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Abstract:
Human activities’ negative impact on biodiversity is undisputed, but debate remains vivid on their
effect on species richness, a key index in ecology and conservation. While some studies suggest
species  richness  declines  with  human  pressure,  others  show that  it  can  be  insensitive  or  even
respond positively to some human pressure, because some species (“losers”) are replaced by others
(“winners”). However, many “winners” are favoured by intermediate pressure but decline when
pressure becomes too high,  and we can thus expect species richness to decline above a certain
human pressure. Analysing eBird data in tropical forests, I  find that,  under a certain threshold,
increasing human footprint causes important composition changes with “losers” (habitat specialist,
endemic,  sensitive  and threatened species)  being  replaced by “winners”  (habitat  non-specialist,
large-range, human-tolerant, anthropophilic and non-native species), resulting in a slight increase in
species  richness.  Above  this  threshold  though,  richness  in  “winners”  drops  (except  for
anthropophilic and non-native species), leading to a steep decline in overall species richness. I find
that the shape of species richness response to human footprint varies between regions (comparing
results from the North America Breeding Bird Survey, PREDICTS database, and eBird data across
eight biodiversity hotspots)  and identify five different trajectories in species richness response to
human pressure. I suggest they can be classified depending on their slope and monotony in the
“Replace then remove framework”, unifying contradictory effects of human pressure on species
richness. 

Significance statement:
Human activities are causing biodiversity loss but there is still  strong debate on their effect on
species richness. Here I propose a unification of five trajectories of species richness response to
increasing human pressure under the “Replace then remove framework”. It consists in a first phase
of assemblage transformation (with the replacement of “loser” by “winner” species), often followed
by a second phase of steep decline in species richness (with the decline of many “winner” species)
when human pressure exceeds a certain threshold.  The empirical results presented in this study
provide  an  outstanding  illustration  of  assemblage  transformations  that  may  cause  biotic
homogenisation, demonstrating how habitat specialist, endemic, sensitive and threatened species are
replaced by others with increasing human pressure. 



Introduction
The overall negative impact of human activities on wildlife species is widely recognised1. However,
not all species are negatively impacted by human pressure2–4, and their response strongly depends
on their traits and characteristics. For instance, many studies report that increasing human pressure
causes the decline of most habitat specialist species, while many generalists can benefit from this
pressure, resulting in biotic homogenisation5–7. Similarly, species that have a small geographic range
tend  to  decrease  with  human pressure  while  species  with  a  large  range  tend to  respond more
positively8,  thus  replacing  small-range  species  across  time9,10.  As  a  result,  some  species  are
threatened with extinction because they are particularly impacted by such activities, while other
species are currently expanding, sometimes helped by human introduction as non-native species1.
Overall,  this  highlights  that  some species  are  negatively affected by human pressure (hereafter
“losers”), while some can benefit from it (“winners”). 

Because of this heterogeneity in individual species response to human activities, there is uncertainty
regarding  the  effect  that  human  pressure  has  on  the  local  number  of  species  present  in  an
assemblage – the species richness – which remains the most used biodiversity index in ecology and
conservation. It is often expected that local extinctions of losers exceed colonisation by winners,
and thus that species richness decreases with human pressure, as evidenced by several empirical
studies11,12.  Contrastingly,  numerous  studies  found  that,  although  assemblage  composition  is
strongly affected by human pressure, species richness often remains stable through time13–16. These
studies showed that winners are replacing losers as they go locally extinct, suggesting that local
species  richness  may  be  insensitive  to  human  pressure14,17.  Some  studies  even  reported  that
assemblage transformation leads to an increase in species richness through time9, or that species
richness can be higher in degraded than in intact habitats18, suggesting cases where colonisation by
winners may be stronger than local extinction of losers.

These three possible trajectories – where species richness either systematically decreases, remains
stable, or increases with human pressure – all assume that individual species responses to human
pressure  are  monotonous.  However,  this  response  can  take  very  different  shapes3,  with  many
species being favoured by an intermediate level of human pressure but negatively affected when
human pressure becomes too high (e.g., bird species associated with agricultural habitats that are
negatively impacted by agriculture intensification19). As a result, we could expect that some winner
species will go locally extinct (or at least stop colonising) above a certain human pressure, resulting
in a threshold in species richness response to human pressure20. The above-mentioned insensitivity
of species richness to human pressure would thus not hold when human pressure becomes too high,
as  suggested  by  some  local  studies21–23.  Similarly,  in  cases  of  systematic  increases  of  species
richness with human pressure, we could expect species richness to reach a peak at intermediate
pressure, before declining. This somewhat echoes the intermediate disturbance hypothesis, which
suggests that species coexistence may be maximal at disturbance with intermediate frequency or
intensity24,25. As species richness is a key index in ecology and conservation, we need to increase
and unify our understandings on the exact impact of human pressure on biodiversity.

