝛽𝑡,𝑟 (𝑡). Furthermore, 𝛽𝑡,𝑟 (𝑡) is determined by the directions of the target and the reference
with respect to the device motion (𝜃𝑡 and 𝜃𝑟 ) according to Equation 7. Therefore, calculating the compensation coefficient
depends on accurately estimating these directions. Note that the direction of an object with respect to the device motion
is different from the direction with respect to the device. As shown in Figure 6a, 𝜃𝑟0 is the direction of the reference
object relative to the device, and 𝛼 is the direction of the device’s motion relative to the device. Then, the direction of
the reference object with respect to the device motion can be represented as:

𝜃𝑟 = 𝜃𝑟0 − 𝛼. (10)

Therefore, the calculation of 𝜃𝑟 can be decomposed to estimate the direction of the object and the direction of device
motion. Among them, estimating the direction of the object relative to the device (𝜃𝑟0) is relatively straightforward.
Note that most commercial mmWave radars are equipped with multiple antennas, which allows for the estimation of
the angle-of-arrival (AoA) of the received signal. As shown in Figure 6b, the signal arriving from 𝜃𝑟0 results in a phase
difference Δ𝜙 between each pair of adjacent antennas:

Δ𝜙 =
2𝜋 𝑓𝑐𝑑
𝑐

𝑐𝑜𝑠𝜃𝑟0, (11)

where 𝑑 is the distance between adjacent antennas. The AoA can be estimated using the Capon beamforming [11]
across the received signals from all antennas. Then, the direction of each object with respect to the device (𝜃𝑟0) can be
obtained.

Next, the direction of device motion needs to be estimated. In this paper, we propose a novel solution for estimating
the direction of device motion using two static objects as references, as shown in Figure 6c. The key idea is that the
distance changes in the reflection signals from these two static objects are caused only by the device’s motion. Thus,
the difference in these distance changes can be used to determine the direction of the device motion. According to
Equation 7, the relationship between the distance changes of two reference objects is:

Δ𝑅𝑟1 (𝑡)
Δ𝑅𝑟2 (𝑡)

=
cos𝜃𝑟1
cos𝜃𝑟2

=
cos (𝜃𝑟10 − 𝛼)
cos (𝜃𝑟20 − 𝛼)

. (12)
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Then, the device motion direction 𝛼 can be calculated by solving the following function:

argmin
𝛼

|Δ𝑅𝑟1 (𝑡)
Δ𝑅𝑟2 (𝑡)

− cos (𝜃𝑟10 − 𝛼)
cos (𝜃𝑟20 − 𝛼)

|, (13)

where 𝜃𝑟10 and 𝜃𝑟20 can be acquired using AoA estimation algorithm, and the distance changes Δ𝑅𝑟1 (𝑡) and Δ𝑅𝑟2 (𝑡)
can be obtained by calculating the phase difference between two adjacent signal samples. In this way, we can accurately
determine the device motion direction, enabling us to calculate the compensation coefficient based on Equation 7:
𝛽𝑡,𝑟 (𝑡) = 𝑐𝑜𝑠 (𝜃𝑡 (𝑡 )−𝛼 (𝑡 ) )

𝑐𝑜𝑠 (𝜃𝑟 (𝑡 )−𝛼 (𝑡 ) ) . Note that unlike previous methods, our approach can accurately calculate the coefficient at
each moment, without needing to set a fixed time interval or assume that the coefficient remains constant during that
period.

3.3 Device Motion Cancellation

As discussed in Section 3.1, another source of interference arises from multiplying the time-varying compensation
coefficient by the initial distance 𝑅𝑟𝑖𝑛𝑖 . To address this issue, we propose compensating for distance changes rather
than the absolute distance, thereby eliminating the impact of the initial distance. We begin by extracting the phase of
the reference object’s reflection signal based on Equation 6:

𝜙𝑟 (𝑡) = 𝐾 (𝑅𝑟𝑖𝑛𝑖 + 𝑅𝑟𝑑𝑒𝑣 (𝑡)) . (14)

Then, the distance change at each moment can be calculated as:

Δ𝑅𝑟𝑑𝑒𝑣 (𝑡) =
𝜙𝑟 (𝑡 + Δ𝑡) − 𝜙𝑟 (𝑡)

𝐾
. (15)

Here, the initial distance of the reference object (i.e., 𝑅𝑟𝑖𝑛𝑖 ) has been eliminated. Meanwhile, the distance change at
each moment of the target can be obtained in the same way using the phase of the target-reflected signal:

Δ𝑅𝑡 (𝑡) = Δ𝑅𝑡𝑚𝑜𝑣 (𝑡) + Δ𝑅𝑡𝑑𝑒𝑣 (𝑡) =
𝜙𝑡 (𝑡 + Δ𝑡) − 𝜙𝑡 (𝑡)

𝐾
. (16)

