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Cushing’s syndrome is caused by an elevation of endogenous or
pharmacologically administered glucocorticoids. Acyl coenzyme A binding
protein (ACBP, encoded by the gene diazepam binding inhibitor, Dbi)
stimulates food intake and lipo-anabolic reactions. Here we found that
plasma ACBP/DBI concentrations were elevated in patients and mice with
Cushing’s syndrome. We used several methods for ACBP/DBIinhibitionin
mice, namely, (1) induction of ACBP/DBIl autoantibodies, (2) injection of a
neutralizing monoclonal antibody, (3) body-wide or hepatocyte-specific
knockout of the Dbi gene, (4) mutation of the ACBP/DBI receptor Gabrg2
and (5) injections of triiodothyronine or (6) the thyroid hormone receptor-3
agonist resmetirom to block Dbi transcription. These six approaches
abolished manifestations of Cushing’s syndrome such asincreased food
intake, weight gain, excessive adiposity, liver damage, hypertriglyce-
ridaemia and type 2 diabetes. In conclusion, it appears that ACBP/DBI
constitutes an actionable target that is causally involved in the development
of Cushing’s syndrome.

Cushing’s syndrome results from the chronic hyperactivation of glu-
cocorticoid receptors, usually for several months, and is marked by a
characteristic phenotype thatincludes around ‘moon face’ with capil-
lary vasodilatation, skin acne, face hirsutism, cranial alopecia, central
obesity, lipodystrophy with a ‘buffalo hump’ at the back of the neck,
profusestriae, skin atrophy, sarcopenia and osteoporosis'. Inaddition,
Cushing’s syndrome isaccompanied by ametabolic syndromeinclud-
ing dyslipidaemia (mostly triglyceridaemia), insulin resistance, hyper-
glycaemiaand arterial hypertension, sometimes culminatingindeath
duetoatherosclerotic disease, cardiac failure or thromboembolism**.
Furthermore, immunosuppression may increase the susceptibility
to severe infections®. Endogenous Cushing’s syndrome, which is

often diagnosed with a significant delay (mean delay to diagnosis:
34 months) occurs due to the excessive production of endogenous
glucocorticoids, usually as the result of tumours, mostly pituitary
adenomas, that produce adrenocorticotropic hormone (ACTH), then
overstimulating the adrenal glands to produce cortisol. latrogenic
Cushing’s syndrome results from long-term treatments with synthetic
glucocorticoids, as this may be necessary for the control of chronic
asthma, rheumatoid arthritis, lupus, sarcoidosis and other severe
inflammatory conditions'’.

Acyl coenzyme A binding protein (ACBP) is encoded by the gene
diazepam binding inhibitor (Dbi). This dual designation, ACBP/DBI,
reflects the two roles of the protein®. First, ACBP/DBl is anintracellular
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proteininteracting with activated fatty acids as well as with other lipids
to facilitate their transport between organelles. Thus, ACBP/DBI acts
as aregulator of long-chain acyl-CoA and ceramide metabolism, and
as a facilitator of mitochondrial transport of cholesterol for steroid
synthesis’ . Second, ACBP/DBI can be found in the extracellular space
where it acts as a positive allosteric modulator on a specific subtype
of y-aminobutyric acid (GABA) A receptors (GABA,R) containing the
diazepam-binding subunit GABRG2'>", In addition, ACBP/DBIl and its
fragmentation products (suchasoctadecaneuropeptide) caninteract
with a G-protein-coupled receptor in the central nervous system'.
ACBP/DBI is a leaderless peptide that cannot be secreted by conven-
tional (Golgi-dependent) protein secretion but rather leaves cells
through an autophagy-associated pathway'"*. ACBP/DBI is phylo-
genetically conserved throughout the eukaryotic radiation, and this
mode of unconventional secretion is maintained in unicellular fungi
and mammalian cells>'°, ACBP/DBI plays a major role in adapting
cells and organisms to nutrient stress. Starvation causes an acute
autophagy-mediated surge in extracellular ACBP/DBI protein, thus
activating anadaptive response to nutrient stress (such as sporulation
in fungi, pharyngeal pumping in nematodes and feeding behaviour
inmice)'*"”'%, Stimulation of feeding behaviour by ACBP/DBI released
into the systemic circulation is mediated by indirect effects on appe-
tite control centres in the brain because ACBP/DBI does not cross
the blood-brain barrier’®. In addition, extracellular ACBP/DBI acts
as an extracellular checkpoint of autophagy®”, which constitutes
amechanism how cells recycle their cytoplasm, adapt to stress and
rejuvenate themselves**?'. Long-term elevations of ACBP/DBI are
observedin old age, obesity, metabolic syndrome, chronicinflamma-
tionand kidney failure®***?%, They are probably maladaptive because
knockout of ACBP/DBI prolongs lifespan in model organisms (yeast
and nematodes)?"*, prevents accelerated cardiac ageing induced by
anthracyclines in mice® and protects several organs (that is, brain,
heart, liver and lung) against acute damage by reducing cell death,
inflammation and fibrosis®.

Intrigued by the possibility that ACBP/DBI is (one of) the phyloge-
netically most ancient peptide hormone(s)”, we became interested in
its (patho)physiological roles. Here, we used anin vitro screentoiden-
tify other neuroendocrine factors that regulate ACBP/DBI. We found
thatglucocorticoid receptor activation stimulates the release of ACBP/
DBIfrom cultured cells and increases plasma ACBP/DBI concentrations
in mice. Moreover, thyroid hormone transcriptionally downregu-
lates ACBP/DBI. In a mouse model of iatrogenic Cushing’s syndrome,
knockout of the Dbi gene, mutation of Gabrg2, antibody-mediated
neutralization of ACBP/DBI or transcriptional downregulation of ACBI/
DBI by thyroid hormone all prevent the metabolic consequences of
chronic glucocorticoid administration. Our observations suggest
thatimportant facets of Cushing’s syndrome are mediated by a surge
inextracellular ACBP/DBI.

Results

Corticosteroids and thyroid hormones modulate ACBP

Driven by the theoretical consideration that neuroendocrine factors
areusuallyembedded inregulatory circuitries involving other neuro-
endocrine factors®**, we designed a screen in which we evaluated the
impact of 710 distinct agonists and antagonists of neurotransmitter
and hormone receptors on ACBP/DBI expression by H4 human neu-
roglioma cells. For this, H4 cells expressing an autophagy biosensor
(microtubule-associated protein 1A/1B-light chain fused to green fluo-
rescent protein, GFP-LC3) were cultured for 6 or 24 hin the absence or
presence of 5 uM of each of the agents assembled in a custom arrayed
compound library (Supplementary Table 1). The cells were then sub-
jected totheimmunofluorescence detection of ACBP/DBI*?, Automated
fluorescence microscopy followed by image analyses confirmed that
autophagy inducers used as positive controls (rapamycin and torin-1)
reduced the fluorescent signal corresponding to ACBP/DBI while they
caused the aggregation of GFP-LC3 in cytoplasmic dots (Fig. 1a-d).
Glucocorticoids exemplified by hydrocortisone (HCS, the natural
human hormone) and dexamethasone (DEX, a synthetic analogue
with higher potency than HCS) induced asimilar pattern of ACBP/DBI
reduction and GFP-LC3 puncta (Fig. 1a-d). In contrast, the thyroid
hormone 3,3’,5-triiodo-L-thyronine (triiodothyronine, T3) attenuated
ACBP/DBI expression withoutinduction of GFP-LC3 puncta (Fig.1a-d).
These effects, also detected in the HepG2 cell line, were dose depend-
ent (Supplementary Fig. 1) and were accompanied by the secretion
of ACBP/DBI into culture supernatants for rapamycin, DEX and HCS,
but not for T3 (Fig. 1e). Both HCS and DEX upregulated, whereas T3
downregulated, the messenger RNA coding for ACBP/DBI (Fig. 1f).
HCS and DEX induced the autophagy-associated lipidation of LC3,
giving rise to the electrophoretically more mobile LC3-Il band, and
this was found both in the absence and in the presence of bafilomycin
Al (BafAl), indicating that corticosteroids induce autophagic flux
(Extended Data Fig. 1a,b). Moreover, ACBP secretion in response to
glucocorticoids wasinhibited by the knockdown of autophagy-related
5 (ATGS5) and autophagy-related 7 (ATG?) (Extended Data Fig. 1c). The
capacity of corticosteroids to attenuate intracellular ACBP/DBI expres-
sionandtoincrease secretion of ACBP/DBIinto culture supernatants
was inhibited by knockdown of the glucocorticoid receptor NR3C1
(Extended Data Fig.1d-g). Inmice, HCS administrationinduced dose-
and time-dependent thymolysis (Extended Data Fig. 1h,i,I,m). This
effect was accompanied by a significant increase in plasma ACBP/
DBI concentrations (Fig. 1g and Extended Data Fig. 1n) and hepatic
ACBP/DBI mRNA levels (Fig. 1h). Conversely, there was a decrease in
liver ACBP/DBI protein (Fig.1i,j and Extended Data Fig. 10,p), contrasted
by anincrease in white adipose tissue (WAT) ACBP/DBI protein levels
(Extended Data Fig. 1j,k). These changes were associated with signs
of autophagy, including LC3 lipidation and depletion of SQSTM1/p62
(Fig. 1i,k,1).

Fig.1|Identification of corticosteroids and thyroid hormone as ACBP/DBI
modulators. a,b, H4 cells expressing GFP-LC3 were treated with agonists and
antagonists of neurotransmitter and hormone receptors (5 uM). ACBP was
assessed by immunohistochemistry. Scaled ACBP fluorescence intensity and
viability are depicted (a) together with representative images (b). Rapamycin
(RAPA; 10 pM), Torin-1(0.3 pM) and DMSO (control) were used as controls.
Scalebar, 5 pm. ¢,d, The plots show ACBP fluorescence (c) and GFP-LC3 puncta
(d) (16 h; 0.01,0.05 and 0.1 uM DEX, HCS and T3 in dialysed foetal bovine

serum (AU, arbitrary units; mean + s.d.). e,f, H4 cells were treated with DEX,
HCSand T3 (0.1 uM) for 16 h. ACBP release was assessed by ELISA (e), and ACBP
mRNA levels were measured by qRT-PCR (RU, relative units) (f). g,h, Female
C57BL/6) (8-week-old) mice (n =S5 per group) were treated with HCS (10, 50 and
100 mg kg™;i.p.) for 24 h. Plasma ACBP was measured by ELISA (g) and hepatic
Acbp mRNA was assessed by qRT-PCR (h). i-1, ACBP abundance, LC3 conversion
and p62 degradation were measured in liver tissue (representative blots in (i and
quantifications of the ratios of the indicated proteins inj-I) (n = 3 per group)).

m, Mice were fasted or received HCS (100 mg kg%, i.p.) for 24 h combined with
SAFit2 (40 mg kg™; i.p.) or vehicle, and plasma ACBP was measured by ELISA
(n=15,10,10,10,10 and 10 mice per group). n, PBMCs were treated with HCS
(0.5 uM) for 16-18 h, and ACBP mRNA was assessed by qRT-PCR. o,p, Plasma
ACBP levels were measured in dermatology patients receiving (n = 53) or not
(n=39) glucocorticoid treatment (0), and data were grouped by sex (p). The
Wilcoxon test was used and P values were calculated according to a multivariate
modelincluding age and BMI. ¢, Plasma ACBP was measured in ACTH-dependent
patients with Cushing’s syndrome with hypercortisolaemia (n =11) or in
remission (n =13); an unpaired ¢-test was used for analysis. r,s, Plasma ACBP was
plotted against BMIin the hypercortisolaemia group (n =11) (r) and against daily
HCS dose (in the case of corticotroph deficiency) in the remission group (n =10)
(s). The dot plots depict mean + s.e.m., if not otherwise indicated. One-way
ANOVA with Dunnet correction (c-h and j-m), Mann-Whitney test (two tailed)
(o and p), unpaired ¢-test (two tailed) (q and n) and Pearson correlation (rand s)
were used for statistical analysis (P values are indicated).
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Of note, the fasting and HCS-induced surge in plasma ACBP/DBI
was abrogated by treatment with SAFit2 (Fig. Im), which is an inhibi-
tor of autophagy-dependent secretion®. All effects caused by HCS
in vivo were mimicked by DEX and were counteracted by the gluco-
corticoid receptor antagonist mifepristone, indicating that they act
on-target (Supplementary Fig. 2). Mifepristone injection into mice
reduced ACBP/DBI levels at baseline but failed to prevent the 24 h
fasting-induced surge in plasma ACBP/DBI (Extended Data Fig. 1q,r).
The downregulation of ACBP/DBImRNA by thyroid hormone was inhib-
ited by knockdown of thyroid hormone receptor o and 3 (Extended
Data Fig. 2a-d). Short-term (16 h) administration of T3 had no effect
on plasmaACBP/DBI protein, but reduced Achp/Dbi mRNA and protein
intheliver (Extended Data Fig. 2e-i).

