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Contact tracing is commonly used to manage infectious diseases of both
humans and animals. It aims to detect early and control potentially infected
individuals or farms that had contact with infectious cases. Because it
is very resource-intensive, contact tracing is usually performed on a
pre-defined time window, based on previous knowledge of the duration
of the incubation period. However, pre-defined time windows may not
be always relevant, reducing the efficiency of contact tracing. In this
study, we estimated the day when farms were first infected with highly
pathogenic avian influenza viruses, a devastating pathogen causing severe
socio-economic damage in domestic poultry. The estimation was performed
by fitting a stochastic mechanistic model to observed daily mortality data
from 63 infected poultry farms in France and The Netherlands, using
approximate Bayesian computation. Independent of the poultry species
or country, the estimates of the time of first infection ranged between 3.4
(95% credible interval —Crl: 2.6, 4.6) and 19.9 (95% Crl: 11.9, 31.3) days
prior to the last observation. We developed an online application to provide
real-time support to policymakers by estimating realistic ranges of dates of
first infection to inform contact tracing and improve its efficiency.

1. Introduction

Contact tracing belongs to the basic toolbox to manage infectious diseases.
Its aim is to target surveillance or intervention measures (such as quarantine,
vector control or depopulation) towards epidemiological units that are at
higher risk of infection because of their contact with an infected unit [1-
3]. Focusing control measures on high-risk epidemiological units has been
shown to improve their impact on the spread of infectious diseases [4-7].
Indeed, targeted surveillance can improve the timeliness of detection of recent
infections, quarantine or vector control can decrease the contact rate for
still-susceptible units and depopulation can substantially reduce the duration
of the infectious period. However, since it is extremely time-consuming, the
ability to trace and manage a sufficient number of contacts depends on
the availability of operational and logistical resources [8], and also on the
characteristics of the disease itself that influence the time between the first
infection and detection [9-11]. Contact tracing remains especially useful when
the number of infectious cases is low, i.e. for (re-)emerging infectious diseases
(EIDs) [9]. As such, it has been an integral part of strategies against both
human (e.g. SARS, Ebola or COVID-19) and animal (e.g. foot-and-mouth
disease (FMD), classical swine fever) EIDs [2,12-16] and is likely to remain
so in the future.

For infectious diseases of livestock, contact tracing is performed by official
veterinarians to identify the potential origin of the outbreak (backward
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tracing) as well as potential secondary cases (forward tracing) [15,17,18]. Depending on the disease transmission routes, relevant n

contacts that need to be traced include the movement of animals, persons, products, vehicles and material to, from or through
the outbreak farm. To achieve this, investigators use various methods and tools, such as interviews of farmers, examination of
farm logbooks, investigation of transport records and analysis of official movement databases [15]. Measures that are applied in
the at-risk farms identified through contact tracing include: clinical and laboratory examinations, movement bans (on animals,
products and materials), isolation of animals, strengthening of biosecurity measures and potentially culling [18]. For instance,
during the 2001 FMD epidemic in the UK, premises where animals had been in direct contact with infected animals or were
exposed to infection by any other transmission route were preventively culled [1].

Estimating the probable range of date of first infection in a farm would help tracing activities by enabling official veterinari-
ans to focus on a precise and focused list of potential sources of infection and on relevant contacts from the infected farm that
happened during the infectious period. However, such estimates of the date of first infection are usually not available when
an outbreak is detected [15]. Because of logistical and resource constraints, contact tracing is therefore usually performed on
a pre-defined time window, which is often based on the duration of the incubation period at the individual level [19]. For
instance, the ‘Animal Health Law’ in the European Union defines a minimal time window of 15 days for classical and African
swine fever and 21 days for FMD and highly pathogenic avian influenza (HPAI) [17].

