N

N

PyEPRI: A CPU & GPU compatible Python package
for Electron Paramagnetic Resonance Imaging
Rémy Abergel, Sylvain Durand, Yves-Michel Frapart

» To cite this version:

Rémy Abergel, Sylvain Durand, Yves-Michel Frapart. PyEPRI: A CPU & GPU compatible Python
package for Electron Paramagnetic Resonance Imaging. 2025. hal-04888845

HAL Id: hal-04888845
https://hal.science/hal-04888845v1

Preprint submitted on 15 Jan 2025

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-04888845v1
https://hal.archives-ouvertes.fr

PyEPRI: A CPU & GPU compatible Python package for Electron
Paramagnetic Resonance Imaging

Rémy Abergel?, Sylvain Durand?, Yves-Michel Frapart®

@Université Paris Cité, CNRS, MAPS, F-75006 Paris, France
bUniversité Paris Cité, CNRS, LCBPT, F-75006 Faris, France

Abstract

This work presents the PyEPRI package, an open-source Python package for Electron Paramagnetic Resonance Imaging. The PyEPRI package implements
low-level operators, like projection and backprojection, involved in Electron Paramagnetic Resonance (EPR) and also high-level advanced algorithms, like
total variation based EPR image reconstruction, for end-users. The package is fully implemented in Python and provides both CPU and GPU computa-
tion capabilities, through the libraries Numpy, PyTorch and Cupy. This package comes with a detailed documentation, including precise mathematical
definitions and many reproducible demonstration examples and tutorials, making it easy for users with no particular expertise on coding image processing
algorithms to get started. This package is also highly modular and only relies on standard data types, as such, it can also be easily used by advanced users
to develop new algorithms while benefiting from an optimized computing environment and some rigorously tested operators. The PyEPRI package has

been developed by researchers with the hope that it will be useful to the EPR community.

Keywords: electron paramagnetic resonance imaging, image processing, open-source software, reproducible research

1. Motivations

The reconstruction of EPR images has been the subject of exten-
sive research, leading to various methods and algorithms with signif-
icant impact in many fields like biomedical sciences or biology [1—
10], batteries conception [11-14], detection of defects on material sur-
face [15, 16]. Over the past decade, significant efforts have been made
to perform this reconstruction using modern digital image processing
techniques based on variational models, resulting in more efficient al-
gorithms than those implemented in commercial softwares [17-25].

Despite the promising prospects offered by variational methods,
they are not accessible to all due to the technical complexity involved
in their implementation. The lack of sufficiently robust, generic and
well documented open-source software means that these methods are
practically only usable by those being able to develop their own codes.
Moreover, the efficiency of the code is highly dependent on the choices
made regarding the modeling of operators, the minimization algorithms
used, and whether or not some mathematical tricks are incorporated. In
parallel, commercial software such as Xepr [26] only offers fairly ba-
sic reconstruction methods (primarily based on filtered backprojection)
with few details about the precise algorithm design, which limits their
use as individual components in a more complex processing pipeline.

The PyEPRI package was developed to provide the EPR commu-
nity with robust, modern, and fast tools for EPR imaging. The package
is compatible with both CPU and GPU via the Numpy, Cupy, and Py-
Torch libraries. This package contains numerous unit tests that verify
key mathematical properties of the projection and backprojection op-
erators it includes, ensuring a rigorous and reliable implementation of
the reconstruction algorithms and facilitating the package’s stability in
future releases.

The package is available on the Python Package Index (PyPi)
(https://pypi.org/project/pyepri/), making installation easier,
and its source code is fully available on GitHub under an MIT Ii-
cense (https://github.com/remy-abergel/pyepri/). A comprehen-
sive documentation, including numerous tutorials and demonstration
examples, is provided with the package and serves as the entry point
for users wishing to get started (https://pyepri.math.cnrs.fr/).