Here I take advantage of three large-scale occurrence biodiversity datasets to study the effect of
human pressure on local assemblages by comparing the richness and composition of assemblages in



sites  with  different  level  of  human  pressure.  First,  I  apply  a  modelling  method  that  enables
discriminating  between  all  the  above-mentioned  possible  trajectories  of  species  richness  with
increasing human pressure, with subsets from eBird in eight tropical forest biodiversity hotspots26,
from the  North  America  Breeding Bird  Survey27 and  from the  PREDICTS database28 (Fig.  1).
Second, I explore how assemblage composition in the eBird data is impacted by human activities
and how this explains trends in species richness (Fig. 2). Specifically, I characterise assemblage
composition  based  on  its  specialisation  to  forest  habitats  (measuring  richness  in  species  with
high/medium dependence, vs species with low or no dependence on forest habitats), its endemicity
(measuring richness in endemic species, vs large-range species), its sensitivity to human activities
(measuring  richness  in  high-sensitivity  species,  vs tolerant  and anthropophilic  species),  and  its
global  dynamic  (measuring  richness  in  threatened  and  Near  Threatened  species,  vs non-native
species). Combining these results on overall species richness and composition, I propose a unifying
framework on species richness response to human pressure (Fig. 3). 

All  analyses  consisted  in  two  successive  models.  First,  the  “ecological  model”  controlled  for
variation  in  diversity  indices  that  is  not  due  to  human  pressure,  controlling  for  sampling
heterogeneity (e.g., duration of sampling events, number of observers) and ecological heterogeneity
(altitude, latitude, and Net Primary Productivity) between samples. Then, the “footprint model”
used the residuals from the “ecological model” to measure the specific effect of human footprint on
diversity indices (see details in Methods). 

Results
Human footprint impact on overall species richness
The relationship between human footprint and local overall  species richness of eBird checklists
showed a significant threshold. It consisted in a first phase where overall species richness slightly
increased with human footprint, followed by a second phase of steep decline, when human footprint
exceeded 33.8 (Fig. 1A; Table S1). This threshold broadly corresponds to urbanised and highly
intensive agricultural  habitats  (note that  the model  could not  estimate a  threshold >33.9 which
corresponds to the ninth decile of the response variable; see details in Methods). Compared with a
linear model, this threshold model enabled reducing the AIC by 368 (Table S2) and the pattern was
supported by General Additive Models with smoothed response curves (i.e., with fewer  a priori
assumptions; Supplementary Figures S4-5).

When hotspots were considered separately, the above-mentioned two-phase relationship emerged
very clearly from the hotspots with the highest statistical power (Mesoamerica and Tropical Andes,
representing respectively 50% and 27% of sampling events) as well as Indo-Burma and Sundaland
(Fig. 1B; Table S1). A threshold was also significant in the Atlantic Forest with a first phase with no
significant  trend  followed  by a  steep  decline.  Finally,  I  fitted  linear  models  in  three  hotspots,
because thresholds were not significant, and found that species richness was increasing with human
footprint  in  the  Eastern Afromontane (coef=0.013,  P=0.019)  and Western Ghats  and Sri  Lanka
(coef=0.009, P<10-4), and did not change significantly in Tumbes-Chocó-Magdalena (coef=0.003,
P=0.37; Fig. 1B, Table S1). 



Species richness in the PREDICTS database did not show a significant threshold. A linear model
was thus fitted and presented a significant decline with human footprint (coef=-0.004, P<10 -4; Fig.
1C,  Table  S1),  and a  lower  AIC than the  threshold  model  (Table  S2).  When considering  taxa
separately, the threshold was significant for none of them (respectively P=0.36, P=0.53, P=0.15 for
vertebrates,  invertebrates  and  plants)  and  species  richness  decreased  linearly  for  invertebrates
(coef=-0.0071, P<10-4), tended to decrease for plants (coef=-0.0034, P=0.088) and was stable for
vertebrates  (coef=-0.0016,  P=0.32). I  observed  the  same  pattern  when  looking  only  at  birds
(N=1644, threshold P-value=0.76, linear model P-value=0.38) and birds in tropical regions (N=892,
threshold P-value=0.19, linear model P-value=0.88). Species richness in BBS data showed a similar
pattern as the one observed in eBird Atlantic Forest checklists, with a first phase with no significant
trend until a threshold estimated at 25.45 and followed by a steep decline (Fig. 1D; Table S1). 

