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Abstract—This paper addresses the challenge of adapting large
vision models, such as CLIP, to domain shifts in image classi-
fication tasks. While these models, pre-trained on vast datasets
like LAION 2B, offer powerful visual representations, they may
struggle when applied to domains significantly different from
their training data, such as industrial applications. We introduce
TADA, a Text-Aided Domain Adaptation method that adapts the
visual representations of these models to new domains without
requiring target domain images. TADA leverages verbal descrip-
tions of the domain shift to capture the differences between
the pre-training and target domains. Our method integrates
seamlessly with fine-tuning strategies, including prompt learning
methods. We demonstrate TADA’s effectiveness in improving
the performance of large vision models on domain-shifted data,
achieving state-of-the-art results on benchmarks like DomainNet.

Index Terms—deep learning, domain generalization, vision-
language models.

I. INTRODUCTION

Recent advancements in machine learning have led to the
development of large vision models, such as CLIP [1], BASIC
[2], and ALIGN [3], which are pre-trained on vast datasets of
image-text pairs. These models, comprising a visual encoder
and a text encoder trained to minimize a contrastive loss, have
demonstrated remarkable capabilities in various vision tasks.
Their strength lies in the ability to extract useful information
from images, aligned with text-based representations of their
content.

However, the effectiveness of these models can be compro-
mised when applied to domains that differ significantly from
their pre-training data. This challenge is particularly evident
in specialized fields like industrial applications, where the
visual characteristics of the data may deviate substantially
from the web-scraped images typically used in pre-training.
To create a model that performs well on a specific problem,
it is common to fine-tune the pre-trained model. However, in
many cases, there is a shift between the domain of the available
training data and that of the test data during the fine-tuning
phase. For instance, in industrial applications, real-world data
may be limited or unattainable, whereas synthetic data can be
conveniently generated.

This mismatch between the training and target domains
results in a domain shift, often leading to performance degra-
dation. Traditional domain adaptation techniques [4] address

such shifts using limited, potentially unlabeled samples from
the target domain. Alternatively, domain generalization meth-
ods [5]–[8] aim to create models that are robust to unseen
domains without any target domain information. Furthermore,
the text/image alignment of multimodal models such as CLIP
allows generalization guided by textual descriptions of the
target images. Several methods focus on shifting the visual
features towards the target domain using textual descriptions
of the source and target images. PODA [9] and ’CLIP the gap’
[10] propose learning a specific augmentation for each source
image, operating within CLIP’s visual encoder. These augmen-
tations are simple functions, such as translation or instance
normalization. The augmented features are subsequently for-
warded to a semantic segmentation or detection algorithm.
Additionally, LADS and conceptually similar methods [11]–
[13] utilize StyleGAN-NADA’s [14] directional loss to train
an augmentation function per target domain directly in CLIP
space. This directional loss lies on the empirical observation
that a semantic shift in the text modality corresponds to the
same shift in the visual modality in CLIP space.

In this context, we propose TADA (Text-Aided Domain
Adaptation), a novel method designed specifically for adapting
large vision models to new domains without requiring target
domain images. TADA leverages high-level knowledge about
the target domain, provided in the form of textual descriptions,
to adapt the visual representations produced by the encoder of
the large vision model. Our method is similar to [11]–[13]
in that we learn an augmentation function per target domain,
but does not rely on the directional loss of StyleGAN-NADA.
TADA builds upon the inherent capabilities of text-image
models to align visual and textual representations. By utilizing
textual descriptions of the target domain, TADA aims to learn
to transform the representation of source images from the
training distribution to the target distribution. This approach
allows for effective domain adaptation without the need for
target domain images, making it particularly suitable for
scenarios where such data is scarce, expensive, or impossible
to obtain.

The main contributions of this paper are:

• The introduction of TADA, a novel text-based adaptation
method for large multimodal vision models.
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Fig. 1. TADA is a novel data augmentation method consisting of learning a
function that maps source captions to target captions (left). It then augments
the source images with this function to bring them closer to the target
distribution (right). All these operations take place in CLIP space, where text
and image are semantically aligned.

• A framework for learning to adapt visual representations
to new domains using only textual descriptions.

• An empirical validation of TADA’s effectiveness in im-
proving the performance of CLIP on domain-shifted
data in the standard benchmarks such as PACS [15],
OfficeHome [16], and DomainNet [17].