2. Package overview

2.1. Backend system for CPU & GPU compatibility

The PyEPRI package can perform intensive calculations on CPU
or GPU using the popular scientific computing libraries in Python:
NumPy, CuPy, and PyTorch. Concretely, at the beginning of their
script, the user needs to instantiate a “backend” that specifies which
library and computation unit (CPU or GPU) will be used. The back-
end instance must be passed as input of the PyEPRI functions and is
internally used to remap the data and calculations to the appropriate
functions. This way, changing the backend instance at the beginning
of the script allows to change the computational unit or the scientific
library used to perform all the calculations, keeping the rest of the
script unchanged. Although the instantiation of a backend is in fact
optional and can be skipped for writing library-specific scripts, its use
is strongly recommended. It is therefore systematically implemented in
all the demonstration scripts provided in the online documentation.

2.2. Data import

The PyEPRI package supports the reading of datasets stored
in BES3T' format, which is a proprietary format used on Bruker
ELEXSYS and EMX machines?. Example datasets in BES3T for-
mat are embedded in the PyEPRI package. These datasets are used in
the various demonstration example scripts included in the online doc-
umentation. Users with data in other formats will need to export their
datasets in any format supported by Python (for instance in ASCII for-
mat) or by one of its many available libraries. Many demonstration ex-
amples related to loading and displaying datasets in either BES3T or
ASCII format are presented in the online documentation of the PyEPRI
package.

2.3. Projection operators

The modeling of EPR imaging is intrinsically linked to the math-
ematical concept of image projection using the Radon transform, as
we shall briefly describe now. Let us consider a paramagnetic species

!'Bruker EPR Standard for Spectrum Storage and Transfer
2the related functions were adapted from those available in the DIVE package [27]

https://pypi.org/project/pyepri/
https://github.com/remy-abergel/pyepri/
https://pyepri.math.cnrs.fr/

X with reference spectrum hyx : R — R and concentration mapping
Uy : R - R (where d = 2 or 3 denotes the image dimension). An
EPR acquisition is obtained by superimposing two magnetic fields into
the resonance cavity: an homogeneous magnetic field (with spatially
constant intensity), and a so-called magnetic field gradient (with inten-
sity linearly varying along a given direction) characterized by a field
gradient vector ¥ € RY. An EPR acquisition corresponds to the signal
Pxy : R — R obtained by ramping up the amplitude B € R of the
homogeneous magnetic field in the resonator. It is called a projection
and it is defined by

VBER, Pxy(B)=(hx*G,(Ux)(®B), M

where * denotes the convolution product and G,(Ux) corresponds to
the dilatation with factor —||y|| of the Radon transform of Uy in the

direction v, that is, G,(Ux)(B) = ﬁRy(UX)(—B/Ilyll) where

YreR, R,(Ux)(r)= jﬂ;d Ux(x) 6o((x,) —) dx (@)

and where &) denotes the Dirac impulse centered at 0. In practice,
multiple projections are acquired sequentially, for various values of
field gradient vectors y in (y;,¥2,...,¥n), for instance changing the
direction of the field gradient vector from one acquisition to another,
or its amplitude, or even both. Besides, practical measurements are
sampled for a finite number of values B € (Bj, B,,...,By,) that we
assume to be arranged in ascending order and regularly spaced?.

The PyEPRI package implements a projection operator, able to
generate a sequence of projections given

(i) u: a discrete image corresponding to the sampling of Ux with
step ¢ along all directions;

(ii) ¢: the spatial sampling step (or pixel size) associated to u;

(iii) B := (By,B,...,By,): the sequence of sampling nodes for the
homogeneous magnetic field amplitudes;

(iv) h: the reference spectrum sampled over the grid B;

&) T'=(y1,72,...,yn): the sequence of field gradient vectors.

This operator will be denoted by Axr below and its mathematical def-
inition (including details about its derivation from (1) and (2)) is pro-
vided in the documentation of the PyEPRI package. The projection
operator Axr changes the d-dimensional discrete image u into a se-
quence of discrete projections, as illustrated in Figure 1 (in the 3D
setting).

Figure 1 illustrates projection synthesis in the somehow standard
situation where the sample is made of a single paramagnetic species.
The projection operator implemented in PyEPRI is generalized to han-
dle projection synthesis in the more complex situations listed below.

(I) Multiple EPR species (see [25]): the sample of interest contains
several distinct paramagnetic species X = (X}, X>,...,Xg) with
associated concentration mappings u := (uj,up,...,ux) and ref-
erence spectra h = (hy, ha,..., hg).

