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Abstract: One of the most common shoulder injuries is the rotator cuff tear (RCT). The risk of RCTs
increases with age, with a prevalence of 9.7% in those under 20 years old and up to 62% in individuals
aged 80 years and older. In this article, we present first a microwave digital twin prototype (MDTP)
for RCT detection, based on machine learning (ML) and advanced numerical modeling of the system.
We generate a generalizable dataset of scattering parameters through flexible numerical modeling in
order to bypass real-world data collection challenges. This involves solving the linear system as a
result of finite element discretization of the forward problem with use of the domain decomposition
method to accelerate the computations. We use a support vector machine (SVM) to differentiate
between injured and healthy shoulder models. This approach is more efficient in terms of required
memory resources and computing time compared with traditional imaging methods.

Keywords: machine learning; numerical modeling; microwave sensing system; tendon injury;
SVM classification

1. Introduction

The shoulder is the most mobile joint in the body, allowing rotation across multiple
axes, with some capable of full 360

◦
rotation, as well as enabling arm elevation and overhead

reaching. This mobility is facilitated by the rotator cuff, a complex group of muscles and
tendons. With repetitive movements, the rotator cuff wears out, eventually leading to
rotator cuff tears (RCTs). This injury most commonly occurs with aging, but it also affects
athletes and individuals in professions that involve frequent shoulder movements, such as
manual labor or cleaning, making it one of the most prevalent shoulder injuries. According
to [1], approximately 2 million people in the U.S. consult their physicians each year for this
condition. RCTs can advance to more serious conditions over time, reinforcing the relevance
of early detection. In [2], the prevalence of rotator cuff tears in the general population was
reported to be 22.1%. Magnetic resonance imaging (MRI) is the gold-standard imaging
technique. However, its use is restricted to imaging centers, and it does not always provide
accurate depictions of the presence and severity of tears [3]. In [4], it was reported that the
overall accuracy for detecting RCTs of different sizes with the use of MRI is 87%.

With the occurrence of RTCs, synovial fluid (SF) aspirates locally in the injury area [5,6].
This accumulation of SF changes the dielectric properties of the shoulder joint [7]. This
change makes microwave imaging (MWI) a credible alternative to MRI which we need
to investigate. The portability and costs of MWI systems make them ideal candidates
for fast and early diagnosis. At this stage, the main issue is detecting the presence of
RCTs. As discussed with physicians, this would be the first step, and if the detection is
positive, then the patient will undergo an advanced imaging modality such as MRI in
order to evaluate the size and location of the RCT. In [8], we introduced an alternative
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low-cost, portable and non-invasive electromagnetic imaging (EMI) system for the on-site
diagnosis of RCTs. At that time, no EMI system for the shoulder existed, (To the best of our
knowledge, this remains true.) and thus we had to start from scratch. To save time and
resources during the initial design phase, we developed a virtual model of the shoulder
and an imaging system to study and optimize the EMI system, as described in [8]. This
model is the first step toward a microwave digital twin prototype (MDTP).

The concept of the digital twin (DT) was originally proposed by Michael Grieves at the
University of Michigan for monitoring product lifecycle management. This involves creating
a virtual model of a physical system, which is continuously updated with real-time data from
the existing physical system. DTs are not intended for system design. However, in [9], the
same authors introduced the digital twin prototype (DTP), which exists in virtual space and is
to be used in what the authors referred to as the creation phase. Since 2002, DTs have been
widely used and developed for Industry 4.0 applications [10–12]. In the healthcare sector,
a comprehensive review of Digital Twin for Health (DT4H) can be found in [12]. A wide
range of applications was already investigated, including detecting and monitoring cardiac
pathologies, diabetes, breast or oropharyngeal cancers and Alzheimer’s diseases. DT4H
often incorporates machine learning (ML) in order to enhance the performance of illness
detection, as exemplified in [13] with COVID-19. Quite recently, DTs have been efficiently
used for microwave ablation [14] and imaging purposes [15]. In this paper, we introduce
the concept of a microwave digital twin prototype as a virtual system which mimics the
physical one and is capable of predicting the presence of RCTs. The model not only includes
the anthropomorphological model of the shoulder (whether it is injured or not) but also the
imaging system and uncertainties due to its use, like noise, positioning errors and errors due
to RCTs themselves, like the synovial fluid’s variation, which depends on the RCT’s severity.