Despite these time windows being disease specific, they may not be adequate for each outbreak because the within-farm
transmission dynamics may depend on the pathogen (e.g. different strains) and farm-specific factors. Moreover, the timeliness
of suspicion reporting also depends on the farmers’ disease awareness. Consequently, the delay between the first infection and
the notification of the suspicion could be shorter than the time window, meaning that a lot of effort and resources are used
to trace contacts that happened before probable infection dates and are therefore not relevant for surveillance and control.
Alternatively, the delay could be longer, meaning that epidemiological links, including the potential source of infection, could
be missed by contact tracing when sticking to the pre-defined time window. As contact tracing is very resource-demanding,
focusing efforts on the most relevant period through the estimation of the farm-specific date of first infection could help
increase efficiency. This can be done by reconstructing within-farm transmission dynamics using epidemiological models fitted
to relevant data collected on farms (such as results of diagnostic tests, production drops, mortality, etc.) [20-27].

Using HPAI as a case study, our aim was twofold: (i) to estimate outbreak-specific most likely dates of first infection using
a mechanistic model and approximate Bayesian computation in various settings (e.g. various poultry species, various HPAI
subtypes) and (ii) to make this modelling tool available for direct use by official veterinarians through an online application,
with the applied objective of optimizing contact tracing during future epidemics. Previous studies were able to retrospectively
estimate dates of first infection using daily mortality data from a limited number of HPAI-infected flocks (n =8 in [20], n =1 in
[21], n=7 in [22] and n = 12 in [23]). In our study, daily mortality data from 63 HPAI-infected flocks were included, representing
the most comprehensive dataset analysed so far.

2. Methods
2.1. Data

We analysed daily mortality data from layer, broiler and breeder chicken (1 = 27), broiler Pekin duck (n = 10) and broiler turkey
(n = 4) flocks gathered by The Netherlands Food and Consumer Product Safety Authority (NVWA) from 41 Dutch outbreaks
of clade 2.3.4.4 HPAI viruses during the years 2014-15 (H5NS, n = 5), 2016-17 (H5NS, n = 7), 2017-2018 (H5N6, n = 3), 2020-21
(H5NS, n=11) and 2021-22 (H5N1, n = 15). We also analysed daily mortality data from 11 layer, broiler and breeder chicken and
11 mule duck outbreaks in France during the years 2016-17 (H5NS8, n = 17), 202021 (H5NS, n = 1) and 2021-22 (H5N1, n = 4).
Irrespective of the country, the mean flock size (number of birds) was 20 011 chickens (minimum: 4200, maximum: 63 540), 6965
turkeys (min.: 4350, max.: 12 240), 11 001 Pekin ducks (min.: 7800, max.: 15 000), and 4847 mule ducks (min.: 945, max: 10 506).

We focused on the initial exponential increase in mortality due to HPAI For six flocks, mortality decreased during the last
4-6 days, but it was highly suspected that this decrease was due to an underreporting by the farmer (e.g. when the number of
dead birds became too high to count or after the HPAI infection was confirmed). Therefore, the last observation for each flock
was the day with the highest mortality incidence (hereafter referred to as ‘the last observation”).

For all flocks, we kept at most 35 days (5 weeks) of daily mortality data before the last observation. Across this 5 week
period, we ignored the daily mortality incidence related to the first week of life in nine broiler duck flocks, since high daily
mortality rates due to causes other than HPAI infections are often observed during that period [28]. For the same reason, we did
not use the mortality data of the first 10 days of life in six chicken broiler flocks [29]. In six flocks, we also ignored abnormal
mortality events (from 1-9 days) above pre-defined thresholds [28-31] that were observed during the 35 days prior to the last
observation, except for the event that led to the detection of HPAI infection. Overall, an average of eight data points (min:
1-max: 16) were removed in the five weeks preceding the last observation in 19 flocks.

Finally, an average of 27 data points were used for each flock (min: 3-max: 36; see electronic supplementary material).