(II) Multiple experiments: the acquisition aggregates several experi-
ments with different parameter settings that can potentially af-
fect the shape of the reference spectra (for instance the mi-
crowave power can be changed from one experiment to another).
PyEPRI supports projection synthesis in this situation given the
sequence of concentration mappings of the different EPR species
u = (uj,up,...,ug), the EPR spectrum h;’) of the j-th EPR
species X; in the i-th experimental setting (for 1 < i < L and
1 < j<K), and the field gradient vector sequences associated to
each experiment I" := (I';);<i<r..

3irregular sampling schemes for the projections is currently not supported by the
PyEPRI package

Y (cm)

measurements (arb. units)

-40

340 360 380 400 420 440 460
B: homogeneous magnetic field (G)

(a) input 3D image u (isosurface) and input reference spectrum &
0

200

N
o
S

projection index

o
o
1=}

measurements (arb. units)

800

340 360 380 400 420 440 460
B: homogeneous magnetic field (G)

(b) output projections Ax (1)

Figure 1: Projection operation. The projection operator Axr is able to generate a se-
quence of projections from the set of inputs (i)-(v) described above and partially repre-
sented here. We display in (a) an isosurface of a discrete 3D image u (left-hand side) and
the graph of a discrete reference spectrum 4 sampled over a grid 8 containing Ny = 500
sampling nodes regularly spaced in the range [333.45,465.69] G (right-hand side). Given
asequence I' = (y,...,yx) € (R*)"N containing N = 961 field gradient vectors (not
represented here), we used the Ay operator to generate the sequence of projections dis-
played in (b). Those projections are sampled over the grid 8 and stored line by line into
a 2D array containing N rows and Ng columns. The i-th row of this array corresponds to
the projection of the image u with the field gradient vector ;.

The generalization of the Ayxr operator described in (II) will be
denoted as Axr in the rest of this paper. The interest of this gen-
eralization lies in the possibility to address the inversion of Axr us-
ing standard inverse problems, opening door for the reconstruction of
one or more EPR image(s) from a sequence of projections acquired in
one or more experimental condition(s) using an unified mathematical
framework. Indeed, most standard methods used to solve inverse prob-
lems require, first and foremost, the ability to evaluate, as efficiently
as possible, the so-called "direct" operator, which simulates the mea-
surements (i.e., the projections) from the quantities of interest (i.e., the
concentration mappings).

The practical implementation of the projection operators provided
in the PyEPRI package strongly relies on the use of the FINUFFT
package for the fast and accurate computation of nonuniform discrete
Fourier transforms [28-30].

2.4. Backprojection operators

The relation (1) that maps an image to a projection is linear and
continuous. The mathematical adjoint of the projection operator is
called backprojection. The discretized operator Axr is also a linear
operator and we will refer to the adjoint operator as the backprojection
operator, which will be denoted as Ay .. The backprojection operator
Ayr maps a sequence of projections to one or several image(s), as
illustrated in Figure 2, in the standard case of projections simulated
from a single EPR source image (i.e., when the generalized operator
Axr reduces to the initial and more usual one Axr).

Y (cm)
Y (cm)

-1 0 1 -1 0 1
X (cm) X (cm)
(a) reference volume (slice Z = 0) (b) backprojected volume (slice Z = 0)

Figure 2: Backprojection of a sequence of projections generated from a 3D volume.
We display in (a) the central slice (Z = 0 cm) of the 3D volume image represented in
the left-hand side of Figure 1 (a). We display in (b) the central slice (Z = 0 cm) of
the backprojected volume obtained by applying the backprojection operator Ay to the
sequence of projections displayed in Figure 1 (b). We can see that the backprojected
volume (b) looks like a blurry version of the original one (a). This illustrates in fact an
interesting property of the composed operation Ay o Ay,r(u) which turns out to be the
convolution between the input image u and a fixed (blurring) kernel. We will explain in the
next sections how the PyEPRI package takes advantage from this property to implement
fast reconstruction algorithms.

Remark. The projection operator Axr being linear, it can be repre-
sented using a matrix form. In this context, the adjoint corresponds
to the transposed matrix. Although this formulation is mathematically
correct, it is not really helpful from a practical standpoint due to the
massive size of the matrices involved, which are generally far too large
to be stored and manipulated on a computer.

