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Abstract

In the study, we report the snap-through effect of a bistable beam by means of piezoelectric
actuators. We first consider a bistable mechanism consisting of a buckled elastic thin beam.
The latter is symmetrically equipped with two piezoelectric layers. The electric potential
applied on the faces of the piezoelectric actuators is such as a moment at each end of the active
layers is produced. The modeling of the elastic beam is based on the elastica theory. The main
goal of the study is the investigation of the bistable response according to the applied electric
voltage and the configurational parameters. A numerical study is proposed based on the
equation of the beam model sandwiched by two piezoelectric layers and a numerical validation
of the model approach is performed using the finite element method. An optimization study
is reported for the placement of the piezoelectric actuators as well as their dimensions (length
and thickness). We look for the position of the piezoelectric actuators that minimizes the
applied voltage to trigger the snap-through and maximize the beam deflection. The work is

extended to the bistable actuation using two pairs of piezoelectric elements.

Keywords : Bistable beam; buckling; snap-through; piezoelectric actuation; optimization.

1 Introduction

The design of bistable mechanisms has been developed due to the growing interest in advanced
technology such as robotics, medical engineering, and the technology of micro-electro-mechanical
systems (MEMS) [Cao et al., 2021, Charlot et al., 2008, Pane and Asano, 2008]. The bistable
mechanisms are mechanical components involved in a large variety of cutting-edge engineering
applications. Thanks to the new technology of layer deposit, the design MEMS is quite realizable
such as micro-robotics, medical endoscopy, non-volatil memories, micro-switches, tactile displays
for visually impaired people [Chouvardas et al., 2008, Feng and Hou, 2018, Vitushinsky et al.,
2009]. The snap-through property of the bistable structures can be exploited for shape control
applications [Emam and Inman, 2015, Fernandes et al., 2010, Schoeftner et al., 2015, Zhang et al.,
2019]. Moreover, in the case of the bistable structures equipped with piezoelectric sensors, the
bistable can be used for energy harvesting converting the bistable dynamics into usable electric
energy [Anton and Sodano, 2007, Cook-Chennault et al., 2008, Cottone et al., 2009]. This kind of

device is convenient as a power source for wireless sensor networks.

The buckled configuration of an elastic beam is obtained by imposing a small end-shortening caused
by a compressive force applied in the direction of the beam axis at one of the ends of the beam.

As soon as the buckling force exceeds a critical value, the straight configuration of the beam is no



longer stable, and the beam undergoes a deflection (in the transverse direction) [BaZzant et al., 1991,
Bigoni, 2012, Dym, 2002, Thompson and Hunt, 1973, Timoshenko and Gere, 1963]. We say that
we have a bifurcation phenomenon, resulting in the buckling of the beam [Timoshenko and Gere,
1963|. The latter can deflect either upwards or downwards. These new configurations of the beam
are stable states. Nevertheless, the most interesting property of such a buckled beam is to be able
to switch from one stable state to another regardless of how the transition is completed (switching
process is obtained). The simplest way of switching the bistable beam is to apply a punctual
force at a curvilinear point of the deformed beam in the transverse direction [Camescasse et al.,
2013]. The applied transverse force triggers the beam snap-through from one stable buckled beam
(upwards or downwards) to the other stable state and wvice versa. Moreover, the force can be eas-

ily replaced by a punctual moment applied at a curvilinear point of the beam [Cazottes et al., 2009].

Active material such as piezoelectric ceramics, shape memory alloys, magnetostrictive materials
or electro-active polymers open new opportunities for the bistable actuation. Among the smart
materials, piezoelectric ceramics are the most popular, they can be used as sensors and/or actu-
ators. However, they suffer drawbacks, especially, since materials have limited actuating strokes
(small displacement and strain) in their first-order linear behavior, namely, for reasonable applied
electric potential differences. Furthermore, piezoelectric actuators incorporated in a prestressed
structures, such as a buckled beam, is a mean to release the energy stored in prestressing process
to amplify the action of the piezoelectric material. For bistable beams, the role of the actuator
allows one to trigger the snap-through from one stable state to the other with the use of rather
small amount of energy. This concept has been used for designing MEMS switches, relays, etc.
[Chen et al., 2011, Fu et al., 2007, Roodenburg et al., 2009]. The actuation of a bistable beam
using piezoelectric actuators has been proposed by [Aimmanee and Tichakorn, 2018, Maurini et al.,
2007]. Other actuation devices proposed in the literature exploit different kinds of actuating forces
such as electrostatic forces which are effective only at the microscopic scale [Chen and Meguid,
2015, Krylov et al., 2011, Park and Hah, 2008, Younis et al., 2010] with extension to microscopic
arch-shaped beams [Krylov and Dick, 2010, Ouakad, 2014, Ramini et al., 2016, Wu et al., 2014].
Micro-beams actuated by electro-thermo-mechanical effect or by shape memory alloys heated by
laser are presented by Barth and Zaidi [Barth et al., 2010, Zaidi et al., 2012]. The contactless
actuation of a bistable beam utilizing the electromagnetic Laplace force has been reported by
[Amor et al., 2020, 2022]. In the same spirit, [Abbasi et al., 2023] investigate the snap-through of

a magneto-active beam subject to the combined mechanical and magnetic actuation.