Figure 1:  Effect of human footprint on overall species richness for each region and dataset. A: eBird data across the

eight tropical forest biodiversity hotspots. B: eBird data modelled independently for each hotspot. C: PREDICTS data
across the globe. D: BBS data across the US and Canada. Each curve represents the selected model: threshold model if

significant (blue; two p-values are provided: the first one corresponds to the test of the first slope compared to 0, the
second corresponds to  the test  of  the difference of  the  second slope  compared to  the first  slope),  a  linear  model

otherwise (purple; a single p-value, corresponding to the slope compared to 0). Detailed statistics in Tables S1-2 and fit
in  Fig.  S3.  To facilitate  interpretation,  the  y-axis  does  not  present  residuals  of  ‘ecological  models’ but  rather  the

predicted species richness for a standard sampling event (see details in Methods). Histograms (grey bars) represent the
distribution of human footprint values of sampling sites for each region (distribution of species richness values is given

in Supplementary Figure 2). P-values: NS>0.05>*>0.01>**>0.001>***.



Results were consistent when using the human footprint maps of 200929 and 201330, showing similar
patterns but with some variations in the value where thresholds occurred (Supplementary Figures
S6-7, Supplementary Tables S3-4).  

Changes in assemblage composition in eBird data
Forest specialists, endemic species, threatened and Near Threatened species and high-sensitivity
species are overall negatively affected by human footprint: they are “losers” of the ongoing global
increase in human footprint (Fig. 2, Table S1). Conversely, species with low and null dependence to
forest habitats, species with large ranges, non-native species and tolerant or anthropophilic species
are mainly positively affected by human footprint: they are “winners” (Fig. 2, Table S1). More
specifically, in terms of forest-specialisation (Fig. 2A, Table S1), I found that species with high
dependence on forest habitats present the steepest decline (linear decline; coef=-0.042, P<10 -10),
followed by species with medium dependence that show a low decline, accelerating when human
footprint exceeds 32.3. Conversely, both non-forest species and species with low dependence on
forest  habitats  see their  richness increase up to  a  human footprint  of  ca.  24 before  reaching a
plateau. In terms of endemism (Fig. 2B, Table S1), richness in endemic species declines with human
footprint, especially above a threshold of 30.7, while richness in species with a large range increases
up to a threshold of 33.7 before declining. Richness in threatened and Near Threatened species
declines with human footprint, especially when human footprint exceeds 7.5. Conversely, richness
in non-native species increases with human footprint, especially when it exceeds 31.1 (Fig. 2C,
Table S1).  Finally,  in terms of sensitivity to human activities (Fig. 2D, Table S1), I found that
richness in high-sensitivity species declines linearly with human footprint (coef=-0.049, P<10 -10).
Conversely, richness in tolerant species increases with human footprint, up to a limit of 31.6 and
then decreases while  richness in  anthropophilic species increases continuously,  especially when
human footprint is below 6.8. 

Results were consistent when using the human footprint maps from Venter et al.29 and Williams et
al.30 (Supplementary Figures S8-9, Supplementary Tables S3-4).  



Figure 2: Effect of human footprint on eBird assemblage composition measured by threshold models for 11 indices of

assemblage composition. Two p-values are provided when threshold was significant (the first p-value corresponds to the
test of the first slope compared with 0, the second p-value corresponds to the test of the second slope compared with the

first  slope).  When  threshold  was  not  significant,  a  linear  model  was  fitted  and  a  single  p-value  is  provided
(corresponding to the test  of the slope compared with 0).  Detailed statistics in Tables S1-2 and fit  in Fig.  S3. To

facilitate interpretation, the y-axis does not present residuals of ‘ecological models’ but rather the predicted species
richness for a standard sampling event (see details in Methods). P-values: NS>0.05>*>0.01>**>0.001>***.