2.2. Mechanistic model

To estimate the time of first infection from daily mortality data, we adapted a previously developed modelling framework that
was first applied to within-herd dynamics of African swine fever [24] and then to within-flock dynamics of HPAI [21]. Briefly,
we used a stochastic SEIRD compartmental model (figure 1) to describe the transmission dynamics before the whole flock was
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Figure 1. Compartmental model used to estimate the within-flock transmission dynamics of highly pathogenic avian influenza viruses. S: susceptible; E: exposed
(infected but not yet infectious); I: infectious; R: recovered; D: deceased; N: total number of live birds; 3: transmission rate (per day); wz: average duration of the
latent period (days); £¢;: average duration of the infectious period (days); caser: probability of dying from infection; r,4: baseline mortality rate (per day).

depopulated. Individual birds were divided into five compartments: susceptible (S), exposed (infected but not yet infectious,
E), infectious (I), recovered (R) and deceased (D). The output of interest was the number of dead birds (either from baseline
mortality or as a result of HPAI infection) each day. We considered a single homogeneously mixing population within a poultry
house and a frequency-dependent contact rate [21]. Therefore, the force of infection in the model was given by

I(t
20 = Bk,

where § is the transmission rate (the number of individuals effectively contacted by each individual per unit time), I(¢) is the
number of infectious birds at time ¢t and N(¢) is the total number of live birds at time t: N(t) = S(¢t) + E(t) + I(t) + R(t). At the initial
time step, N(t) = S(t) = Ny, the initial number of (susceptible) birds in the flock. The first infection was assumed to happen at
t =ty (time of first infection) by moving one susceptible (S) individual into the exposed (E) compartment [21]. The durations
of the latent and infectious periods were assumed to follow gamma distributions with means up and u; and shape kg and kj,
respectively [32]. However, a sensitivity analysis showed that the shape parameters ky and k; were not influential on the daily
number of dead birds (see electronic supplementary material). Thus, for the sake of simplicity, we fixed kg = k; =1, i.e. assuming
exponential distributions for the duration of the latent and infectious periods. At the end of the infectious period, birds could
either die (D) or survive the infection and recover (R), according to the case fatality risk caser [21]. Birds from all compartments
could also die from other causes (i.e. other than HPAI), according to the per capita baseline mortality rate ry [21]. See the
electronic supplementary material for more details on the model.

2.3. Parameter estimation

The transmission rate §, the average durations of the latent and infectious periods (up and y;), the probability of dying from
infection casey, the per capita baseline mortality rate r), and the time of first infection ty were estimated for each flock inde-
pendently. Parameters were estimated using approximate Bayesian computation sequential Monte Carlo (ABC-SMC) methods
[21,24,33]. More precisely, we used the algorithm of Lenormand et al. [34] implemented in the R package EasyABC [35,36].
Briefly, several SMC steps were performed sequentially. At each step, parameter sets (also called ‘particles’) were sampled.
Then, the model was used to simulate daily mortality incidence for each particle. Finally, the particles were kept if the Euclidean
distance between simulated and observed daily mortality incidence was less than a threshold defined at the previous SMC step.
At each step, the distance threshold decreased. Initial parameter sets (n = 10 000) were sampled from the prior distributions,
while for subsequent SMC steps, particles were sampled from the particles kept at the previous round with a perturbation
kernel (Gaussian kernel with twice the weighted empirical variance of the previous sample [34]). The algorithm stopped
when resampling new particles stopped improving the model fit to observed data. The 5000 accepted parameter sets from the
final SMC step approximated the posterior distribution. The algorithm is described in detail in the electronic supplementary
material.

Prior distributions were constructed based on a thorough literature review, with some prior distributions being species
specific while others were not (table 1 and electronic supplementary material). To explore the sensitivity of the results to the
prior distributions, parameter estimation was also performed after having changed the informative prior distributions of 8, y;
and caseg to uniform distributions with biologically realistic ranges. More details are available in the electronic supplementary
material. We assessed how much the data contributed to the posterior distributions by calculating the overlap (range: 0-1)
between each marginal prior—posterior pair, with a low overlap indicative of a strong identifiability [44]. We also examined
the correlations between each pair of parameters (see electronic supplementary material). Finally, we performed posterior
predictive checks by visually comparing simulated and observed daily mortality incidence. Simulated daily mortality incidence
was obtained by running 12 000 iterations of the model, sampling parameter values from the joint posterior distributions. The
model fit was deemed satisfactory when at least 50% of the observed daily mortality during the exponential increase lied within
the 50% projection intervals.