The present work aims to investigate the switching response of the bistable beam actuated by piezo-
electric layers. More precisely, we characterize the beam deflection as a function of the electric
potential difference applied to piezoelectric actuators according to the actuator location and their
geometrical parameters. Our modeling approach is based on elastica theory for a one-dimensional
elastic beams [Chen and Tsao, 2013, 2014, Goss, 2009, Magnusson et al., 2001, Patricio et al.,
1998], which allows us to account for large rotations of the beam cross-section. A correct switching
approach of the bistable beam must account for the effect of the beam extensibility [Camescasse
et al., 2013]. Particular attention is paid to the modeling of the region of the beam sandwiched by
the piezoelectric layers accounting for the strain-stress transverse effect. The material is consid-
ered in its linear regime and the piezoelectric effect is modeled by flexural induced strain, which
is evaluated by means of an equivalent single-layer beam theory based on Bernoulli-Euler assump-
tion. We show that the action of the piezoelectric layers placed symmetrically on the upper and

lower faces of the central layer is modeled by moments applied at the ends of the piezoelectric



actuators. In [Maurini et al., 2007], the authors propose the snap-through of a bistable beam
using the piezoelectric actuators and the stability control of the switching process. Using the same
kind of idea, the stabilization of higher-order buckling modes using piezoelectric patches has been
reported by Xiu et al. [Xiu and Davis, 2021]. One of the most attractive developments of the
bistable structures equipped with piezoelectric actuators is their ability to be miniaturized from a
millimeter scale to dimensions of the order of a few microns. Extension to shallow elastic arches
has been considered for the shape and the vibration control [Younis et al., 2010]. Similarly, we can
point to the snap-through of shallow shells using piezoelectric Macro Fiber Composite actuators
was investigated numerically and experimentally by [Anilkumar et al., 2021, Bowen et al., 2011,
Schultz and Hyer, 2003].

The paper is organized as follows. The next Section provides all the ingredients that will be
useful for the forthcoming developments of the model, especially, the kinematic and the electrical
parameters. Section 3 is devoted to the variational formulation of the bistable beam symmetrically
equipped with a pair of piezoelectric elements. Section 4 reports the numerical method for solving
the equilibrium equations. The optimization of the actuator location and its dimensions are also
described in Section 4. The extension to the bistable actuation by means of two pairs of piezoelectric
layers and the bistable response, namely, the beam deflection as function of the applied difference

of the electric potential is proposed subsequently. The conclusions are given in Section 5.

2 Description of the structure

2.1 Kinematic consideration

The bistable mechanism proposed in the present study consists of an isotropic and homogeneous
elastic beam clamped at its ends. The beam length at rest is Ly, the width is b and the thickness
is he. The beam is equipped with two identical piezoelectric layers symmetrically bonded on both
sides of the elastic beam. The geometrical parameters of the piezoelectric layers are given in Figure
1.a with a length L, thickness h,, and their widths are identical to that of the elastic layer. For
both piezoelectric layers, their upper and lower faces are covered by very thin metal electrodes.
The latter are connected to a voltage power supply so that the electric potential differences are
the same for both piezoelectric layers made of an isotropic transverse material polarized along the
thickness but in opposite direction.

The beam undergoes an end-shortening AL due to an applied compressive force that reduces the

distance between the clamps.

The slender structure is modeled as an extensible and flexible beam undergoing plan deformation.
A fixed Cartesian reference frame Rg : {A; €1, €2, €3} is attached to the straight reference configu-
ration, with the unit vector €] in the direction of the beam axis. In its reference frame the beam is
at rest, and a material point Gg is given by the vector ﬁo = qo(s) = s €1 with s € [0, Lo], where
s is the abscissa along the beam axis. Once the beam buckled, the point Gy is transformed into G

in the current reference frame. The point G is then given by
AC(s) = qls) = x(s) @ +y(s) &,  sel0,L], (1)

The buckled beam and the different geometrical elements and applied loads are shown in Figure 1.b.
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Figure 1: clamped-clamped elastic beam sandwiched by 2 piezoelectric layers: (a) the non loaded
beam, (b) beam in its buckled configuration equipped with a pair of piezoelectric layers exhibiting
the geometrical parameters.

From the mechanical point of view, the extensional strain € and the beam curvature x are chosen

as the two strain measures. They are given by

ds — ds
= =A—-1 2
() = “ , )
dar
= —.n 3
W) = o, 3)
where A = % is the ratio of the length of differential line element of the beam in the current

configuration to that of the undeformed configuration, s being the curvilinear coordinate measured
along the deformed beam.
We denote by

T(s) = cosf(s)e1 + sinb(s)é:

ii(s) = —sinf(s)é + cosf(s)és (4b)

the tangent and normal vectors in the current configuration at the point of curvilinear abscissa s

in the reference configuration, and 6 is the angle formed by the tangent with é}.

2.2 Electric consideration

The piezoelectric actuators are placed symmetrically on the opposite sides of the elastic central
layer. The latter is partly covered by piezoelectric layers on the section [C, D] (see Figure 1.a).
The piezoelectric layers are recovered by very thin metallic electrodes. The electric connections are

such that the lower face of the upper piezoelectric layer and the higher face of the lower actuator



are at the potential zero. The higher face of the top layer and that of lower face are at the electric
potential V. In this configuration, the metallic electrodes are equipotential surfaces. The electric

fields are oriented in the thickness direction of both piezoelectric layers, and they are given by

Epl (y) = Epl (y) € , (5&)
P2 (y) = Epz (y) 52 . (5b)

I

The subscript p; refers as to the top piezoelectric layer while the subscript ps denotes the bottom
piezoelectric layer. The electric fields derive from electric potentials as a function of the thickness
coordinate such as

= d . - d .
Bo)=-"a B, )=-"g (6)
dy dy

where ¢,, and ¢,, are electric potential within the upper and lower layers, respectively. The
variations of the electric potentials as a function of the thickness coordinate are given in Appendix
A. Moreover, the electric potentials satisfy the boundary conditions on the piezoelectric layer

electrodes, especially (see Figure 1.a for the geometrical parameters)

layer (p1) Gp(Be) =0, ¢y () =4V, (7a)
layer (p2) Gpo (=) =0,  Gp,(—B)=+V, (7b)

where hy = h + 2h,, is the total thickness of the sandwich beam section.

2.3 Variational formulation

The approach is based on the principle of the virtual work. The latter is stated as follows
oW, =0, (8)

where §W; is the virtual work of the internal actions including mechanical and electrical loads.
The composite beam is subject to no load except the buckling force to maintain the end-shortening
at a given value.

The virtual work of the internal actions is deduced from the reduction of the 3D model of the

composite beam to the 1D model of beam.

Moreover, the beam is divided into three sections, namely, A; = [0, s¢[ the left elastic layer,
Ao =s¢, sp| ,the piezoelectric sandwich section and Az = |sp, L] the right elastic layer.