Discussion
In this study, I used a simple methodology to identify a diversity of trajectories in species richness
response to human pressure, that I apply to three large-scale empirical datasets. The method aims at
isolating human impact on species richness, by controlling for natural drivers of variation in species
richness, but this remains imperfect as this only based on correlations. I find that species richness
response  to  human pressure can present  important  thresholds,  with a  first  phase where species
richness  is  poorly  influenced  by  human  pressure  although  assemblage  composition  is  deeply
transformed, followed by a second phase of steep decline in species richness. More importantly, the
diversity of trajectories evidenced in this study enables delineating a general unifying framework
(the “Replace then remove framework”) which includes five main trajectories that are described and
differ by two characteristics: the slope of the first phase and the linearity of species response to
human pressure (Fig. 3).

With the eBird data, I find a slight increase in species richness during the first phase (+ 5 species
when human footprint increases from 0 to 33.5), typical of the Intermediate peak trajectory (i.e.,



increase in  species  richness,  followed by a  decline;  Fig.  3). This  positive  trend hides a  strong
transformation of assemblage composition due to the replacement of “losers” by “winners”, that I
highlight  in  four  comparisons (Fig.  2).  First,  forest  habitat  specialists  (typical  from the studied
regions;  i.e.,  tropical  forests)  decline while  species  that  are  associated with other  habitat  types
increase with human footprint,  consistently with the biotic  homogenisation literature5,6.  Second,
species that are endemic to the studied hotspots decline while species with large range size increase
with human footprint6,8,9. Third and intuitively, species that are threatened or Near Threatened (i.e.,
those that have been internationally recognised as negatively affected by human activities) decline
with human footprint,  while settled non-native species increase with human footprint31.  Finally,
richness  in  high-sensitivity  species  declines  with  human  footprint,  conversely  to  tolerant  and
anthropophilic species. This last result might suffer from partial circularity as the species sensitivity
index  was  elaborated  with  similar  data3;  but  circularity  may  be  weakened  by  the  larger  scale
considered to create the sensitivity index (most data are not used in the present study) and the
difference in response variable (individual species abundances were used to create the index  vs
richness  in  a  certain  category  of  species  here).  This  first  phase  thus  consists  in  a  strong
transformation  of  assemblage  composition  with  a  slight  positive  effect  on  species  richness,
highlighting once again that species richness is a poor index to measure human effects on local
biodiversity13,14,17,26. 

Figure  3:  Theoretical  plot  presenting  the  “Replace  then  remove framework”  developed in  this  study  and  its  five

trajectories.  The two axes present the two characteristics to look at  to identify which trajectory applies to a given
situation; the slope of the first phase and the strict monotony of the trajectory.

Generalising these findings, I suggest that the first phase of the five trajectories in the Replace then
remove framework consists in the replacement of losers by winners, and that the overall slope of
species richness depends on the relative rates of colonisation and extinction. If  colonisation by



winners is higher than extinction by losers,  the Systematic  increase (i.e.,  consistent  increase in
species richness with human pressure) or the Intermediate peak trajectory can occur. I found the
former pattern in Eastern Afromontane and Western Ghats and Sri Lanka, and the later in the eBird
global  dataset  and  four  hotspots,  echoing  the  Intermediate  Disturbance  Hypothesis  at  a
macroecological scale25.  Conversely, if extinction exceeds colonisation rate in this first  phase, a
Systematic decline can occur (i.e., monotonous decline in species richness with human pressure;
Fig. 3), as I evidenced with the PREDICTS database, and has been reported in previous studies11,12.
Finally, in some cases, the colonisation of winners perfectly offsets the extinction rate of losers,
leading to a flat slope in the first phase in the Plateau trajectory (i.e., flat trend in species richness,
followed by a  steep  decline)  and the  Species  replacement  trajectory  (i.e.,  flat  trend in  species
richness across the human footprint gradient; Fig. 3). Such balance is surprisingly common in the
literature13–16, although methods of these studies have been subject to criticism32, and was reported
in  the  present  study  (with  eBird  data  in  Tumbes-Choco-Magdalena  and  PREDICTS  data  for
vertebrates for the Species replacement trajectory, and in the Atlantic Forest and the BBS analyses
for the Plateau trajectory; Fig. 1, Table S1). 