Insum, our dataindicate that corticosteroids reduce the cellular
content of ACBP/DBI through its autophagy-associated release into
the extracellular space, while T3 downregulates ACBP/DBI expression
atthe mRNA level.

Glucocorticoids and hypercortisolaemia elevate plasma ACBP
HCS significantly enhanced ACBP/DBI expression in peripheral blood
mononuclear cells (PBMCs) from healthy human donors (Fig. 1n).
We next analysed the expression of ACBP in two human cohorts.
Results from the first cohort indicated that plasma ACBP/DBI con-
centrations in both female and male patients receiving glucocorticoids
(together n = 53) were significantly higher than those in the control
group (n=39) (Fig.10,p). The second cohort comprised patients with
ACTH-dependent Cushing’s syndrome. Plasma ACBP/DBI concentra-
tions were significantly higher in patients with active disease (n=11)
compared with patients in remission (n =13) (Fig.1q). In patients with
active disease, ACBP/DBI concentration exhibited a significant and
robust positive correlation with body mass index (BMI), whichis a
proxy of Cushing’s syndrome severity (Fig. 1r). Moreover, in patients
in remission, supplemental glucocorticoid doses correlated with
ACBP/DBI (Fig. 1s).

ACBP vaccination prevents consequences of Cushing’s
syndrome

We speculated that (part of) the Cushing’s syndrome phenotypeinclud-
ing increased food intake, weight gain, adiposity and type 2 diabetes
(T2D) might be related to the increase in ACBP/DBI. To explore this
possibility, we repeatedly immunized female C57BL/6) mice with ACBP/
DBI protein coupled to the potentimmunogen keyhole limpet haemo-
cyanine (KLH) using a protocol that breaks self-tolerance against ACBP/
DBIland, hence, induces neutralizing autoantibodies®. Immunization
with KLH alone was performed as a control. Then, the mice received
high-dose corticosterone (CORT, which is the primary adrenal corti-
costeroid in laboratory rodents) for 5 weeks in the drinking water (or
0.66% ethanol (EtOH) in water as a control) (Fig. 2a). Immunization
with KLH-ACBP reduced the plasma ACBP/DBI concentrationin both
controland CORT-treated mice (Fig. 2b) but did not affect CORT levels

(Supplementary Fig. 3a). InKLH-only immunized mice, CORT induced
anincreasein ACBP/DBIl expressioninthe liver (Fig. 2c,d) and enhanced
the expression of the glucocorticoid receptor NR3C1 (Fig. 2c,e). All
these CORT effects were attenuated upon vaccination with KLH-ACBP
(Fig.2c-e).

Concomitantly, KLH-ACBP vaccination prevented the CORT-
induced surge in food intake (Fig. 2f) and body weight gain (Fig. 2g).
CORT administration to KLH-only immunized mice induced a major
increaseinbody masswith anincrease in the face angle reminiscent of
the moon face found in patients with Cushing’s syndrome (Fig. 2h,i). At
necropsy, signs of CORT-induced thymolysis, atrophy of the adrenal
gland and sarcopeniaaffecting the erector spinae were not prevented
by KLH-ACBP vaccination (Fig. 2j and Supplementary Fig. 3). However,
the increase of liver weight, visceral, inguinal, perigonadal WAT and
interscapular brown adipose tissue (iBAT), which was accompanied by
anincrease in median adipocyte diameter (Extended Data Fig. 3), was
attenuated by ACBP/DBIlautoantibodies. Inaddition, the CORT-induced
increaseinliver triglycerides (TG) and circulatingliver enzymesinclud-
ing alanine aminotransferase (ALT) and aspartate aminotransferase
(AST) was prevented by KLH-ACBP vaccination. Concomitantly, an
elevation of circulating TG and free fatty acids (FFA), alterations in
the glucose tolerance test (GTT) and insulin tolerance tests (ITT) and
signs of T2D such as hyperinsulinaemia and altered fasting plasma
glucose, yielding increased homeostasis model assessment of insulin
resistance (HOMA-IR) values, were found in KLH-only vaccinated mice
treated with CORT, but not after KLH-ACBP vaccination (Fig. 2j and
Supplementary Fig. 3).

Insum, autoantibodies neutralizing ACBP/DBIblunt major pheno-
typic and metabolic manifestations of Cushing’s syndrome including
anincrease in appetite, weight gain, hypertrophy of WAT and iBAT, liver
damage, dyslipidaemia and insulin resistance.

Genetic inhibition of ACBP prevents Cushing’s syndrome
Autoantibodies against ACBP/DBI might mediate off-target and side
effects due toimmune complex disease. To rule out this possibility,
we attempted to inhibit Cushing’s syndrome by two alternative
methods, namely, (1) tamoxifen-inducible expression of a CRE recom-
binase that excises the floxed intron 2 of the gene encoding ACBP/
DBI, thus leading to its conditional ablation, either at the whole-body
level orin hepatocytes alone, and (2) a point mutation (F771in subunit
GABRG2)inthe ACBP/DBIreceptor, GABA,R, that abolishesitsinterac-
tion with ACBP/DBI'™,

The conditional Achp/Dbi knockout™ was achieved by repeated
intraperitoneal (i.p.) injection of tamoxifen into female mice
bearing a floxed Acbp/Dbi gene (genotype: Dbi"") in combination
with a latent ubiquitous or a hepatocyte-specific CRE recombi-
nase (genotypes: UBC-cre-ERT2 or TTR-creTam, respectively). Dbi"
mice lacking CRE were also injected with tamoxifen as controls
(Fig. 3a). Then, the animals were treated with CORT in drinking water
for 5 weeks. The whole-body Acbp/Dbiknockout™ rendered circulating

Fig. 2| Autoantibody-mediated neutralization of ACBP/DBI prevents
Cushing’s syndrome. a, The experimental schedule of CORT administration
inauto-immunized C57BL/6) female mice against ACBP/DBI. Female C57BL/6)
mice were treated with KLH-ACBP for autoimmunization or KLH alone, both
administered intraperitoneally for 4 weeks (n =10 mice per group). One week
later, mice received CORT (100 pg ml™) or vehicle control (control) in drinking
water orally (p.o.) for an additional 5 weeks (n = 10 mice per group). b, Plasma
levels of ACBP were measured by ELISA. c-e, Hepatic ACBP and NR3C1were
analysed by immunoblot. Representative blots (c) and quantifications of the
indicated protein ratios (d and e) are shown (n = 3 per group). B-Actin was used
asaloading control. f,g, The average food intake (n = 4 cages per group) (f)
and body weight (n =10 mice per group) (g) was monitored in the indicated
groups. The Pvalue represents the comparison of areas under the curve. h,i,
Representative frontal and longitudinal photographs of one mouse of each

group are shown (h), and facial angles were measured (i) at the end of week 5
(n=3miceper group). The lines indicate the measurement of the facial angle
inmice.j, The heatmap shows the standardized deviations (zscores) of tissue
weights relative to body weight and the quantification of various biochemical
parameters across the treatment groups (n =10 per group). VWAT, visceral white
adipose tissue; iWAT, inguinal white adipose tissue; pWAT, perigonadal white
adipose tissue; iBAT, interscapular brown adipose tissue. Statistical comparisons
were performed by pairwise (two-tailed) Wilcoxon test with false discovery rate
correction for multiple comparisons (Pvalues are indicated). k-n, GTT (n=10
mice per group) (k) and ITT (n =10 mice per group) (m) were monitored in the
indicated groups. The Pvalue represents the comparison of areas under the curve
(GTT (1) andITT (n)). Alldot plots depict mean + s.e.m. The curves in fand g were
longitudinally analysed with type Il ANOVA and pairwise comparisons. The data
inb,d, e,i,1and n were analysed using one-way ANOVA with Tukey correction.
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ACBP/DBI and hepatic Acbp/Dbi mRNA undetectable (Fig. 3b,c),
reduced CORT-induced appetite (Fig. 3d) and weight gain (Fig. 3e)
and had no effects on CORT plasmalevels (Supplementary Fig. 4a), but
attenuated the CORT-induced hepatomegaly, expansion of adipose tis-
sues, atrophy of the skeleton muscle, dyslipidaemia, insulin resistance
fasting plasma glucose, HOMA-IR values and alterationsin the GTT and
ITT (Fig. 3f-j and Supplementary Fig.4). Although hepatocyte-specific
knockout did not reduce baseline ACBP/DBI plasma concentrations
to undetectable levels (as this occurs in the whole-body knockout),
it did prevent the CORT-induced surge in circulating ACBP/DBI,
indicating that this elevation stems from CORT effects on the liver
(Fig. 3k), in which Acbp/Dbi mRNA became undetectable (Fig. 31).
This effect of the hepatocyte-specific Dbi knockout correlated with
reduced CORT-induced food intake (Fig. 3m) and weight gain (Fig. 3n),
as well as the normalization of hepatomegaly, dyslipidaemia, insulin
resistance, fasting plasma glucose and HOMA-IR values (Fig. 30 and
Supplementary Fig. 5).

Mice homozygous for the Gabrg2 F771 mutation (genotype:
Gabrg2™""77y were compared with their wild type (genotype: Gabrg2”*)
controls (Fig.4a). The Gabrg2F77I mutation blunted the CORT-induced
augmentation of plasma ACBP/DBI (Fig. 4b), reduced the CORT-
elicited increase in hepatic Achp/Dbi mRNA expression (Fig. 4c) and
prevented the surge in food intake (Fig. 4d) and weight gain (Fig. 4e).
The Gabrg2 F771 mutation had no effects on CORT levels but attenu-
ated the CORT-induced atrophy of thymus, adrenal gland and skele-
ton muscle as it reversed the expansion of WAT and iBAT, as well as
liver hypertrophy (Fig. 4fand Supplementary Fig. 6). Gabrg2 F771 muta-
tionalso prevented CORT-induced signs of dyslipidaemia, hyperinsu-
linaemia and insulin resistance (Fig. 4f-j and Supplementary Fig. 6).

In conclusion, it appears that genetic inhibition of the ACBP/DBI
system can prevent weight gain and other metabolic manifestations
of Cushing’s syndrome induced by CORT, strongly suggesting that
theresults obtained with autoantibodies are due to on-target effects.