Note that according to Equation 12, 𝛽𝑡,𝑟 (𝑡) = Δ𝑅𝑡𝑑𝑒𝑣 (𝑡 )
Δ𝑅𝑟𝑑𝑒𝑣 (𝑡 ) . Thus, we can eliminate the device motion-induced distance

change of target leveraging the distance change of the reference static object and the compensation coefficient as shown
in Figure 7:

Δ𝑅𝑡𝑛𝑒𝑤 (𝑡) = Δ𝑅𝑡 (𝑡) − 𝛽𝑡,𝑟 (𝑡)Δ𝑅𝑟𝑑𝑒𝑣 (𝑡)

= Δ𝑅𝑡𝑚𝑜𝑣 (𝑡) + Δ𝑅𝑡𝑑𝑒𝑣 (𝑡) − Δ𝑅𝑡𝑑𝑒𝑣 (𝑡)

= Δ𝑅𝑡𝑚𝑜𝑣 (𝑡) .

(17)

We can observe that, unlike the method proposed in previous work (Equation 9), we only compensate for distance
changes and not for the initial distance. Therefore, our method can completely eliminate device motion, even when the
device motion direction changes. Finally, the target movement can be restored from distance change as:

𝑅𝑡𝑚𝑜𝑣 (𝑡) =
𝑡∑︁

𝑚=0
Δ𝑅𝑡𝑛𝑒𝑤 (𝑚) =

𝑡∑︁
𝑚=0

Δ𝑅𝑡𝑚𝑜𝑣 (𝑚), (18)

where𝑚 is the index of signal sample in the time domain. So far, the device motion component in the target displacement
has been completely eliminated.
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Fig. 7. Illustration of device motion elimination.

4 System Implementation and Design

4.1 Hardware Implementation

We prototype the proposed solution using a commercial mmWave radar, which is TI IWR1843BOOST [4]. The radar is
configured to transmit FMCW signals with a starting frequency of 77 GHz and a bandwidth of 4 GHz. It operates in
Multiple-Input Multiple-Output (MIMO) mode, where two transmitting antennas send signals in time division, and
four receiving antennas capture signals simultaneously. This setup provides an angle resolution equivalent to that of a
radar with eight receiving antennas [18]. The raw received IF signals are collected using the TI DCA1000EVM [3] data
acquisition board and transmitted to a laptop via an Ethernet connection. The laptop is also used to configure radar
parameters and control the transmission using MMWAVE-STUDIO [5]. Data processing is performed in MATLAB on a
MacBook Pro with an Intel Core i7 processor and 32 GB of memory.

4.2 System Design

Figure 8 illustrates the overview of our system, which contains three key modules: signal preprocessing, device motion
direction estimation, and device motion elimination.

• Signal preprocessing: This module takes the raw signals captured by the mmWave radar as input. By performing
Range-FFT and AoA estimation algorithms, the range-angle profile is generated.

• Device motion direction estimation: From the range-angle profile, the directions of each static object and the
human target are determined, and their corresponding reflected signals are extracted using beamforming. The
direction of device motion is then estimated. This step also introduces the requirement for static objects in real-world
environments.

• Device motion elimination:With the estimated device motion direction, the motion component in the human-
reflected signal is eliminated. Finally, respiration rate (RR) and heart rate (HR) are calculated as outputs.

4.2.1 Signal Preprocessing. In this module, we focus on processing the raw signal samples obtained from the mmWave
radar hardware. The radar captures raw data as the IF signal for each chirp. For each chirp and across all receiving
antennas, we first transform the raw IF signal into a range profile using Range-FFT. Then, we apply Capon beamforming
to each range bin across all receiving antennas. This step allows us to generate the range-angle profile, which is critical
for the subsequent signal processing algorithms.
Manuscript submitted to ACM
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Fig. 8. Overview of the system design.

4.2.2 Device Motion Direction Estimation. As discussed in Section 3.2, the process of estimating device motion direction
relies on signals reflected from two static objects in the environment. In typical emergency care scenarios, the patient
(sensing target) lies on the ground, with the radar positioned in front of his/her chest, as shown in Figure 1. Initially, we
expect that the ground on either side of the target could serve as suitable static objects for estimating device motion
direction. This setup should theoretically allow for visibility of both the human body and the two static objects in the
range-angle profile. However, our observations, as shown in Figure 9a, indicate that only the reflection from the human
body is detectable when the individual is lying on the ground. We attribute this to mirror reflection effects, illustrated in
Figure 9b. Due to the ground’s large, smooth surface, it reflects RF signals in a mirror-like manner, where the reflection
angle equals the incidence angle, directing most of the signal away from the radar and into the surrounding environment.
This phenomenon significantly reduces the signal-to-noise ratio (SNR) of the ground-reflected signals, making the
ground an unsuitable reference object for estimating device motion direction.