In  the  second  phase  of  the  Intermediate  Peak  trajectory  with  eBird  data,  I  found  that  many
“winners” are not benefiting anymore from the increase in human pressure above a certain threshold
(mainly occurring in built environments and highly intensive agriculture). As a result, richness in
“winners” declines or plateaus, leading to a drop in local overall species richness (Figs. 1-2). This
was evidenced for species with low or null dependence on forest habitats, with large range, or with
tolerance to  human activities.  Only richness  in  anthropophilic  and non-native species  increases
continuously with human footprint, consistently with the fact that they are largely associated with
urban ecosystems4,33. Several previous case studies evidenced similar threshold patterns in species
richness response to habitat loss or habitat fragmentation21–23,34. Different and complex ecological
processes can explain the existence of such thresholds, for instance if species are resilient to habitat
fragmentation until suitable patches become too isolated for dispersion or if low-intensity habitat
loss  does  not  lead  to  immediate  extinction  but  creates  an  extinction  debt20.  By  investigating
assemblage composition changes across the human pressure gradient (Fig. 2), the present study
highlights the importance of understanding the diversity of individual species response to pressure
in order to better understand the emergence of species-richness patterns. 

Thresholds are however not systematic and their existence depends on landscape characteristics
(e.g., habitat variance or habitat fragmentation) and species characteristics (e.g., dispersal ability,
sensitivity to habitat edges, local pool of anthropophilic species that can colonise)20. In the Replace
then remove framework, I describe two trajectories without thresholds (Species replacement and
Systematic increase; Fig. 3), while  Systematic decrease can occur with or without a significant
threshold. In addition, thresholds are likely undetected in some cases because they are not tested
for20 or due to a low statistical ability to detect them. Indeed, the value of the threshold may vary
depending on studied regions, habitats and taxa (e.g., 33.7 for eBird data in tropical forest hotspots
and 25.5 with BBS data in North-America) and can be difficult to detect if too high. It can also
happen that the threshold is not particularly high, but sampling effort does not include sites with
high human footprint (i.e., if only the first phase of the trajectory is correctly sampled). When using
temporal datasets, not only do sampling sites need to be located in areas with high pressure, but



they need to cover severe degradation of habitat in the study period (e.g., conversion from semi-
natural to urban landscapes) to detect  such effect  on species richness,  which may currently be
possible only with a handful of datasets.

In all trajectories, assemblages may be strongly transformed, even at low levels of human pressure.
Thus, regardless of the impact of human pressure on species richness, it is important to note that the
composition  and  functioning  of  assemblages  may  be  affected,  possibly  resulting  in  biotic
homogenisation (e.g.,  with the extinction of endemic, specialist,  threatened species, replaced by
generalist, large-ranged, non-native species). This may result in increased functional homogeneity5,
with the possible eviction of species with key role in the assemblage such as predators, or specific
pollinators.  These effects  may worsen in the second phase,  where assemblages lose species.  In
addition to these compositional changes, the decline of species richness in the second phase may
translate  in  a  decline  in  overall  abundance  of  assemblages,  or  defaunation35–37,  suggesting  that
species  resources  are  too  limited  in  these  degraded habitats  and that  carrying  capacity  is  thus
declining.

Conclusion
In this study, I propose a framework unifying five different trajectories of species richness response
to  human  pressure  –  the  Replace  then  remove  framework  –  that  describes  five  trajectories
articulated around two characteristics of trajectories. This framework highlights the importance of
considering assemblage composition in studies aiming at measuring the impact of human activities
or conservation actions, as species richness can hide strong assemblage transformations14,38. It also
highlights  the  importance  of  considering  non-linear  and  non-monotonous  assumptions  when
investigating the effects of human activities on biodiversity in order to detect existing thresholds.
Overall, these results provide strong evidence that human pressure deeply transforms assemblages,
probably resulting in biotic homogenisation,  but that we still  have a lot more to lose if  human
footprint keeps increasing globally.



Methods
eBird data

Bird counts
eBird  is  an  online  platform  gathering  >700  million  bird  observations  across  the  globe 39,40.
Observations are made opportunistically but are gathered in checklists and are accompanied with
information on sampling effort, allowing for the transformation of data into a standard dataset and
the study of assemblage composition across large spatial scales41,42. In a previous study, Cazalis et
al.26 created a standard subset of the eBird database, keeping only complete checklists (i.e.,  for
which observers certified having reported all species detected) collected between 2005 and 2018 (I
here only kept the checklists made between 2010 and 2018 and later control for year in analyses),
arising from sampling events that lasted between 0.5-10 hours, either from “stationary points” or
“travelling counts” when distance travelled was <5km, and reported by observers with sufficient
experience.  Finally,  they transformed the eBird data to fit  the bird taxonomy used by BirdLife
International in order to be able to use BirdLife International species characteristics.