II. METHOD

We propose TADA (Text Aided Domain Adaptation), a
zero-shot domain adaptation method for image classification
that exploits the text-image description space of a multimodal
model. As illustrated in Fig. 1, the key idea is to learn
an adaptation function that transforms textual representations
from the source domain to the target domain. This adaptation
function is then applied to the image features from the source
domain, effectively transporting them into the target domain
representation space. Finally, we fine-tune CLIP on these
augmented image representations for the target domain, either
via linear probing or prompt learning.

A. Problem Formulation and Notations

The paper focuses specifically on single-source zero-shot
domain adaptation for N -way image classification, where N
represents the number of classes.

In this context, labeled samples from one source domain are
accessible at train time, represented as {(xsk, ysk)}nk=1 ∼ Ds.
Here, xk refers to the k-th sample from the source domain
and yk is the one-hot encoding of its label. The test data,
upon which the classifier is evaluated, originates from d target
domains Di

t and is denoted as {xik}
ni

k=1 ∼ Di
t, i ∈ {1, . . . , d}.

The approach builds on a multimodal model with text-
image contrastive pretraining, such as CLIP [1]. We denote its
visual encoder as EV and its text encoder as ET . The visual
features encoded by EV are represented as zsk = EV (xs

k). In
addition, class names ty and source domain textual description
ps are also available. Furthermore, it is assumed that textual
descriptions pi of the target domains Di

t are provided during
training. Such textual descriptions are used to transfer the
image embeddings to the target domains.

TADA is designed to improve the generalization perfor-
mance of fine-tuning strategies, ranging from zero-shot classi-

fication to more sophisticated prompt learning strategies [18],
[19], through simple fine-tuning of the head (linear probing).
The only constraint we impose is that the fine-tuning method
must keep the visual encoder EV frozen. There are two reasons
for freezing the visual encoder. First, it is important to pre-
serve the text-image alignment, a critical requirement for our
method, by preventing its degradation. Secondly, maintaining
a frozen encoder reduces the computational demands of the
model, making it less resource intensive.

Our contribution is centered around the introduction of
adaptation functions fθi , which are distinct for each target
domain. These functions aim to modify the CLIP features of
the source images to make them more faithful to the target
domains. As a result, the fine-tuning process can then be
expressed as follows:

min
ϕ

n∑
k=1

d∑
i=1

ℓ(gϕ(fθi(z
s
k)), y

s
k) (1)

where ℓ is the cross-entropy loss and gϕ is the prediction
function, parameterized by ϕ. For linear probing, gϕ(z) =
WT z, where W is the matrix initialized with the zero shot
classification head. For CoOp [18], a prompt learning method,
ϕ represents the learnable context tokens {[V ]1, ..., [V ]m} and
gϕ(z) = (W ′)T z, where W ′ is a matrix whose i-th column is
computed with ET ([V ]1...[V ]m[CLASS]i).

B. Learning Adaptation Functions

As previously mentioned, the core idea of TADA is to
learn a domain adaptation function in the text modality, where
domains can be conveniently described, and then apply this
function to image representations. A key strength of our
approach lies in the use of multiple prompts to represent
the source and target domains, rather than relying on a
single prompt. These prompts are generated by combining
domain descriptions and diverse contents, providing a more
comprehensive representation of the domains. The remainder
of this section details the step-by-step procedure we follow.

A caption is a text describing a virtual image in the
form a {style} of {content}, where {style} rep-
resents the image style (e.g., painting, photo) and
{content} is the style-agnostic description of the im-
age content. We learn augmentation functions using pairs
of captions: (a {source style} of {content}, a
{target style} of {content}). The style is the only
part of the caption changing within a caption pair. To make
the augmentation function robust on images, we want these
captions to be as diverse as possible, while still faithfully
representing the source and target distributions.

To this end, we first generate M generic captions using
a large language model, with the following template: a
picture of {content}, where {content} is a group
of words describing the content of the virtual image depicted
by the caption, for example a picture of a cool dog
catching a ball mid-air. In order to cover the widest
visual domain using text, we enforce diversity in generated
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Fig. 2. Caption pairs stylization: the word picture is replaced by the textual
description of the source and target domains (e.g. photo and cartoon) to
generate source and target-specific caption sets.
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Fig. 3. Training an augmentation function fθ to transform photo captions
into cartoon captions in CLIP space.

captions by constraining the large language model to generate
{content} related to diverse visual concepts.

