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BRIEF REPORT
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ABSTRACT
Acyl CoA binding protein (ACBP, which is encoded by diazepam binding inhibitor, DBI) acts on the gamma- 
amino butyric acid (GABA) receptor type A via a specific binding site that is shared by diazepam and other 
benzodiazepines. Both ACBP/DBI and benzodiazepines act as positive allosteric modulators, hence 
increasing GABA effects on this receptor. Recently, we found that ACBP/DBI acts as an endogenous 
immunosuppressor, meaning that its antibody-mediated neutralization has immunostimulatory effects 
and enhances the efficacy of immunotherapy and chemoimmunotherapy in mouse models. Driven by 
these considerations, we investigated whether diazepam administration in mice would reverse the 
beneficial effects of ACBP/DBI neutralization on cancer chemoimmunotherapy. Indeed, diazepam abol-
ished the therapeutic of anti-ACBP/DBI antibodies, supporting the idea that diazepam exerts immuno-
suppressive properties. Of note, treatment with benzodiazepines was associated with poor clinical 
responses to chemoimmunotherapy in patients with non-small cell lung cancer (NSCLC) as compared 
to individuals not receiving any psychotropic drugs. Medication with other psychotropic drugs than 
benzodiazepines did not compromise the outcome of chemoimmunotherapy, indicating that this immu-
nosuppressive effect was benzodiazepine specific. We conclude that benzodiazepines may confer sys-
temic immunosuppression. This hypothesis requires further epidemiological and clinical confirmation.
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Introduction

Oncoimmunological research is driven by the constant quest 
for new therapeutic targets. We recently discovered that anti-
body-mediated neutralization of acyl CoA binding protein 
(ACBP, which is encoded by diazepam binding inhibitor, 
DBI) can improve the outcome of immunotherapy or che-
moimmunotherapy against several cancers including mouse 
models of breast carcinoma, cutaneous fibrosarcoma and non- 
small cell lung cancer.1 This discovery was driven by the con-
siderations that (i) immunosurveillance is the most impactful 
determinant of the success of anticancer treatments,2,3 (ii) that 
aging and obesity are the most important risk factors of neo-
plastic diseases,4,5 that (iii) ACBP/DBI is a tissue hormone that 
increases with age and overweight/obesity,6,7 and (iv) that 
circulating ACBP/DBI is particularly elevated in still appar-
ently healthy patients that are going to be diagnosed with 
malignant disease during a follow-up period of 3 years.1 This 
latter observation was statistically independent from the asso-
ciation of ACBP/DBI plasma concentrations with age and 
overweight/obesity,1 suggesting that ACBP/DBI is a new risk 
factor for the future development of cancer.

In mouse experiments, knockout of the Dbi gene or antibody- 
mediated neutralization of circulating ACBP/DBI reduced the 
propensity to develop rapidly progressive, carcinogen-induced 
mammary carcinoma and non-small cell lung cancer (NSCLC).1 

Moreover, the treatment of established fibrosarcoma and 
NSCLC with chemoimmunotherapy, a combination of the 
immunogenic cell death inducer oxaliplatin and programmed 
cell death-1 (PD-1) blockade with a suitable monoclonal anti-
body (mAb), could be improved by simultaneous neutralization 
of ACBP/DBI.1 Thus, ACBP/DBI may be considered as an 
immunosuppressive molecule (or ‘immune checkpoint’) the 
neutralization of which improves immunosurveillance leading 
to ‘immune checkpoint inhibition’.3 Mechanistically, ACBP/DBI 
has been described as an endogenous inhibitor of autophagy (or 
‘autophagy checkpoint’), and mAb-mediated neutralization of 
extracellular ACBP/DBI (‘autophagy checkpoint inhibition’) is 
indeed inducing autophagy.8,9 Thus, ACBP/DBI mAbs join 
a long list of pharmacological autophagy enhancers that improve 
anticancer immunosurveillance.10–14

ACBP/DBI is a phylogenetically ancient small protein (87 
amino acids) that acts on the gamma-amino butyric acid 
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(GABA) receptor type A (GABAAR) and more specifically on 
one specific GABAAR subunit dubbed gamma-2 (gene symbol: 
GABRG2). Indeed, a point mutation in GABRG2 (F77I) is 
sufficient to abolish the binding of ACBP/DBI to GABRG2 
and hence to avoid the metabolic effects of ACBP/DBI.15–18 