On using the above notation, the virtual work takes on the form (for further details refer to [Amor
et al., 2020, Camescasse et al., 2013]).

3
Wi==3_ [ {EDs)- 64 (5) + MY (s) - 3p(s5) = (a/(s) x B9 (s)) 8(s) fds,  (9)
=174
The beam section rotation is denoted by p'= fe3 and q_7 = Z—g is the displacement gradient.

The internal force and moment resultants involved in the virtual internal work are

B — NOzFiTO (10a)
MO = MO (10b)



In Eqn (10), NU) is the axial force, TU) is the shear force and M) is the bending moment in the
€3 direction, for each beam section j.

It is worth mentioning that the internal work associated with the electric charge is zero since
electric potential is imposed. Accordingly the electrostatic work does not appear in the virtual
work Eqn (9).

2.4 Constitutive equations for the piezoelectric sandwich beam

The constitutive equations are derived from the classical linear beam theory and the piezoelectric
material. The constitutive equations are written for the central elastic layer and for the piezoelec-
tric sandwich section.

An equivalent single layer model neglecting the shear is based on the linear constitutive equations
for the sandwich beam section. The piezoelectric sandwich beam model accounts for the transverse

stress effect or the interaction between layers [Maurini et al., 2004].

a - For the elastic section A; U As, the constitutive equations for the axial force and the bending

are
NO(s) =KJle(s) j=1.3, (11a)
MO (s) =K. w(s) j=13, (11b)

where K 1(\}6) =K ](5’6) and K 1(\/1[)n =K ](\3)& are the extensional and bending stiffnesses, respectively. The

detailed form of the coefficients depending on the beam parameters are given in Appendix A.

b - For the piezoelectric sandwich section A, the constitutive equations are based on an improved
layered piezoelectric beam model including the layer interaction or the effect of the transverse
stress [Maurini et al., 2004].

Thanks to the material and geometrical symmetry of the piezoelectric sandwich beam there is
only a coupling between the beam bending and the electric field (along the thickness direction).
According to previous works [Fernandes and Pouget, 2010, Maurini et al., 2004], the constitutive

equation takes on the following matrix form

N®@ K2 o 0 €
M@ =10 K2 KZI|k&. (12)
Q 0 -Kyy Kovl LV

The form of the coefficients are given in Appendix A as function of the material and geometrical
parameters of the respective layers. In Eqn (12), Q denotes the total electric charge produced on
the metallic electrodes.

From the bending moment given by the matrix of the constitutive equations Eqn (12), we split the

bending moment as the sum of two terms
M® =MP 4 M,. (13)

The first part in Eqn (13) is the bending moment due to the elastic behavior while the second

one can be interpreted as the piezoelectrically induced bending, being constitutively related to the



applied voltage on the electrodes of the piezoelectric layers. Consequently, we write

2

M® = KQ x| (14a)
2

M, = K@ V. (14b)

All the constitutive coefficients in Eqns (11) and (12) are given in Appendix A.

2.5 Dimensionless notations

We introduce the following rescaling for the lengths, forces, moment and energy

s = q Ty AL
S=—, =X,)Y)=—=|—,= Al = —

G- =E o (£ L) a=T .
= ﬁ = M Wi
R=— M = i Tr7

Ry My’ Wo

where the scaling reference parameters are given by Ry = E.Acke, My = E.I./Lo and Wy = RoLy.

The key parameter is defined by k. = moreover ke o (he/Lg)” where L /h, is the slenderness

- A L2’
ratio of the beam. It is worthwhile noting that all these dimensionless variables are defined with
respect to the central elastic layer of the composite piezoelectric beam. Thanks to the above defined

dimensionless variables, the non dimensional resultant takes on the form

R = NOF4+ TWg,  je{1,2,3}, (16)

we set NU) = NU) /Ry and TW = T /Ry,

3 Variational formulation and equations of the equilibrium

On using the dimensionless quantities previously introduced, the variation of the internal work can

be recasted into
Z/ fz’ ' 6Q5+M(3)(S)-513,5—A<F>< §<j>(5)) 513} as.  (17)
On accounting for Eqn (13), the variation of the internal work takes on the following form

Z/ RU )60 s+ MI(S)-6Pg — A (T* x RU)((S)) 513} ds -

+ Myés - 6P (S¢) — Myés - 6P (Sp) .

It is now clear that the bistable beam equipped with piezoelectric actuators can be seen as a
buckled elastic beam subject to applied moments —Myé3 and +M,e3 respectively at the ends of
the piezoelectric elements, namely at the curvilinear abscissa S¢ and Sp as depicted in Figure 2.
By means of an integration by part and accounting for the conditions at the beam ends, the

variation of the internal work becomes



Figure 2: Actuation of the clamped-clamped elastic beam by a single pair of piezoelectric layers.
Piezoelectrically induced moment applied at the ends C' and D of the actuator and the forces and
moments at the clamping ends A and B of the beam.

SW; Z/{ 05
. - . (19)

+[RI(Sc) - 9G (Sc) ~ [R1(Sp) - 6G (Sp)
+ {IVLI(Se) + Mys | - 0P (Sc) + {[M.1(Sp) — Myés } - 0P (Sp) |

(]) _, ]\_Zg]) =, . -
B 5+ (d +A (7 x R(J))> -6P} ds

where [—] denotes the jump of a variable at the curvilinear points S¢ or Sp of the deformed beam.