The study area used in Cazalis et al.26 and here, included eight tropical forest biodiversity hotspots43

that correspond to areas with exceptional biodiversity and high level of habitat loss. They are thus
highly relevant places to measure the impact of human activities. The study area was restricted to
the part of biodiversity hotspots that were included in the “Tropical and subtropical moist broadleaf
forests” biome44, to maximise sites comparability. It included the eight biodiversity hotspots that
presented sufficient eBird data after filtration, with 4 in the Americas (Atlantic Forest, Tropical
Andes, Tumbes-Chocó-Magdalena, Mesoamerica), 1 in Africa (Eastern Afromontane), and 3 in Asia
(Western Ghats and Sri Lanka, Indo-Burma, Sundaland). Of the 66,777 sampling events available
from the above-mentioned study, I only kept the 62,945 that were done in 2010 or after, and for
which I was able to calculate every landscape covariate (see Fig. 1 for the number of sampling
events per hotspot).

Sampling covariates
Because data collection in eBird is not standardised, I calculated several covariates of sampling
effort and quality following Cazalis et al.26, later used to control for sampling heterogeneity in all
analyses.  I  used  the  duration  of  sampling  (in  minutes)  and  the  number  of  observers,  as  the
probability to detect species increases with time and with number of observers.  I  also used an
observer calibration index calculated in Cazalis et al.26 and developed from Kelling et al.45 and
Johnston et al.46, that incorporates heterogeneity in observers' ability to detect species because of
their  difference in  expertise,  equipment  and behaviours.  Finally,  I  used the  day of  the  year  of
observation to control for variation in species presence and detectability with seasons, and the year
of observation to control for temporal trends in bird diversity.

Landscape covariates
To quantify human pressure, I used the global human footprint index, built from the combination of
spatial  information on human infrastructures,  agricultural  land use and population density.  Two
different  datasets  of  human  footprint  have  been  released  in  the  last  years  with  similar
methodologies: one mapping the human footprint in 1993 and 200929 and the other one mapping the
human footprint in 2000, 2005, 2010, and 201330. There are important variations in values between



these two datasets. Indeed, the variation when comparing two different years of a single dataset (the
difference between the 2000 and 2013 values from Williams et al.30 in sampled sites was 0.7 ± 1.7)
was much lower than the variation when comparing two similar years from the different datasets
(the difference in Williams et al.30 value in 2010 and Venter et al.29 in 2009 was 2.7 ± 4.0). To ensure
my results are robust to the measure of human footprint, I therefore used a combined measure in the
analyses, and test for the sensitivity of my results to the dataset used (Supplementary Figures S6-9,
Supplementary Tables S3-4). As eBird data used in this study were collected between 2010 and
2018,  I  used the most  recent  version of  both datasets,  and calculated the average between the
median value of human footprint pixels intersecting with a 1-km buffer around the sampling site in
2009 and in 2013. The remaining temporal mismatch may add some noise in the results and reduce
significance (e.g., if human footprint of study sites has greatly increased between human footprint
and eBird data collection).

I calculated a value of altitude and Net Primary Productivity for each sampling site. Altitude data
were obtained from the GLOBE Digital Elevation Model47, which has a 0.008 degree resolution (ca.
930m at latitude 0). I calculated the altitude of each sampling site as the median of the values
intersecting a 1-km buffer around the sampling site. Net Primary Productivity was calculated from a
raster averaging monthly productivity maps from Jan.2014 to Nov.201648 and extracting the median
of the values intersecting a 1-km buffer around the sampling site.