The very same mutation also abrogates the effects of benzodia-
zepines such as diazepam on GABAAR.19 This is in line with 
the long-standing observation that ACBP/DBI can displace 
diazepam from GABAAR,20,21 an observation that led to the 
classification as ACBP/DBI as ‘endozepine’ (for endogenous 
benzodiazepine).22,23 Accordingly, ACBP/DBI and benzodia-
zepine share similar effects on GABAAR as positive allosteric 
modulators.24,25

Driven by these considerations, we wondered whether phar-
macological treatment with benzodiazepines might enfeeble 
immunosurveillance, in particular in the context of inhibition 
of the endozepine ACBP/DBI. To respond to this question, we 
attempted to interfere with the immunotherapy-enhancing 
effect of anti-ACBP/DBI mAb in mouse experiments. 
Moreover, we analyzed the clinical responses of NSCLC 
patients to immunotherapy with PD-1 or PD ligand 1 (PD- 
L1) blocking antibodies for which the therapeutic use of ben-
zodiazepines or other psychotropic drugs was prospectively 
recorded.

Materials and methods

Mouse experimentation

Animal care. Animals were handled following the guidelines 
provided by the Federation of European Laboratory Animal 
Science Associations (FELASA) and experimental setups were 
approved by the local ethical committee (project #24410). All 
mice were provided with ad libitum food supply, collective 
housing in a light- and temperature-controlled environment 
with 12-h day/night cycles, and were allowed to rest for one 
acclimatation week prior to experimentation.

MCA205 tumor challenge. Female C57Bl/6J mice, aged 
8-to-10 weeks, were put under light isoflurane anesthesia and 
injected subcutaneously in the right flank with 3.0 × 105 

MCA205 cells. Tumor sizes were measured with an electronic 
caliper, and mice were assigned to experimental groups with 
the RandoMice software26 to equalize initial tumor burdens at 
treatment onset (day 8).

Drug administration. Treatments were administered fol-
lowing the schedule presented in Figure 1a, with the sys-
tematic use of vehicle or isotype controls for all untreated 
groups. Diazepam (Atnahs, Valium® 1% drinkable solution) 
or the matching vehicle (40% EtOH, 500 mg/mL propylene 
glycol [PG, Sigma, #294004] in ddH2O) was diluted to 0.8  
mg/mL in a 1:1 PG:ddH2O mix and injected intraperitone-
ally (i.p.) at a dose of 4 mg/kg. This dose corresponds to 
the clinically relevant dose of 20 mg per day for a 60 kg 
human adult, following the thumb rule that per-weight 
doses in mice have to be divided by 12.3 (based on body 
surface area) to yield per-weight doses in humans.27 The 
custom-made ACBP/DBI-neutralizing monoclonal 
antibody1,8 or the corresponding isotype control (mouse 
IgG2a, BioXCell, #BE0085) was diluted in PBS and injected 

i.p. at 5 mg/kg. Oxaliplatin (Sigma, #Y0000271) was dis-
solved to a concentration of 1 mg/mL in ddH2O, sterile- 
filtered and injected i.p. at 10 mg/kg. PBS was used as the 
corresponding vehicle control. Anti-PD-1 (BioXCell, 
#BE0273) or its isotype control (rat IgG2a, BioXCell 
#BE0089) were diluted in PBS and administered i.p. at 
a dose of 200 µg per mouse.