Compared with our previous work [8], we aim to improve and systematize the detec-
tion of RCTs. Thus far, we have been solving an inverse problem for detecting the presence
of RCTs. This process is time-consuming, requires extensive computing resources and is
therefore not compatible with a large number of case studies. As an example, the final
design consists of 32 ceramic (εr = 59) loaded, open-ended waveguides. It requires 11 min
and 27 s for image reconstruction of one shoulder model with the use of 480 computing
cores. These amounts of resources may not always be available and can limit the practical
use of the device in the real world. In this paper, we aim to address this issue through the
use of ML algorithms.

The rise of ML has led to the development of valuable tools in various medical appli-
cations, such as predicting sports injuries [16], simplifying medical imaging processes [17]
and advancing stroke medicine [18]. Further, combining microwave imaging systems with
ML algorithms has significantly improved stroke detection, stroke type classification and
localizing affected areas [19–21].

Dataset gathering is a crucial component of machine learning algorithms, particularly
in medical applications, but it presents numerous challenges and limitations [22]. For ex-
ample, insufficient or biased data can result in poor generalization, which highly affects the
algorithm’s accuracy in making predictions or diagnoses. To enhance generalization, large
and diverse training datasets are necessary. Moreover, the effectiveness of ML algorithms
heavily relies on the quality and quantity of the data. However, in the real world, obtaining
data from patients involves privacy and authorization challenges and is a time-consuming
process. Furthermore, the limited available training data significantly impacts the perfor-
mance of the classifiers. To address this issue, generating synthetic data through numerical
simulations or various computer algorithms has emerged as a promising solution in recent
years [23,24]. In [25], numerical simulations of a system were performed to investigate how
integrating mathematical models with experimental datasets could enhance classification
performance. It is important to note that while the use of synthetic data can enhance contin-
ual and causal learning, it also carries the risk of introducing biases [26]. This emphasizes
the importance of generating a reliable dataset.
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In this work, we use numerical modeling to generate a generalizable dataset of scatter-
ing parameters. A parametric study is conducted considering four main categories, which
are outlined in Table 1. For the classification of injured and healthy models, we utilize a
supervised machine learning support vector machine (SVM).

Table 1. Parametric study for detection of RCTs.

Scenario Description

Noise level Introducing different noise levels in synthetic data

Error in value of εr Dielectric property variations due to dehydration

Localization Changes in the location of the shoulder

Randomized dataset Shuffled training and test dataset

Note that the key indicator in differentiating healthy and injured shoulder joints is
the presence of RCTs, because this is the most challenging case. The mean aspirate volume
of SF is reported to correlate with the size of the tear. This volume for the small tears is
1.46 ± 1.88 mL, while that for medium tears is 3.04 ± 2.21 mL and that for large tears is
6.60 ± 3.23 m [6]. In this study, we will consider the presence of a small tear in an injured
shoulder model, as it is the most difficult tear to detect. This paper is structured as follows.
Section 2 presents the numerical modeling framework, including the numerical modeling
of the system, its properties and our methods for data generation and classification analysis
using an SVM. Section 3 discusses the numerical results for various scenarios, and the
conclusions are provided in Section 4.

2. Mathematical Framework
2.1. Antropomorphic Model of the Shoulder

Accurate finite element modeling of the shoulder is first step to conducting a reliable
numerical study to detect RCTs. Figure 1a shows a view of the anatomy of the shoul-
der, and Figure 1b shows an anthropomorphic model of different tissues. To build this
realistic shoulder model, we used computer-aided design (CAD) models for the shoulder
profile, scapula and humerus bones. These CAD models were achieved through a library
of 3D anatomy models (https://www.plasticboy.co.uk/store/index.html, accessed on
17 February 2023). The rotator cuff tendons were modeled to surround the shoulder joint,
and the skin with a thickness of 2 mm was modeled to surround the shoulder structure.
The injury was modeled by an ellipsoid with a volume of 1.4 mL filled with SF, which
represents a small RCT [6]. Note that modeling an injury as an ellipsoid in medical imaging
is common because it captures the asymmetrical and irregular expansion typical of many
biological injuries, especially in soft tissues. The remaining space in the shoulder joint
was filled with muscle. Note that in the healthy shoulder model, the electrical properties
of the injury area are changed to those of the muscle. In our simulations, we assigned
complex permittivity values of each tissue at 1 GHz, as reported in Table 2. In this Table,
the SF value is based on our recent work in [8], and the values of other tissues are based on
the reference websites (http://niremf.ifac.cnr.it/tissprop/, accessed on 1 September 2023
and https://itis.swiss/virtual-population/tissue-properties/, accessed on 1 September
2023). We considered the value of the complex permittivity of the matching medium to
be constant for all of the simulations and equal to that of the muscle (54.8 − 17.43i). If we
considered the value of the matching medium as the reference, then the wavelength in this
medium was λ = 4.05 cm.

