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Untrained Compact Neural Network Prior for
High-Dimension Multispectral and Hyperspectral

Data Fusion with Spectrally Varying Blurs
Dan Pineau 1,2,3, Fraņcois Orieux 1,2, Alain Abergel 2,3

Abstract—The information in a spectrally degraded dataset
(multispectral data) and a spatially degraded one (hyperspectral
data) can be processed jointly to reconstruct data with enhanced
spatial and spectral resolutions. The problem of multispectral
and hyperspectral (MS/HS) data fusion with spatial blurs is
an ill-posed inverse problem, commonly solved by minimizing a
mixed criterion containing data adequacy terms and a Tikhonov
regularization term. However, such regularizations suffer from
poor discriminative ability. Instead, the recently proposed Un-
trained Neural Network Priors (UNNP) have surpassed classical
handcrafted priors in most imaging inverse problems without
requiring prior learning with a labeled database. Few works have
been proposed to solve the MS/HS fusion problem with UNNP,
but none have explored the fusion with spectrally-varying spatial
blurs. This paper aims to solve the MS/HS fusion problem with
high dimension data degraded with spectrally-varying spatial
blurs by relying on a simple and compact neural network archi-
tecture as prior, made possible by using a dimension reduction
model. It demonstrates the superior performances of such a prior
against handcrafted priors for the fusion of simulated realistic
MS and HS data from the Mid-Infrared Instrument (MIRI) of
the James Webb Space Telescope (JWST) in a high noise regime.

Index Terms—inverse problem, deconvolution, data fusion,
hyperspectral, untrained neural network, variant blur, JWST

I. INTRODUCTION

Multispectral and hyperspectral (MS/HS) data fusion inte-
grates the spatially rich information obtained from multispec-
tral imaging with the spectrally detailed information captured
by hyperspectral imaging. This technique enhances the quality
and utility of remote sensing data, facilitating comprehensive
analysis across various scientific disciplines, such as earth
observation, remote sensing, and astrophysics [1].

More precisely, this study addresses the challenge of fusing
high dimensional datasets characterized by spectrally varying
spatial blurs spanning a broad spectral range. An example of
such data is infrared astronomical data, for example obtained
with the James Webb Space Telescope (JWST), highlighting
the complexity and significance of the instrumental effects
encountered [2]. To our knowledge, two notable studies are
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addressing this specific issue. The first [3] proposed to solve
this inverse problem by minimizing a least squares criterion
through an iterative algorithm. The second study [4] proposed
an explicit and easily calculable solution to this fusion prob-
lem.

Nevertheless, the handcrafted priors used in these papers
face limitations due to their low discriminative abilities [5].
Indeed, a significant portion of unnatural images also meet
the criteria set by the forward models because of the ill-
posedness of the inverse problem. Moreover, priors induced
with Tikhonov regularizations [6] can introduce ringing effects
in the reconstructed images, especially when the input data
is noisy. In contrast, recent advancements in deep learning
have led to significant progress in addressing inverse imag-
ing problems [7] compared to traditional handcrafted priors.
These methods include end-to-end learning-based methods,
more specifically using self-attention such as [8] or invertible
neural networks [9], based on directly learning the mapping
from observed data to the desired output through a trainable
neural network. Other works include the use of learning-based
priors, where the regularization term is learned and involves
a Variational Auto-Encoder (VAE) as in [10] or a denoising
function [11]. Such priors can also be learned in a deep
unrolling framework, as done in [12] and in [13]. However,
in the context of MS/HS fusion with images from the JWST,
the data available are scarce and therefore likely insufficient to
effectively train the neural networks architecture used in the
previously presented deep learning methods.

Nonetheless, another type of priors relies on untrained
neural network, usually implemented as a diffusion model,
for their observed inherent ability to better reconstruct natural
images than noisy ones, as shown in [14], which proved
to outperform handcrafted priors in many imaging inverse
problems [15], such as denoising, inpainting, and super-
resolution. These priors have thus emerged as a promising
alternative to the limiting handcrafted priors and the data-
demanding deep learning priors for such inverse problems, and
they have already been used for solving MS/HS fusion prob-
lems [16] [17] [18]. However, the data formation processes
considered in these papers do not consider any spatial blurs,
and are therefore not fit for the inverse problem considered
in this paper. Moreover, their proposed architectures aim to
reproduce the whole, highly spatially and spectrally resolved
cube reconstructed from the MS and HS datasets, which can be
of high dimension for astronomical images. This could induce



a significantly high computational load and potential memory
issues.