To overcome this challenge, we propose using two low-cost corner reflectors placed around the patient as reference
objects. Corner reflectors, made of three perpendicular intersecting flat surfaces, reflect RF signals directly back to
the radar. In this work, we construct two corner reflectors using cardboard and tinfoil, costing less than $0.1 each. As
shown in Figure 9c, these reflectors are placed on either side of the patient lying on the ground. Figure 10a illustrates
the resulting range-angle profile with this setup. Three distinct areas of high signal magnitude can be observed: the
largest area corresponds to the human target, as body reflections occur within a ±20° range when the radar is facing the
body. The two smaller areas represent the corner reflectors, which function as point-like reflectors. We envision a kit
containing corner reflectors and mmWave radar to be included in emergency care and first aid toolkits. When starting
emergency care, the rescuer can quickly place the reflectors on both sides of the patient’s body and then initiate vital
sign monitoring.

We apply the Constant False Alarm Rate (CFAR) [37] detection method to the range-angle profile to distinguish
objects from background noise. This algorithm adaptively compares the magnitudes of adjacent bins, helping to identify
those corresponding to signals reflected from the human body and the corner reflectors. This enables us to determine
the distance and direction of these objects. Subsequently, we use beamforming techniques to focus on the signals
received from each object’s direction. In the example shown in Figure 10b, we beamform the received signal towards the
reflectors to capture the corresponding displacements. These displacements are solely due to hand movement-induced
device motion, with the hand motion scale in this example being approximately 6 cm. Using Equation 15, we calculate
the distance change along these paths. Figure 10c shows the distance changes for both reference reflectors, displaying
similar patterns but with noticeable differences. Finally, by applying the device motion direction estimation methods
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(a) The range-angle profile when
target lying on the ground.

(b) Illustration of the effect of mirror re-
flection.

(c) The proposed setup with two corner reflectors as
references.

Fig. 9. Design of device motion estimation.

described in Section 3.2, we calculate the motion direction. As shown in Figure 10d, the direction of device movement
changes multiple times even within a brief 2-second interval, confirming our earlier analysis in Section 3.1.

It should be noted that hand movements occur in 3D space, while our method models motion in 2D. Fortunately, due
to the horizontal placement of the corner reflectors, as shown in Figure 9c, vertical hand movements affect both the
corner reflectors and the human chest similarly. Mathematically, this introduces the same vertical motion component to
each reflected path. According to Equation 7, this term can be removed during division. Therefore, when the reflectors
and the chest are aligned horizontally, vertical hand movements do not affect our method.

(a) Target and references on range-
angle profile.

(b) The displacements of two
reference-reflected paths.

(c) The distance changes of two
reference-reflected paths.

(d) The result of device motion di-
rection estimation.

Fig. 10. An example of device motion direction estimation process.
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4.2.3 Device Motion Elimination. Once the direction of device motion is determined, we can further eliminate the
device motion component from the target-reflected signal. Theoretically, either corner reflector can serve as a reference
for this process. We propose using the reflector with the stronger reflected signal magnitude, as a stronger signal
generally indicates better SNR. Using the calculated directions of the human target, the chosen reference, and the
device motion, we compute the compensation coefficient 𝛽𝑡,𝑟 (𝑡), as introduced in Equation 7. This coefficient is then
applied to the distance change of the reference-reflected signal to estimate the device motion-induced distance change
at the target. This allows us to subtract the device motion component from the distance change in the target-reflected
signal, enabling the recovery of the target’s motion displacement using Equation 18. During this process, we identify
a significant issue affecting the performance of device motion elimination, as shown in Figure 11a. Specifically, we
observe unreasonable distance changes in the recovered displacement, such as a 0.5 cm change within just 1 ms at the
12 s. Such rapid changes significantly hinder the extraction of vital sign signals.

We recognize that these abnormal distance changes tend to occur when the reference angle is close to 90° relative
to the device’s motion direction. This can be explained by analyzing the compensation coefficient equation 𝛽𝑟,𝑡 (𝑡) =
𝑐𝑜𝑠 (𝜃𝑡 (𝑡 )−𝛼 (𝑡 ) )
𝑐𝑜𝑠 (𝜃𝑟 (𝑡 )−𝛼 (𝑡 ) ) . When the reference direction relative to the devicemotion (𝜃𝑟 (𝑡)−𝛼 (𝑡)) approaches 90°, the denominator
nears zero, causing large distance changes. As illustrated in Figure 11c, when the device motion direction is perpendicular
to the reference object, the distance change in the reference-reflected path approaches zero, and 𝑐𝑜𝑠 (𝜃𝑟 (𝑡) − 𝛼 (𝑡)) tends
towards infinity, leading to unpredictable errors.

To address this issue, we leverage the key observation that when the direction of one reference object is perpendicular
to the device motion, the direction of the other corner reflector is not close to 90°. Intuitively, switching to the other
reference object in such situations is a viable solution. Therefore, we continuously monitor the angle between the
selected reference and the device motion direction. When this angle exceeds 85°, we temporarily switch to the other
object as the reference for calculating the target-reflected path’s length change due to device movement. As shown in
Figure 11b, implementing this proposed scheme eliminates the abnormal distance changes in the restored target motion
displacement, demonstrating the improvement of using two reference objects instead of just one.