Lung cancer comedications

Clinical data collection was performed under the study 
ONCOBIOTICS (Sponsor Protocol N: CSET 2017/2619, ID- 
RCB N: 2017-A02010-53) according to the ethical guidelines 
and approval of the local ethical committee (Comité 
Consultatif de Protection des Personnes dans la Recherche 
Biomédicale (CCPPRB) of the Kremlin Bicêtre Hospital). 
ONCOBIOTICS is a multicentric prospective observational 
study recruiting cancer patients with advanced NSCLC treated 
with anti-PD-(L)1 therapy in France since 2017, patients 
included in this study were enrolled between October 2019 
and November 2023 and their comedications were recorded 
prospectively. Plasma samples were also obtained through the 
CRCHUM lung cancer biobank (Ethics number #17.035, 
Montreal, Canada). Adult patients who signed consent for 
the CRCHUM biobank, with NSCLC amenable to anti-PD-1 
alone or anti-PD-1 in combination with chemotherapy, and 
without any actionable mutations (EGFR, ALK, ROS) were 
prospectively included. At each participating center, baseline 
characteristics of the patients were recorded, including 
a detailed list of concurrent medications taken in the 2 months 
before starting immune checkpoint inhibitor treatment, as well 
as the date of the last follow-up, were entered into an electronic 
case report form. Patients were stratified based on the concur-
rent use of GABAAR-targeted drugs (benzodiazepines, BZD: 
adinazolam, alprazolam, climazolam, clobazam, clonazepam, 
clorazepate, diazepam, estazolam, flunitrazepam, flurazepam, 
halazepam, lorazepam, loprazolam, lormetazepam, midazo-
lam, nimetazepam, nitrazepam, oxazepam, prazepam, temaze-
pam, triazolam, zolpidem or zopiclone), psychoactive drugs 
not belonging to this class (PSY not BZD) or none of the latter 
(others).

DBI/ACBP ELISA

Plasma concentrations of the endozepine DBI/ACBP were 
measured by enzyme-linked immunosorbent assay (ELISA) 
as previously described.1,17 In brief, heparin plasmas were 
diluted 1:50 and incubated for 2 hours on a high-binding 
plate previously coated with an anti-DBI/ACBP primary anti-
body (MyBioSource, #MBS768488). Detection was performed 
by sequential incubation with a biotin-coupled detection anti-
body against DBI/ACBP (LSBio, #LS‑C299614) for 2 h, fol-
lowed by avidin-coupled horseradish peroxidase (Biolegend, 
#405103) for 30 min. Color development was launched by 
adding the HRP substrate TMB (Thermo Fisher, #34028) for 
5–10 min, and absorbance was read at 450 nm after stopping 
the reaction with 2 M H2SO4.
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Statistics

Data management and organization were performed in R (v. 
4.2.0). Graphical representations were generated with GraphPad 
Prism (v. 10.3.0). Survival data were plotted as Kaplan–Meier 
curves and analyzed by log-rank (Mantel-Cox) test, while differ-
ences in tumor growth rates were assessed longitudinally by linear 
mixed effect modeling on the TumGrowth platform (https://kroe 
merlab.shinyapps.io/TumGrowth/).

Results

Effects of diazepam on immunotherapy outcome in mice.

C57BL/6J mice bearing syngeneic orthotopic MCA205 fibro-
sarcomas (which are derived from 3-methylcholanthrene- 

induced cancers that originally developed under the skin) 
can be efficiently treated by chemoimmunotherapy consist-
ing of the combination of systemic intraperitoneal (i.p.) 
injections of oxaliplatin and a monoclonal antibody (mAb) 
specific for PD-1, following our standard schedule 
(Figure 1a). This chemoimmunotherapy regimen can be 
further improved by neutralization of ACBP/DBI by means 
of a suitable mAb, as reported.1 We optionally combined 
these treatments of MCA205 fibrosarcomas (in four groups: 
(i) controls injected with vehicle and an isotype control 
mAb, (ii) mice injected with anti-ACBP/DBI mAb alone, 
(iii) mice receiving chemoimmunotherapy and (iv) animals 
receiving the combination of chemoimmunotherapy and 
anti-ACBP/DBI mAb) with systemic treatments using the 
prototypic benzodiazepine diazepam (Figure 1a). Diazepam 
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Figure 1. Negative effects of diazepam on immunochemotherapy in mice. Following the schedule of cancer cell inoculation and drug administration to C57BL/6J mice 
depicted in the scheme (a), the effect of various treatments regimens on the growth of MCA205 fibrosarcomas was assessed. Results are shown as mean tumor size ±  
standard error of the mean (b) and Kaplan-Meyer plots of the animal survival (c). P-values corresponding to the pairwise comparisons among treatment groups are 
displayed in a matrix (d). Tumor growth rates were compared with the TumGrowth tool (https://kroemerlab.Shinyapps.io/TumGrowth) by linear mixed effect modeling. 
Survival differences were tested using log-rank (mantel-cox) test. ACBP: acyl coA binding protein (ACBP/DBI); CT: chemotherapy; PD-1: programmed cell death protein 1.
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treatment did not affect the growth of tumors evolving in 
the control group injected with vehicle and an isotype con-
trol nor in mice injected with anti-ACBP/DBI mAb alone 
(Figure 1b,d, Supplemental Figure S1). Accordingly, diaze-
pam did not alter the survival (until the ethical endpoint) of 
MCA205 fibrosarcoma-bearing mice treated with vehicle and 
isotype control or anti-ACBP/DBI mAb alone (Figure 1c,d, 
Supplemental Figure S1). As reported,1,28 chemoimmu-
notherapy significantly (p < 0.0001) reduced the progression 
of tumors (Figure 1b,d, Fig. S1) and ameliorated animal 
survival (Figure 1c,d, Fig. S1). Diazepam partially compro-
mised the effects of chemoimmunotherapy on tumor growth, 
although this effect was not significant (p = 0.1943) and 
barely detectable at the level of animal survival (p = 0.3384) 
(Figure 1b–d, Fig. S1). Of note, diazepam reversed the ben-
eficial effects of anti-ACBP/DBI mAb on the outcome of 
chemoimmunotherapy (Figure 1b–d, Fig. S1). Of note, dia-
zepam did not affect the bodyweight of the mice, although 
oxaliplatin did (Fig. S1), meaning that the negative effects of 
diazepam on chemoimmunotherapy outcome cannot be 
ascribed to nonspecific toxicity.