Now, we consider the variational equation Eqn (8) which must be satisfied for any arbitrary varia-
tions 5@ and 6P meeting the boundary conditions at S = 0 and S = 1 (clamped-clamped beam).
We deduce the equations of the bistable beam

dRU) .
- 1 2
= i Selo1], (20a)
ant’ ) i :
< +A(T><R ) = 0 Sed j=1,23, (20D)

where the subscript j refers as to the beam sections A; = [0, S¢[, A2 = ]S¢, Sp[ and Az = |Sp, 1].
Along with the above equations the associated jump conditions at the piezoelectric actuator ends

are given by

[RI(Sc) = 0, (21a)
[Rl(Sp) = 0, (21b)
[M.](Sc) + Myes = 0, (21¢)
[M.](Sp) — My&s = 0. (21d)

The beam equations are completed by the constitutive equations for the bending moment and the

resultant. The constitutive equations are precisely written for the three sections.



a - Section A; U A3 (elastic layers). The constitutive equations for the extensional strain is
e(S) =k NU(S)  je{1,3}, (22)

with k. the extensibility parameter (see Appendix A for the definition according to the beam

parameters). The bending moment is given by
MO ($)=05(5)  je{l,3}. (23)
b - Section A; (sandwich piezoelectric beam). The extensibility strain is
e(S) =k, N®(9), (24)

where £k, is the extensibility modulus associated with the piezoelectric layers defined as follows

KW
k, = ( 1(V2)> ke . (25)
KNs

Referring to Eqn (14), the elastic part of the bending moment takes on the form

(2)
M® = (KM“> 05. (26)
Ky )
Mk

The piezoelectrically induced bending moment is given by

where V is the applied electric potential.
The total bending moment in the sandwich section is then the sum of the elastic bending moment

Eqn (26) and the piezoelectrically induced moment Eqn (27).

According to Equs (4), the geometrical relationships between the configurational parameters (X, Y, )

are for the elastic sections

Xs= (14 kN ) cos () je{13}, (282)

Y= (1 + keN(j)) sin(0)  je{1,3}. (28b)
For the piezoelectric sandwich zone, we have

Xs= (1 + kpN(2)> cos (0) (29a)

Vs = (1+k,N®) sin(0) (29b)

We now summarize the set of model equations that we have established. The equations of the buck-
led beam sandwiched by two piezoelectric layers are given by the differential equations Eqns (20).
These equations are accompanied by the constitutive equations Eqns (22 to 27) for the axial force
and bending moment according to the beam section considered. The conditions at the ends -

namely points C and D - of the piezoelectric sandwich section are given by Eqns (21).



Going back to Eqn (20) along with Eqns (16, 23 and 26), the equilibrium equation takes the form
" — 1 —_ —_ [—
0 +T— ke (P? — T%) sin (20) + ke PTa cos (20) =0, (30)

for the elastic sections (S € A; U A;3) and

1 1 - 1 _ _ _
0 + p T - ikp (P? —T3)sin (20) + k, PTa cos (20)| =0, (31)

2)

for the piezoelectric sandwich part (S € Ay). We have set = Eus  the ratio of the bending mod-
Kb,

ulus of the sandwich layer to that of the elastic layer (see Appendix A for definitions). Moreover,

the shear force (in dimensionless notation) is written as

T = Psin () — Tacos (6) . (32)

4 Numerical study and bistable response

4.1 Sketch of the numerical method

This Section provides an extensive study of the response of the bistable beam subject to an elec-
trical load. More precisely, we determine the bistable beam snap-through when a difference of
electric potential is applied to the piezoelectric actuators. With this in mind, we solve the equi-
librium equations of the bistable beam sandwiched by two piezoelectric layers. The equations to
be considered are given by Eqn (30) and Eqn (31) along with Eqn (32). The conditions at the
ends of the beam are those of the clamping at the points A and B, i.e., X(0) =Y (0) =6(0) =0
and X(1) =1—A¢, Y(1) =0, 0(1) = 0 where Al is the imposed end-shortening at the right
end. We use a shooting method to solve the second-order equations; here, we are faced with a
boundary-value problem. The input parameters for the shooting algorithm are the clamping efforts
at the end A, i.e. My = ¢y and T4. The targets or the objective parameters are the clamping
conditions at B. In the solving process, we must account for jump conditions at the ends C and D
of the piezoelectric actuators given by Equs (21). Eqn (27) provides the piezoelectrically induced
bending moment as a function of the electric potential V. The equilibrium equations are solved by
incrementing the difference of electric potential V' from zero to the value that triggers the switching
of the bistable beam from one stable position (top or bottom) to the other one. Nevertheless, the
present boundary value problem is not so trivial since we are faced with an unstable path of the

solution while the beam is switching from one stable configuration to the other one.

In order to overcome any problem of the divergence of the numerical algorithm and the discrepancy
of the equilibrium branch, we control the vertical displacement of the material point of the beam
defined by the intersection of the deformed beam and the vertical line located at the mid-point of
the beam ends A and B referred as J (see Figure 2). The curvilinear abscissa of the crossing point
noted by S is such that X (S;) = X(1)/2. The vertical displacement Y; =Y (S;) is incremented
step by step when it moves along the vertical lines while the beam switches. At each increment of
Y, we compute the electric potential difference (via the moments piezoelectrically induced at the
end of the pair of actuators) leading to the required configuration. With this approach, the coordi-
nates of the point J, (X(Sy), Y(Ss)) become the input parameters while the electric potential V'
and the curvilinear abscissa S; are now the shooting parameters of the problem. In summary, the

response of the bistable beam, i.e., the electrical potential difference applied to the actuators as a

10



function of of the mid-point vertical displacement Y; =Y (S;) is obtained by solving the present

boundary value problem.

We first consider the configuration where the piezoelectric actuators are centered at the mid-
point of the bistable beam. In a first step, we establish the deformation of the bistable beam
in its equilibrium position when the actuators are subject to a zero electrical potential difference
(piezoelectric layers short-circuited). However, the beam is subject to a shortening AL imposed
by a compressive force Pe; applied along the beam axis at point B.

The bistable structure consists of a thin stainless steel strip of Young modulus E, = 207G Pa, length
Ly = 200 mm, cross-section b X he = 10mm x 0.2mm. The piezoelectric actuators are made of
piezoelectric ceramics of the PZT family (Lead Zirconate Titanate). The material constants for
the elastic, piezoelectric and dielectric properties are provided by the manufacturer PI Ceramic®
for PIC151 ceramics. The constants are reported in the Table 1 below. It should be noted that the
piezoelectric ceramics possesses a hexagonal symmetry or it is transversally isotropic. The electric

polarization is along the anisotropic axis.