2.5. Projection—backprojection operation using Toeplitz kernels

One can show that performing the projection—backprojection of a
given image u (which means, computing Ay -0 Axr(u)) is equivalent to
carrying out the (discrete) convolution between u and a fixed convolu-
tion kernel ¢, i.e., for any image u,

AxroAxr(w)=p+u. 3)

Note that (3) formally arises from the fact that the composed opera-
tor A}’r o Axr has a Toeplitz structure (see [24]). For that reason, the
kernel ¢ is referred as a Toeplitz kernel. The PyEPRI package im-
plements functions dedicated to the fast and accurate evaluation of the
Toeplitz kernel ¢, as well as that of A} o Axr(u) using (3).

The Toeplitz kernel ¢ explicitly debends on the sequence of field
gradient vectors I' and the reference spectrum of the species X (we
refer to the online documentation for its explicit definition) but not on
the image u involved in (3). Consequently, for a given reference spec-
trum and a given sequence of field gradient vectors I', the Toeplitz
kernel ¢ can be computed once and for all and used as is whenever
the evaluation of A;‘(IOAXJ— is needed. This feature is of crucial impor-
tance in applications requiring many evaluations of the composite oper-
ator A},r o Axr. Indeed, once the kernel ¢ is computed, the evaluation
of Ay poAxr(u) using (3) is usually much more faster than the succes-
sive evaluation of the Axr and A} . operators taken separately *. The
ability to rapidly perform the projection—backprojection operation is
particularly valuable when implementing iterative algorithms for EPR

“This can be explained by the fact that evaluating the operator Axr and its adjoint
A} r requires the computation of non-uniform discrete Fourier transforms, which demand
significant computational resources. In contrast, the evaluation of A;‘“. o Axr using (3)
can be performed with standard discrete Fourier transforms, which are easier to compute.

image reconstruction, as we shall discuss in the next section. As re-
gards the generalized projection operator Axr, the rapid evaluation of
Ay r © Axr using Toeplitz kernels is also possible and this feature is
implemented and documented in the PyEPRI package.

2.6. Optimization algorithms

Modern EPR image reconstruction methods rely on variational
models and consist in formulating the image reconstruction task as the
minimization problem of finding

u € argmin E(u), 4)

ue&

where & represents the space in which the reconstruction lies and
E : & 5 RU ({+oo} is the energy that we need to minimize to ob-
tain the reconstruction u. When imaging a sample containing a sin-
gle paramagnetic species, the space & is expressed as & = R® where
Q={0,1,...,N—-1}x..x{0, 1, ..., Ny— 1} represents the discrete image
domain and Nj,...,N; represent the number of pixels of the image
along each one of its d dimensions. Otherwise, in the situation where
multiple EPR species are involved, the space & is expressed as & =
R x- - - xR, where Q; = {0, 1,..., N~ 1}x..x{0,1,..., NY"~1} rep-
resents the discrete image domain of the j-th image and ij),...,N((ij)
its dimensions. In both situations, the energy E is usually decomposed
into the sum of two terms,
Yue&, E@u)=Fu+1-Gu), 5)
where F is referred as data-fidelity term, G is referred as regularity
term and A > 0 is referred as regularity parameter. The data-fidelity
term F(u) reflects the plausibility of the image (or the sequence of
images) u with respect to the measured data, this term is therefore
small for choices of u being compliant with the measured data and
large otherwise. The regularity term G(u) reflects some prior knowl-
edge about the image (or the sequence of images) u that we are look-
ing for, it usually promotes a form of spatial regularity by being cor-
respondingly larger when u is considered as spatially irregular. This
term can also be designed to impose some constraints (for instance
positivity, unitary norm, ...) to the reconstruction model (in this case,
one sets G(u) = +oo when u does not satisfies the constraint). The reg-
ularity parameter A controls the relative importance of the data-fidelity
term with respect to the regularity term in the minimization process. In
many situations, the energy E involved in (4) is convex but nondiffer-
entiable and its minimization can be efficiently handled using modern
proximal algorithms which come with strong convergence guarantees
(a general review about this topic can be found for instance in [31]).

2.6.1. TV-regularized least-squares

At the present time, the PyEPRI package implements numerical
schemes for addressing the minimization (4) when the energy E de-
composes as (5) using a least-squares data-fidelity term and a Total
Variation (TV) regularity term, as we shall describe now.