All the analyses were performed using R statistical software [45].
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Table 1. Prior distributions used to estimate within-flock transmission parameters for highly pathogenic avian influenza in France and The Netherlands.

parameter (dimension) prior distributions references®

to: time of first infection (day) U(max(~35, tgqri), 0)° [23]

*See details in the electronic supplementary material.

b orqr¢ IS the start of the production cycle.

‘PERT distribution of parameters (minimum, mode, maximum).

9C: chickens/T: turkeys.

*D: ducks.

'MD: mule ducks (sterile cross-breeds between male Muscovy ducks Cairina moschata and female Pekin ducks Anas platyrhynchos domesticus).
9PD: Pekin ducks (Anas platyrhynchos domesticus).

2.4. Alternative approach for the Shiny app

Because ABC-SMC uses a sequential approach, the fitting algorithm requires new simulations to be run for every flock,
which takes several hours. Therefore, this approach was not deemed suitable for providing results quickly within an online
application. To decrease the computational time from several hours to a few minutes, we tested whether ABC rejection [46,47]
could be used instead of ABC-SMC. Indeed, although ABC-SMC is more efficient, ABC rejection has the advantage that model
simulations can be run first as they are not sequential. With a slight modification (using daily proportion instead of daily
number of dead birds as summary statistics) allowing independence from the initial flock size (see electronic supplementary
material), we were thus able to run in advance all the model simulations, sampling 5 000 000 parameter values from the prior
distributions. We had three sets of ready-to-use model simulations because of species-dependent prior distributions (i.e. one for
chickens and turkeys, one for Pekin ducks and one for mule ducks) (table 1). We compared the estimates of the time of first
infection between ABC-SMC and ABC rejection by comparing the posterior distributions visually and by calculating the overlap
between each posterior—posterior pair.

3. Results

The posterior distributions of the six parameters were estimated for each flock independently. As an illustration, we showed the
predicted daily mortality for the index case of the 2014-15 HPAI H5N8 epidemic in The Netherlands (figure 2). For this specific
flock, the time of first infection was estimated to happen between 4.7 and 17.1 days before the last observation, as illustrated
in figure 2a. The overlap between the prior and posterior distribution was 0.40. The model adequately captured the trend in
mortality, with the observed daily mortality lying close to the centre of the prediction intervals (figure 2b). More details for this
specific example are available in the electronic supplementary material.

The estimates of the time of first infection for each flock ranged between a median of 4.7 (95% equal-tailed credible interval —
Crl: 0.27, 18.5) and 19.9 (95% Crl: 11.9, 31.3) days prior to the last observation in chickens, between 5.0 (95% CrI: 2.2, 8.8) and 6.2
(95% CrI: 1.2, 17.3) days in turkeys, between 3.4 (95% CrI: 2.6, 4.6) and 11.4 (95% CrI: 6.6, 19.0) days in mule ducks, and between
4.3 (95% Crl: 2.5, 6.9) and 9.0 (95% CrlI: 3.7, 15.5) days in Pekin ducks (figure 3 and electronic supplementary material). The
overlap between each marginal prior—posterior pair (one for each flock) for this parameter ranged between 0.08 and 0.69, with
50% of the flocks having overlaps between 0.30 and 0.44, indicating that the data supplied information about this parameter.

The flock-specific estimates of the other five parameters are provided in the electronic supplementary material. Except for
the baseline mortality rate, the prior—posterior overlaps of these parameters were really high for most flocks, indicating that the
data were rarely informative for these parameters.

The posterior predictive checks showed that the model adequately captured the trend in mortality for 61 out of 63 flocks, but
not for two flocks that presented a bad fit to the observed data. For these two flocks, the upper bound of the 95% CrI of the time
of first infection was equal to or greater than 0.5 days prior to the last observation, which was not the case for any of the flocks
presenting a good fit (electronic supplementary material). The choice of prior distributions did not have a substantial influence
on the results (see electronic supplementary material). These results suggest that efficient modelling pipelines fed with daily
mortality data in outbreak farms could provide real-time support to policymakers by estimating probable ranges of dates of first
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Figure 2. Posterior distribution of the time of first infection and model fit to observed data for the index case of the 2014—15 HPAI H5N8 epidemic in The Netherlands.
(a) Prior (dashed line) and posterior (solid line) distributions of the time of first infection, with overlap between the two distributions (grey area). (b) Daily number of
dead birds over time, with day 0 being the day of the last observation included in the model; the dark and light blue areas represent respectively the 50% and 95%
projection intervals (PI); the black dots and solid lines represent the observed daily mortality data; the vertical dotted and dashed lines represent respectively the 50%
and 95% credible intervals (Crl) of the time of first infection.

infections to inform contact tracing. Therefore, we wanted to develop an online application to allow veterinary services to apply
this modelling tool during future epidemics.