ClEl C{% C?g) 01E2 Cﬂ €21 €22 €16 8“191 82’92
[GPd] | [GPd] | [GPd] | [GPd] | [GPa] | [C/m?] | [C/m?] | [C/m?] | [nF/m] | [nF/m)]
107.65 | 63.124 | 100.45 | 63.854 | 19.624 -9.6 15.1 12 9.828 7.544

Table 1: Material constants for PZT-PIC151 piezoelectric ceramics for the numerical studies.

The length of the actuators (for both layers) is L, = 50 mm, the width is b = 10mm and their
thickness is h, = 0.2mm. In the case of centered actuators, we have xc = 7T5mm and zp =
125mm so x, = 100mm. Figure 3 shows the deformation of the bistable beam after an end-
shortening of AL = 0.05 or 0.1 mm in physical dimension. The deformation is computed using
two methods: (i) the shooting method as described above and (ii) the finite element method for
the 3D model using quadratic piezoelectric elements (C3D20E) from the code library ABAQUS®,
After studying convergence, we choose a mesh with 3 elements in the thickness of each layer to
ensure a quadratic distribution of the electric field. The deformation of the bistable beam shown
in Figure 3 has a flat in the center of the beam due to the rigidity of the trilayer and producing
a decrease in curvature in the actuator region. The maximum deflection occurs at x,, = 100 mm
and y,,, = 2.57 mm.

In a second step, we compute the deformation of the beam by incrementing Y the vertical coordi-
nate of the deformed beam moving along the vertical located at the mid-point X; from the stable
position as defined above. The equations of the elastica beam are then solved by using the shooting
method to obtain a new equilibrium such that Y; =Y (S;). We deduce the punctual piezoelectri-
cally induced moments acting at the ends of the actuators that produce this equilibrium. Finally,
we deduce the associated electrical potential difference given by Eqn (14) or Eqn (27). Applying
an electric potential from one stable position to another leads to the bistable response, i.e. electric
potential as a function of deflection Yj; which is depicted in Figure 4. In addition, a 3D finite
element computation validates the results coming from the elastica model (red solid lines in the
diagram in Figure 4). However, the FE computation is restricted to the stable zone of the diagram
(black points on the curve). The FE computation is performed for an electrical potential control
up to the value V' = V)4, that triggers beam snap-through, whose value is V,,,,, = +286 V.
Using the results of the numerical simulations, which allowed us to plot the response of the bistable
beam actuated by a pair of piezoelectric elements, we can sketch the switching scenario of the
bistable beam. (a) When the voltage is zero, the deformation of the beam corresponds to the first

buckling mode (deflection of the buckled beam in Figure 3 inverted downwards), (b) by increasing
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Figure 3: Deflection of the buckled beam sandwiched by a pair of piezoelectric layers (no electric
load) for the mid-point actuator (in solid line : the elastica model, points : FE model) (L, = 50 mm,
X, =x,/Lo = 0.5, hy = 0.2mm and Al = 0.05%).

the electrical potential, the bistable deforms by essentially combining the first two buckling modes,
(c) beyond V,,4z, the second buckling mode predominates and the bistable switches into the un-
stable region, (e) the electric potential is then reduced, passing through zero and then reaching
the value =V, leading to a deformation similar to that in (b), but symmetrically reversed, and
(f) after the electric potential is reset to zero, we find the first buckling mode again, but reversed.

The scenario is repeated in the reversed way.

300

_ | e E|astica model |-
e FE

200

100

-100

-200

-300

Figure 4: Bistable response : applied electric potential as function of the mid-point beam displace-
ment for the centered piezoelectric actuator (solid line : elastica model (stable region), dashed
line : elastica model (unstable region), points : FE model) (L, = 50mm, X, = z,/Lo = 0.5,
hy = 0.2mm and Al = 0.05%).

We would like now to take a look at the influence of the actuator placement on the bistable

response. We shift the piezoelectric actuators as close as possible to the left clamp, thus z, = 25 mm
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(Xp = 0.125). We repeat the solving method used for the actuators at the mid-point. First, we
establish the deformation of the buckled beam without electrical loading. The results obtained
from numerical simulations of the elastica model and from the finite element method are shown in
Figure 5. The increase in bending stiffness due to the actuators placed close to the clamp point A
produces a non-symmetrical deformation after buckling. In addition, the maximum deflection is

Ye = 2.6 mm at z. = 119.25mm, not at the mid-point of the beam.

N
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0 200
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Figure 5: Deflection of the buckled beam sandwiched by a pair of piezoelectric layers (no electric
load) for the off-center actuator (in solid line : the elastica model, points : FE model) (L, = 50 mm,
X, =xp/Lo = 0.125, hy, = 0.2mm and Al = 0.05%).

As for the centered case, we study the response of the bistable beam during the switching when
an electrical potential is applied to the piezoelectric actuators. In this configuration, the applica-
tion of moments to the ends of the actuators is no longer symmetrical, the response will not be
symmetrical as well when snap-through occurs from top to bottom or from bottom to top. This is
illustrated in Figure 6. The results of elastica model simulations and the finite element method are
superimposed on the figure. The FE results are limited to the regions of stability of the bistable
beam response. In the bistable stability window, we have an excellent validation of the elastica
model. The limit of the stability region stops at the value of the electric potential V4, = £139V
that triggers the snap-through for both switching directions and the corresponding deflections is
yg = £0.18 mm. If we compare the configurations with centered and offset actuators, we see that,
in the former case, the mid-point of the beam (the beam deflection measured along the vertical line
at X (1)/2) moves 15.56 % of its total displacement before reaching the instability region, whereas
this displacement is 46.6 % in the offset case. It is worth highlighting that by shifting the actua-
tors close to the clamping point A (or clamp B), the applied electrical potential decreases by half
compared with the centered case.