In the final stage, with the target displacement excluding device motion, we aim to extract respiration and heartbeat
information from this displacement. For respiration monitoring, we apply an autocorrelation algorithm to analyze
the periodicity of the waveform. It is important to note that, in real-life emergency situations, the patient may not be
breathing. Therefore, if the autocorrelation fails to detect a signal corresponding to the duration of a typical breath, it
may indicate that the patient is not breathing. For heartbeat detection, we use a filter-based technique [8]. First, we

(a) Abnormal distance changes. (b) Recovered displacement using
two references.

(c) The reason behind abnormal distance
changes.

Fig. 11. The challenge of abnormal distance changes after device motion elimination.
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apply a high-pass filter to the target displacement after device motion removal. This step is crucial because heartbeat
signals, characterized by small displacements, are less prominent in the frequency domain compared to respiration
signals. To isolate the heartbeat signal, we filter out the frequency components within the respiration frequency band,
setting the filter’s cutoff frequency at 0.75 Hz, the upper limit of typical breathing frequencies. We then identify the
frequency with the highest magnitude within the heartbeat frequency band as the detected heartbeat frequency. As
shown in Figure 12, we compare the baseline method (Mobi2Sense) with our proposed method. The baseline method,
which does not fully eliminate device motion, incorrectly identifies the highest magnitude frequency component in the
heartbeat frequency band as being caused by device movement. Consequently, it fails to detect the actual heartbeat
frequency. In contrast, our method effectively removes the device motion component, enabling the accurate extraction
of the true heartbeat frequency. This distinction underscores the improved reliability and accuracy of our approach for
extracting vital sign information, particularly in critical emergency scenarios.

(a) The frequency domain of displace-
ment recovered by the baseline ap-
proach.

(b) The frequency domain of displace-
ment recovered by our solution.

Fig. 12. A comparison between the baseline approach and our solution on HR extraction.

5 Evaluation

In this section, we evaluate the performance of the proposed system. First, we conduct two benchmark experiments in
a laboratory environment to validate the effectiveness of the proposed approaches, including the estimation of device
motion direction and device motion elimination. We study the impact of varying parameters and settings. Then, we
verify the performance of respiration and heartbeat monitoring in real-world environments.

5.1 Evaluation on Device Motion Direction Estimation

5.1.1 Experiment Setup. Figure 13a shows the experiment environment and setup. The mmWave radar is mounted on
a sliding track, which is controlled by a Raspberry Pi to simulate device motion. Two corner reflectors are placed in
front of the radar to serve as reference objects for estimating the direction of device motion. By default, the distance
between the corner reflectors and the radar is 1 m, with their respective angles set at 30° and -30°.

5.1.2 Overall Performance. As shown in Figure 13b, we present the overall performance across all experiment settings.
The proposed approach achieves a median device motion direction estimation error of 2.02°. Figure 13c shows an
Manuscript submitted to ACM
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(a) Scenario of experiment
setup.

(b) CDF of direction estimation error. (c) An example of the direction estima-
tion result.

Fig. 13. Overall performance of device motion direction estimation.

example of direction estimation result when the radar moves 3 cm in the direction of 0°. As shown in the figure, the
maximum direction estimation error during movement does not exceed 3.56° and the average error is less than 1.78°.

5.1.3 Impact of Device Motion Direction. In this experiment, we vary the direction of device motion from -90° to 90° at
a step of 30°. Figure 14a shows that as the direction of device motion increases, the direction estimation error increases
slightly. However, across all device motion directions, the maximum median estimation error is less than 2.16°. This
result shows that our method can effectively estimate different device motion directions with high accuracy.

5.1.4 Impact of Device Motion Scale. In this experiment, we vary the scale of device motion from 1 cm to 6 cm at a step
of 1 cm. We test the impact of device motion scale when the direction of device motion is at 0°, 30°, 60°, and 90°. As
shown in Figure 14b, our system achieves a maximum median error of less than 2.18° across different motion scales.
Meanwhile, there is no significant difference for different motion scales. Note that the scale of hand motion induced by
involuntary hand shaking is typically less than 1 cm [63]. Thus, this experiment indicates our approach is sufficient for
estimating the direction of device motions caused by involuntary hand movements.

5.1.5 Impact of Reference Position. In this experiment, we evaluate the performance of motion direction estimation
under different corner reflector positions (i.e., varying distance and angle). We first change the distance between the
radar and the reflectors from 0.5 m to 2 m at a step of 0.5 m. As shown in Figure 14c, as the distance between radar and

(a) Impact of device motion direc-
tion.

(b) Impact of device motion scale.(c) Impact of distance between ref-
erence and radar.

(d) Impact of angle between refer-
ence and radar.