https://www.plasticboy.co.uk/store/index.html
http://niremf.ifac.cnr.it/tissprop/
https://itis.swiss/virtual-population/tissue-properties/
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Figure 1. (a) Anatomy of the shoulder. (b) Numerical model of the shoulder.

Table 2. Complex dielectric properties at 1 GHz.

Different Tissues Value of εr

Bone cortical 12.4 − 2.79i
Tendon 45.6 − 13.66i
Muscle 54.8 − 17.43i

Skin 40.9 − 16.17i
SF 68.42 − 29.12i

2.2. Numerical Model of the System

In this work, we use the optimized sensing system which was designed in our previous
work [8], shown in Figure 2a. This configuration was designed to detect the smallest RCT
while using the minimum number of antennas through a differential imaging method. It
consists an array of 32 ceramic (εr = 59) loaded, open-ended waveguides which illuminate
the shoulder from different angles. This multi-view approach helps in gathering compre-
hensive and accurate data to represent the effect of the internal tissues of the shoulder on
the scattering parameters. The waveguides are arranged on two metallic, fully circular and
two metallic half-circle layers. The width the rectangular waveguides is 2.1 cm, and their
height is 0.75 cm. Their frequency bandwidth is 0.93–1.85 GHz. We chose to work with a
single frequency because this drastically simplified the requirements for the final system
(no need to have wide band components) and the measurement time. We selected a 1 GHz
operating frequency because it led to reaching a good trade-off between the resolution and
penetration depth.

The two sides of the imaging chamber are open to allow the insertion of a real shoulder,
as shown in Figure 2b. A cross-section of the finite element three-dimensional (3D) mesh
of the complete system, including the imaging system and the shoulder, is shown in
Figure 2c. In this mesh, the maximum diameter of the mesh cells is nλ = λ/9, which yields
h = 0.45 cm. First-order finite element discretization of this problem yields 1,891,259 as the
number of degrees of freedom. We used the open source FreeFEM software (v.4.13) for the
forward modeling of our problem.

The generated 3D domain (Ω), including the sensing system and the shoulder, is a
heterogeneous, dissipative non-magnetic medium of a complex permittivity εr = (ε

′
r −

σj
ωε0

),

where ε
′
r is the relative permittivity of each tissue, ε0 is the permittivity of free space, σ

is the conductivity and ω is the angular frequency. Each transmitting antenna emits a
time periodic signal, where E(x) is the complex amplitude of the associated electric field
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e(x, t) = ℜ(E(x)eiωt) at the space variable x. We found E(x) as the solution for each
transmitting antenna by solving the boundary value problem defined in Equation (1):

∇× (∇× E)− k2E = 0, in Ω
∇× E × n + iβn × (E × n) = 0 on Γr

∇× E × n + ikn × (E × n) = 0 on Γo

∇× E × n + iβn × (E × n) = g on Γt

E × n = 0 on Γm

(1)

where β is the propagation constant along the waveguide, n is the unit outwardly normal
to the boundaries, k = ω

√
εrε0µ0 is the complex wavenumber of the inhomogeneous

medium and µ0 is the permeability of the free space. We define the excitation term as
g = 2iβETE10 . This imposes an incident wave which corresponds to the excitation of the
dominant transverse electric mode (TE10) of the active waveguide. The boundaries are
shown in Figure 2b and defined as follows. Here, Γr presents the ports of the receiving
waveguides, Γo presents the open sides of the chamber and the boundaries of the shoulder
profile which are outside of the chamber, Γt presents the ports of the transmitting waveg-
uide, and Γm presents the metallic surfaces of the chamber and the waveguides. Through
solution of the boundary value problem for each transmitting antenna, we can compute the
scattering matrix (Sij)1≤i,j≤32 using Equation (2):

Sij =



∫
Γr

Ej · ETE10∫
Γr
|ETE10 |2

i ̸= j,∫
Γr

Ej · ETE10∫
Γr
|ETE10 |2

+ 1 i = j,

(2)

where j represents the transmitting port and i represents the receiving port.