However, ABC-SMC needs too much running time to be used efficiently in an online application. Thus, we compared the
results of ABC-SMC with an alternative method, ABC rejection, for which pre-made simulations stored within the application
could be used. With a few exceptions, the results were consistent between ABC-SMC and ABC rejection for the estimates of the
time of first infection (ranging between 3.4 (95% CrI: 1.5, 7.0) and 18.9 (95% CrI: 8.9, 33.5) days prior to the last observation), and
the model fit was good for most flocks (60 out of 63). See the electronic supplementary material for more details.

Based on these results, we created an interactive application using the R package Shiny [48] that can be accessed online
at: https:/first-inf.sk8.inrae.fr/. Our Shiny app consists of three different tabs. When the application is loaded, the first tab
introduces the context in which the app was developed, presents its objective and describes how to use the app. Within the
second tab, the user is invited to enter the required data, i.e. the poultry species, the initial flock size, the date at which the
flock was introduced in the poultry house and the date of the last observation (last available daily mortality incidence). Based
on the latter, a table is generated to enter the daily mortality data. The table spans between the date of the last observation and
the date of flock introduction, with an upper limit of 5 weeks before the last observation. The user is then invited to enter the
daily mortality incidence for as many days as possible (by default the value is *~1’, corresponding to missing values). When
all the data are entered and validated by the user, the third tab is displayed. A ‘start simulation” button is displayed at the
top of the page. When clicked, the ABC rejection algorithm is first performed, and subsequently 1000 iterations of the model
are simulated, sampling parameter values from the joint posterior distributions. The estimates of the dates of first infection are
shown and the simulations are used to visually compare simulated and observed daily mortality incidence in a plot similar to
figure 2b. Based on the results, recommendations for optimizing contact tracing are formulated, except when the estimation is
suspected to have failed (e.g. very high overlap or bad fit of the model to observed data), in which case warnings are displayed.

4. Discussion

We estimated flock-specific times of first infection for 63 HPAI-infected chicken, turkey and duck flocks from France and The
Netherlands. To estimate those parameters, we used a mechanistic SEIRD model that was fitted to daily mortality data using
approximate Bayesian computation. Although median estimates were all consistent with the current 21 day window, we found
high variability in the estimates of the time of first infection, which ranged between 3.4 (95% Crl: 2.6, 4.6) and 19.9 (95% CrI:
11.9, 31.3) days prior to the last observation included in the model (figure 3). Such variability in the time of first infection
between flocks may be explained by differences between flocks (host species, production type, country) and viruses (subtype,
strain), which will influence within-flock transmission dynamics. However, it may also vary depending on farmers’ awareness,
which will influence the timeliness in detecting clinical signs or abnormal mortality and subsequently reporting a suspicion. In
the future, it would be interesting to assess which characteristics affect the variability of the time between the first infection and
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Figure 3. Posterior distributions of the flock-specific times of first infection. Times of first infection were estimated for each flock separately. Results are presented in
the ascending order of the median ¢, for each species (chickens, mule ducks, pekin ducks and turkeys). Colours indicate virus subtypes (H5N1, H5N6 and H5N8). Dots
indicate the median of the posterior distribution, with 95% and 50% credible intervals indicated by light- and dark-shaded bars, respectively. For comparison, the grey
rectangles in the background represent the interquartile range of the prior distributions for each flock. The prior followed a uniform distribution between —35 and 0,
except for flocks where the production cycle started (i.e. animals were introduced into the poultry house) less than 35 days ago. The two flocks presenting a bad fit to
the observed data in the posterior predictive checks are indicated by a star.

the moment where an alert should be raised (e.g. when mortality increases above a certain threshold) on the one hand and of
the time lag between a theoretical detection and the actual moment where a suspicion was reported on the other. This question
falls outside the scope of our study, and addressing it would require more detailed data.