Fig. 14. The impact of various factors on the estimation of device motion direction.
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corner reflectors increases, the direction estimation error remains below 2.21°. In real-world emergency care scenarios,
the distance between the radar and the references hardly exceeds 2 m. Then, at a fixed distance of 1 m, we vary the
angle of one reflector from 0° to 60° at a step of 20° while keeping the angle of another reflector at -30°. As shown in
Figure 14d, for each angle, the direction estimation error is less than 2.24°, which indicates our system can accurately
estimate device motion direction under various possible position relationships in real-world deployments.

5.2 Evaluation on Device Motion Elimination

5.2.1 Experiment Setup. In this benchmark experiment, as shown in Figure 15a, we use a metal plate with a size of 15
× 25 𝑐𝑚2 as the sensing target. The metal plate is placed on a sliding track. Then, we simulate the displacement of the
chest caused by human respiration and heartbeat by controlling the periodic reciprocating motion of the metal plate.
Two corner reflectors are placed on the two sides of the metal plate as references, which are used for device motion
direction estimation and device motion elimination. A participant holds the radar facing the sensing target (the metal
plate) at a distance of 1.5 m. We calculate the frequency estimation error as the evaluation metrics.

5.2.2 Impact of Target Motion Scale. In this experiment, we evaluate different scales of target motion, including 0.2 mm,
0.5 mm, 2 mm, 6 mm, and 10 mm. Note that the displacement of respiration and heartbeat-induced chest motion is
4 - 12 mm [17] and 0.2 - 0.5 mm [36], respectively. Thus, for the target motion scale in the range of 0.2 - 0.5 mm, the
target motion frequency is set to 1 Hz (60 bpm). For the target motion scale in the range of 2 - 10 mm, the target motion
frequency is set to 0.5 Hz (30 bpm). Figure 15b shows the recovered displacement at 0.2 mm by the baseline approach
(Mobi2Sense) using one reference object, and our system using two reference objects, respectively. It can be observed
that our method can achieve a better waveform recovery performance. We also quantitatively evaluate the performance
enhancement from the baseline approach to our system. Specifically, we calculate the SNR of the target motion, which

(a) Experiment setup. (b) The recovered displace-
ment at 0.2 mm.

(c) SNR enhancement of dif-
ferent target motion scales.

(d) Frequency estimation er-
ror of target motion scales.

(e) The impact of person
holding device.

Fig. 15. Evaluations on device motion elimination.
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is defined as the ratio of the energy of the target motion frequency to the sum of the energy of all frequencies in the
recovered signal. Figure 15c shows the SNR enhancement from the baseline to our method. For each target motion
scale, the SNR enhancement is at least 31.56%. Figure 15d shows the frequency estimation error under different target
motion scales. For the target motion scale in the range of 0.2 - 0.5 mm, the frequency estimation error has a maximum
value of 2.18 bpm. For the target motion scale in the range of 2 - 10 mm, the frequency estimation error has a maximum
value of 0.142 bpm. According to research [46], an HR estimation error of 5 bpm and an RR estimation error of 2 bpm
would not lead to a change in medical treatment. Thus, the results of this experiment show that accurate RR and HR
monitoring is feasible with our proposed solution.

5.2.3 Impact of Person Holding Device. In reality, different individuals may exhibit varying patterns of involuntary
hand shaking. Therefore, in this experiment, we aim to investigate the impact of different persons holding the device.
We recruit five participants to hold the radar. The target motion displacement scale is set to 0.5 mm. As shown in
Figure 15e, the frequency estimation errors for all participants are less than 6.36%. This result shows that our solution is
effective for different people holding devices.

5.3 Evaluation in Real-world Environments

In this section, we evaluate the performance of respiration and heartbeat monitoring for different participants in
real-world environments.

5.3.1 Experiment Setup. As shown in Figure 16a, a person lies on the ground as the sensing target, with two corner
reflectors placed on both sides of the body as the references. Another person holds the radar next to the target and
points it at the target’s chest. The ground truth of respiration and heartbeat is measured by two wearable sensors. The
respiration waveform is measured using a NUL-236 Respiration Monitor Belt logger sensor [2] worn on the target’s
abdomen. The heartbeat waveform and rate is collected by a NUL-208 Heart Rate and Pulse logger sensor sensor [1]
clipped to the target’s finger. We calculate the ground truth RR and HR using the collected ground truth waveform. We
calculate the error between the RR and HR measured by our system and the ground truth devices as the evaluation
metrics. We compare our system with a baseline method with static device [43] and Mobi2Sense [63] which eliminates
device motion for respiration monitoring. It is important to note that these experiments were approved by the National

(a) Experiment setup. (b) The waveform of respiration and heartbeat measured by our system
and ground truth devices.

Fig. 16. Experiment setup and an example of the recovered waveform.
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(a) CDF of RR error. (b) CDF of HR error. (c) Impact of different RRs. (d) Impact of different HRs.

Fig. 17. Overall performance of vital sign monitoring.

Commission for Information Technology and Liberties of France. The commission approved our research in the health
field with the collection of informed consent. According to the commission’s protocols, we recruited volunteers from
our university for the experiments. We provided all volunteers with detailed explanations of the study and obtained
their informed consent to participate. All experimental data was anonymized, retaining only demographic information
about the participants.