In conclusion, diazepam counteracts the capacity of anti- 
ACBP/DBI mAb to improve chemoimmunotherapeutic effects 
in mice.

Effects of benzodiazepines on immunotherapy outcome in 
patients with non-small cell lung cancer

In the next step, we performed a retrospective analysis of 
patients with NSCLC. A large spectrum of clinically approved 
benzodiazepines (such as adinazolam, alprazolam, climazolam, 
clobazam, clonazepam, clorazepate, diazepam, estazolam, flu-
nitrazepam, flurazepam, halazepam, lorazepam, loprazolam, 
lormetazepam, midazolam, nimetazepam, nitrazepam, oxaze-
pam, prazepam, temazepam, triazolam, zolpidem or zopiclone) 
is being used for treating anxiety, dyspnea, panic attacks and 
sleeping disorders in the general population, as well as in 
cancer patients.29,30 Treatment with benzodiazepines (which 
act on the same GABAAR subunit as ACBP/DBI) has little or 
no impact on the probability to develop lung cancer.31–33 

However, when analyzing clinical databases from Gustave 
Roussy Cancer Center and the University of Montreal 
Hospital Research Centre (CRCHUM) in which comedications 
were prospectively recorded (Table S1), we found that treat-
ment of NSCLC cancer patients under (chemo)immunother-
apy with benzodiazepines was associated with a significant 
reduction of progression-free survival (PFS, Figure 2a), as 
well as with a trend for reduced overall survival (OS, 
Figure 2b). This negative effect of benzodiazepines was not 
shared by other psychotropic drugs (Figure 2a,b). It is 
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important to note that patient characteristics were similar 
across all three comedication groups, including NSCLC stage 
and Eastern Cooperative Oncology Group (ECOG) perfor-
mance status (Table S2). Finally, in the subset of CRCHUM 
patients for whom plasma samples were available, the three 
groups of patients showed no differences in circulating levels of 
endogenous ACBP/DBI (Figure 2c).

We conclude that benzodiazepine, but not other psychotro-
pic drugs, may compromise the efficacy of cancer (chemo) 
immunotherapy.

Discussion

In this work, we provide evidence that the prototypic benzo-
diazepine diazepam counteracts the immunostimulatory 
action of anti-ACBP/DBI neutralization in a mouse model of 
cancer chemoimmunotherapy. Moreover, we provide 
a retrospective analysis of a cohort of NSCLC patients under-
going immuno- or chemoimmunotherapy indicating that 
medication with benzodiazepines but not with other psycho-
tropic agents compromises progression-free survival. Hence, 
under specific circumstances, benzodiazepines may interfere 
with (chemo)immunotherapy outcome.