Estimates of the date of first infection in a poultry flock could help contact tracing, by enabling official veterinarians to focus
on the relevant time window. We suggest, on the one hand, that backward tracing (which aims at identifying the origin of the
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outbreak) should be focused on the 95% CrI of the time of first infection, which represents the most likely time window where -

contact with the source case happened. On the other hand, forward tracing (which aims at identifying secondary cases) should
be focused on the most likely time window where infectious contacts to secondary cases are possible. As the latent period
could be quite short (see electronic supplementary material) and to avoid missing potential contacts, we made the conservative
assumption that infectious contacts could happen from the time of first infection, neglecting the latent period. Therefore, we
suggest that forward tracing should be focused from the lower bound of the 95% CrI of the time of first infection up to the day
when the flock is culled or successfully isolated.

Our results suggest that the time window used for contact tracing, currently fixed to 21 days [17], could be shortened or
extended depending on the flock. For instance, for flock FRA-2021-3 (figure 3) whose estimated time of first infection was 3.5
(95% Crl: 1.8, 6.2) days prior to the last observation, using a 21-day window for contact tracing would mean that a lot of effort
and resources are used to trace contacts that happened before virus introduction and are therefore not really relevant. In this
case, focusing on, e.g. a 7-day window could have been sufficient, meaning that resources could have been saved for other
control or surveillance purposes. On the other hand, for flock FRA-2016-14 with an estimate of 19.9 days (95% Crl: 11.9, 31.3),
using a 21-day window means that epidemiological links, potentially including the potential source of infection, could have
been missed. In that case, a longer time window, e.g. 32 days, would maximize the chances of capturing all relevant contacts
with the infected farm.

Therefore, our approach could be used to tailor the optimal time window to each flock. Moreover, it can be used in real time,
as our modelling approach with ABC rejection can provide results in a few minutes and is based on easy-to-collect mortality
data. Therefore, we created an interactive web application using the R package Shiny [48], that can be used in the field by
official veterinarians. The application can be accessed at: https://first-inf.sk8.inrae.fr/.

As seen in our study, our approach was not always successful with all HPAI-infected flocks. However, we were not able
to find the characteristics of the flocks for which the estimation procedure failed, and thus to predict in advance when the
estimation would fail. Therefore, in the Shiny app, we put several safeguards in place to warn the end user in case the
estimation of the time of first infection did not perform well. First, although this was not the case in our dataset, we displayed a
warning when the overlap between prior and posterior was very high (e.g. above 0.80), which would indicate that the data were
not informative. Second, we also warned the user when the upper bound of the 95% Crl was equal to or greater than 0.5 days
prior to the last observation, as it systematically meant that the model did not fit well with the observed data in our analyses
(figure 3, electronic supplementary material). Finally, a posterior predictive check is also performed within the Shiny app, and
a warning is displayed when the observed trend in mortality is not adequately captured by the model simulations. In all these
situations, the end user is invited to discard the results of the model and to stick with the recommended 21-day time window.

Indeed, our results suggest, in accordance with previous studies [20,23], that in the absence of appropriate data or accurate
estimates of the time of first infection, 21 days are generally an appropriate time window for contact tracing, with a few
exceptions (figure 3; electronic supplementary material). However, when daily mortality data are available and our approach
is able to provide estimates of the time of first infection, we recommend using the flock-specific time window to optimize the
efficiency of contact tracing.

For the time of first infection, overlaps between prior—posterior pairs indicated that the data supplied information about this
parameter. Variations in overlap values between flocks were in part due to the width of the priors, which were narrower for
flocks recently introduced in the poultry house (table 1; electronic supplementary material). Indeed, the narrower the prior, the
higher the overlap (correlation coefficient: 0.43, p < 0.001), indicating that a wider prior was more easily restricted relative to the
prior with the available data. Variations also reflected the uncertainty contained in the data for each flock. Therefore, although
some overlap values were relatively high (e.g. 0.58 for FRA-2016-14) and the corresponding 95% credible intervals wide, this
was valuable given our objective of not providing overconfident results and therefore overly constrained time windows for
contact tracing.