5.3.2 Overall Performance. Figure 16b shows an example of the recovered waveform using our solution and the
collected ground truth waveform. From 0 s to 20 s, the human target breathes normally. Then, the target holds his
breath to simulate the situation where the respiration disappears. For respiration monitoring, the waveform recovered
by our system demonstrates high similarity with the ground truth waveform. When the respiration disappears, the
heartbeat waveform can be clearly observed in the chest displacement restored by our system and is similar to the
variation pattern of the heartbeat ground truth data. Note that the detected heartbeat-induced displacement is about
0.5 mm, which matches the real heartbeat-induced displacement.

As shown in Figure 17a, the median RR estimation errors are 0.10 bpm, 0.11 bpm, and 0.18 bpm for the baseline, our
system, and Mobi2Sense, respectively. Our solution shows a slight improvement in RR estimation accuracy. On the
other hand, as shown in Figure 17b, for HR estimation, the median errors are 1.70 bpm, 3.68 bpm, and 16.43 bpm for
the baseline, our system, and Mobi2Sense, respectively. These results demonstrate a significant improvement in HR
estimation accuracy compared to existing methods. We further evaluate whether our system can accurately monitor
the RR and HR across various frequency bands. To this end, we let the participants change his/her respiration rate and
heartbeat rate by performing physical exercises. For RR, the evaluated frequency ranges from 5 bpm to 30 bpm. For HR,
the involved frequency ranges from 55 bpm to 155 bpm. It is worth noting that it is very important to detect HR and RR
in these non-routine situations, because patients may have various abnormal respiration and heartbeat frequencies in
emergency scenarios. As shown in Figure 17c and 17d, for different respiration and heartbeat rates, our system can
achieve a maximum error of 0.12 bpm and 4.66 bpm, respectively. These experiment results illustrate that our system
can work robustly under a wide range of frequencies of respiration and heartbeat.

5.3.3 Impact of Environment. In this experiment, we evaluate the impact of different environments. In real life,
emergency care can occur in any environment. There may be a large number of objects in the environment causing
possible multipath interference. As shown in Figure 18, we select four scenarios with various objects in the surrounding
environment including an office, a lounge, a meeting room, and a classroom. It can be observed that many static objects,
including chairs, tables, sofas, and feet, are likely to appear within the radar’s field of view in real-world scenarios.
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(a) An office. (b) A lounge. (c) A meeting room. (d) A classroom.

Fig. 18. Four real-world environments.

(a) The impact of environ-
ment.

(b) The impact of moving per-
son.

(c) The impact of target per-
son.

(d) The impact of person
holding the device.

(e) The impact of clothing.

Fig. 19. Impact of different factors on vital sign monitoring.

Despite the presence of multiple static objects, Figure 19a shows that our system can achieve robust vital sign monitoring
performance across all four environments. In these tests, the RR estimation error is less than 0.15 bpm and the HR
estimation error is less than 4.16 bpm. Meanwhile, we conduct an experiment to evaluate the impact of a person walking
nearby on our system. We let an individual walk at various distances from the monitored target, i.e., from 0.5 m to 2 m
at a step of 0.5 m. Figure 19b demonstrates that the movement of a person nearby does not affect the operation of our
system. These results show that our system can work with high accuracy in different, complex environments. This is
owing to mmWave radar has high range and angle resolution and can distinguish between different static objects in the
environment. At the same time, in our design, the corner reflectors have a strong ability to reflect signals. Thus, our
algorithm can robustly identify the existence of the corner reflectors and extract their signals as the references without
incorrectly selecting other static objects.

5.3.4 Impact of Target Person. In this experiment, we recruit a total of 12 subjects. The group includes 8 males and 4
females, ranging in age from 25 to 55 years, with heights from 162 cm to 185 cm, and weights from 52 kg to 81 kg. This
offers sufficient diversity in body sizes. As shown in Figure 19c, for different subjects, the absolute estimation errors of
RR and HR are less than 0.13 bpm and 3.56 bpm, respectively.

5.3.5 Impact of Person Holding the Device. In this experiment, we account for the diversity of people holding the device
(seven subjects). It should be noted that the seventh is a medical staff. At the same time, we consider the different ways
in which the rescuer could place the corner reflectors. In the experiment, the person holding the device is asked to
place the corner reflectors five times. This helps demonstrate that in practice the rescuer can quickly place the corner
reflectors as references and then begin vital sign monitoring. As shown in Figure 19d, for different person configurations,
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the RR and HR estimation errors are less than 0.16 bpm and 4.60 bpm, respectively. Specifically, the estimation errors
for RR and HR for the medical staff are 0.096 bpm and 2.48 bpm, respectively. The above experiments prove that our
system can show good generalization in real-life scenarios for different environments and different users.