Given a sequence s of measured projections, the least-squares data-
fidelity term corresponds to the setting

1
Yue&, Fu)= 3 lAGu) - sII3 6)

where A = Axr (respectively A = Axr) is the direct operator that
simulates a sequence of projections from an image u (respectively a
sequence of images u = (u, us,...,ug)). Such a data-fidelity term en-
forces, in the minimization process (4), the choice of images (or se-
quences of images) u leading to simulated projections that are close to
the observed ones (i.e., leading to A(u) ~ s).

3The notation R formally refers to the mappings from Q to R

The TV regularity term is defined as follows. When u € R? (i.e.,
when u is a single image with domain Q), we take

Gu) =TV(u) := Z Ve ()OIl @)

keQ)

where V;, denotes the classical forward finite differences scheme op-
erator (its explicit definition for 2D and 3D images can be found
in Appendix A). Otherwise, in the more general situation where
u = (uy,up,...,ug) is a sequence of images, we shall consider the
sum of the TV of the individual images,

G(u) =

K
TV(u;),

Jj=1

as a choice of generalized regularity term, as done in [25]. The use
of the TV as a regularizer promotes the choice of piecewise constant
images which is a kind of regularity promotion that allows for produc-
ing images with sharp discontinuities (and thus, sharp edges) and also
relatively free of oscillations caused by noise [32]. Another, somehow
more modern, explanation for the popularity of TV in image process-
ing consists in interpreting (7) as the £' norm of V,,u, which can be
seen as a sparsity promoting term for V(). This term indeed pro-
motes images u with sparse gradient Vg,(u), reducing drastically the
number of unknowns of the problem and allowing for accurate re-
construction even when the number of measurements is significantly
smaller than the number pixels (or voxels) present in u. This princi-
ple underlies the research on compressed sensing. It should be noted,
however, that the concept of compressed sensing also strongly relies on
the usage of random sampling during the acquisition process, which is
generally not considered in EPR imaging. Therefore, using the term
“compressed sensing” to refer to TV regularized EPR image recon-
struction is somewhat inaccurate.

2.6.2. Condat-Vii solver

The PyEPRI package implements a generic solver dedicated to the
minimization of TV-regularized energies. This solver boils down to a
numerical scheme that generates a sequence (1), that is proved to
converge towards a minimizer of the targeted energy E. This numer-
ical scheme is described in Appendix B and was proposed simulta-
neously by Condat and Vii in [33, 34] before being further studied in
a more general framework in [35]. Compared to other classical proxi-
mal algorithms, such as the celebrated Chambolle-Pock algorithm [36],
proximal ADMM [37, 38], FISTA [39], or many others [31, 40], the
Condat-Vi algorithm takes advantage of the Lipschitz-differentiability
of the data-fidelity term F defined in (6). More importantly, in the
context of TV-regularized least-squares presented in Section 2.6.1, the
Condat-Vii solver involves the computation of

VFu™) = A" 0 A(u™) — A*(s). (8)

at each iteration n > O of the scheme. The computation of (8) cor-
responds in practice to the most computationally intensive part of the
scheme. However, when A = Ay or A = Axr, the term A*oAu™) can
be computed efficiently using convolutions with precomputed Toeplitz
kernels, as explained in Section 2.5. Besides, the backprojected term
A*(s) involved in (8) never changes and can be computed once and for
all at the beginning of the iterative optimization process. This means
that we can evaluate (8) efficiently at each iteration of the scheme, as
pointed out in [21, 24]. In comparison, other standard proximal algo-
rithms would require the distinct evaluation of the projection and back-
projection operators A and A* at each iteration of the scheme, leading
to significantly higher computational times per iteration.

Remark. The Condat-Vii solver implemented in the PyEPRI package
is generic and takes as input a function dedicated to the evaluation
of the gradient of the data-fidelity term F, allowing for instance to

consider data-fidelity terms different from (6). Some higher level func-
tions specifically designed for EPR image reconstruction, both in the
monosource and multisources frameworks, are also provided in the
package and utilize some appropriate instances of this generic solver.
These higher level functions enable non-expert users to more easily use
the package for image reconstruction without needing to deal them-
selves with details related to the underlying optimization scheme. They
are presented in sections 2.7.2 and 2.7.3.