Antibody neutralization of ACBP prevents Cushing’s
syndrome

We next determined whether passive immunization of mice using a
monoclonal antibody (mAb) specific for ACBP/DBI (0 ACBP, injected
twice weekly at a dose of 5 mg kg™ body weight) would be capable of
preventing the Cushing’s phenotype (Fig. 5a). This protocol succeeded
inneutralizing the increase of circulating ACBP/DBlinduced by CORT
(Fig. 5b) and prevented the increase in food intake (Fig. 5c), weight
gain (Fig. 5d), adipocyte hypertrophy (Extended DataFig. 4) and aug-
mented face angle (Fig. 5e). A forced swimming experiment revealed
that, compared with the control group, mice receiving CORT exhibited
alongerimmobility (a proxy of depression-like behaviour), while ACBP/
DBI neutralization shortened immobility (Fig. 5f). Hence, ACBP/DBI
inhibition can prevent CORT-induced behavioural changes. xACBP also
largely prevented CORT-induced increasesin circulating ALT and AST,

liver and plasma TG, plasma FFA and hyperinsulinaemia, alterationsin
glycaemia suggestive of insulin resistance®*®, and elevated HOMA-IR
values (Fig. 5g and Supplementary Fig. 7). Accordingly, xACBP nor-
malized the CORT-induced alterationin glucose tolerance andinsulin
tolerance (Fig. Sh-k). Inhibition of ACBP/DBI by a ACBP reversed the
hypertrophy of adrenal, liver and adipose tissues but failed to pre-
vent CORT-induced muscular and thymic atrophy (Fig. 5g and Supple-
mentary Fig. 7). Experiments in metabolic cages revealed that t ACBP
reduced CORT-induced hyperdipsia (Fig. 6a) and hyperphagia (Fig. 6b)
and had little effect on the respiratory exchange ratio (Fig. 6¢c-e) but
enhanced nocturnal energy expenditure (Fig. 6f), ambulatory and fine
movements (Fig. 6g) and speed of movement (Fig. 6h).

Multi-omics analyses supported the ideathat ACBP/DBIneutraliza-
tion normalized most metabolic alterations induced by CORT. Thus,
«ACBP attenuated the CORT-induced hyperleptinaemia, as well as the
increase in peptide tyrosine tyrosine, C-peptide, glucose-dependent
insulinotropic polypeptide, glucagon and resistin (Extended
Data Fig. 5). We performed RNA-sequencing-based transcriptomic
analyses of liver tissues, choosing this organ because it is the prin-
cipal source of CORT-induced ACBP/DBI. Of note, xACBP reversed
most of the transcriptional changes induced by CORT (Extended Data
Fig. 6a-e). At the transcriptional level, xACBP reduced CORT-elicited
lipo-anabolic pathways (Extended Data Fig. 6f) but upregulated
CORT-repressed immune-related genes in the liver (Extended Data
Fig. 6g). Finally, mass spectrometric metabolomics of the liver and
plasma confirmed a surge in TG metabolites induced by CORT that
was prevented by ACBP/DBI neutralization (Extended Data Fig. 7 and
Supplementary Figs. 8 and 9).

All the aforementioned results have been obtained in female mice.
To exclude any possible sexual dimorphism, we performed experi-
ments in male C57BL/6) mice to demonstrate that CORT-induced
hyperphagy, weight gain and metabolic syndrome are largely abol-
ished by xACBP (Extended Data Fig. 8 and Supplementary Fig.10). We
also performed pair-feeding experiments in female mice to investi-
gate whether cACBP solely interferes with CORT-induced metabolic
syndrome by suppressing hyperphagy (Fig. 7a). The CORT induced
increase of circulating ACBP/DBI was attenuated by aACBP (Fig. 7b).
Even when pair feeding was performed in away that the body weight of
the animals treated with vehicle only, CORT, alone or in combination
with the xACBP antibody was undistinguishable (Fig. 7c), the metabolic
effects of CORT persisted (Fig. 7d and Supplementary Fig. 11). Thus,
under these conditions, CORT caused dyslipidaemia (enhanced TG and
FFA), hyperinsulinaemia, a shift in body composition from lean mass
to fat mass determined by nuclear magnetic resonance relaxometry,
anincreasein adiposity and areduction of muscle mass. Most of these
signs of CORT-induced metabolic syndrome were attenuated by
ACBP/DBI neutralization (Fig. 7d-h and Supplementary Fig. 11).

It is noteworthy that xACBP mAb completely failed to prevent
weight gain and food intake (Supplementary Fig. 12a-c) induced by

Fig.3|Genetic depletion of ACBP/DBI prevents Cushing’s syndrome.

a, Aschematicrepresentation of the different C57BL/6J lineages conditionally
knocked out for the ACBP/DBI protein. The conditional knockout of Acbp/Dbi
was achieved by administering repeated i.p. injections of tamoxifen (TAM) to
mice with a floxed Acbp/Dbi gene (genotype: Dbi""), combined with either a
latent ubiquitous CRE recombinase (UBC-cre*) or a hepatocyte-specific CRE
recombinase (TTR-cre*). b-o, Female Dbi” mice and their wild-type controls
(Dbi**) as well as female liver-Dbi” mice and their wild-type controls (liver-
Dbi*”*) were treated with CORT (100 pg ml™) or vehicle (control) in drinking
water (p.o.) for 5 weeks: Plasma ACBP was quantified by ELISA (n = 6 per group)
(bandk), and hepatic Acbp mRNA was assessed by qRT-PCR (n = 6 per group)
(cand|); average food intake (n = 3 cages per group) (d and m) and body weight
(n=8and 6 mice per group) (e and n) were monitored in the indicated groups
(the Pvalue represents the comparison of areas under the curve); the heatmap
shows the standardized deviations (z scores) of tissue weights relative to body

weight and the quantification of various biochemical parameters across the
treatment groups (n = 6 mice per group) (fand o) (statistical comparisons were
performed by pairwise (two-tailed) Wilcoxon test with false discovery rate (FDR)
correction for multiple comparisons; Pvalues are indicated); GTT (n = 6 mice
per group) (g) and ITT (n = 6 mice per group) (i) were monitored in the indicated
groups (the Pvalue represents the comparison of areas under the curve; hand
Jj). Statistical comparisons were performed by pairwise Wilcoxon test with FDR
correction for multiple comparisonsin the heatmaps (Pvalues are indicated). All
dot plots depict mean + s.e.m. Two independently repeated experiments were
conducted; only one representative result is shown. The curvesind,e,mandn
were longitudinally analysed with type Il ANOVA and pairwise comparisons. The
datainb, ¢, hand j-1were analysed using one-way ANOVA with Tukey correction.
VWAT, visceral white adipose tissue; iWAT, inguinal white adipose tissue; pWAT,
perigonadal white adipose tissue; iBAT, interscapular brown adipose tissue;

ND, not detectable. Created with BioRender.com.
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Fig. 4| Geneticinhibition of ACBP/DBI prevents Cushing’s syndrome.

a, Ascheme showing the experimental schedule of CORT administration in female
C57BL/6) mice (Gabrg2”"7"') or wild-type controls (Gabrg2”*). b-j, Gabrg2”"”"!
or Gabrg2”* mice were treated with CORT (100 pg ml™ or vehicle control (control)
indrinking water, p.o.) for S weeks (n =10, 10, 9 and 10 mice per group): plasma
ACBP was measured by ELISA (n = 6 per group) (b), and hepatic Acbop mRNA was
assessed by qRT-PCR (n = 6 per group; AU, arbitrary units) (c); average food
intake (n =3 cages per group) (d) and body weight (n=10,10, 9 and 10 mice per
group) (e) were monitored in theindicated groups (P values compare areas under
the curve); the heatmap shows the standardized deviations (z scores) of tissue
weights relative to body weight and the quantification of various biochemical
parameters across the treatment groups (n = 6 mice per group) (f) (statistical
comparisons were performed by pairwise (two-tailed) Wilcoxon test with false

discovery rate (FDR) correction for multiple comparisons: Pvalues are indicated);
GTT (n=6miceper group) (g) and ITT (n = 6 mice per group) (i) were monitored
intheindicated groups (the Pvalue represents the comparison of areas under the
curve; (GTT (h) and ITT (j)). Statistical comparisons were performed by pairwise
Wilcoxon test with FDR correction for multiple comparison in the heatmaps
(Pvalues areindicated). All dot plots depict mean + s.e.m. Two independent
repeated experiments were conducted; only one representative result is shown.
The curvesind and e were longitudinally analysed with type Il ANOVA and
pairwise comparisons. The datainb, ¢, hand jwere analysed using one-way
ANOVA with Tukey correction. vVWAT, visceral white adipose tissue; iWAT, inguinal
white adipose tissue; pWAT, perigonadal white adipose tissue; iBAT, interscapular
brown adipose tissue. Created with BioRender.com.
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Fig. 5| Passive immunization of mice by neutralizing monoclonal anti-
ACBP/DBImAD prevents the manifestation of Cushing’s syndrome. a, The
experimental schedule for passive immunization. Female C57BL/6) mice were
treated with CORT (100 pg ml™ or vehicle control (control) in drinking water,
p.o.) for 5 weeks together with ACBP/DBI mAb (xACBP, 5 mg kg body weight, i.p.,
semiweekly). Isotype was used as the control. Animals were subjected to FST in
the fifth week. b, Plasma ACBP was measured by ELISA in the indicated treatment
groups (n =10 per group). ¢,d, The average food intake (n = 4 cages per group)

(c) and body weight (n =10 per group) (d) was monitored in the indicated groups.
e, Facial angles of mice from the indicated groups were measured (n =3 mice

per group). f, Immobility time assessed by FST (n =10 mice per group). g, The
heatmap shows the standardized deviations (z scores) of tissue weight relative to
body weight and the quantification of various biochemical parameters across the
treatment groups (n =10, 9,10 and 10 mice per group). Statistical comparisons

were performed by pairwise (two-tailed) Wilcoxon test with false discovery rate
(FDR) correction for multiple comparisons (Pvalues areindicated). h-k, GTT
(n=10 mice per group) (h) and ITT (n =10 mice per group) (j) were monitored
intheindicated groups. The Pvalue represents the comparison of areas under
the curve (GTT (i) and ITT(k)). The Pvalue represents the comparison of areas
under the curve. Statistical comparisons were performed by pairwise Wilcoxon
tests with FDR correction for multiple comparisons in the heatmaps (P values
areindicated). All dot plots represent mean +s.e.m. The curvesin cand d were
longitudinally analysed with type Il ANOVA and pairwise comparisons. The data
inb, e, f,iand k were analysed using one-way ANOVA with Tukey correction.
VWAT, visceral white adipose tissue; iWAT, inguinal white adipose tissue; pWAT,
perigonadal white adipose tissue; iBAT, interscapular brown adipose tissue.
Created with BioRender.com.
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presented as standard box plots (the centre line represents the median, box
limits represent upper and lower quartiles, and whiskers represent minimum and
maximum values) of metabolic parameters (n = 2,3 and 3 mice per condition).
Metabolic parameters are means evaluated over each 12 h period (night or day)
and further averaged over every night and day period for each animal and for
eachweek. For liquid and food consumption (a and b), cumulative values over

12 h periods are used instead of means. The P values were calculated by Fisher’s

meta-analysis method.