5.3.6 Impact of Clothing. In this experiment, we evaluate the impact of the clothing of the target person. Participants
are asked to wear T-shirts (C1), sweaters (C2), T-shirts+cotton jackets (C3), T-shirts+sweaters+cotton jackets (C4),
and T-shirts+down jackets (C5) in this experiments. As shown in Figure 19e, the HR estimation error increases with
the increment of the thickness of clothes, especially for C4 and C5. Fortunately, it is usually necessary to remove the
patient’s heavy outer clothing during emergency care.

5.3.7 Impact of Placement of Reflectors. In this experiment, we evaluate the impact of the placement of the reflectors.
Firstly, in reality, the two reflectors may not be perfectly horizontal. As shown in Figure 20a, we gradually change the
distance of one of the reflectors from the horizontal line at a step of 10 cm. Figure 20b shows that if one reflector deviates
too much from the horizontal line, the system’s performance decreases. Fortunately, we also find that deviations within
10 cm do not significantly impact system performance and such a placement precision is easily achievable in practice.
During monitoring, we also move one of the reflectors suddenly to simulate that someone might accidentally touch
it in real-world scenarios. The experiment result shows that as long as the position of the reflector is not changed
much (i.e., less than 10 cm), our system can seamlessly monitor breathing and heartbeat. This is because the method in
Section 4.2.2 can track the location of the reflector in real time. Once its location changes, the system can immediately
adapt to the new configuration. If the reflector is moved over a large distance, it needs to be relocated to a suitable
position. Once it is placed, the system can immediately continue monitoring. In real emergency scenarios, the ground
may not always be flat, which means that the reflectors may be at different heights. To this end, we change the distance
of one of the reflectors from the ground at a step of 5 cm. As shown in Figure 20c, the height of the reflectors does not
affect the system performance. This indicates that our system can operate stably on uneven ground.

5.3.8 Impact of Hand Location. In reality, the position of the hand may not always be directly above the heart. Therefore,
we design experiments to evaluate the impact of hand location. Using the center of the chest as a reference, we evaluate
the system’s performance when the hand is placed in five different positions to the left and right of the center at a step
of 10 cm. As shown in Figure 20d, as long as the hand is positioned above the chest, whether directly over the heart or
not, our system can operate with the same level of performance.

(a) Experiment setup. (b) The impact of distance be-
tween a reflector and the hori-
zontal line.

(c) The impact of height. (d) The impact of location of
hand.

Fig. 20. Impact of reflector and hand location.
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6 Related Work

Wireless sensing: Recent years have witnessed rapid progress in wireless sensing. Various RF signals have been
explored for sensing purposes, ranging from Wi-Fi [28, 29, 35, 44, 62], RFID [15, 50], LoRa [48, 60], LTE [13, 19],
UWB [23, 45] to mmWave [12, 24, 34, 47]. Among them, mmWave radar demonstrates superior sensing accuracy,
distance, and angle resolution due to its high-frequency band, large bandwidth and multiple antennas. Thus, mmWave
radar has been widely used in a variety of sensing applications, including vibration monitoring [24, 54], vital sign
monitoring [8, 41], gesture recognition [30, 34], fall detection [59, 64], and tracking [7, 14]. In this paper, we use mmWave
radar as the platform to prototype our design due to that the high range and angle resolution help us extracting the
reflected signals from human target and references in the environment. Meanwhile, the high frequency enables us to
achieve fine-grained heartbeat monitoring.

Vital sign monitoring using mmWave: Over the past decade, significant advances have been made in mmWave
radar-based vital sign monitoring [22, 40, 51, 52, 57]. Both respiration and heartbeat can now be monitored with high
accuracy. For example, Vital-Radio [8] used FMCW radar for RR and HR monitoring and proposed a filter-based method
for fine-grained heartbeat extraction. ViMo [41] introduced a robust HR estimation approach using 60 GHz mmWave
signals, which effectively eliminates the interference of respiration on heartbeat monitoring. The possibility of vital sign
monitoring under body motion was also explored using deep learning-based techniques [21]. However, most mmWave
radar-based vital sign monitoring systems require the radar to remain stationary. In this paper, we explore how to
achieve fine-grained respiration and heartbeat monitoring while the radar is in motion, making mmWave radar-based
vital sign monitoring more practical in real-world scenarios.

Wireless sensing under device motion: In recent years, several studies have explored wireless sensing under
device motion using various wireless signals, including Wi-Fi [32], LoRa [49], acoustic signals [31], UWB radar [63],
and mmWave radar [58]. Among these, the Wi-Fi-based solution [32] focuses on gesture recognition by estimating
the motion of a handheld Wi-Fi receiver. However, it primarily relies on estimating device motion for device-based
sensing rather than eliminating device motion for contactless sensing. The LoRa-based solution [49] aims to extend
the sensing range using a robot-carried LoRa receiver. This approach controls the device’s motion direction so that
two antennas on the device follow the same trajectory, allowing device motion to be eliminated using signals from
both antennas. However, this method is not suitable for handheld devices, where hand motion tends to be random.
Solutions based on UWB radar, acoustic signals, and mmWave radar [31, 58, 63] eliminate device motion by using static
objects in the surrounding environment as references. Mobi2Sense [63] eliminates device motion using UWB radar
and demonstrates the feasibility of sensing with motion from both handheld and robot-carried radars. The acoustic
signal-based solution [31] achieves respiration monitoring and gesture recognition using a robot-carried acoustic
device. RF-Search [58] mounts a mmWave radar on a drone to detect survivors by identifying breathing targets during
flight. While these studies have proven effective in respiration monitoring and detection, none have addressed the
simultaneous monitoring of respiration and heartbeat while the device is in motion. This paper advances the granularity
of sensing under device motion by proposing a motion cancellation method based on motion direction estimation.