It would be interesting to say a few words about the role played by buckling modes during the
snap-through transition. The deflections of the bistable beam are illustrated in Figure 6 at various
key points during the switching process. Initially, with a zero electrical potential difference, the
beam exhibits a deflection corresponding to its first buckling mode (downward). As the electrical
potential decreases, it reaches a minimum value V4, initiating the second mode switching. The
bistable beam then switches and continues its travel until it reaches the upper stable position

(buckling mode 1) when the electrical potential returns to zero. The transition from the upper
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stable position to the lower one follows a different path due to the asymmetric configuration caused

by the off-center actuators.
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Figure 6: Bistable response : applied electric potential as function of the mid-point beam displace-
ment for the off-center piezoelectric actuator (solid line : elastica model (stable region), dashed line
: elastica model (unstable region), points : FE model, in green : switching from top to bottom,
in red : switching from bottom to top)(L, = 50mm, X, = x,/Lo = 0.125, h, = 0.2mm and
AL =10.05%).

4.2 Actuator optimization

Based on the two previous configurations (centered and offset actuators), we can ask the following
question: are there an optimal actuator position and optimal dimensions of the actuators that
minimize the applied electrical potential and maximize the bistable deflection of the bistable re-
sponse? This section aims to answer this question. The optimization parameters to be identified
are: (i) the optimal relative position of the actuators along the elastic beam, (ii) the length L, of

the actuators, and (iii) the relative thickness of the piezoelectric layers to that of the central elastic
layer h, = hy,/he.

We first focus on the optimum position of the actuators. The other parameters are the length
L, = 50mm and the thickness h, = 0.2mm. For the given length of the actuators, the relative
position X, is in the range [0.125,0.875]. The optimum position is computed using the elastica
model; for each actuator position X, we compute the electrical potential V4, that drives the
bistable to switch. This computation is carried out with the same spirit as that used to plot the
voltage-displacement diagram for the centered actuators. The results of the simulations lead to
the curve shown in Figure 7.

The variation of the electrical potential V.., as a function of the position of the piezoelectric
actuators shows several interesting absolute and local minima. The V,,,, curve as a function of X,
displays two symmetrical absolute minima near the clamps A (or B), i.e. X, =0.13 (or X, = 0.87)
(see Figure 7). At this actuator position, the electric potential difference required to trigger the
snap-through is V4., = 133V is close to the clamps, the actuator must overcome the clamping

moment, which restricts the rotation of the elastic beam. However, the moment at the opposite end
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of the actuators induces a rotation of the beam section, triggering mode 2 buckling, which requires
less energy compared to a symmetrical mode that would occur if the actuators were positioned at
the center of the beam. The minima near the center of the beam correspond to positions slightly
off-center, allowing for mode 2 (antisymmetric) buckling. At this point, we have a local minimum
around X, = 0.476 the associated voltage is V4, = 179V. In contrast, mode 3 (symmetric)

buckling would be initiated, if the actuators were centered.

600

200

Figure 7: Optimization of the piezoelectric actuator location : maximum of the electric potential
that triggers the bistable snap-through as function of the relative actuator position X, (L, =
50mm, h, = 0.2mm and Al = 0.05%).

In the second phase of the optimization, we examine the influence of actuator length L, on the
value of V4. At this end, we place the actuator at the left end of the beam. Obviously, the length
of the piezoelectric layers must be less than half the length of the beam. Numerical simulations
show that there can be no snap-through for L, < 0.05 (actuators too short), where L, = L,/Lo
defines the relative actuator length. The results of the actuator length optimization are shown
in Figure 8. We note that the variation of V. as a function of L, is not monotonic. The
switching voltage starts from a maximum at L, = 0.05 (very short actuators) reaches a minimum
at L, = 0.35, and then increases slowly. We might think that longer piezoelectric actuators would
allow a punctual bending moment to be applied further away from the clamping point A, thereby
increasing its impact on the buckling mode two. However, by increasing the length of the actuator,
the bending stiffness of the beam in the region of the piezoelectric layers is consequently increased.
There is a trade-off between maximizing the action of piezoelectrically induced bending moments
and minimizing bending stiffness in the tri-layer region. The optimal actuator length that balances
the two constraints is L, = 0.35 x Lo = 7T0mm.

The final optimization parameter is the thickness of the piezoelectric layers (let us remember that
they are identical for both layers). We choose a configuration of the piezoelectric actuators of
length L, = 70mm located close to the left end of the bistable beam. We increment the thick-
ness h,, (relative thickness) of the piezoelectric layers over the interval [0.01,2]. We run numerical
simulations using the elastica model, and for each value of }_zp, we compute the electrical potential
difference V4, that triggers snap-through. The results are shown in Figure 9, V,,,4, as a function

of Bp. We can observe that the curve in Figure 9 has an absolute minimum for ﬁp = 0.95; for this
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Figure 8: Optimization of the piezoelectric actuator length : maximum of the electric potential
that triggers the bistable snap-through as function of the relative actuator length L, (x, = L,/2,
hp = 0.2mm and A¢ = 0.05 %, the actuator is located at the left end of the beam).

value, the electric potential reaches the value V.. = 78 V.

We note that the curve possesses a singular point at about h, = 0.25. This calls for in-depth
discussions. The piezoelectric actuators increase the stiffness of the elastic beam in the interval
(X, — Lp/2, X, + L, /2]. However, the behavior of these piezoelectric elements generates moments
at the ends of the actuators, which facilitate bistable switching. Therefore, there is a trade-off
between the stiffness provided by the actuators and their action. In cases where the piezoelectric
layers are relatively thin, the stiffness can be significantly offset by the moments induced by the
piezoelectric elements. The lever arm associated with this moment, which can be approximated as
(hy + he)/2, tends to be small in such situations. There is a threshold value of h,,, approximately
0.25 (see Fig.9), beyond which the additional stiffness becomes significant. However, at this point,
the effect of this increased stiffness on counteracting switching is balanced out by larger actuation
moments. Ultimately, the ideal compromise is characterized by a value of i_Lp that minimizes V4,

the threshold voltage that triggers the snap-through action.

As a conclusion of this optimization study, the most favorable configuration that leads to the
minimum electrical potential to be applied to the piezoelectric layers to start snap-through is
obtained for (i) the piezoelectric actuator length L, = 0.35 (L, = 70mm), (ii) the thickness

hp =0.95 (h, = h.) and (iii) when the pair of the piezoelectric actuators is located close to either
clamp of the beam, that is at x, = L,,/2 (or Lo — L, /2).