Nature Metabolism | Volume 6 | December 2024 | 2281-2299

2290


http://www.nature.com/natmetab

Article

https://doi.org/10.1038/s42255-024-01170-0

a cs7BL/6 A A A b c
> g _ ”; = ’- Vehicle (po) +isotype ('p) <0.0001 O lIsotype + Control [ aACBP + Control
\s/ x?/ l 00948 @ Isotype + CORT W «ACBP + CORT
; ; 150 - <0.0001 _0.9998 S _ 0@ 09082 @M 0.3931
Pair feeding . . — < 51 0m 03346  em 056730
L % O CORT (p.o.) + isotype (i.p.) c ITE °® S o OM 05920 @M 0.6612
) ks ° g ]
5 21001 ® g
2 o € 105 -
. . s & -
> % G ‘. Vehicle (p.0.) + ®ACBP (i.p.) ° 9 S 00
S . S = S 50 A < )
= == l g g : (] o 4%
Pair feeding =3 (%J Ho -I!= z %
N % . CORT (p.0.) + ®ACBP (i.p.) = u z
T T T T o 0] T T T T T |
Control CORT Control CORT o0 o) 1 2 3 4 5 6
f T T T I Isotype aACBP
A 0 1 2 35 P Weeks
Days
d Isotype + Control Isotype + CORT aACBP + Control aACBP + CORT
\ 1 \ 2 \ 3 \ g
ol 15005 Corticosterone [l [ | || H i n
21 <005 Fat mass
i <0.01 Lean mass
<0.001 Liver ||
vWAT
iWAT
PWAT
iBAT
Thymus
Adrenal
Erector spinae .
Gastrocnemius
Liver TG
. 2 Plasma TG .
o 1 Plasma FFA
<} .
° 0 Insulin
N . -1 Glycaemia
-2 HOMA-IR
Pairwise Wilcoxon test with FDR correction for multiple comparison in the heatmaps
e O lIsotype + Control [ aACBP + Control f 0.0172 g O Isotype + Control @ «ACBP + Control h 0.0073
@ lsotype + CORT W QGACBP + CORT 0.3213 @ Isotype + CORT B GACBP + CORT 0.8237
~ 400 - 20 ~ 0.0002 >0.9999 = 150 4 15 <0.0001 <0.0001
g g
3 o o 184 8 1) N
= 300 o 5 -’ ) 09,8 nm
P X 161 8 100¢ % 10 | .
8 m=fl & < o
oF = G e Q= = ) L B
8O 200+ & 1q{ o ° H%‘] é ®2E = o b 1)
R ) e} gh@ =) o © 5 6%2 %
2 L 12 2% B 2 50 “ 54 8
= e @ = @)
g 100¢C = Q (Y = o =1
© 2 ©
o < 10 o <
= =
© 0 ‘ ‘ ‘ ‘ 0 ‘ ‘ ‘ ‘ © 0 ‘ ‘ ‘ ‘ 0 ‘ ‘ ‘ ‘
(0] 30 60 90 120 Control CORT Control CORT o 30 60 90 120 Control CORT Control CORT
Time (min) Isotype aACBP Time (min) Isotype «ACBP

Fig. 7| Mitigation of CORT-induced metabolic dysregulation in mice under
pair feeding by ACBP/DBI neutralization. a, The experimental schedule for
the pair-feeding experiment in C57BL/6) female mice receiving anti-ACBP/DBI
antibody, isotype control antibody and/or CORT. A pair-feeding protocol

was implemented where the average daily food intake of vehicle groups was
measured daily to limit the amount of food provided to the other groups.

b, Plasma ACBP was measured by ELISA (n =10 per group). ¢, Body weight
modifications (n =10 per group) were monitored. d, The heatmap shows the
standardized deviations (zscores) of tissue weights relative to body weight and
the quantification of various biochemical parameters across the treatment
groups (n =10 mice per group). Statistical comparisons were performed by

pairwise (two-tailed) Wilcoxon test with false discovery rate (FDR) correction for
multiple comparisons (Pvalues areindicated). e-h, GTT (n =10 per group) (e and
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longitudinally analysed with type Il ANOVA and pairwise comparisons. The
datainb, fand hwere analysed using one-way ANOVA with Tukey correction.
VWAT, visceral white adipose tissue; iWAT, inguinal white adipose tissue; pWAT,
perigonadal white adipose tissue; iBAT, interscapular brown adipose tissue.
Created with BioRender.com.

the antidepressant citalopram, which, in contrast to CORT, failed to
increase ACBP/DBIin the plasma (Supplementary Fig.12d,e) and ACBP/
DBl depletionintheliver (and to upregulate ACBP/DBIin WAT) (Supple-
mentary Fig. 12f-i). This finding suggests that ACBP/DBI neutralization
isreducing appetite only when ACBP/DBlis elevated in the circulation.

In conclusion, a mAb neutralizing ACBP/DBI phenocopies
the effects of autoantibody-mediated or genetic inhibition of
ACBP/DBI, thus preventing the metabolic manifestations of Cush-
ing’s syndrome.

Endocrine inhibition of ACBP avoids Cushing’s syndrome

Asindicated above, T3 downregulates Acbp/Dbi mRNA expression. We
co-administered CORT and T3 over 5 weeks (Extended Data Fig. 9a),
finding that this treatment led to a reduction in Achp/Dbi mRNA in
the liver and WAT, especially if combined with CORT (Extended Data
Fig.9b,c). Similarly, the levels of ACBP/DBI protein detectablein liver
and WAT were lower in mice treated with CORT plus T3 thaninanimals
receiving CORT alone (Extended Data Fig. 9d-f). Co-administration of
T3 also reduced CORT-induced ACBP/DBI in plasma to normal levels
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performed by pairwise (two-tailed) Wilcoxon test with false discovery rate (FDR)
correction for multiple comparisons (Pvalues are indicated).j-m, GTT (n=9-10
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All dot plots depict means + s.e.m. Arbitrary units, AU. The datain b and c were
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m were analysed using one-way ANOVA with Tukey correction. Created with
BioRender.com.
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(Extended Data Fig. 9g). As reported”, T3 alone stimulated appetite,
and T3was unableto prevent appetite stimulation by CORT (Extended
Data Fig. 9h). However, T3 prevented weight gain induced by CORT
(Extended DataFig. 9i). The co-administration did not attenuate mus-
cular atrophy. However, the increase in fat mass and liver weight as
well as biochemical signs of metabolic syndrome due to CORT were
suppressed when co-administered with T3 (Supplementary Fig. 13).

The therapeutic window of T3 is notoriously small*. We there-
fore resorted to the selective thyroid hormone receptor f (THR-3)
agonist resmetirom (RES), which has been approved by the Food
and Drug Administration (FDA) for the treatment of non-alcoholic
steatohepatitis®. RES reduced ACBP/DBI expression in HepG2 cells
as efficiently as T3 or T4, and this effect was blunted by knockdown
of THR-B (Supplementary Fig. 14). RES led to a reduction of ACBP/
DBIin plasma (Fig. 8a,b) and decreased Acbp/Dbi mRNA levels in the
liver (Fig. 8c). Co-administration of CORT with RES (Fig. 8d) similarly
reduced Acbp/Dbi mRNA in WAT (Fig. 8e) and ACBP/DBI protein in
plasma (Fig. 8f). In contrast to T3, RES was able to prevent appetite
stimulation by CORT (Fig. 8g). Accordingly, RES prevented weight gain
induced by CORT (Fig. 8h). RES did not attenuate adrenal and thymic
atrophy but fully reversed the increase in body fat and liver weight
induced by CORT, abolished all biochemical signs of dyslipidaemia
and T2D, and mediated partial effects on sarcopenia (Fig. 8i-m and
Supplementary Fig.15).

In conclusion, T3 as well as the selective THR-f agonist RES
decreased Acbp/Dbi expression and reversed metabolic signs of
Cushing’s syndrome.

Discussion
Classical and tissue hormones as well as neurotransmitters are long- or
short-distance messengers embedded in complex communication
networks®. For this reason, we were intrigued by the possibility that
ACBP/DBI would be connected to other neuroendocrine factors. In
our screen (which was based on neuroblastoma and hepatoma cells),
we found two other neuroendocrine factors, (1) glucocorticoids and
(2) thyroid hormone, that negatively affected the cellular content of
ACBP/DBI, although due to rather distinct mechanisms. Glucocorti-
coid receptor agonists enhanced autophagy and increased ACBP/DBI
mRNA, suggesting that they induce the autophagy-dependent release
of ACBP/DBI, whichindeed accumulated in the supernatant of neuro-
blastomaor hepatomacells. These findings echo aprevious report dem-
onstrating that glucocorticoids cause astrocytes to release ACBP/DBI
proteininto the supernatant. Inaccordance with the in vitro results,
mice treated with glucocorticoids showed anincrease in circulating
ACBP/DBI protein levels, and patients under corticotherapy or with
endogenous Cushing’s syndrome also exhibited elevated ACBP/DBI
levels. In contrast, T3 reduced ACBP/DBI mRNA without autophagy
and without increasing extracellular ACBP/DBI in cell cultures or in
the plasma of mice. Accordingly, T3 administration could block the
corticotherapy-induced surge in ACBP/DBI plasma concentrations.
To demonstrate that ACBP/DBIisinvolved in Cushing’s syndrome,
we used six different approaches for ACBP/DBIlinhibition: (1) induction
of ACBP/DBI neutralizing antibodies, (2) i.p. injection of aneutralizing
mAb, (3) conditional whole-body or hepatocyte-specific knockout of
the Dbigene, (4) mutation of the ACBP/DBI receptor (Gabrg2”"””'y and
(5) treatment with T3 or (6) RES to block Dbi transcription. These six
methods convergently abolished important facets of CORT-induced
Cushing’s syndrome, particularly increased food intake, weight gain,
adiposity affecting all WAT subtypes and iBAT with hypertrophy of
adipocytes, dyslipidaemia with increased TG and FFA, and of T2D
such as hyperinsulinaemia and insulin resistance. Thus, surprisingly,
these major characteristics of Cushing’s syndrome are not directly
mediated by the action of glucocorticoids on metabolically active cell
types (such as adipocytes, hepatocytes and muscle cells) but appar-
ently require the obligatory contribution of extracellular ACBP/DBI

(that can be inhibited by neutralizing antibodies) acting on GABA,R
receptors containing the GABRG2 subunit. These GABA,R receptors are
indeed expressed by multiple metabolically active cell types outside
of the central nervous system'*°, Since ACBP/DBI does not cross the
blood-brain barrier', it appears plausible that the metabolic effects
of antibody-mediated neutralization of ACBP/DBI are mediated by
such peripheral receptors. Other effects of Cushing’s syndrome such
as adrenal and thymic atrophy, as well as a reduction in skeletal mus-
cle mass, were less susceptible to ACBP/DBI inhibition, in line with
reported direct effects of glucocorticoids on thymocytes*, on the
hypothalamic-hypophyseal axis producing ACTH* and on skeleton
muscle cells*.

It is possible that some of the metabolic effects of glucocorti-
coids are mediated through additional neuroendocrine factors, as this
has previously been demonstrated for endocannabinoids*. Indeed,
although ACBP/DBI supplementationalone (without glucocorticoids)
didinduce anincrease in adiposity and weight gain, it failed toinduce a
full Cushing’s phenotype that would include a reduction of lean mass
with sarcopenia. Thus, ACBP/DBI supplementation alone did not sig-
nificantly modulate lean mass and actually attenuated the loss of lean
mass induced by chronic restraint stress or chemotherapy in mouse
models of anorexia'®. Similarly, ACBP/DBI supplementation alone
tended to increase the cross-sectional diameter of skeleton muscle
fibres and prevented the atrophy of muscle fibres induced by chemo-
therapy’®. Chronic restraint stress, which causes anorexia in mice,
leads to an increase of circulating glucocorticoid concentrations',
and this elevation is also observed in human anorexia nervosa®. In
mice under chronicrestraintstress, the elevationin CORT plasmalev-
els was attenuated by ACBP/DBI supplementation’. Of note, neither
glucocorticoids nor glucocorticoid antagonists are effective against
human anorexia nervosa***. The two diseases, Cushing’s syndrome
and anorexia nervosa, are completely different nosological entities.
Altogether, these findings suggest that ACBP is necessary but not
sufficient for the induction of Cushing’s syndrome. Moreover, at this
point, it is not clear whether the anti-Cushing’s effects of T3 and RES
areentirely due to ACBP/DBl downregulation or whether they involve
additional effects mediated by THR-f.