Figure 2. (a) Imaging system. (b) Boundary conditions. (c) Finite element mesh.

2.3. SVM

We chose an SVM for our classification tasks due to its effectiveness in binary classifi-
cation problems, which aligns with the nature of our dataset, where we sought to detect
whether the RCT was present or not. Given that our problem was straightforward, and
the dataset was relatively small, an SVM is particularly well suited as it offers a robust
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and interpretable approach. Its straightforward implementation and tuning processes
also enabled us to obtain dependable classification results without the need for more
complex algorithms.

This supervised machine learning algorithm is designed to recognize patterns and
relationships between features and the target variable within a dataset. This process,
known as training or fitting, aims to prepare the algorithm to accurately predict labels for
new, unseen data [27]. The SVM algorithm involves three main steps: training, validation
and testing. The training and validation phases together form the development phase.
During the training step, the model learns the characteristics of the data to determine the
best boundaries for class separation. The validation step involves using part of the training
set to evaluate the model’s performance and make necessary adjustments to enhance its
effectiveness on unseen data. Finally, the test phase uses an entirely new dataset to assess
the model’s overall performance.

The performance of an SVM is highly dependent on the optimal selection of hyperpa-
rameters. For any type of SVM, the hyperparameter C needs to be optimized as it controls
the margin which separates the two classes. A linear SVM kernel is used for linearly
separable data, whereas more complex kernels, like radial basis function (RBF) kernels, are
applied when the data are not linearly separable. For nonlinear kernels, the hyperparame-
ter γ shapes the decision boundary and must also be optimized. This paper employs the
grid search (GS) technique to choose the appropriate kernel method and determine the
optimal hyperparameters. Note that we avoided overfitting for all the scenarios through a
cross-validation technique. A good choice for the C parameter in SVM classification allows
a generalizable boundary which performs well on training, validation and test sets.

2.4. Evaluation Metrics

A confusion matrix is frequently used to evaluate the performance of binary clas-
sification problems. In this work, samples obtained from healthy shoulder models are
labeled as +1, while samples from injured models are marked as −1. It is a cross-table,
demonstrated in Table 3, which captures the occurrences of actual classifications versus
predicted classifications. In this table, TN is true negative, TP is true positive, FP is false
positive, and FN is false negative. These are numbers in sets of {0, 1, . . . , N}.

Table 3. Confusion matrix interpretation.

Predicted Class

Healthy Injured

A
ct

ua
l

C
la

ss Healthy TP FN

Injured FP TN

The table assumes that there were FN + TP healthy samples, of which only TP
were correctly recognized as healthy, whereas FN were incorrectly recognized as injured.
Similarly, there were TN + FP injured models, of which only TN were correctly identified
as injured, while FP were identified as healthy by mistake. To assess these classifications,
we calculated the accuracy (acr) as the proportion of correctly classified samples out of the
total number of samples, the sensitivity (sens) as the probability of correctly recognizing the
healthy samples or true positives, and the specificity (spec) as the probability of correctly
recognizing the injured samples or true negatives.

2.5. Dataset Processing

The different steps for numerically generating a sample with the use of the imaging
system are illustrated in Figure 2. We needed to solve the boundary value problem of
Equation (1) to determine the scattering matrix. To calculate the scattered field, we first
computed the scattering coefficients for the domain filled with only the homogeneous
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matching medium (Sempty
ij ) and then subtracted these from the scattering coefficients ob-

tained with the shoulder present (Sfull
ij ). The difference between these two matrices is a

matrix Sij of scattering parameters 32 × 32 = 1024 in size. Then, to simulate a realistic
experimental condition, we generated Ssyn

ij by adding multiplicative white Gaussian noise
independently to the real and imaginary parts of each Sij.

We built the complex nature dataset using the separate values of the real and imaginary
parts of Ssyn

ij , which doubled the dimension of the scattering matrix to 2048 in size. This
vector of synthetic data was introduced as an sample for the ML algorithm. Figure 3 shows
the steps of data preparation in our method.