We then add a style to the generic captions by replacing the
word picture with a domain textual description (see Fig. 2).
For every target domain Di

t, with textual description pi, we
replace the word picture by ps and pi to create source and
target specific caption pairs {(csj , cij)}Mj=1.

Similar to [11]–[13], we train an adaptation function fθi
for each target domain. Let (bsj , b

i
j) = (ET (c

s
j), ET (c

i
j))

denote the CLIP embedding of the source and target captions,
respectively. We train the adaptation functions to transform
each source caption embedding bsj into its corresponding target
caption embedding bij in the CLIP space. The parameters θi
of the augmentation function for the i-th target domain are
learned by minimizing the following L2 loss (see Fig. 3):

∀i θ∗i = argmin
θi

M∑
j=1

∥fθi(bsj)− bij∥22 (2)

In our experiments, the adaptation functions fθi are im-
plemented as simple fully-connected neural networks (see
Section III for architectural details).

C. Fine-tuning CLIP

While fine-tuning the linear zero shot head is a reasonable
way to exploit the knowledge embedded in a pre-trained CLIP
model, much work in recent years has focused on developing
better CLIP-based classification models. Two categories of
algorithm have emerged: robust fine-tuning [20]–[22] and
prompt learning [18], [19], [23]–[25].

The adaptation functions are computed using text features of
a frozen CLIP and should be effective on image features of a
frozen CLIP. Thus, our augmentation strategy is compatible
with any fine-tuning method that keeps the visual encoder
frozen. While this precludes end-to-end fine-tuning, most

prompt learning methods keep the visual encoder frozen,
allowing us to use TADA in conjunction with state-of-the-
art prompt learning methods. During the fine-tuning stage, we
discard the original, unadapted image embeddings.

III. EXPERIMENTS

A. Implementation Details

Generation of Generic Captions. We generated generic
captions using Meta’s openly accessible Llama3-8b [26]. To
enforce diversity in generated captions, we leveraged a list of
7881 visual concepts from the OpenImages v3 dataset [27].
For each visual concept, we asked LLama3 to generate 10
sentences beginning with a picture of, related to the
visual concept, leading to a generic caption dataset of 78,810
instances.
Modelling Adaptation Functions. We modeled the adaptation
function fθi with an isometry, represented by a matrix R
subjected to the constraint RTR = Id, where Id is the d-
dimensional identity matrix. Eq. (2) can be solved using the
Kabsch algorithm [28]. There are two reasons for modelling
the adaptation function with an isometry. First, text and image
live on the unit sphere in CLIP space. As a consequence, a
function mapping text to text or image to image should be
norm-preserving. Second, the structure of CLIP space, where
semantically related images and texts have a small angle, leads
us to use an angle preserving transformation.

B. Datasets and Textual Descriptions

We evaluate our approach on three datasets commonly
used for domain adaptation. DomainNet [17] comprises 345
classes and six domains (quickdraw, infograph, sketch, paint-
ing, clipart, real). OfficeHome [16] comprises 65 classes and
four domains (art, clipart, product, real world). PACS [15]
comprises seven classes and four domains (photo, art painting,
cartoon, sketch). Following previous single domain generaliza-
tion works [13], [29], we train our classification model on the
photo realistic domain of each dataset, and evaluate on the
remaining domains.

Fig. 4 presents the textual descriptions we used to represent
the different domains in our experiments. These descriptions
aim to capture the salient characteristics and contexts of
each domain, enabling the generation of relevant and domain-
specific captions through the language model.

C. Fine-tuning algorithms

As stated before, our adaptation method is compatible with
any CLIP-based classification algorithm that keeps the visual
encoder frozen. We propose to test the effectiveness of TADA
on four algorithms. LP (Linear Probing) is a simple fine-tuning
of the zero shot linear classification head. We initialize the zero
shot head using CLIP features of prompts with the template
A photo of a {classname}. WiSE-LP [20] (Weight
Space Ensembling - Linear Probing) effectively averages the
predictions of the zero-shot and the fined-tuned linear heads
during inference. We used a mixing coefficient of α = 0.5.
CoOp [18] is a prompt learning algorithm that learns the
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Fig. 4. Domain name (left) and corresponding textual description (right) for
the datasets we used.

context, leading to the best accuracy. Finally, CoCoOp [19]
adds an image-conditioned component into context genera-
tion, leading to a better generalization on novel classes and
domains. In our implementation, we fixed the context length
to 4 for both CoOp and CoCoOp.