Itis noteworthy that ACBP/DBI neutralization apparently has appe-
titeand weight gain-inhibitory effects. Thus, asshown here, ACBP/DBI
inhibition prevented hyperphagia and adiposity induced by gluco-
corticoids but not by citalopram. We reported in the past that ACBP/
DBIneutralization suppressed hyperphagiainduced by previous food
deprivation or the thiazolidinedione antidiabetic rosiglitazone but not
by theinjection of ghrelin™*. Of note glucocorticoids, rosiglitazone and
starvation increase circulating ACBP/DBI levels, while citalopram and
ghrelinfail to do so™**. These findings suggest that, ina heterogeneous
population of individuals with overweight or obesity, elevated plasma
ACBP/DBI concentrations might constitute a biomarker that predicts
sensitivity to ACBP/DBIlinhibition. Nonetheless, this conjecture requires
further scrutiny insuitable pre-clinical models and future clinical trials.
Moreover, pair-feeding experiments in which caloric intake (and, as a
result,body weight) are kept constantindicate that glucocorticoids can
induce signs of metabolic syndrome (such as dyslipidaemia and insulin
resistance) in the absence of weight gain and that ACBP/DBI neutraliza-
tionreverses such effectsindependently fromits effects on food intake.

At amore speculative level, it appears that ACBP/DBI, the (hypo-
thetically) oldest protein hormone””, is controlled by two phylogeneti-
cally younger non-peptide hormones, namely, thyroid hormone (that
is produced by protochordates and vertebrates)*® and glucocorticoids
(found only in vertebrates)*. Thus, in a possible scenario, ACBP/DBI
might have been placed under the control of these hormones during
(pre-)vertebrate evolution. While glucocorticoids increase circulating
ACBP/DBI levels, inhibition of ACBP/DBI does not affect the level of
circulatingendogenous glucocorticoids in unstressed mice, indicating
aclearly hierarchical relationship without feedback loops. Future work
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must understand through which (direct orindirect) mechanisms ACBP/
DBI controls other neuroendocrine factors, including thoseinvolvedin
metabolic regulation (such asinsulinand leptin), and when this control
has been established during vertebrate evolution.

Irrespective of these uncertainties, it appears thataglucocorticoid-
induced increase in extracellular (plasma) ACBP/DBI levels is mecha-
nistically involved in the phenotypic manifestation of several signs of
Cushing’s syndromeincludingincreased appetite, weight gain, exces-
sive adiposity, liver damage, dyslipidaemia and T2D. These results
obtained in a murine model of Cushing’s syndrome require future
clinical validation.

Methods

Ethics statement

All patients gave written informed consent, and study protocols
were approved by the local ethics committees. The study of cohort
Iwas approved by the Institutional Review Board of Dermatology and
Hospital for Skin Diseases and the Ethics Committee of Suzhou Institute
of Systems Medicine, Chinese Academy of Medical Sciences and Peking
Union Medical College with the approval (2021) Linkuaishen (005) and
(2023) Lunshen015, respectively. The study protocol for cohortllwas
approved by Marseille, Comité de Protection des Personnes, Sud Médi-
terranée Il (identification 2014-A01302-45 and 2016-A00026-45; clini-
cal trial identification: NCT02335996 and NCT02848703). All animal
experimentation procedures applied toinstitutional rules and guide-
lines and were approved by the Gustave Roussy ethics committee (pro-
jectnumbers 2023_011 40501,2023_053 44146 and 2024_040_50288).

Cell culture and reagents

Human neuroglioma H4 cells wild type (cat. no. HTB-148, ATCC) or
stably expressing GFP-LC3 were cultured in Dulbecco’s modified Eagle
medium (cat.no.11995065, Thermo Fisher Scientific), supplemented
with 10% (v/v) foetal bovine serum (cat. no. A5256701, Thermo Fisher
Scientific), 100 U mI™ penicillin and 100 pg ml™ streptomycin (cat. no.
15140122, Thermo Fisher Scientific) at 37 °Cinahumidified atmosphere
with 5% CO,. Human hepatocellular carcinoma HepG2 cells wild type
(cat.no.HB-8065, ATCC) or stably expressing GFP-LC3 were cultured
in Eagle’s Minimum Essential Medium (cat. no. 30-2003, ATCC) sup-
plemented as above. Plastic material was from Corning. Dialysed foetal
bovine serum (cat. no. F0392) was from Thermo Fisher Scientific.

High-throughput screening

Two thousand H4 GFP-LC3 cells per well were seeded in 384-well pClear
imaging plates (cat. no. 781091, Greiner Bio-One) 24 h before experi-
mentation. Following compound treatment (Supplementary Table1),
cells were fixed with 4% paraformaldehyde containing 10 mM Hoechst
33342 (cat.no.H3570, Thermo Fisher Scientific) in phosphate-buffered
saline (PBS) for 30 min at room temperature (RT), permeabilized with
0.1% Triton X-100 for 10 min and blocked with 5% bovine serum albumin
(BSA)inPBSfor1-2 h, followed by overnightincubation with anti-ACBP
antibody (cat. no. sc-376853, Santa Cruz Biotechnology) at 4 °C. After
2xwashing with PBS, cells were incubated with AlexaFluor-conjugated
secondary antibody (cat. no. A-11004; Thermo Fisher Scientific) for2 h
atRT. Cellswere washed 3x before acquisition using an ImageXpressMi-
croXL bioimager (Molecular Devices) equipped with a 20x PlanApo
objective (Nikon). Subsequently,images were analysed with R software
(http://www.r-project.org/) using EBImage (https://bioconductor.
org/)and MetaxpR (https://github.com/asauvat/MetaxpR) packages.
Viability assessment, data processing and statistical evaluation were
conducted as described in ref. 50.

Human cohort

Ninety-five dermatology patients with skin disease were included
in cohort I (median age 46.8 years, range 11-93 years) (Supple-
mentary Table 3). Subjects in the treatment group (n=56) received

glucocorticoid therapy, and patients (n = 3) who developed resistance
tosyntheticglucocorticoids were excluded. For cohort Il (Supplemen-
tary Table 4), patients with ACTH-dependent Cushing’s syndrome
(21 with ACTH-dependent pituitary Cushing’s syndrome, that is,
Cushing’s disease, and 3 with ectopic ACTH secretion due to a bron-
chial carcinoid) (median age 56.5 years, range 22-73 years) were
prospectively recruited from 2014 to 2017 at Marseille University
Hospital, France. The “active’ group consisted of 11 newly diagnosed
patients. The ‘remission’ group consisted of 13 patients in remission
for at least 2 years, but no more than 6 years, regardless of the treat-
ment modality.

Animal experimentation. Six-week-old female and male C57BL/6)
mice (Envigo) were group-housed and subjected to a12 h light-dark
cycle, under temperature-controlled specific pathogen-free (SPF)
conditions with food and water ad libitum. Food intake per day per
mouse was calculated by measuring chow weight semiweekly. Mice
were kept for 1 week to acclimate upon arrival before commencing
experiments. For ACBP/DBI autoimmunization, autoantibody pro-
ductionviaactiveimmunization was initiated by conjugating keyhole
limpet haemocyanin (KLH, cat.no. 77649, Thermo Fisher Scientific) and
mouse recombinant ACBP/DBI (KLH-ACBP) as described*. Wild-type
6-week-old female C57BL/6) mice wereimmunized viai.p. injections of
30,30,30 and 10 pg of KLH-ACBP, or KLH alone, emulsified (1:1) with
Montanide ISA-51vg (cat.no.36362/FL2R3, Seppic) ondays 0,7,14 and
21, respectively. After 4 weeks, ACBP autoantibodies were assessed
by subjecting plasma to immunoblotting against recombinant target
protein. For further validation enzyme-linked immunosorbent assay
(ELISA) was used to assess circulating ACBP levels. Starting from week
6, Cushing’s syndrome was induced by administration for 5 weeks
of CORT (cat. no. 27840, Merck) dissolved in EtOH, at 100 pg ml™in
drinking water. Final EtOH concentration was 0.66% (ref. 36). Water
consumption was measured semiweekly, and CORT concentration
was adjusted to maintain an average daily CORT exposure of approxi-
mately 500 pg per mouse. The control group received 0.66% vehiclein
drinking water. C57BL/6 Gabrg2"™™“/) Gabra flox mice came from the
Jackson Laboratory. All mice used for experimentation were female.
C57BL/6) Acbp™ with loxP sites flanking Acbp exon 2 was generated
by Ozgene. To activate the CRE recombinase, tamoxifen was adminis-
tered i.p. at a dosage of 75 mg kg™ body weight per mouse per day for
five consecutive days. Tamoxifen was diluted in 90% corn oil and 10%
EtOH (v/v) ataconcentration of 20 mg ml™ and was agitated overnight
at 37 °C. After tamoxifen administration, mice underwent a washout
period of at least 1 week before the commencement of treatments.
This knockout strategy was applied in combination with the expres-
sion of either a ubiquitous or hepatocyte-specific CRE recombinase
(genotypes: UBC-cre-ERT2 or TTR-creTam, respectively). Following the
procedure, mice were kept for at least aweek before starting the treat-
ment. For the neutralization of DBI by anti-ACBP mAb, experiments
were conducted with 8-week-old female C57BL/6) mice. Passive immu-
nization was performed by semiweekly i.p. injections of 5 mg kg 'body
weight anti-ACBP mAb (clone 7G4a, homemade) or isotype control
(IgG2a, k, cat.no.BEOOS8S5, Bio X Cell). For RES treatment, experiments
were conducted with 8-week-old female C57BL/6) mice. RES (cat. no.
HY-12216, MedChemExpress) was prepared in10% dimethyl sulfoxide
(DMSO0),40% PEG300, 5% Tween 80 and 45% drinking water (v/v), ata
final concentration of 0.033 mg ml™. For the T3 system, experiments
were conducted with 8-week-old female C57BL/6) mice. Theinitial con-
centration of T3 (cat. no. T2877, Merck) was 3.3 ug ml™and was adjusted
to maintain an average daily exposure of approximately 10 pg per
mouse. For citalopram treatment, experiments were conducted with
8-week-old female C57BL/6) mice. Citalopram (Seropram, Lundbeck)
was administered at a concentration of 0.15 mg ml™ (diluted in water).
For all experiments described above, CORT was administered as
described above. Water consumption, body weight and food intake

Nature Metabolism | Volume 6 | December 2024 | 2281-2299

2294


http://www.nature.com/natmetab
https://clinicaltrials.gov/ct2/show/NCT02335996
https://clinicaltrials.gov/ct2/show/NCT02848703
http://www.r-project.org/
https://bioconductor.org/
https://bioconductor.org/
https://github.com/asauvat/MetaxpR

Article

https://doi.org/10.1038/s42255-024-01170-0

were measured semiweekly. At the end of the fifth week, mice were
killed, and tissues were collected and weighed.

Co-administration of DEX and mifepristone. Experiments were con-
ducted with 8-week-old female C57BL/6) mice. DEX (cat. no. D4902,
Merck) was diluted in 10% DMSO and 90% corn oil (v/v) and adminis-
teredi.p. (5 mg kg™ body weight). Mifepristone (cat.no. M8046, Merck)
was diluted in drinking water containing 1% carboxymethyl cellulose
(cat.no.419281, Merck) with 0.20% Tween 80 (Cat. P4780, Merck) (v/v)
and administered by oral gavage (120 mg kg™ body weight). DEX was
injected daily for 2 weeks. Mifepristone was administered from day 7
to day 14. For SAFit2 and fasting, experiments were conducted with
8-week-old female C57BL/6) mice. SAFit2 (cat. no. HY102080 Med-
ChemExpress) was solubilized in vehicle (4% EtOH, 5% Tween80, and 5%
PEG400 (v/v)in 0.9% saline (Veh-1)). CORT was dissolved in100% EtOH,
toafinal EtOH concentration of 0.66% (Veh-2). Fasting was performed
by removing food for 24 h. SAFit2 wasinjected i.p. at 40 mg kg 'per day,
and CORT (500 pg per mouse) was given by oral gavage. Daily CORT
exposure was adjusted to approximately 500 pg per mouse.