Assemblage indices
For each of the 65,465 checklists I calculated twelve assemblage indices. Overall species richness
was the total number of bird species detected in the checklist. I used BirdLife International49 4-
levels  classification  of  species  dependence  on  forest  habitats  to  characterise  the  habitat
specialisation  of  assemblages,  measuring  for  each  checklist:  the  richness  in  species  with  high
dependence on forest habitats, medium-dependence, low-dependence and “Non-Forest species”. I
used  BirdLife  International  and HBW50 distribution  maps  to  characterise  species  endemicity.  I
measured for each checklist the number of species that were endemic to the hotspot (i.e., >90% of
their range in the hotspot; see Cazalis et al.26), and the number of large-range species (i.e., that had a
global distribution >1,000,000 km2). I used BirdLife International49 Red List status to measure the
number of threatened and Near Threatened species of each checklist and BirdLife International and
HBW50 to measure the number of non-native species of each checklist, considering as non-native to
a given hotspot every species that only has “Introduced” distribution within the hotspot. Finally, I
used an index of bird sensitivity to human footprint developed by Cazalis et al.3 to measure the
sensitivity of assemblages to human (only for hotspots from the Americas). For each checklist from
the Americas, I measured the number of species characterised as “High-sensitivity” (i.e., species
whose sensitivity index is in the highest quartile of the 4,424 species breeding in the Americas), the
number of species characterised as “Anthropophilic” (i.e., species whose sensitivity index is in the
5% lowest values; broadly corresponding to species whose abundance increases continuously with
human pressure), and the number of species that are “Tolerant” (i.e., species whose sensitivity index
is in the lowest quartile, excluding “Anthropophilic” species). 



Breeding Bird Survey data
I investigated the link between local species richness and human footprint using the North America
Breeding Bird Survey (BBS). This scheme consists in yearly sampling by volunteer birders around
routes of ca. 25 miles with 50 count points recording every bird detected51. Specifically, I used the
data processed in a recent study27 consisting in 3,016 BBS routes, only considering the section
including  the  first  5-stops  (to  ensure  linking  local  human  pressure  conditions  with  local  bird
assemblages) and combining 5 years of observations randomly selected between 2007 and 2016 (to
ensure assemblages are representative of the local diversity). These routes are well distributed in the
US and the Southern part of Canada and cover different habitat types (forest, shrubland, cropland,
grassland,  mosaic,  bare  area,  urban,  and  others)27. I  calculated  the  human  footprint  (using  the
average  human  footprint  between  the  2009  map  from Venter  et  al.29 and  the  2013  map  from
Williams et al.30, to match with observation dates) within a 500m buffer around the first section of
BBS routes, as in Cazalis et al.27, and used the value of Net Primary Productivity from the same
study.

PREDICTS data
Finally,  I  used  the  PREDICTS  –  Projecting  Responses  of  Ecological  Diversity  In  Changing
Terrestrial Systems – database52, from which Newbold et al.11 found a systematic decline in species
richness with human pressure. It gathers data from scientists worldwide in order to produce a global
database  of  terrestrial  species'  responses  to  human  pressure.  It  now includes  over  3.6  million
biodiversity records from > 32,000 sites, covering > 50,000 species of diverse taxa. Specifically, I
used the public release of the database developed in Gray et al.28 consisting in 6,531 sampling sites
across  most  realms  (33%  in  Palearctic,  17%  in  Neotropical,  15%  in  Afrotropical,  13%  in
Indomalayan, 12% in Australasian, and 9% in Nearctic), taxa (40% vertebrates, 37% invertebrates,
23% plants), and land-use (38% of minimal use, 39% of light use, 17% of intense use, and 6%
undetermined). After removing the 1.3% of studies that started before 2000, I obtained 6,448 sites,
all starting sampling between 2000 and 2012. I used the altitude value from the original dataset and
calculated the human footprint (as the average between 2009 map from Venter et al.29 and the 2005
map from Williams et al.30) and Net Primary Productivity (using the same map as with eBird data)
from a 1-km buffer around the sites coordinates. 

Statistical analyses
To measure the effect of human footprint on each diversity index, I first created a model (that I call
“ecological  model”)  for  each  diversity  index,  aiming  at  controlling  for  ecological  effects  and
sampling  heterogeneity.  I  then  created  a  second  model  (called  “footprint  model”),  using  the
residuals of the ecological model as response variable, to study the effects of human footprint. The
results  from the footprint models cannot be taken as causal evidence as the model is based on
correlation, but I expect the ecological model to control for most variation in species richness that is
not due to human activities.