Figure 3. The workflow of SVM classification.

The partitioning in the development set was as follows: 90% for the training set and
10% for the validation set.

Throughout this paper, we will show the three most significant eigenvectors computed
from the PCA applied to the training and test datasets separately. Note that PCA was used
to visually evaluate the differences and similarities between the classes [28] and not for
classifying. Indeed, considering that the SVM could work directly with the original features,
and to avoid loss of information, we chose to directly classify the raw data. In the next
sections, we will give a detailed description of the generated dataset for different scenarios.

3. Numerical Results

In this section, we introduce different scenarios to conduct a feasible numerical study of
classifying healthy and injured shoulder models. We conducted our study using grid search
and a linear SVM to ensure faster testing. This helped us establish baseline performance,
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gain insights into the data and efficiently explore hyperparameter spaces through grid
search. Once we had a solid understanding of the data’s behavior and potential patterns,
we could consider more complex models like a nonlinear SVM for further refinement.

3.1. Influence of Noise

The classification of injured and healthy shoulder models for the generated synthetic
data with different noise levels is studied in this section. Studying the influence of extremely
high noise levels, especially close to the Shannon limit (−1.6 dB), is crucial for evaluating
model robustness, understanding performance boundaries and ensuring reliability in
practical, noisy environments.

To consider a more realistic scenario, the noise levels among the training and test
datasets as well as the healthy and injured samples were different. The detailed introduced
noise levels for each category are mentioned in Table 4. For the test set, we considered six
different noise levels, and for training set, we considered five different noise levels. Then,
for each noise level, we generated samples with 36 different seeds to build a large dataset.
The number of samples for each category is presented in Table 5.

Table 4. The noise levels introduced in each set of data. The values are in dB.

Sample Model Training Dataset Test Dataset

Healthy 16.6, 13, 7, 4.4, 2.3 19, 7.7, 4.9, 2.7, 0.9, − 0.65

Injured 23, 15.3, 5.6, 3.9, 1.38 31, 15.2, 6.4, 4, 1.9, 0.24

Table 5. Number of generated training and test samples for healthy and injured models. We built the
datasets with 36 seeds for each noise level.

Sample Model Training Dataset Test Dataset

Healthy 36 × 5 = 180 36 × 6 = 216

Injured 36 × 5 = 180 36 × 6 = 216

Let us use the GS method for optimization of the hyperparameter C, with the results
reported in Table 6. We can see that when C = 6,000,000, an accuracy of 100% was achieved.

Table 6. Classification results for different values of C in noise study.

C Acr Spec Sens

6000 90.5% 87.9% 93.0%

600,000 95.3% 100% 90.7%

6,000,000 100% 100% 100%

3.2. Dehydration Error in Complex Permittivity

In [29], it was reported that the dielectric properties can vary as a function of time
at different temperatures due to dehydration. This relative change was measured to be
9%, and we called it hderr. The effect of hderr = ±9% on the complex permittivity is
reported in Table 7. Looking at this table, we can see that the contrast between the dielectric
properties of the SF and the muscle could become quite small, specifically for cases where
the dehydration error for the muscle was bigger than the one for the SF.
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Table 7. The value of εr at 1 GHz while including the dehydration effect compared with the original
values (hderr = 0).

Tissue hderr = −9% Original Values
Based on Table 2 hderr = 9%

Bone Cortical 11.28 − 2.5i 12.4 − 2.79i 13.5 − 3.04i
Skin 37.2 − 14.7i 40.9 − 16.17i 44.58 − 17.6i

Tendon 41.5 − 12.43i 45.6 − 13.66i 49.7 − 14.88i
Muscle 49.8 − 15.86i 54.8 − 17.43i 59.73 − 19i

SF 61.8 − 26.3i 68.0 − 29.0i 74.1 − 31.6i

Considering that this contrast is the key element of differing between healthy and
injured models, it is crucial to study the effect of this parameter. To build datasets for both
the healthy and injured shoulder models, we included three different variations of the
muscle. Note that for the case of the injured model, we repeated the simulations in three
groups for each value of SF to be able to distinguish the dataset. For both the healthy and
injured models, we introduced seven different noise levels from 23 dB to 10 dB and 48 seeds
for each case. Table 8 explains the method of data generation for this scenario. The matrix1

1
1

 for the injured model held for each group of generated datasets with different values

of hderr for the SF. Then, we separated 900 randomized samples for the training set and
108 samples for the test set for each category for the healthy and injured models.