Pair feeding. C57BL/6) female mice were housed under standard con-
ditions with a12 h light-dark cycle and ad libitum access to water.
Mice were randomly assigned to four treatment groups: vehicle,
CORT, anti-ACBP/DBI antibody and CORT plus anti-ACBP/DBI anti-
body. To ensure controlled food intake, a pair-feeding protocol was
implemented. Initially, baseline body weights and food consumption
were measured over a 3-day period to establish average intake. The
vehicle-treated group served as the control for food intake. The average
daily food intake of the vehicle-treated group was calculated and used
to determine the amount of food provided to the other groups. Mice
in the CORT, anti-ACBP/DBI antibody and CORT plus anti-ACBP/DBI
antibody groups were given the same amount of food consumed by the
controlgroup onthe previous day. Food intake and body weights were
recorded daily to ensure precise matching of food quantities across
groups. Adjustments in food allocation were made on the basis of the
control groups’ consumption. Daily CORT exposure was adjusted to
approximately 500 pg per mouse.

Indirect calorimetry measurements

Indirect calorimetry was conducted using automated metabolic cages
(Labmaster, TSE Systems GmbH), in which mice were individually
housed for consecutive 7-day periods over 4 weeks. Each cage was
equipped with bedding, and mice were provided unrestricted access
to food and water. Food and water consumption was continuously
monitored. Measurements included oxygen (O,) consumption, carbon
dioxide (CO,) production, the respiratory exchange rate (RER = VCO,/
VO,) and heat production. Locomotor activity, including ambulatory
and fine movements as well as speed, was tracked using an infrared
light beam-based system. O, and CO, volumes were assessed at the
inlet ports of each cage and periodically calibrated against areference
empty cage. All measurements were conducted at 4-min intervals
throughout the experiment, ensuring continuous recording during
bothlight and dark phases.

Forced swim test

Fortheforced swimtest (FST), mice were placedin a vertical glass cylin-
der filled with water and behaviour was observed for 5 min. Water tem-
perature was maintained at 25 °C. Distinct phases of active swimming
and immobility were documented. The time spentimmobile during the
test was considered an indicator of behavioural despair. Conversely,
less time spentimmobile suggested potential antidepressant effects.

Face angle assessment
Mice were anaesthetized and placed on ascaled matrix witha protrac-
tor. Bird’'s-eye-view images were taken and then analysed to measure

the angle between the edges of the two cheeks considering the tip of
the nose as the vertex.

Immunoblot

For protein extraction, cells were washed twice with with PBS and
collected in radioimmunoprecipitation assay buffer (cat. no. 89901,
Thermo Fisher Scientific), subjected to ultrasonication for three
pulsesof10 sonice and then centrifuged for 10 minat13,000g. Analo-
gously 30 pg liver tissues and 60 pg adipose tissue were collected
in Precellys lysing kits (cat. no. POO0911-LYSKO-A, Bertin Technolo-
gies) with radioimmunoprecipitation assay buffer and protease/
phosphatase inhibitors (cat. no. A32959, Thermo Fisher Scientific),
followed by two cycles of homogenization for 20 sat 5,500 rpmusing a
Precellyshomogenizer (Bertin Technologies). Then, samples were cen-
trifuged at13,000g for 30 min and supernatants were collected. The
Bio-Rad BCA assay (DC Protein Assay Kit I, cat. no. 5000112, Bio-Rad)
was used for protein concentration assessment. Loading buffer and
reducing agent (cat. nos. NPO0OO8 and NPO0O09, Thermo Fisher Sci-
entific) were added before denaturation (100 °C for 15 min). After
SDS-PAGE and electrotransfer to polyvinylidene fluoride membranes,
unspecific binding sites were blocked for 1-2 hwith 5% BSA at RT, fol-
lowed by overnight incubation at 4 °C with primary anti-human ACBP/
DBI antibody (1:500; cat. no. sc-376853, Santa Cruz Biotechnology),
anti-mouse ACBP/DBI antibody (1:1,000; cat. no. ab231910, Abcam),
anti-LC3B antibody (1:1,000; cat. no. ab192890, Abcam), anti-SQSTM1/
p62antibody (1:1,000; cat.no.ab109012, Abcam), anti-glucocorticoid
receptor (D6H2L) XP antibody (1:1,000; cat. no.12041, Cell Signaling
Technology) or horseradish peroxidase (HRP)-coupled anti-B-actin
antibody (1:2,000; cat. no. ab49900, Abcam). Membranes were
washed and processed by incubation with HRP-coupled secondary
antibody (1:2,000; cat. no.4050-05 goat anti-rabbit IgG(H + L), mouse/
human ads-HRP and cat. no. 1031-05 goat anti-mouse IgG(H + L),
human ads-HRP, SouthernBiotech) for 1 hat RT.Imaging and quanti-
fication were conducted by using anImageQuant LAS4000 and Image)
software, respectively.

Mouse and human ACBP/DBI ELISA

Cells were treated and culture supernatants were collected, centri-
fuged at 500g for 5 min and stored at—80 °C until analysis. For in vivo
experiments, mouse plasmawas collected with lithium heparin sepa-
rator (cat. no. 450535, Greiner Bio-One), then centrifuged at 1,500g
for 10 min, and ACBP/DBI levels were measured by ELISA. Human
anti-ACBP/DBI (cat. no. MBS768488, MyBioSource) and murine
anti-ACBP/DBI capture antibodies (cat. no.ab231910, Abcam) diluted
1pug ml™in PBS were used for coating high-binding 96-well plates
(Corning) with100 pl per well overnight at 4 °C. Subsequently, plates
were washed twice with washing solution (0.05% Tween 20 (v/v) in
PBS), and unspecificbinding was blocked with 100 pl sterile blocking
buffer (1% BSA and 0.05% Tween 20 (v/v) in PBS) for 2 h at RT. For sam-
ple assessment, 100 pl per well of either sample or standard (human
serumat1:50-1:75, murine plasmaat 1:20 and cell culture supernatant
at1:4 dilution, with the flexibility to adjust as dictated by experimental
requirements) was incubated for 2 h at RT and subsequently rinsed
3x with washing buffer. Then 100 pl per well human anti-ACBP/DBI
(LS-C299614, Lifespan Biosciences) and murine anti-ACBP/DBI detec-
tionantibodies (cat.no. MBS2005521, MyBioSource) diluted 1 pug mi™*
in PBS were added for 1 h at RT followed by 3% rinsing with washing
buffer. Subsequently, plates were incubated 30 min at RT with 100 pl
of HRP-coupled avidin diluted in PBS (1/5,000 for human and 1/1,000
for murine samples). Subsequently plates were rinsed 4x with washing
buffer. To visualize bound protein, 100 pl of 1-Step Ultra TMB-ELISA
substrate solution (cat. no.34029, Thermo Fisher Scientific) was added
andincubated10-30 minatRTin thedark. Then, 50 pl of stop solution
(2NH,S0,) was added and absorbance was measured at 450 nm using
aFLUOstar OPTIMA microplate reader.
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RNA interference
Small interfering RNAs (siRNAs) were purchased from Horizon
Discovery (ON-TARGETplus, GE Healthcare Dharmacon) and used
following the manufacturer’s protocol and employing the following
siRNA oligos:
siCtr,5-UAGCGACUAAACACAUCAA-3’;
SINR3CI-#1,5-GAACUUCCCUGGUCGAACA-3";
SINR3CI-#2,5-GCAUGUACGACCAAUGUAA-3;
SIATGS, 5-GGCAUUAUCCAAUUGGUUU-3;
SIATG7,5’-CCAACACACUCGAGUCUUU-3%;
SiTHRA, 5’-GUAUAUCCCUAGUUACCUG-3’;
SiTHRB, 5'-GGACAAGCACCAAUAGUCA-3'.

Biochemical assays

ELISA kits were used for detecting biochemical indices, such asamouse
ALT ELISA kit (cat.no.ab282882, Abcam), mouse AST ELISA kit (cat. no.
ab263882, Abcam), mouse insulin ELISA kit (cat. no. 10-1247-01,
Mercodia), TG assay kit (cat. no. ab65336, Abcam), FFA assay kit (cat.
no. ab65341, Abcam) and plasma CORT ELISA kit (cat. no. ab108821,
Abcam). Plasma CORT samples were collected during the first hour of
lightat 8:00, and the collection process was performed under general
anaesthesiausingisofluraneinhalation. All procedures strictly followed
the manufacturer’s protocol. For Luminex multiplex assays, plasma
was collected in an EDTA anti-coagulant collecting tube with addi-
tional dipeptidyl peptidase IV inhibitor, protease inhibitor cocktail,
aprotinin and serine protease inhibitor (Merck), then centrifuged for
10 min at 1,000g within 30 min of collection, aliquoted and stored at
-80 °C.Mouse hormones were detected by using the mouse metabolic
hormone magnetic bead panel (cat. no. MMHMAG-44K, Merck) and
adiponectinsingle kit (cat.no. MADPNMAG-70K-01, Merck) by Luminex
following the manufacturer’s protocol.

GTTandITT

Mice were trained for tail pinch adaptation1 week inadvance. Animals
were fasted for 6 h to performa GTT. Blood for glycaemia measurement
was collected fromtail vein incisions 0,15,30, 60,90 and 120 min after
the injection of D-glucose (2 g kg™ body weight, i.p.; cat. no. D3179,
Merck). For ITT, animals were fasted 2-4 h before injection of insulin
(NovoRapid, 0.5 U kg body weight, i.p.). Blood was collected from tail
cutsat 0, 15,30, 60,90 and 120 min, and glucose was measured using
aprecision glucometer (Accu-Chek Performa). Mice were monitored
frequently, and hypoglycaemic shock was avoided by administration
of 20% glucose solution. The HOMA-IR is calculated using the follow-
ing formula: fasting plasma glucose (measured after 16 h of fasting, in
millimolar) multiplied by fasting plasma insulin (measured after 16 h
of fasting, in microunits per litre), divided by 22.5.

Histopathology

Fresh tissue was collected and fixed in 4% paraformaldehyde (or 10%
formalin) for amaximum of 24 h at RT, then processed by serial paraf-
fin embedment. Ten-micrometre-thick slices were obtained with a
microtome. Standard haematoxylin-eosin staining was performed, and
slides were scanned by a semi-automatic slide scanner (Nanozoomer
2.0 HT, Hamamatsu) equipped with 20x and 40x objectives. The images
were analysed and quantified using Fiji software.

Gene expression analyses

For RNA extraction, the RNeasy Plus Mini kit (cat. no. 74134, QIAGEN)
was used. About 25-30 mg of tissue was collected in lysis buffer
(Buffer RLT Plus). The tissue was homogenized in two cycles using a
Precellys homogenizer (Bertin Technologies) for 20 s at 5,500 rpm.
The lysate was centrifuged and subjected to further purification pro-
cedures as described by the manufacturer. About 1 pg total RNA was
reversed transcribed using the Maxima First Strand cDNA Synthesis
Kit (cat. no. K1642, Thermo Fisher Scientific). Quantitative real-time

PCR (qRT-PCR) was conducted by using PowerUp SYBR Green Master
Mix (cat. no. A25776, Thermo Fisher Scientific) with a StepOnePlus
Real-Time PCR System (Applied Biosystems, Thermo Fisher Scientific).
The 22T method was used for the analysis of real-time PCR data with
the following primers (Eurofins Scientific):
ACBP/DBIforward primer: CAGAGGAGGTTAGGCACCTTA;
ACBP/DBIreverse primer: TATGTCGCCCACAGTTGCTTG;
GAPDH forward primer: TGTGGGCATCAATGGATTTGG;
GAPDH reverse primer: ACACCATGTATTCCGGGTCAAT;
Acbp/Dbiforward primer: GCTTTCGGCATCCGTATCAC;
Acbp/Dbireverse primer: ACATCGCCCACAGTAGCTTG;
Gapdhforward primer: CGACTTCAACAGCAACTCCCACTCTTCC;
Gapdhreverse primer: TGGGTGGTCCAGGGTTTCTTACTCCTT.