Unfortunately, our method was not able to satisfactorily estimate other transmission parameters, such as the transmission
rate or the probability of dying of disease, as reflected by the very high values (0.60 or above) of the overlap between prior
and posterior distributions for the majority of flocks (electronic supplementary material). This could either mean that the true
values of these parameters were different from the prior distributions, but that the data were not sufficiently informative for
these parameters; or that the true values of these parameters were close to the prior distributions, which were informed by
current knowledge on HPAI viruses (table 1 and electronic supplementary material). Both hypotheses are possible, although
it was not possible to distinguish between the two. Therefore, estimated values for parameters with high overlaps between
prior—posterior pairs (i.e. other than the time of first infection and the natural mortality rate) have to be interpreted with
caution. Consequently, although a secondary initial objective of our study was to analyse the characteristics (e.g. poultry species,
production system, virus subtype) that could explain the observed variability between estimates of transmission parameters,
it was not possible to do so given that posterior distributions for these parameters were mostly driven by prior distributions.
Despite close prior and posterior distributions for most flocks, we chose to keep these parameters in the estimation algorithm
for two reasons: (i) to reflect the uncertainty around these parameters and the potential variability due to, e.g. host species
or virus strain and (ii) to keep a flexible-enough approach to adapt to various flocks, including a few for which the data
were actually informative on some transmission parameters (electronic supplementary material). Further work is needed to
determine which HPAI transmission parameters can be accurately estimated using mechanistic modelling and mortality data,
and how weakly identifiable parameters might influence the estimation of other parameters such as the time of first infection.

Priors were built based on the available literature to reflect the current knowledge on the model parameters. These priors
covered a wide range of possible values, reflecting uncertainty but also variability as the data came from a wide variety of
HPAI virus strains and epidemiological settings. As such, although the epidemiology of HPAI viruses is constantly changing,
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especially for HPAI H5Nx viruses in recent years [49], we believe that the priors are adequate for both current and future
strains. Moreover, if new knowledge emerged showing that new strains have substantially different characteristics, prior
distributions should then be updated accordingly. In contrast, some priors were species specific, namely the average duration
of the infectious period and the probability of dying of infection (table 1 and electronic supplementary material). Therefore, our
approach has not been tested for other poultry species, such as geese, for which we have no available data. Our approach could
be extended to other poultry species, provided that sufficient data become available.

Another limitation is that our approach is restricted to infected poultry flocks displaying abnormal mortality, and cannot be
applied to infected flocks that are detected early before any significant increase in mortality (i.e. based on regular diagnostic
tests or on abnormal clinical signs). A perspective of our work would therefore be to adapt the model to allow the estimation
of the time of first infection based on other types of data that could be easily available. For instance, virological tests of cloacal
or tracheal swabs are routinely used to confirm suspicion of HPAI infections, and results of these tests could be used to infer
the transmission dynamics (provided that these results are available for individual birds, as swabs are usually pooled prior to
testing). Another example of potentially usable data is egg production, e.g. for breeder flocks [28].

Unfortunately, our model is not yet adapted to vaccinated flocks. Therefore, it can no longer be used for vaccinated duck
flocks in France, where vaccination started in October 2023 [50]. Moreover, the use of vaccination is expected to reduce mortality
due to HPAI, making use of daily mortality data inadequate to estimate the time of first infection. Therefore, alternative models
and data should be developed in the future for use in vaccinated poultry flocks.

To conclude, we were able to retrospectively estimate the time of first infection for most flocks in our large dataset of 63
HPAI-infected flocks from France and The Netherlands. Based on these encouraging results, we built a Shiny app that can be
used by veterinary services in real time during HPAI epidemics to obtain flock-specific estimates of the time of first infection.
In turn, these estimates can be used to tailor the time window used for contact tracing, which is expected to improve the
efficiency of this method and the accompanying control measures. This should contribute to improving the overall management
of current and future HPAI epidemics, which are more and more frequent and difficult to control given the rapidly mutating
nature of the virus.
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