In comparison, this paper aims to solve a fusion problem
with noised high dimension MS and HS data degraded with
spectrally-varying spatial blurs with a simple and compact
diffusion model architecture as prior and compares its per-
formances with handcrafted priors. The reconstruction of the
complete hyperspectral data is made possible by only recon-
structing a compact version of this cube, introduced via the
Linear Mixing Model, explained in Section II. The MS and
HS data formation processes are also described in section II
and are the same as the ones already given in a previous
work [4]. Section III formulates the data fusion problem with a
handcrafted prior and an UNNP, and presents the latter prior’s
architecture. Section IV shows the superior performances of
using a relatively simple UNNP over handcrafted priors to fuse
simulated realistic MIRI data when solving the problem under
a specific, yet realistic, noise range.

II. DESCRIPTION OF THE DATA FORMATION PROCESSES

A. Dimension reduction model

The reconstructed object is a three-dimensional hyperspec-
tral datacube x : two spatial dimensions, with I and J being
the number of rows and columns respectively, and one spectral
dimension, with L wavebands.

Instead of reconstructing the full datacube like
in [16] [17] [18], we propose a linear mixing
model [19] [3] [20] where the spectral content at any
given location (i, j) of x is a linear combination of T known
spectra st

x[i, j, l] =

T∑
t=1

at[i, j] st[l] (1)

where at[i, j] is the abundance map of the spectrum st at the
location (i, j).

This model offers several advantages for our problem. First,
defining known spectra templates st for all wavelengths cap-
tured by the instruments enables efficient joint processing of
their data due to the spectral correlations. Secondly, choosing
T ≪ L significantly reduces the number of unknowns.

B. Multispectral data formation process

This section describes the processes leading to obtaining a
set of C wideband images ym from x. Such instruments are
composed of mirrors to focus light, filters to select the wave-
band to observe, and a detector to spatially sample the light.
However, due to the finite aperture of their mirrors, incoming
light is diffracted, and the resulting images are spatially
blurred. As the instruments’ impulse responses are considered
spatially invariant, the blurring effect can be modeled as a
spatial convolution with the instruments’ impulse responses.
The resulting blurred version of the object x observed by the
cth imaging instrument is

xc
hm

[i, j, l] = (x ∗
i,j

hc
m)[i, j, l] (2)

where hm of the impulse response of the cth instrument, ∗
i,j

is

the 2D spatial convolution operator on the axes of i and j.
The spectral filter profiles and detector’s quantum efficien-

cies must also be taken into account for each imager model.
These effects result in a spectrally weighted version of xc

hm
,

denoted xc
wm

, and calculated as

xc
wm

[i, j, l] = xc
hm

[i, j, l] wc
m[l] (3)

where wc
m are the spectral weights for the cth instrument.

The wideband images are then obtained from the spectral
integration of xc

wm
. The full equation of the multispectral data

formation process for the cth instrument writes as

yc
m[i, j] =

∑
l

(x ∗
i,j

hc
m)[i, j, l] w

c
m[l] + nc

m[i, j] (4)

where nm is a cube of size C × P containing random white
gaussian noise of standard deviation σm.

Integrating the linear mixing model from (1) into the
latter equation and generalizing it for all instruments leads
to rewriting it in a matrix form as

ym = Ma+ nm (5)

where M ∈ RCP×KP .

C. Hyperspectral data formation process

The hyperspectral data in this article yh is obtained from
K integral field spectrometers. As for imaging instruments,
these instruments also use mirrors to focus light. The first
transformation on the object x by the kth spectrometer is thus
calculated as

xk
hh
[i, j, l] = (x ∗

i,j
hk

h )[i, j, l] (6)

where hk
h is the impulse response of the kth spectrometer.

These instruments use a diffraction grating to separate input
signal wavelengths, but do not transmit flux for all wavelengths
equally. Taking this effect and the quantum efficiency of the
detectors into account leads to adding a spectral weighting into
the models with

xk
wh

[i, j, l] = xk
hh
[i, j, l] wk

h [l] (7)

where wk
h are the spectral weights of the kth spectrometer.

Finally, the usually coarse spatial sampling of spectrometer
detectors is modeled as a spatial integration of the flux over all
regions of di×dj pixels for every image in xk

wh
, di, dj ∈ N∗.