4.3 Bistable actuation by means of two pairs of piezoelectric layers

In the case of actuation by just one pair of piezoelectric layers, we have an optimum configuration
that does not ensure symmetry during the switching process. Moreover, the maximum beam de-
flection does not match that of the beam mid-point. For the majority of applications, it is more
appropriate to obtain a symmetrical deformation of the beam. In this section, we focus on the
response of the bistable equipped with two pairs of piezoelectric actuators subject to identical elec-

trical potential differences. The actuator pairs are positioned symmetrically close to the clamping

16



250

225

200

175

Vmaz [V]

150

Figure 9: Optimization of the piezoelectric actuator thickness : maximum of the electric potential
that triggers the bistable snap-through as function of the piezoelectric layer relative thickness h,
(xp/Lo = 0.175, L, = 70 mm and Al = 0.05 %, the actuator is located at the left end of the beam).

points A and B. In addition, the axes of electrical polarization of the 2 pairs are oriented in the
same way along the thickness direction of the piezoelectric layers. Thus, we take x,, = 35mm and
Zp, = 165 mum, respectively for the first pair of actuators and for the second one. Figure 10 shows

the beam equipped with two pairs of actuators exhibiting the geometrical parameters.

Y

Figure 10: Actuation of the clamped-clamped elastic beam by two pairs of piezoelectric layers.

For this situation, we must adapt the system of the differential equations of the bistable beam,
accounting for that the equations are then solved over 5 intervals, namely, [A, C4 [, |Cy, D1[, | D1, Co],
|C4, D3], and | D4, B], where the points C; and D; are the ends of the first actuator (close to the
clamping point A) and Cy and Dy are the ends of the second actuator (close to the clamping point
B). We compute the beam deformation subject to an end-shortening at point B, the electrical
potential being set to zero. The deformation is shown in Figure 11 and compared with that of the
beam equipped with only one pair of actuators. We note an increase of 4.8 % in beam deflection

in favor of the beam equipped with 2 pairs of actuators. The approach is identical to that for
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the case of a beam equipped with a single pair of actuators; especially, the control of the vertical

displacement of the mid-point beam is an input parameter.
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Figure 11: Deflection of the buckled beam sandwiched by two pairs of piezoelectric layers (no
electric load) symmetrically placed with respect to the mid-point beam (red solid line). Comparison
with the case of a single pair of piezoelectric layers (blue solid line) (L, = 70 mm, h, = 0.19 mm,
and Al =0.05%).

Figure 12 shows the snap-through diagram for the bistable beam, where the electrical potential
difference applied to the actuators is a function of the deflection at the center of the beam. The
curves obtained are compared to those obtained for the actuation by a single pair of piezoelectric
elements.

Similarly to the studies of the switching of the bistable beam, either equipped with a centered
pair of piezoelectric actuators (Figure 4) or with an offset pair of actuators (Figure 6), the bistable
beam in its deformed state is plotted at key points of the bistable response curve V,, ., as a function

of the vertical displacement of the center of the beam.

The above comparison allows us to draw the following conclusions :

(i) an increase of 24 % in the maximum beam deflection, despite the additional bending stiffness
of the beam due to the actuators.

(ii) reduction of 12 % in the electrical potential difference producing snap-through.

(iii) snap-through paths in both directions (top to bottom and vice versa) are superimposed, in
contrast to the case of a single pair of actuators.

This configuration - a bistable beam actuated by two pairs of piezoelectric elements - provides
the optimum for greater switching while reducing loading, which makes this configuration more

attractive for innovative applications in the MEMS field, for instance.

5 Conclusions

In the present work, we studied the bistable snap-through using piezoelectric actuators. Especially,
the emphasis is placed on the bistable response, the maximal deflection, as function of the electric
potential difference applied to the piezoelectric actuators. Based on the Elastica theory of elastic

beams, the present research focuses on modeling of a bistable beam subject to buckling load. The
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Figure 12: Bistable response : applied electric potential as function of the mid-point beam dis-
placement by means of two pairs piezoelectric actuators (mixed broken red lines). Comparison
with the case of a single pair of piezoelectric layers (blue solid line : single pair (switching from
top to bottom), green dashed line : single pair (switching from bottom to top)) (L, = 70 mm,
hy = 0.19mm and Al = 0.05%).

model accounts for the extensibility of the beam, which plays an essential role in the switching
process. The bending effects of the bistable buckled beam are due to the action of the moments
applied to the ends of the piezoelectric actuators. Furthermore, it is shown that the moments are
directly related to the electrical potential difference applied to the piezoelectric layers by electrome-
chanical coupling. We derive the equilibrium equations accounting for the piezoelectric sandwich
section from a variational formulation of the piezoelectric beam.

We use a numerical algorithm for boundary value problems of the shooting method type to study
the response of the bistable beam undergoing the action of an electric potential difference applied
to the piezoelectric layers. The bistable response is characterized by the diagram of the voltage
versus deflection of the beam midpoint. The results were validated using a finite element analysis.
Two situations have been studied: (i) centered piezoelectric actuators and (ii) off-centered actua-
tors. In the latter case, it is shown that the voltage required to trigger the bistable snap-through
(139V) is lower than the voltage necessary for the centered case (285V).

An optimization study of the actuators proved to be indispensable in order to find the placement
and the dimensions of the actuators that would lead to the maximum deflection for a minimum
threshold of the electrical potential difference. The analysis led to a favorable configuration with
(i) a relative length of the piezoelectric layers of L, = 0.35 (35 % of the total length of the beam)
(see Figure 8), (ii) a thickness of the piezoelectric layers of the same order of magnitude as that of
the central elastic layer (see Figure 9), and (iii) a position close to one or other of the beam ends
(see Figure 7).