Previous preclinical studies have reported general immuno-
suppressive effects of benzodiazepines following specific chal-
lenges, including a decrease in the humoral and splenic 
responses to ovalbumin sensitization,34 insufficient TNF-α, IL- 
6 and MCP-1 responses and increased mortality after bacterial 
infection with S. pneumoniae,35 as well as a decline in T cell 
proliferation upon short-term ex vivo CD3 stimulation.36 The 
neutralization of the endogenous ACBP/DBI has been shown to 
decrease inflammation markers in a model of metabolic dys-
function-associated steatohepatitis9 and to boost the antitumor 
T cell response following chemoimmunotherapy.1 The combi-
nation of these two GABAAR-modulating strategies is thus likely 
to act through immune-dependent mechanisms, which will be 
worth exploring in the future by precise phenotyping of the 
resulting humoral and cellular immune responses.

As discussed in the introduction of this work, diazepam (and 
other benzodiazepines) and ACBP/DBI share a common bind-
ing site within the pentameric GABAAR, acting on GABRG2 as 
positive allosteric modulators, hence increasing the effects of 
GABA on chloride fluxes controlled by GABAAR, which is an 
ionotropic receptor.15–19,24,25 While this observation apparently 
explains the antinomic effects of anti-ACBP/DBI mAb and 
benzodiazepines, there are also important differences in the 
mode of action between ACBP/DBI and benzodiazepines.

In the first place, both extracellular ACBP/DBI and benzo-
diazepines act on additional receptors. Thus, ACBP/DBI and 
the neuropeptides derived from this protein, in particular octa-
decaneuropeptide (ODN), can act on a yet-to-be-characterized 
metabotropic receptor, which is a G protein coupled 
receptor.37–39 Moreover, benzodiazepines can bind to the so- 
called peripheral benzodiazepine receptor (PBR), which is 
identical to the 18 kDa translocator protein (TSPO). Ligands 
of PBR/TSPO are used for TSPO positron emission tomogra-
phy (PET) imaging of neuroinflammation.40 PBR/TSPO 
ligands, such as RO5–4864, PK11195 and diazepam, have also 

been used for the experimental induction of apoptosis in cancer 
cells.41 However, if diazepam has negative effects on the out-
come of cancer therapy in vivo, it appears unlikely that this 
effect would be mediated by TSPO, which is apparently asso-
ciated with anticancer effects. Nevertheless, given the diversity 
of benzodiazepines used in clinics and their potentially differ-
ent affinities for their respective ligands,42 future studies should 
compare the effects of diazepam with those of other molecules 
in the same class.

In the second place, antibodies targeting ACBP/DBI and 
benzodiazepines reach different organs. While antibodies do 
not penetrate the blood-brain barrier and hence only neutralize 
the peripheral (extra-central nervous system) pool of ACBP/ 
DBI, clinically used benzodiazepines all affect GABAAR in the 
brain to mediate their anxiolytic and sedative effects.43,44 ACBP/ 
DBI induces antinomic effects when injected into the brain 
(where it exerts anorexigenic effects), compared to the periphery 
(where it has marked orexigenic effects), supporting the idea 
that the site of action has a major impact on the behavioral and 
metabolic effects of ACBP/DBI.17,29,37–39,45,46 Of note, some 
benzodiazepines such as olanzapine induce weight gain as 
a major side effect,47,48 suggesting (but not proving) that they 
act on GABAAR outside of the CNS. Since olanzapine is mas-
sively used for the treatment of cancer-anorexia-cachexia 
syndrome,49 as well as for the suppression of chemotherapy- 
induced nausea and vomiting,50 it will be important to under-
stand its potential immunosuppressive side effects.

In summary, our present study suggests that benzodiaze-
pines compromise the outcome of chemoimmunotherapy in 
mouse models and in NSCLC patients. It will be important to 
extend these observations to prospective NSCLC cohorts and 
to investigate the impact of benzodiazepines on immunother-
apy in other frequent cancer types. Since benzodiazepines are 
heterogeneous in their metabolic side effects, it will be inter-
esting to understand whether some benzodiazepines compro-
mise therapy-induced immunosurveillance, while others do 
not. Hence, further systematic epidemiological studies should 
determine the precise impact of each drug falling into this 
category. This applies to benzodiazepines as well as to other 
selective GABAAR modulators.51
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