The full equation of the spectrometer data formation process
for the kth instrument thus writes as

yk
h [̄i, j̄, l] =

(̄i+1)di∑
i=īdi

(j̄+1)dj∑
j=j̄dj

(x ∗
i,j

hk
h )[i, j, l] w

k
h [l] + nk

h [̄i, j̄, l]

(8)

where ī and j̄ are the pixels coordinates after spatial decima-
tion of images, and nh is a cube of size L × P containing
white gaussian noise of standard deviation σh. Generalizing



this equation for all spectrometers and integrating the mixing
model from (1) leads to its matrix form

yh = Ha+ nh (9)

where H ∈ RLP ′×KP with P ′ = P/(didj).

III. METHODOLOGY

A. Formulation of the problem with handcrafted priors
The abundance maps a, describing the original object x,

are defined as the minimizer of a criterion J

â = argmin
a

J (a) (10)

with

J (a) = µm∥ym −Ma∥22 + µh∥yh −Ha∥22 +R(a) (11)

where µm = 1/2σ2
m, µh = 1/2σ2

h , and R(a) is a regularization
term used to stabilize the problem.

Previous works [3] [4] solved this data fusion problem
by imposing a spatial smoothness prior to the reconstructed
maps a. This prior is formulated by choosing R such that
it quadratically (ℓ2-norm) penalizes the differences between
neighboring pixels, i.e.

R(a) = µr∥Da∥22 (12)

with µr ∈ R+ being the regularization parameter to control
the influence of the spatial smoothness, and D a finite dif-
ference matrix. This criterion was minimized with an iterative
gradient-based method in [3], and with an explicit method
in [4].

B. Formulation of the problem with an UNNP
Using an Untrained Neural Network Prior (UNNP) for reg-

ularizing our ill-posed inverse problem consists in optimizing
the parameters θ of a neural network fθ to reproduce the
maps a from a fixed random input tensor Z0, such that the
minimization problem becomes

θ̂ = argmin
θ

J (θ) (13)

with

J (θ) = µm∥ym −Mfθ(Z0)∥22 + µh∥yh −Hfθ(Z0)∥22.
(14)

Once the optimal weights θ̂ have been estimated to specifi-
cally minimize (14), the reconstructed abundance maps â are
then calculated with

â = fθ̂(Z0). (15)

Unlike the learning-based method from the literature, these
networks require no prior learning before being optimized to
solve (14), thus removing potential learning biases and the
need for a large and diverse database for training. Note that the
use of UNNP allows the removal of the explicit regularization
term R(a), which was a necessity in (11). Indeed, the regu-
larization here relies on untrained neural network structures’
inherent ability to generate natural images, as demonstrated
in [14].

C. Architecture of the UNNP

The neural network used in this work follows the Deep
Decoder (DD) architecture proposed in [21], i.e. an un-
derparametrized fully-connected neural network. This under-
parametrization compels the network to generalize images into
a smaller parameter space, thus preventing the network from
recovering the noise of the input data [21] [15].

As presented in [21], the Deep Decoder architecture is
composed of d layers, where each layer is composed of a
pixel-wise linear combination of the input channels, computed
as a 2D convolution with a 1×1 kernel, a bilinear upsampling
unit to double the input’s width and height, a ReLU activation,
and a channelwise normalization (CN). These operations can
be summed up as successive transformations of a tensor Z
with

Zi+1 = CN(ReLU(UiZiθi)) (16)

where i ∈ [0, d − 1], Zi ∈ Rni×ki the tensor at layer i
composed of ki channels of ni variables each, Ui ∈ Rni+1×ni

the upsampling matrix, and θ ∈ Rki×ki+1 the containing
the weights for pixel-wise linear combinations of channels,
also being the weights of the network. The dimensions of
the random input tensor Z0 are set such that the spatial
dimensions of Zd−1 match those of the network’s output.
Therefore, the layer d−1 does not require spatial upsampling,
i.e Ud−1 = I . Finally, the network’s output is computed via
a sigmoid function applied on a pixel-wise linear combination
of the channels of Zd, such that its third dimension matches
the one of the output (T in our case, see section II-A). This
is written as

fθ(Z0) = sigmoid(Zdθd) (17)

where θd ∈ Rkd×T . Therefore, assuming ki constant for i ∈
[0, d] and equal to k, the number of parameters of this network
is

N(d, k, T ) = dk2 + 2dk + Tk. (18)