7 Discussions and Limitations

7.1 Envisioned Application Scenario

We envision that in the future, our system could be integrated into emergency medical tools for use in urgent scenarios.
The system requires a radar and two low-cost reflectors. To monitor a patient’s vital signs in an emergency, the operator

Manuscript submitted to ACM



22 Chang et al.

would place the two reflectors on either side of the patient’s body and hold the radar aimed at the patient’s chest. This
setup enables rapid monitoring of respiration and heartbeat. In the future, it would be worth exploring how static
objects in the environment could be used as references to eliminate device movement, thus removing the need for
additional reflectors. Note that we do not recommend placing the radar on the ground, even though it offers stability,
because the radar would be aimed at the patient’s side. Research has shown that accuracy decreases when the radar
is directed at the side of a person compared to the front. This is because chest movements caused by respiration and
heartbeat are most noticeable when viewed from the front of the body. In emergency situations, where a patient’s
breathing and heartbeat may be very weak, it is suggested for the operator to hold the radar facing the patient’s front
to ensure accurate vital sign monitoring.

7.2 3D Motion Direction Estimation

The main limitation of our system lies in its ability to only estimate 2D motion directions, while actual device motion
may be in 3D. Fortunately, the horizontal placement we propose in Section 4.4 can eliminate the influence of vertical
motion by hand. However, as demonstrated in the experiments in Section 5.3.7, if the horizontal placement is not
satisfied, the system performance may decline. We believe this issue could be addressed by placing another reflector
vertically, which would also allow the radar to have the capability to estimate angles in both horizontal and vertical
directions. Since the radar we currently use lacks accurate angle measurement capabilities in the vertical direction, we
leave this issue for future work.

7.3 Wider Experimental Evaluation

Our current experiments were primarily conducted in a laboratory environment and with a limited number of par-
ticipants. In the future, it is necessary to evaluate the performance in more scenarios, such as in hospitals, with a
wider range of individuals with different body characteristics. Additionally, many real-world situations need to be
considered and addressed, such as the large movements of the reference objects, the body movements of the monitored
targets, and the occlusion between the device and the target. The experiment in Section 5.3.7 shows that as long as the
position of the reflector is not changed a lot, our system can seamlessly monitor respiration and heartbeat. However,
if the reflector is moved over a large distance, it needs to be relocated to a suitable position. According to previous
studies, body movement and signal occlusion have a significant impact on sensing. If body movement and occlusion
are instantaneous, they will only interfere with the system for a short time. If they are continuous, our system will be
interrupted. This has become a real-world problem that needs to be solved. Meanwhile, in this paper, we only evaluate
the system performance when the target is lying down. Theoretically, our method is not limited to monitoring vital
signs when the target is lying down. However, we note that if the user is sitting, it may not be easy to find a place to
quickly place two reflectors. In contrast, when the user is lying down, the rescuer can easily place the reflectors on the
ground. We also note that the probability of the target lying down is higher in emergency scenarios, because first aid
such as CPR usually requires the target to lie down.

7.4 Apply on Other Wireless Signals

Our method can also be applied to other wireless devices with large bandwidth and multiple antennas, such as MIMO
UWB radars and microphone arrays (using acoustic signals). We also notice that the upcoming Wi-Fi 7 standard will
employ large bandwidth (i.e., 320 MHz) and MIMO technology, offering the possibility of applying our approach to
Wi-Fi signals.
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7.5 Other Application Scenarios

In this paper, we focus on eliminating the effect of hand movements on mmWave-based sensing. The proposed motion
direction estimation and elimination method can also be applied to other application scenarios. For example, it is worth
exploring how to use devices mounted on robots or drones to detect a person’s breathing and heartbeat. This could
help with medical robots and large-scale search and rescue of survivors.

8 Conclusion

In this paper, we demonstrate the capability of monitoring both respiration and heartbeat under device motion using
mmWave radar-based sensing. We theoretically analyze the key factor affecting the effectiveness of device motion
elimination, which is the accurate estimation of the device motion direction. To address this, we propose a novel
signal processing method that leverages reflected signals from two static objects. With precise device motion direction
estimation, our approach enables fine-grained vital sign monitoring. We believe that this approach pushes the boundaries
of fine-grained sensing in scenarios where the device is in motion.
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