Table 8. Number of generated training and test samples for healthy and injured models. We built the
datasets with 36 seeds for each noise level.

Sample Model Total Dataset Training Subset Test Subset

Healthy 48 × 7 × 3 = 1008 900 108

Injured, 3 groups of SF values 48 × 7 × 3 ×

1
1
1

 =

1008
1008
1008

 900
900
900

 108
108
108


We repeated the classification three different times with different SF values. The results

are reported in Table 9. This demonstrates that for all three SF values, we could have 100%
accuracy in classifying the healthy and injured models when possible different values of
hderr for the muscle were also included in the dataset.

Table 9. Classification accuracy for different values dehydration error for C = 6,000,000.

Value of SF Accuracy

61.8 − 26.3i 100%

68 − 29i 100%

74 − 31i 100%

3.3. Positional Error of the Phantom

The location of the shoulder in the imaging system can vary due to the patient’s
body habits, which can impact the values of the computed scattering parameters. In this
section, the objective is to determine whether it is possible to detect injuries when the
locations of the phantoms in the imaging system differ between the training and test
datasets. In addition, we include all effects which have been previously introduced, such
as noise and dehydration. For each location, as far as the permittivity was concerned, we
introduced the three values of the muscle’s permittivity which were used in the former
section. For the injured model, we also included three values for the SF. In addition, we
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took four different levels of noise comprised between 10 and 23 dB. Finally, we decided
on the number of seeds for each model in order to have a balanced number of samples
between the two classes in the training dataset; we included 12 seeds for each noise value,
whereas we used only 4 for the injured model because the latter already included three
different SF values. In this way, we generated 144 samples for the healthy model and
144 samples for the injured model, as shown in Table 10.

Table 10. Number of generated training and test samples for healthy and injured models for each
position of the phantom.

Sample Model Training Dataset Test Dataset

Healthy 3 × 12 × 4 = 144 3 × 12 × 4 = 144

Injured 3 × 3 × 4 × 4 = 144 3 × 3 × 4 × 4 = 144

3.3.1. Translation Offset

In this section, we investigate the maximum translation offset for which we still obtain
optimal classification results. To start, we applied the offset along Oz. The PCA of the
3 most significant eigenvectors of the training dataset and test dataset are shown in Figure 4.
The value of C was optimized at C = 5,000,000 with grid search. The translation shift
is exemplified in Figure 5 for a value of 0.5 cm. The accuracy was 100% up to a 0.5 cm
shift in translation, whereas it fell to 83.33% for 1 cm with a sensitivity of 100% and a
specificity of 66.67%. This poor accuracy was due to overfitting, and to solve this problem,
we needed to introduce phantoms with small translation steps of 0.5 cm to increase the
sample diversity in training. To draw a general conclusion, we repeated this study along
Ox and Oy. The results are in line with those obtained for the shift along Oz and show that
0.5 cm is the maximal translation without loss of accuracy.

Note that in the real world, the anatomy of the shoulder limits extensive movement in
translation without introducing rotation of the shoulder. Therefore, to simulate the realistic
movements of the shoulder, we needed to generate a larger dataset which included various
offsets and rotations of the phantoms inside the imaging system. This is investigated in the
next section.

Figure 4. Projection of the three most significant eigenvectors of the training dataset and test dataset
when phantoms had a shift of 1 cm along Oz.
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Figure 5. The translation error of of 0.5 cm along different axes between training and test dataset
phantoms.

3.3.2. Effect of Rotation and Translation Offset

We generated 144 samples based on Table 10 for 31 different locations of the phantoms
for both the healthy and injured models. Note that all of the rotations were performed
along Oy, and the shifts were performed along Ox and Oz. We chose different locations
from the smallest offset (0.5 cm) to the largest possible rotation (θ = 25.7◦, ∆x = −4 cm,
∆z = −1 cm). Larger changes could not happen due to limitations on both the shoulder size
and the imaging chamber structure. Table 11 shows the total numbers of the dataset. In this
study, we included the generated dataset for 30 locations of the phantoms for training
(4320 samples), and we excluded one remaining dataset of different positions for the test
set (144 samples).