2.7. EPR imaging features

In this section, we will describe the main EPR imaging features
currently available in the PyEPRI package. Sections 2.7.1 and 2.7.2
focus on standard EPR imaging of a sample containing a single EPR
species using filtered backprojection and TV-regularized least-squares.
The example sample that we shall use to illustrate those EPR imaging
features is made of tubes with various diameters filled with a solution
of TAM, it is described in Figure 3. Imaging of multiple EPR sources
will be presented in Section 2.7.3 and illustrated using a sample con-
taining two distinct EPR species (TAM and TEMPO).

internal !

diameters
(mm)
d=11+0.1
dy =0.6£0.1 ‘
= S0 W)

dy=1.0+0.1

ds =18+0.1
dg=04+0.1

Figure 3: Tubes filled with a TAM solution. The sample is made of six tubes with vari-
ous diameters filled with a 1 mM TAM solution (see left-hand side image). The tubes were
wrapped together using masking tape (see right-hand side image) and a sequence contain-
ing 94 x 94 = 8836 three-dimensional projections (not displayed here) has been acquired
using a L-band Bruker imager, using a constant field gradient magnitude of 20 G/cm. It
should be noted that tubes (1) and (6) were badly sealed and leaked (partially for tube (1)
and totally for tube (6)) during the experiment. This will affect the the upcoming image
reconstructions.

2.7.1. Single source imaging using filtered backprojection

In the continuous setting and in the presence of a single EPR
species X, one can derive an exact inversion formula that allows the
reconstruction of Uy from the measurements Py, (B) taken for any
B eR and for any y on the unit sphere of R?. This formula is gener-
ally discretized to obtain an approximate inversion formula in the dis-
crete setting. This method involves interpolating each projection and
integrating the contributions of each interpolated projection over the
sphere to obtain an image. This image reconstruction method is re-
ferred to as the filtered backprojection (FBP) as it can be interpreted
as a modified backprojection of the input sequence of projections®.
We refer to the documentation of the PyEPRI package for a mathe-
matically detailed presentation of the FBP method it implements.

The FBP method, like many direct inversion techniques, tends to
amplify noise present in the measured projections. In practical appli-
cations, this issue is addressed by preprocessing the projections to at-
tenuate their high-frequency components, using for instance frequency

%as we mentioned earlier, computing the backprojection of a sequence of projections
yields a blurry version of the underlying image, the filtered backprojection integrates an
appropriate inverse filter into the backprojection process in order to get rid of this blurring
operation.

XY slice (Z=0)

ZY slice (X=0)

ZX slice (Y=0)

66 -04 -02 00 02 04 06 ~0.6 -0.4 -02 00 02 04 06 ~0.6 -0.4 -02 00 02 04
X) Z (cm) Z(

0.1
02 00 O
.“'A 03

-0.

-03

03

Figure 4: 3D reconstruction using filtered backprojection. We display the FBP recon-
struction (with pixel size =200 um) of the TAM solution depicted in Figure 3. In order
to avoid dramatic noise amplification, a frequency cutoff was used to remove 90% of
the highest frequency content of the projections, leading to a poorly resolved, but still
exploitable, image. In essence, the trade-off between noise suppression and spatial reso-
lution is a significant challenge when applying FBP in real-world scenarios.

apodization or cut-band filters. However, this filtering process in-
evitably leads to a loss of information, resulting in images that are
overly smooth and poorly resolved, as illustrated in Figure 4. The
advantage of this method lies in its simplicity and ease of implemen-
tation, which makes it widely used in practice, particularly when com-
putational resources are limited or when a quick reconstruction is re-
quired.

2.7.2. Single source imaging using TV-regularized least-squares

We display in Figure 5 the TV-regularized least-squares reconstruc-
tion of the TAM sample depicted in Figure 3. The reconstructed image
is obtained by computing a minimizer of the TV-regularized energy de-
scribed in Section 2.6.1, by taking A = Axr as the direct operator. The
energy minimization is handled using the Condat-Vii solver presented
in Section 2.6.2.