In the last part of the work, we have addressed the problem of the bistable actuation of a beam
by means of two pairs of identical piezoelectric layers arranged in a sandwich configuration. In
this case, we observe an increase in the mid-point deflection of the beam, in spite of an increase in
the bending stiffness of the piezoelectric layers, and a decrease in the electrical potential difference

that triggers the bistable snap-through.
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The numerical study proposed in sub-section 4.2 shows the effectiveness of the bistable buckled
beam actuated by piezoelectric elements. More precisely, for a beam 20 c¢m long with a thickness
of 0.2 mm partly sandwiched by piezoelectric layers 7 c¢m long a deflection of the order of a couple
of millimeters is obtained using a voltage less than 100 V. A natural extension is the realization
of a demonstration prototype. The use of the Micro Fiber Composite layers made of piezoelectric
fibers embedded in a soft epoxy matrix and covered by interdigitated electrodes appears the suitable
material for rather large beam deflection with reasonable voltage of around 100 V. The piezoelectric
actuation of shallow elastic arches is also an interesting extension of the present work. At last, the
modeling and results reported in the study can be an attractive interest in engineering applications

such as Micro-Electro-Mechanical Systems.

Appendix A Constitutive coefficients for the sandwich piezo-

electric beam

The appendix focuses on the explicit expressions for the piezoelectric beam constitutive coeflicients
based on an improved Euler-Bernoulli model of piezoelectric laminates including the 3D effects.
The model accounts for the influence of the interaction between the different layers and sectional
bending and extension in the transverse direction. The piezoelectric beam constitutive coefficients
are deduced from the reduction of a piezoelectric multilayer plate (2D) based on the standard
Love-Kirchhoff model to a 1D model by assuming vanishing the transverse stress resultant and

moment [Fernandes and Pouget, 2010, Maurini et al., 2004].

Let us consider a three-layered plate made of a purely elastic layer (thickness h., E. = 207G Pa;
ve = 0.3) sandwiched with two piezoelectric PZT-PIC151 ceramics (thickness hp). The top and
bottom faces of both piezoelectric layers are recovered with conducting electrodes as depicted
in Figure l.a. It is assumed that each layer is materially homogeneous with constant thickness.
The piezoelectric layers are supposed to be transversely isotropic with respect to the poling axis
oriented along the thickness direction (direction 2). The plate kinematics is based on the standard
Love-Kirchhoff hypotheses. In addition, the through-thickness variation of the electric potential is

taken as a quadratic function of the thickness coordinate. Then, we have

U (2,y,2) = u (2,2) —yw,q (2, 2) ,
us (x,y,2) =w(x,z2), (A1)

0 1 2
¢(P17P2) (‘T’ Y Z) = (bgpimz) (l‘, Z) + y¢§1))1,172) (:L‘, Z) + de)E:D)l,Pz) (.’)37 Z) ’

Using the Voigt notation, the components of the strain tensor for the Love-Kirchhoff plate theory

are :
Sa =€aq — Y Ka a=1,3 (A.2)
with
€a = ugva and Ko = Wa0- (A.3)

The piezoelectric constitutive equations for the piezoelectric layers are given by (see [Ikeda, 1990],

using Voigt notation)

a:CES — eja b
{" aB”f ¢ (A.4)

Di = 61'535 + G;%Ej s

where CQEB, €ia, and efj are the components of the elastic modulus matrix at a given electric

field, the components of the piezoelectric coupling matrice and the components of the dielectric
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coefficient matrice at a given deformation, respectively.
We assume the hypothesis of thin elastic plate which states that the transverse normal stress oo
and the shear stresses can be neglected with respect to the other stress components. The new

piezoelectric constitutive laws are given by :

o1 = €115 + 1353+ €219 4,
o3 = 1351 +C1153 + €210, (A.5)
Dy = €151+ €215 — €220 4,
with )
E
_ _ E C12
Cla - cla - TE »
€92
cth
€21 = €21 — €22, (A.6)
€22
2
_ o €22
f20 = €+ —
022

Accounting for the electric boundary and continuity conditions, the electric potential for the two

layers can be written as

on=(1-5) -5 (1= %) 2+ (A7)

he %4 1 ht €21
=—\ly——= ) |—+zly——= . A8
Ppa (V) (y 2) {hp+2(y 2)622 (K1 + K3) (A.8)
The constitutive equations for the sandwich plate take on the form
b/2  phe/2
Ml = / / y03 T, Y,z )dydz7
b/2J—he/2
b/2  phe/2
My = / / yoi(z,y, z) dydz , (A.9)
b/2J—he/2
b/2 ht/2
Q = / / (x,y,2)dydz,
b/2J—he/2

where M7 and Mj are respectively the flexural moments around directions 1 and 3 and Q is the

global electric charge on the piezoelectric layer surfaces.

After integration, we can easily find :

M, Ky Kiz Iy K1
M; | =| Kis Kn F K3 (A.10)
Q -F —-F G |4
with
bh
Ko = =2 (he + 1) ) +21, (@7 + &0) + 1. &) a=13  where &) =) + 2,
BN
_ 2b _
Flz—b(he+hp)621 and G:thQQ.
P

By assuming a vanishing transverse resultant of stress moment M; = 0 , we are able to reduce the

constitutive equations to that of the beam. The latter take on the form
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M. Ky, K
3| _ M MV K3 (A.ll)
Q —Kyv Kov |4
with
Ky =K ST Kyy = F 17@ and K 7G+F—12
Mr = ££11 Kii Mv = F1 K1 Qv = K

In addition to the coupling bending-electric potential constitutive equations given by Eqn (A.11),
we must account for the extensional behavior of the piezoelectric sandwich beam. Due to the
symmetry of the problem, there is no coupling between the beam stretching and bending. Conse-

quently, the constitutive equation for the beam stretching is written as follow
N® = k@e, (A.12)

where the effective extensibility modulus is K (25) = A.E.+2A,E,, the corresponding Young mod-
ulus are E, = éﬁ) and E, = égﬁ) for the elastic and piezoelectric layers, respectively. We have A,

the section area of the elastic layer and A, that of the piezoelectric layer.

We must consider the constitutive equations for the purely elastic layer (sections .4; and Aj).

Their expressions are reduced to

NO = K()e, (A.13a)
MO = KD . (A.13Db)

In the above equations K](\}E) = A_FE, is the extensional modulus, and KJ(\})K = I.E. the bending

modulus where I, is the quadratic moment of the beam section.

To make the article easier to read, we will set M3 = M and k3 = k in the article body.
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