IV. RESULTS

As mentioned in the introduction, this research primarily
focuses on the fusion of astronomical imaging and spectrom-
etry data degraded by spectrally-varying spatial blurs. The
study case of this paper is the Mid-Infrared Instrument (MIRI)
from the James Webb Space Telescope (JWST). We adapted
the instrument models for MIRI’s imager (MIRIM) and its
Medium Resolution Spectrometer (MRS) to the multispec-
tral and hyperspectral data formation processes presented in
sections II-B and II-C respectively. The impulse response for
both models, h, was simulated using webbpsf, showcasing its
spectral variability, as depicted in Fig. 1. MIRIM, equipped
with 9 filters, incorporates the actual Photon Conversion
Efficiency (PCE) curves for spectral response analysis. For the
spectrometer model, we implemented decimation by a factor of
4 in both dimensions, resulting in spectral aliasing for signals
under 20 µm. Although the MRS features 12 distinct PCE
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Fig. 1: MIRI PSF [22] (logarithmic scale).

curves across 4 channels and 3 sub-channels, our analysis
simplifies this to a single channel by merging these curves.

We generated multispectral ym and hyperspectral yh data
by applying these models to a set of T = 5 spectral
abundance maps, simulating the Linear Mixing Model (1).
These maps, derived from the Orion Bar’s observational data,
contain 128× 256 pixels each, covering the 5 to 28 µm MIRI
band with L = 300 spectral points. The datasets ym and
yh were subsequently corrupted with additive white Gaussian
noise, with standard deviations σm and σh respectively. These
standard deviations were first adjusted such that the signal-
to-noise ratio SNRdB of both MS and HS inputs, ym and yh,
is 25 dB. The reconstruction with two different handcrafted
smoothness priors are compared in this study : one with
an ℓ1-norm, and another with an ℓ2-norm [3] [4]. These
reconstructions involves the setting of the hyperparameter
µr, see (12), but it was here chosen to minimize the true
Normalized Root Mean Squared Error (NRMSE) [23] with
respect to the original data in order to maximize their perfor-
mances. The reconstruction results for these priors are shown
Fig. 2c and Fig. 2d. Such results are compared with another
prior: a Deep Decoder architecture presented in section III-C.
This neural network is initialized with d = 6 layers with
k = 128 parameters each. The dimensions of the random
input Z0 are 128 × 4 × 8, and those of the network output
are 5 × 128 × 256, i.e., the dimensions of the abundance
maps. The network is thus correctly underparametrized (see
(18)) with N(6, 128, 5) = 100 480 parameters, whereas the
output has 163 840 variables. The imager and spectrometer
models are then used to generate data from the network output
to compute the loss (14). The network is optimized using
the ADAM algorithm [24] with 60 000 iterations to ensure
convergence. Only the weights θ minimizing J (θ) (and not
the true NRMSE that relies on the ground truth) across all
iterations were saved to reconstruct data, which are shown
Fig.2e. Tab. I compares the performances of those three priors
for four different quality reconstruction metrics, with superior
results for the UNNP for each of them.

Fig. 3 shows the superior PSNR of the reconstructed data
with the UNNP for all input data with SNRdB ≤ 40 dB,
demonstrating a stronger resilience of this prior for realistic
noise cases.

V. CONCLUSION

A multispectral and hyperspectral data fusion problem with
spectrally-varying spatial blurs was solved using a simple and
compact Untrained Neural Network Prior, based on a Deep
Decoder architecture [21]. This problem includes denoising,
deconvolution, and unmixing aspects, which had only been
solved with handcrafted priors in the literature. This UNNP
aimed to be a compromise between the performance-limiting
handcrafted priors and the data-demanding deep learning
methods, as the latter cannot be easily used when dealing with
astronomical data.

The introduction of a Linear Mixing Model (section II-A)
induced three benefits : significantly reducing the dimension of
the object to reconstruct by estimating a small set of abundance
maps a instead of a hyperspectral cube x, thus allowing the
use of a compact neural network as prior. Secondly, this model
makes the network’s architecture independent of the spectral
dimension of x, which opens the possibility for the fusion
of high-dimension data. Finally, the spectral correlations in-
corporated in x via this model are thought to help with the
deconvolution aspect of this problem. Specifically, the high
spatial resolution of short-wavelength images can be leveraged
to enhance the deconvolution of long-wavelength images.

A comparison for the fusion of simulated realistic
MIRI/JWST data between handcrafted priors and UNNP high-
lighted higher performances for the latter for cases where the
input MS and HS data had a signal-to-noise ratio equal or
inferior to 40 dB, thus concluding a higher noise resilience
when using the UNNP for this study case. These promising
results could pave the way for using an alternative prior
without requiring labeled databases. Interesting avenues of
research could include implementing both priors in a single
criterion or developing an underparametrized convolutional
network (instead of a fully-connected one) for an even more
compact network.
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