Bulk RNA sequencing

RNA was isolated from murine liver tissue according to the manu-
facturer’s protocol (cat. no. 217004, miRNeasy mini kit, QIAGEN).
Sequencing was conducted on a NovaSeq 6000 PE150 instrument,
yielding paired-end reads of 2 x 150 base pairs, with a total of 40 mil-
lion reads per sample (Novogene). Alignment and mapping to the
GRCm39 (mm39) genome assembly were accomplished using HISAT2
(version 2.2.1). The resulting SAM file was processed by HTSeq-count
(version 2.0.2) utilizing the union mode and including non-unique
features for the generation of gene count tables. Software and websites
used for analysis were RStudio (version 4.3.1), Cytoscape and https://
string-db.org/.

Differential gene expression analysis

For gene expression comparison, volcano plots using the Enhanced
Volcano R package, Venn diagrams using the Venn R package and
heatmaps using the Complex Heatmap R package were generated.
Differentially expressed genes (P < 0.05 and |log,(fold change)| >1.0)
were selected and further assessed by functional enrichment analysis,
using various R packages, including clusterProfiler (v4.8.2""), tidyverse,
ggplot, forcats, biomaRt, stringr and org.Mm.eg.db. The gene back-
ground was defined using all sequenced genes.

Liver sample preparation and metabolite analysis
Approximately 30 mg of liver sample was homogenized as previously
described™. For the extraction of endogenous metabolites, samples
were mixed with 1 ml of ice-cold 90% methanol, 10% water (v/v) at
-20 °C, along with a cocktail of internal standards and homogenized
using a Precellys tissue homogenizer (Bertin Technologies), applying
3 cycles of 20 s at 6,500 rpm. After centrifugation (10 min at15,000g,
4 °C),supernatants were divided into fractions and processed follow-
ingestablished protocols. One fraction was used for short-chain fatty
acid analysis (derivatization before injection). Another fraction was
allocated toliquid chromatography-mass spectrometry (MS) analysis,
while the third fraction was used for gas chromatography (GC)-MS
analysis. Then, the analysis fractions were collected, dried (Techne DB3)
at40 °Candsubsequently keptat—80 °C. Widely targeted analysis was
conducted using a 7890A GC system (Agilent Technologies) coupled
toaQQQ7000C triple quadrupole mass spectrometer (Agilent Tech-
nologies) for GC-MS/MS. For the analysis of polyamines, short-chain
fatty acids and bile acids, liquid chromatography-MS/MS was used
utilizing a1290 UHPLC system (Agilent Technologies) coupled to a
QQQ 6470 triple quadrupole mass spectrometer (Agilent Technolo-
gies). Furthermore, apseudo-targeted analysis was performed using an
ultra-high performance liquid chromatography-high-resolution mass
spectrometry system (UHPLC-HRMS), using a Dionex U3000 system
coupled with an Orbitrap q-Exactive mass spectrometer (Thermo
Fisher Scientific). All data were processed with the GRMeta in R (ver-
sion 4.0) package (https://github.com/Kroemerlab/GRMeta). Data
analysis and visualization were performed using AreaQCorrLog2Cen
inR (version4.2.1).
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Data analysis

Unless otherwise specified, data are presented as mean + SEM Before
conducting statistical analysis, normal distribution of the results was
assessed using the D’Agostino and Pearson normality test, Shapiro-
Wilk normality test and Kolmogorov-Smirnov test. For data that exhib-
ited a Gaussian distribution, unpaired two-tailed Student’s ¢-test or
one-way analysis of variance (ANOVA) or two-way ANOVA was used. In
the case of data with non-Gaussian distributions, the Mann-Whitney
U'test was used for two-group comparisons, while the Kruskal-Wal-
lis test followed by Dunn'’s post hoc test was used for comparisons
involving multiple groups. Body weight curves and food intake were
longitudinally analysed with type Il ANOVA and pairwise comparisons
using the TumGrowth application (https://kroemerlab.shinyapps.
io/TumGrowth/). All other statistical analyses were performed using
GraphPad Prism 9 or R software.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The datasets generated during and/or analysed during the current
study are annexed as Source data. RNA sequencing data are available
at National Center for Biotechnology Information Gene Expression
Omnibus database under the accession number GSE248672. Source
dataare provided with this paper.
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Extended Data Fig. 1| Identification of corticosteroids and thyroid hormones
as ACBP/DBI modulators. (a-c) H4 cells were treated with dexamethasone
(DEX), hydrocortisone (HCS), or corticosterone (CORT) (1 uM) for 6 h with/
without bafilomycin Al (BafA1,100 nM, final 2 h). Rapamycin (RAPA, 10 pM) was
used as positive control. Representative immunoblots of LC3 conversion are
shownin (a) and quantificationsin (b) (n=3/group). B-actinwas used as a

loading control. (c) Cells were transfected with siRNA targeting ATG5 and ATG7
or control siRNA (siCtrl) and then treated as indicated (n=3/group; RU, relative
units). (d-g) Cells were transfected with siRNA targeting NR3CI or siCtrl. ACBP
release was assessed by ELISA. (d) Representative immunoblots show NR3Cl and
ACBP levels in NR3C1 knockdowns with/without DEX (1M, 24 h). (e-f) Scatter
plot shows the ratio of NR3C1/B-actin (e) and ACBP/B-actin (f) with the indicated
treatments. (g) ACBP release from cells with the indicated treatments is shown
in (d) (RU; n=3; One-way ANOVA; P-values are indicated). All dot plots depict
means + SEM. (h) Scheme shows the schedule of hydrocortisone (HCS, 10,
50,100 mg/kg, i.p.) administration to female C57BL/6) mice (n=5/group).

(i) Percentage of mouse thymus relative to body weight following HCS treatment
at the specified doses (n=5/group). (j, k) Representative immunoblot (j) showing
ACBP levels in WAT treated with HCS at different dose (n=5/group). Scatter

plot (k) shows the ratio of ACBP/B-actin (k). (I) Scheme shows the schedule of
hydrocortisone (HCS, 100 mg/kg, i.p.) administration to female C57BL/6) mice
for the indicated duration. (m) Percentage of mouse thymus relative to body
weight following HCS treatment at various time points (n=5/time point). (n) Plasma
ACBP level under HCS treatments at various time points (n=5/time point).

(o) Representative immunoblots show hepatic ACBP upon treatment with

HCS at various time points (n=5/group). Scatter plots show the ratio of ACBP/
B-actin (p). (h) Scheme shows the schedule of mifepristone (Mif, 120 mg/kg, i.g.)
administration and fasting in female C57BL/6) mice for 24 h. (q, r) Scheme of the
experiment (q) and plasma ACBP levels (r) upon Mif treatment and fasting for

24 h. One-way ANOVA with Dunnett correction was used for statistical analysis
(i,k,m,n,p,r). Datainb,c,e,f,g were analyzed using two-way ANOVA with Tukey
correction. (P-values areindicated). All dot plots depict means + SEM.
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Extended Data Fig. 2| Effects of short-term triiodothyronine administration
on ACBP/DBI expression. (a-d) Cells were treated with siRNA targeting the
thyroid hormone receptor (THR) o and  genes or control siRNA (siCtrl) and then
culturedin the presence of triiodothyronine (T3). Then cells were subjected to
the quantification of the mRNA coding for THRa, THRp or ACBP (n=3/group; RU,
relative units). (e) Scheme of T3 administration to female C57BL/6 mice for 16
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h. (f) Plasma ACBP was assessed by ELISA after T3 treatment at different doses
(n=6/group). (g) Liver Achp mRNA levels (n=6/group; RU, relative units) after
T3 treatment. (h) Representative immunoblot of ACBP after T3 treatment
(n=3/group). B-actin was used as aloading control. (i) Scatter plot showing

the ACBP/B-actin ratio. One-way ANOVA with Tukey correction was used for
statistical analysis (P-values are indicated). All dot plots indicate means + SEM.
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Extended DataFig. 5| Effect of corticosterone and anti-ACBP/DBI mAb on
plasmahormone concentrations. Female C57BL/6) mice were treated with
corticosterone (CORT) (100 pg/mL, or vehicle (Ctrl) in drinking water, p.o.)
with or without xACBP (5 mg/kg body weight, i.p.) semiweekly for 5 weeks.
Abundance of plasma hormones was assessed by Luminex multiplex assay

(n=10,10,9,10/group). The heatmap displays z-scores of the indicated metabolic
hormonesintheindicated treatment groups. Statistical comparisons were
performed by pairwise (two tailed) Wilcoxon test with FDR correction for
multiple comparisons. (P-values are indicated).
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mADb experiment, liver tissue was collected for RNAseq analysis (n=5/group).
Genes with a differential expression P-value < 0.05 (Wald test) and abs (fold
change) > 2 were selected in (a). (b) Volcano plot of differential genes between
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Extended Data Fig. 7 | Liver and plasma metabolomics of Cushing’s syndrome
treated with anti-ACBP/DBI mAb. (a) Heatmap showing metabolite profiling

of liver from anti-ACBP/DBI (kACBP) mAb model. Student’s t test was used to
compare isotype + corticosterone (CORT) versus aACBP + CORT, and metabolites
which have less than 0.05 were kept for the heatmap. Data was Area Quality
Control Corrected Log2 transformed and centered on the mean of all the
biological samples. (b) Heatmap showing metabolite profiling of plasma from

«ACBP mAb treated mice. Student’s test was used to compare isotype + CORT
Versus ACBP + CORT, and metabolites which have less than 0.05 were kept for
the Heatmap. Data was Area Quality Control Corrected Log2 transformed and
centered on the mean of all the biological samples. (c) Venn Diagram displaying
the repartition across liver and plasma of the metabolites shownin E7a and E7b.
Twenty-eight metabolites are common over the two biological matrices and are
detailed in Supplementary Figs. 8,9. Data were analyzed using R software.
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Extended Data Fig. 8 | A monoclonal anti-ACBP/DBIl antibody prevents the
manifestation of Cushing’s syndrome in male mice. (a) Male C57BL/6) mice
were treated with CORT (100 pg/mL) in drinking water (p.o.) for 5 weeks (n=10/
group). (b) Plasma ACBP was quantified by ELISA (n=10/group). (c) Average
food intake (n=3 cages/group) and (d) body weight (n=10 mice/group) were
monitored. P-values compare areas under the curve. (e) The heatmap shows
the standardized deviations (z-scores) of tissue weights relative to body weight
and the quantification of various biochemical parameters across the treatment
groups (n=10 mice/group). Statistical comparisons were performed by pairwise

(two tailed) Wilcoxon test with FDR correction for multiple comparisons.
(P-values areindicated). (f-i) Glucose tolerance tests (GTT) (n=10 mice/group)

(f) and insulin tolerance tests (ITT) (n=10 mice/group) (h) were performedin

the indicated groups. P-value refer to the comparison of areas under the curve
(g,i). Statistical comparisons were performed by pairwise Wilcoxon tests with
FDR correction for multiple comparison in the heatmaps. All dot plots depict
means + SEM. All curves were longitudinally analyzed with type IANOVA and
pairwise comparisons (c,d). One-way ANOVA with Tukey correction was used for
statistical analysis (P-values are indicated) (d,g,i).