As mentioned earlier, the PyEPRI package implements a specific
function dedicated to single EPR image reconstruction from a sequence
of EPR projections. This function is built by combining basic com-
ponents (so-called low-level functions) to obtain a high-level instance
specifically designed for image reconstruction. This approach spares
non-expert users from having to deal with generic functions (such as
the generic Condat-Vi solver, the fast implementation of the gradient
of the data-fidelity least-squares term using Toeplitz kernels, etc.) be-
ing outside from their own fields of expertise, thus simplifying the use
of the package for end-users.

2.7.3. Multiple sources imaging using TV-regularized least-squares

In the multisources framework, taking A = Axr in the TV-
regularized least-squares model presented in Section 2.6.1 allows for
addressing the source separation problem, that is the reconstruction of
the images of each EPR species present in the sample, as done in [25].
This kind of problem can therefore also be numerically handled us-
ing the generic Condat-Vii solver implemented in the PyEPRI pack-
age. Again, a high-level function specifically dedicated to the source
separation problem was implemented in the PyEPRI package to avoid
the somehow tricky configuration of the Condat-Vii solver with fast

XY slice (Z=0) ZY slice (X=0) ZX slice (Y=0)

66 -04 -02 00 02 04 06 ~0.6 -0.4 ~02 00 02 0.4 06

Z (cm)

€0

)
r %,

4

Figure 5: 3D reconstruction using TV-regularized least-squares. We processed the
same dataset as in Figure 4 but using the TV-regularized least-squares reconstruction
model instead of the FBP. The reconstructed image has the same pixel-size (200 um)
as that reconstructed using FBP, but we can see that it exhibits a much higher perceptual
resolution, with in particular sharp edges allowing a clear separation of the content of
the thin tubes. In the general case, using total variation as a regularization term allows
for the generation of smooth images (without oscillations caused by noise), while still
preserving discontinuities to represent edges. For the same number of projections, this
variational framework provides a reconstruction of higher quality than FBP. Besides, in
favorable conditions, where the sample of interest is minimally textured (as is the case
here), high-quality reconstructions can be achieved with a very limited number of mea-
sured projections.

gradient data-fidelity term computation using Toeplitz kernels. In or-
der to illustrate the source separation feature, we will use a dataset
taken from [25] and described in Figure 6. The source separation re-
sult obtained using the PyEPRI package is presented in Figure 7 (using
slices) and in Figure 8 (using isosurfaces).

il“”i””]“‘ |
g e

| m’|Tm||’|'\'l|m
!

(a) picture of the sample

measurement (arb. units)

275 300 325 350 375 400 425 450 300 325 350 375 400 425 450
B: homogeneous magnetic field intensity (G) B: homogeneous magnetic field intensity (G)

(b) zero-gradient spectrum of the sample (c) measured projections
Figure 6: TAM insert in TEMPO solution. We display in (a) the picture of a sample
made of a (small) eppendorf filled with a 12.5mM solution of TAM immersed into a
(large) eppendorf filled with a 14 mM solution of 4OH-TEMPO. We display in (b) and (c)
the zero-gradient spectrum and the sequence of projections measured from the sample.
The spectrum (b) gathers the contribution of a three-lined spectrum of 4OH-TEMPO and
a single thin lined spectrum of TAM. The measured projections (c) were acquired with
an L-band Bruker spectrometer using a constant field gradient magnitude of 20 G/cm and
20 x 20 = 400 three-dimensional orientations. This dataset was acquired at SFR ICAT
University of Angers with the kind help of Dr. Raffaella Soleti.

YX slice (Z=0)

YX slice (Z=0)

X (cm)

-2 -1 0 1 2 -2 -1 0 1 2
Y (cm) Y (cm)
YZ slice (X=0) YZ slice (X=0)

Z (cm)

=2 -1 0 1 -2 -1 0 1 2
Y (cm) Y (cm)
XZ slice (Y=0) XZ slice (Y=0)
~1q -1
€ €
L 04 S 04
N N
14 T T 1 T T T T T
-2 -1 0 1 2 -2 -1 0 1 2
X (cm) X (cm)