Table 11. Number of generated training and test samples for healthy and injured models for 31 posi-
tions of the shoulder inside the sensing system due to rotation and shifting.

Sample Model Total Dataset Training Subset Test Subset

Healthy 144 × 31 = 4464 4320 144

Injured 144 × 31 = 4464 4320 144

Figures 6–8 show the geometries of nine scenarios chosen for their diversity of the
change in the position. They were indexed from M1 to M9. Let us remind the reader that
both a healthy and injured shoulder were considered for each scenario. For example, M2
was simulated two times: once with the healthy shoulder (called M2-healthy) and once
with the injured one (M2-injured).

To better understand the different included locations of the phantoms, we show
the positions of the center of rotation for all 31 scenarios in Figure 9. Nine out of the
31 scenarios were chosen for various tests, and they are specified in this figure with yellow
points. The red point accounts for the reference position of the phantom in the absence
of translation offset and with no rotation. We can see that these nine chosen points were
grouped three by three according to the value of the angle of rotation. For example,
the locations of M1, M2 and M3 were slightly different from each other but were nearby
scenarios used for the training, which are shown in gray. We had a similar situation for
M4, M5 and M6. However, the third group, M7, M8 and M9, had a larger distance from
each other.
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Figure 6. First group of rotations For M1, θ = −3.6◦. For M2, θ = −3.6◦ with shift ∆x = −1 cm.
For M3, θ = −7.2◦.

Figure 7. Second group of rotations. For M4, θ = −18◦. For M5, θ = −12◦ with shift ∆x = −3 cm.
For M6, θ = −16.3◦ with shift ∆x = −4.5 cm.

Figure 8. Third group of rotations. For M7, θ = 25.7◦. For M8, θ = 25.7◦, ∆x = 1 cm and ∆z = 1 cm.
For M9, θ = 22.5◦, ∆x = 1 cm and ∆z = 3 cm.



Sensors 2024, 24, 6663 13 of 17

Figure 9. Position of the center of rotations for 31 different phantoms.

We examined different scenarios with separation of the test dataset for a specified
position, as explained in Table 12. The rest of the samples were included in the training
dataset. Note that in this table, the accuracy is mentioned using a linear kernel and
C = 600,000,000. We elaborate upon the results for each scenario:

• In first case, the dataset for the M2 phantom for both the healthy and injured shoulders
(M2-healthy and M2-injured) was considered for the test. This showed an accuracy of
100% in classifying the healthy and injured models. This accuracy was due to the fact
that the M2’s position was close to the phantoms used for training and belonged to
the group with a small rotation angle (about 5◦).

• The second case (with M2-healthy and M4-injured) is a little bit more challenging
because both samples were apart, considering their centers of rotation. However,
the similar positions for both existed in the training dataset. M2 belonged to the
group with a small rotation (about 5◦) angle, whereas M4 belonged to the one with
the intermediate rotation angles (about 15◦).

• The third case (M7-healthy and M3-injured) was even more challenging compared
with the second case because M7 belonged to the group with large rotation angles
(about 22°), and M3 belonged to the group with small rotation angles (about 5◦). In this
case, the classification accuracy dropped to 91% because the position of M7 was apart
from the rest of the positions in the training database. Indeed, the distance between
M7 and the closest training point was 0.5 cm. Note that all misclassified samples
belonged to the class of the healthy shoulder (M7-healthy) incorrectly classified as
injured. This is in line with the fact that the position of M7 (which was healthy) was
far away from the training phantoms, which made classification more difficult.

• The scenario (M9-healthy and M6-injured) gathered samples belonging to the groups
of large and medium rotation angles, respectively, but this time, one sample (M9-
healthy) was farther away from the positions that were in the training dataset. The dis-
tance between M9 and the closest training point was 1 cm. As in the previous scenario,
this led to a poorer classification performance, dropping to 88%, and all misclassified
samples were samples from the healthy shoulder incorrectly classified as injured.

As for the translation case, the results obtained from the two last scenarios show that there
was a limitation in having a position of the patient which was not previously introduced in
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the training. We found empirically that this limit was reached when the distance between
the center of rotation and the closest point in the training was 0.5 cm. In order to overcome
this limitation, we then shuffled all of the samples between the training and test sets. The
results are discussed in the next section.