Nature Metabolism


http://www.nature.com/natmetab

Article https://doi.org/10.1038/s42255-024-01170-0

1Y
(=2
(1]

<0.0001 <0.0001
0.0003 0.4961
=15 0.6319 0.0024 520 0.0024 0.0049
4 x ®
T3 p.o. @ D g Op E
[} ® < 5 1
CORT p.o. eorsssssssssss—— = 10{ & S _.I_
Sample collection ) 5: o ; ® €404 o5 ©
oo T T T T 1 z <Z( o) %
1 2 3 4 5 E057 & . o
S ° £05
C57BL/6J Weeks g == g o=t
< 0.0 . . : ] < 0.0 : . : ,
Ctrl CORT Ctrl CORT Ctrl CORT Ctrl CORT
ctrl T3 ctrl T3
d ) e 0.0021 f 0.0297
Liver 0.1417 0.8539
13 kDa| - R —— | ACBP §20q 0012 0.7728 '%—( 5. 00142 0.5665
c
. £ @ [
42 kDa| —_— |B-act|n % 1.5 4 é 4 S
& o T,
WAT @ ig 5° {{}
T 1.0 1 ® @
13kDa| - - --.-|ACBP 9 _¥ %2- ° °
um| |Bt' 5051 s $1 =
B ———— -actin 5]
g 0.0 20 il
ctr - 3 1GCORTCM = Ctrl CORT Ctl CORT i Ctrl CORT Ctrl CORT
d ctrl T3 ctrl 3
(] <0.0001 h octl oT3 ! octl oT3
09982 © CORT @ T3+CORT ® CORT @ T3+CORT
__60q  =0.00017 _0.9393 670000112 ©0<0.0001 26 710000011 ®o 0.0693
3 © 00<0.0001 ©® 0.0011 2540001301  ©0<0.0001
E ° % _5]0e<00001 ce 00945 —~ 24 ] 0000534 ©e 00011
o) > R
£ 40 =5 2237
g == 83541 522 1
a 3 L% g 211
2 P e® 8 o © O 3 Z 20 -
© 20 1 8%03 .¥: DE S 19 4
o [e]
& z254 060 o6 8224 @ 18 -
&U < 17 3
0 r r r r 0 T T T T T 1 0 T T T T T "
Ctrl CORT Ctrl CORT 0 1 2 3 4 5 6 0 1 2 3 4 5 6
Ctrl T3 Weeks Weeks
J Ctrl CORT 3 T3+ CORT 111223
1 | 2 | 3 | 4

>0.05 Corticosterone

% <0.05 Liver
> B <0.01 VWAT
<l < 0.001 IWAT
pWAT

iBAT B

Thymus
Adrenal B B
Erector spinae I .

Gastrocnemius B

[ |
Liver TG - I .
. 2 Plasma TG d
Plasma FFA [ |
Insulin
N . Glycemia .
HOMA-IR

Pairwise Wilcoxon test with FDR correctlon for multiple comparison in the heatmaps.

—score

Extended Data Fig. 9 | Effects of triiodothyronine (T3) administration on (j) The heatmap shows the standardized deviations (z-scores) of tissue weights
ACBP expression and metabolic parameters in mice under corticosterone relative to body weight and the quantification of various biochemical parameters
treatment. (a) Scheme showing the experimental schedule of triiodothyronine (n=10 mice/group). Statistical comparisons were performed by pairwise (two

(T3; i.p.) administration to female C57BL/6) mice treated with corticosterone tailed) Wilcoxon test with FDR correction for multiple comparisons. (P-values
(CORT) for 5weeks. Liver (b) and WAT (c) Acbp mRNA levels (n=6/group; RU, areindicated). Statistical comparisons were performed by pairwise Wilcoxon
relative units) were quantified. (d) Representative immunoblot shows ACBP tests with FDR correction for multiple comparison in the heatmaps (P-values
level treated with different doses of T3 (n=3/group). B-actin was used as aloading areindicated). All dot plots indicate means + SEM. All curves were longitudinally
control. Scatter plots show the ratio of ACBP/B-actin in liver (e) and in WAT (f). analyzed with type Il ANOVA and pairwise comparisons (h,i). One-way ANOVA

(g) Plasma ACBP were assessed by ELISA (n=10/group). (h) Average food intake with Tukey correction was used for statistical analysis (P-values are indicated)
(n=3cages/group) and (i) body weight (n=10 mice/group) were monitored. (b,c,e-g).
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Data collection  MetaXpress 6.7.290; QuPath v0.4.2; QuantStudio v1.5.2; Optima control v2.20R2; ImageQuant LAS4000 Version 1.2; Bruker minispec plus

Data analysis Imagel2 Version 2.9.0/1.53t; QuantStudio v1.5.2; GraphPad Prism 9.4.0; R software Version 4.3.1; R-packages, including clusterProfiler
(v4.8.2)41; tidyverse (2.0.0); ggplot (3.4.4); forcats (1.0.0); biomaRt(2.56.1); stringr(1.5.1); org.Mm.eg.db(3.17.0); GRMeta(1.03), tumGrowth,
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- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

The datasets generated during and/or analyzed during the current study have been annexed. RNA sequencing data is available at NCBI GEO database under the
accession number GSE248672.
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Reporting on sex and gender Cohort I'in total 92 participant; from which the control group entailed 21 female and 18 male participant and the treatment
group had 31 female and 22 male participants.
Cohort Il'in total 24 participant; from which the remission group (13) entailed 12 female and 1 male participant and the
active disease (11) group had 7 female and 4 male participants.

Reporting on race, ethnicity, or = Cohort I included Chinese patients.
other socially relevant
groupings
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Recruitment In cohort | patients with skin disease were included without any age, gender or self-selection bias. Three patients who
developed resistance to synthetic glucocorticoids were excluded. All patients gave their written informed consent, and the
study protocol was approved by the local ethics committee.

For Cohort Il patients with ACTH-dependent Cushing syndrome were prospectively recruited from December 2014 to June
2017 in the Endocrinology and in the Neurosurgery departments of Marseille University Hospital, France. The « active »
group consisted of newly diagnosed patients. The « remission » group consisted of patients in remission for at least 2 years,
but no more than 6 years, regardless of their treatment modality. All the patients gave their written informed consent, and
the study protocol was approved by the local ethics committee.

Ethics oversight The study of cohort | was approved by the Institutional Review Board of Dermatology & Hospital for Skin Diseases and the
Ethics Committee of Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical
College with the approval (2021) Linkuaishen (005) and (2023) Lunshen015, respectively. The study protocol for cohort Il was
approved by Marseille, Comité de Protection des Personnes, Sud Méditerranée Il (identification 2014-A01302-45 and 2016~
AQ00026-45, clinical trial identification: NCT02335996 and NCT02848703).

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size The number of animals for in vivo studies was predetermined by means of the InVivoStat package for R software. For long-term experiments
(5, 8, 10 weeks), the expected effect is a weight gain of at least 30% in mice. We set the alpha risk at 0.02 and the power at 0.80. Weight gain
or recovery were statistically analyzed by means of "ANOVA" tests.

Data exclusions  Outlier exclusion was performed by ROUT method in GraphPad Prism.

Replication In vitro experiments were repeat independently three times. In vivo experiment were repeated independently at least twice. The number of
replicates is indicated for each experiment.

Randomization  Mice were randomized according to body weight. 4-5 tissue samples for H&E were randomly selected per group. For immunoblot analysis and
face angle assessment 3 samples per group were randomly selected.

Blinding HCS data was analyzed in a blinded fashion. In our experiment, implementing a double-blind design was challenging due to the nature of
handling and observing the mice. Researchers need to directly interact with the mice during the experiment, making it impossible to ensure
that all operations are blinded. Additionally, the mice exhibited noticeable differences in appearance (weight gain) and behavior, making it
easy for researchers to identify the experimental and control groups. Nonetheless, we have taken measures such as random grouping and
independent data evaluation to minimize potential bias.
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Antibodies used ACBP Antibody (C-9) Santa Cruz Biotechnology Mouse monoclonal IgG 1 k, Cat. No.:sc-376853
Mouse ACBP/DBI antibody Abcam Rabbit Polyclonal IgG antibody, Cat. No.:ab231910
Recombinant Anti-LC3B antibody Abcam Rabbit monoclonal IgG antibody, Cat. No.: ab192890
Recombinant Anti-SQSTM1 / p62 antibody Rabbit monoclonal 1gG antibody, Cat. No.: ab109012
Glucocorticoid Receptor (D6H2L) XP® Rabbit mAb Cell Signaling Technology Rabbit monoclonal IgG antibody, Cat. No.:12041
Anti-beta Actin antibody [AC-15] (HRP) Abcam HRP Mouse monoclonal [AC-15] to beta Actin, Cat. No.: ab49900
Human anti-ACBP/DBI capture antibody (Rabbit anti-Human, Mouse DBI Polyclonal Antibody) MyBioSource Rabbit Polyclonal 1gG
antibody, Cat. No.: MBS768488
Human anti-ACBP/DBI detection antibody (DBI / ACBD1 Antibody) Lifespan Biosciences Polyclonal antibody to ACBD1 (DBI) (aal-87),
Cat. No.:LS-C299614
Goat Anti-Rabbit IgG(H+L), Mouse/Human ads-HRP, SouthernBiotech, Cat. No.: 4050-05
Goat Anti-Mouse IgG(H+L), Human ads-HRP, SouthernBiotech, Cat. No.: 1031-05
InVivoMAb mouse 1gG2a isotype control, Bioxcell, Cat. No.: #BEO085
Anti-ACBP mAb (clone 7G4a), homemade.

Validation All antibodies were validate by the manufacturers except the homemade Anti-ACBP mAb (clone 7G4a) which was validated inhouse
by ELISA and immunoblot using appropriate positive and negative controls.

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s) ATCC (H4 (Cat No.: HTB-148 ™) and HepG2 (Cat No.: HB-8065™) cell lines)
Authentication Cells were authenticated by the provider (STR analysis (intraspecies)).
Mycoplasma contamination All cell lines were routinely tested for mycoplasma contamination and were negative.

Commonly misidentified lines  na
(See ICLAC register)

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in
Research

Laboratory animals Mice; C57BL/6J (6-8 weeks old); C57BL/6J Gabrg2tm1Wul/J Gabra flox (7-12 weeks old); C57BL/6J Acbpfl/fl (6-10 weeks old),
C57BL/6J Acbpfl/fl UBC-CRE-ERT2(6-10 weeks old),C57BL/6J Acbpfl/fl TTR-CreTam(6-10 weeks old). Mice were group-housed and
subjected to a 12 h light/dark cycle, under temperature-controlled SPF conditions with food (except the pairfeeding experiment) and
water ad libitum. The ambient temperature was maintained at 22 + 2°C, and the relative humidity was kept between 40% and 60%.

Wild animals The study did not involve wild animals

Reporting on sex Female and male mice were used for the present manuscript

Field-collected samples  The study does not involve samples collected from the field.

Ethics oversight All animal experimentation procedures approved by the Gustave Roussy ethics committee (project number: 2023_053_44146,
2023_011_40501 and 2024_040_50288 ).

Note that full information on the approval of the study protocol must also be provided in the manuscript.




Clinical data

Policy information about clinical studies

All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration
Study protocol
Data collection

Outcomes

Plants

Provide the trial registration number from ClinicalTrials.gov or an equivalent agency.

Note where the full trial protocol can be accessed OR if not available, explain why.

Describe the settings and locales of data collection, noting the time periods of recruitment and data collection.

Describe how you pre-defined primary and secondary outcome measures and how you assessed these measures.

Seed stocks

Novel plant genotypes

Authentication

Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches,
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor

was applied.
Describe-any-atthentication-procedures foreach seed stock tised-or-novel-genotype-generated.Describe-any-experiments-used-to

assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism,
off-target gene editing) were examined.
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