Following the recommendations from DomainBed [30], we
selected the stopping iteration and hyperparameters (learning
rate, weight decay, batch size) that maximized the accuracy
on a validation set comprising 20% of the training data.
CLIP features of the images from the validation set are not
augmented. This approach ensured that the model’s parameters
were optimally tuned for the given task.

Among the different available CLIP architectures, we have
chosen to rely on the publicly available models from OpenAI’s
CLIP for our experiments, specifically the ViT-B/16.

D. Baselines

In addition to the four fine-tuning algorithms stated above,
we compare TADA with several CLIP-based methods: CLIP’s
zero-shot, PromptStyler [31], and LADS [11]. PromptStyler
is a source-free domain generalization algorithm that learns
K pseudo-words to represent various styles while remaining
close to the contents of the N classes. A linear classifier is then
trained using K×N prompts and applied to the image features
during inference. LADS [11] is a domain extension method
that augments source features with a MLP trained to shift the
image along a domain change direction while retaining useful
information for classification. In our experiments, we report
the accuracy of the unseen domain.

E. Domain Generalization Performance and Comparison with
State-of-the-Art Methods

Table I gives the main results we obtained on DomainNet,
OfficeHome and PACS. As stated before, we train the classi-
fiers on the photorealistic domain of each dataset and evaluate
on the remaining domains. We perform five runs and report the
mean micro accuracy (i.e., all samples are given equal weight)
over the target domains. Because of the prohibitive computing
cost, we did not test CoCoOp on DomainNet dataset.

The zero shot methods, especially PromptStyler [31]
demonstrate robust performance, often achieving results that

TABLE I
RESULTS USING THE CLIP VIT-B/16 MODEL. USED IN CONJUNCTION

WITH FINE-TUNING ALGORITHMS, TADA SYSTEMATICALLY IMPROVES
PERFORMANCE ON THE UNSEEN DOMAINS. THE GAIN OF TADA

COMPARED TO NO ADAPTATION IS SHOWN IN RED.

Method Dom.Net Off.Home PACS

CLIP ZS 52.70 79.96 95.25
PromptStyler 54.16±0.00 81.20±0.00 96.33±0.00
LADS 53.95±0.08 81.25±0.16 93.16±0.12

N
o

ad
ap

ta
tio

n LP 51.78±0.09 81.08±0.14 92.99±0.05
WiSE-LP 54.44±0.05 82.29±0.07 94.91±0.03
CoOp 53.95±0.25 80.30±0.33 92.76±0.39
CoCoOp - 81.20±0.04 95.40±0.02

+
TA

D
A

LP 54.20±0.15 81.75±0.10 93.54±0.05
+2.42 +0.67 +0.55

WiSE-LP 55.50±0.05 82.65±0.08 95.65±0.06
+1.06 +0.36 +0.74

CoOp 55.30±0.25 81.16±0.19 93.99±0.42
+1.35 +0.86 +1.23

CoCoOp - 81.82±0.05 96.40±0.08
+0.62 +1.00

are only slightly lower than robust fine-tuning methods. Due
to domain shift, naive fine-tuning of the zero shot head (LP)
often deteriorates the performance on the unseen domains.

The best results are achieved by combining TADA with
strong fine-tuning methods. The improvement brought by
TADA is higher for DomainNet than for OfficeHome and
PACS. This is due to the less well-defined domains in
OfficeHome. For instance, the art domain contains images
with various styles, such as paintings, sketches and cartoons.
Furthermore, there is minimal stylistic difference between the
product and real world domains. This limits the effectiveness
of TADA, as it heavily relies on specific domain descriptions.
It is also noteworthy that PACS is approaching saturation,
making significant accuracy improvements unexpected.

IV. CONCLUSIONS AND FUTURE WORK

This work introduces TADA, a novel adaptation method that
effectively adapts images to unseen domains guided by textual
descriptions. Used in conjunction with robust fine-tuning and
prompt learning strategies, TADA consistently improves the
accuracy on the unseen domains.

While current successes lie in aligning domains with clear
verbal distinctions, future work will focus on extending this
method to address subtler domain shifts. This could involve
exploring alternative representations beyond text captions, or
incorporating techniques from domain-invariant learning.

This work paves the way for further research on improving
the accuracy and completeness of domain representations. This
can be achieved by tackling limitations in caption generation
and exploring techniques like utilizing source images to re-
fine the caption generation process, drawing inspiration from
methods like CoOp [18].
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