Table 12. Different scenarios for various positions of phantoms in the imaging system.

Healthy Injured Accuracy Confusion Matrix

1 M2 M2 100%
[

144 0
0 144

]
2 M2 M4 100%

[
144 0

0 144

]
4 M7 M3 91.3%

[
119 25

0 144

]
5 M9 M6 88.54%

[
111 33

0 144

]

3.3.3. Shuffled Large Dataset

To conduct a further study, let us shuffle all the samples we generated for different
locations 20 times. Let us remind the reader that our total number of samples was 4464. We
separated 3350 samples for training and 1114 samples for testing. The distribution of the
training and test datasets for the trial is shown in Figure 10. We repeated this classification
for 10 trials, and the accuracy was always higher than 99.91% when using a linear kernel,
and the hyperparameter C = 600,000,000. The confusion matrix for the trial is shown
in Table 13. The training time for this scenario was 39.2 seconds, whereas the test was
performed in real time.

Table 13. Confusion matrix for randomized large dataset with C = 600,000,000.

Models Healthy Injured

Healthy 1112 2

Injured 0 1114

Figure 10. Projection of the 3 most significant eigenvectors of the large dataset: training dataset (left)
and test dataset (right).

Further, we examine the effect of the C hyperparameter on the classification for this
scenario. To do this, we vary its value and present the results in Table 14 and Figure 11. We
observe that increasing C reduces the classification error on the training dataset by allowing
a smaller margin, which classifies all training points correctly. Conversely, a smaller C
encourages a larger margin and a simpler decision function, resulting in lower accuracy.
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It’s important to note that increasing the C value results in a less complex model and an
easier optimization problem, speeding up the training process. Additionally, it reduces the
number of support vectors, which helps lower the overall computational time [30].

Figure 11. Projection of the two most significant eigenvectors of classified test data for the random
test case for different choices for the C parameter.

Table 14. The effect of the C value in classification for the shuffled large dataset.

C Acr Spec Sens Time (s)

600 57.09% 45.87% 68.31% 332.5

6000 66.38% 66.25% 66.52% 293.6

60,000 85.63% 80.61% 90.66% 264.8

600,000 95.06% 93.36% 96.77% 138.9

6,000,000 97.3% 96.77% 97.85% 67.8

60,000,000 99.55% 99.91% 99.19% 47.8

600,000,000 99.91% 99.82% 100% 39.2

4. Conclusions

This study serves as a proof of concept for a microwave digital twin prototype for
automatic, noninvasive, portable and real-time detection of healthy and injured tendons in
the shoulder. For this, we created a generalizable dataset using state-of-the-art numerical
modeling and the proposed imaging system considering various parameters: different
noise levels, variations in complex permittivity due to dehydration effects and different
locations of the phantom in the imaging system. The computing time for generating each
sample was less than two minutes with the use of 160 computing cores. This parametric
study led us to several important conclusions:

• With flexible numerical modeling, we can construct a realistic dataset for classifying
tendon injuries which addresses the challenge of obtaining real-world datasets.

• By incorporating noise levels into the training dataset, we can ensure accurate injury
detection under varying noise conditions.

• By accounting for changes in the measured complex permittivity of tissues due to
dehydration, we can maintain high accuracy in injury detection. This is a key issue
because it takes into account two important characteristics of human patients:

– The small difference of dielectric properties from one patient to another for the
same human tissue.

– The variability in the synovial fluid (SF) values. We remind the reader that SF
accounts for differentiating healthy from injured shoulders.
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• Introducing various possible locations of the shoulder within the imaging system is
critical for a realistic dataset. By generating datasets for different shifts and rotations,
we can ensure high accuracy in classifying test data.

• When different shoulder locations are included in the training dataset, SVM classifi-
cation achieves real-time detection of rotator cuff tears (RCTs) with 99.91% accuracy,
provided that we train with positions close to those in the test set. We found em-
pirically that the training should not have positions further away than 0.5 cm from
the test position. If the distance is larger, then new positions have to be included in
the training. This study will have to be pursued with statistical assessments once
the system is built in order to see what the real dispersion is in the different patient
positions with respect to the imaging system.

The next step is to move from the microwave digital twin prototype to the microwave
digital twin by making tests using datasets measured from real-world shoulder models.
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