Controlling for ecological factors
For the three datasets, I used a common model structure, including as predictors: altitude to account
for elevational  physiological  constraints  on species and also past  patterns of speciation (with a
quadratic  effect,  allowing  non-monotonous  response  of  species  richness  to  altitude)  and  Net



Primary  Productivity  to  account  for  climatic  factors  (with  a  quadratic  effect).  In  addition,  I
controlled for latitude (assuming a quadratic effect as species richness is likely to peak around
latitude 0) for PREDICTS and BBS data, but not for eBird as this information is mostly contained
in  the  control  for  hotspots  (which  cover  relatively  narrow  ranges  of  latitude).  In  addition,  I
controlled for several sampling factors, specific to each dataset. 

For each eBird diversity index I created an “ecological model” running a GAM53 with a similar
structure  to  Cazalis  et  al.26 and  assuming  negative  binomial  distributions.  I  controlled  for  7
continuous  variables  and  1  factor  variable:  altitude,  Net  Primary  Productivity,  year  (linear
assumption to account for general temporal trends in response variables, e.g., temporal decline of
sensitive species), day of the year (smoothed), duration (smoothed with limited curve complexity),
observer  calibration  index  (smoothed  with  limited  curve  complexity),  number  of  observers
(smoothed with limited curve complexity), and hotspot name (to account for differences in bird
diversity indices across regions). The ecological model had the following structure:
gam(Index ~ scale(altitude) + scale(altitude)^2 + scale(npp) + scale(npp)^2 + year + s(Day)+ s(Duration,
k=4) + s(Observer_Calibration, k=4) + s(N_observers, k=4) + Hotspot_name)

For the BBS database, I created an “ecological model” with a GAM model, assuming a negative
binomial distribution of the species richness, with the following structure:
gam(Richness  ~  scale(altitude)  +  scale(altitude)^2  +  scale(npp)  +  scale(npp)^2  +  scale(latitude)  +
scale(latitude)^2)

For the PREDICTS database, following Gray et al.28, I created an “ecological model” using a mixed
Generalised  Linear  Model  (using  the  function  glmer from the  lme4 package54),  accounting  for
heterogeneity between studies. It assumed a Poisson distribution and had the following structure,
including random effects on the study (SS), study block (SSB), and study sites (SSBS):
glmer(Richness  ~  scale(altitude)  +  scale(altitude)^2  +  scale(npp)  +  scale(npp)^2  +  scale(latitude)  +

scale(latitude)^2 + (1|SS)+ (1|SSB)  + (1|SSBS)).  To investigate the consistency of the results across
taxa,  I  also ran this  model  independently for  studies focusing vertebrates,  invertebrates,  plants,
birds, and tropical birds. 

Measuring human footprint impact on overall species richness
For each dataset, I built a “footprint model” to link the residuals of the ecological model on overall
species richness with human footprint (see distributions in Fig. 1), able to identify the different
possible trajectories suggested in the introduction. I used the chngptm function from the R package
chngpt55 using a segmented threshold, fitting a function with two join segments. The model tests for
the absolute trend of the first segment (i.e., is the trend different from zero), estimates a threshold
value (found between the first  and ninth deciles of  the explanatory variable),  and tests  for  the
difference of the second trend (i.e., providing the difference in slope with the first segment and
testing whether the change in slope is significant). A significant threshold enables identifying cases
of “Intermediate peak trajectory”, where richness peaks at intermediate human footprint (first trend
significantly increasing,  followed by a  significant  decline)  or  Plateau trajectory (first  trend not
significant, followed by a steep decline). When the threshold was not significant, I instead used a
classic linear model, using the lm function from the R package stats56, even if the threshold model



presented  a  lower  AIC (Table  S2).  Such linear  models  enable  identifying  cases  of  Systematic
decline (trend significantly negative), Systematic increase (trend significantly positive) or Species
replacement (trend not significant; Fig. 3).

In addition, I tested for the consistency between hotspots in the eBird data by applying the same
modelling approach to each hotspot independently. 

The plots presented in Figs. 1-2 result from the use of the sum predictions (R function predict) of
the “ecological model” and the “footprint model”, from a dataset with every quantitative variable
fixed to their median value in the dataset. The hotspot name variable in eBird models was fixed to
“Atlantic Forest” and the three variables used as random effects with the PREDICTS database fixed
to their first value in the dataset.

Measuring changes in assemblage composition in eBird data
Using eBird data, I tested the impact of human footprint on assemblage composition by modelling
the relationship between human footprint and the residuals of ecological models for the eleven
assemblage composition indices. I first fitted a threshold model and, when the second segment was
not significant (i.e., there is no significant threshold), I replaced it by a simple linear model. 
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