(a) TEMPO reconstruction (b) TAM reconstruction

Figure 7: TAM and TEMPO reconstructions (slices). The source separation model ap-
plied to the sequence of projections presented in Figure 6 (c) yields two distinct images,
one represents the TEMPO concentration mapping, the other represents the TAM concen-
tration mapping. The two images were reconstructed using the same pixel size (500 um)
but using different sizes to optimize the computation time (this feature was not present
in [25]). We display in (a) the central slices along each axis of the TEMPO reconstruc-
tion, and we display in (b) the same slices of the TAM reconstruction. We can see that the
shapes of the two eppendorfs are correctly retrieved, and the separation seems effective
since no signal is detected in the TEMPO image in the area corresponding to the TAM
eppendorf. A three-dimensional display of the two images using isosurfaces is also pro-
posed in Figure 8.

mTAM

mTEMPO

1'0 20- ¥0-

0 €0

Figure 8: TAM and TEMPO reconstructions (isosurfaces). We display here two iso-
surfaces, one coming from the TEMPO reconstruction (displayed in green), and the other
one coming from the TAM reconstruction (displayed in red). The TEMPO isosurface was
restricted to a half-space in order to make visible the hole that it contains and which is
due to the TAM eppendorf (including its lid) visible in Figure 6.

3. CPU & GPU benchmarking

In this section we shall present some benchmarks about the exe-
cution time monitored for the different image reconstruction features
of the PyEPRI package, using either a CPU or a GPU backend (see
Section 2.1). The experiments presented here were led using a conven-
tional laptop (Dell Precision 7680 with Ubuntu 24.04) equipped with
an Intel Core 19-13950HX processor, 64 GB of RAM, and a NVIDIA
RTX 4000 Ada graphics card with 12GB of memory. The installa-
tion of the package and its dependencies was done using the Python
Package Installer (PIP) following the instructions of the PyEPRI online
documentation. Note that an advanced installation of the package and
its dependencies is possible and may lead to reduced execution times,
but we did not consider this option further as we believe most users

will prefer the installation via PIP for simplicity. Furthermore, our
GPU benchmarks include the data transfer from the RAM to the GPU
memory. These transfer times are often significant, if not predominant,
in the total computation time (as pointed out in [41]). While they are
often excluded from benchmarks, we have chosen to include them in
order to provide a more accurate representation of the actual computa-
tion times for the majority of users.

3.1. Benchmarking for single source imaging using filtered backprojection

We display in Figure 9 the computation times related to the
FBP reconstruction at different resolutions of the “fusillo-20091002”
(real) dataset embedded with the package (see the online documenta-
tion, and also the 3D surface displayed in Figure 1 (a) which actu-
ally corresponds to a reconstruction obtained from this real dataset).
The computation times related to FBP reconstruction obtained from
the “tamtubes-20211201" dataset (see Figure 3) are displayed in Fig-
ure 10.

2
10%) mmm cPU (numpy)

3 CPU (torch)

f B GPU (torch)
£ 10" mmm GPU (cupy)
pe
S
2 10
x
[
107!

(50 x 25 x 25)
pixel size = 1 mm

(100 x 50 x 50) (200 x 100 x 100)
pixel size = 500 um pixel size = 250 um

Figure 9: Execution times for FBP reconstruction of the fusillo. The dataset is made of
31x31 = 961 three-dimensional projections containing Nz = 500 sample points each and
acquired using magnetic field gradients with 14 G/cm magnitude. We performed the im-
age reconstruction from this dataset using FBP at different resolutions and using the four
backends implemented in the PyEPRI Package. We display the execution time for each
experiment (the dimensions N; X N, X N3 of the reconstructed image as well as its pixel
size § are displayed below each experiment). We can see that very fast reconstructions
are achieved using the PyEPRI package. Besides, the execution time obtained with GPU
backends are roughly 1.7 to 20 times faster than those obtained using CPU. The execution
time for GPU backend is dominated by data transfer which explains why we observed the
same execution time for the GPU reconstructions at § = 1 mm and § = 500 um.

2
10%) mmm cPU (numpy)

3 CPU (torch)
I GPU (torch)
10') mmm GPU (cupy)

10°

execution time (s)

107!

(28 x 28 x 38) (55 x 55 x 75) (110 x 110 x 150)
pixel size = 400 um pixel size = 200 um pixel size = 100 yum

Figure 10: Execution times for FBP reconstruction of TAM solution in tubes. Same
as in Figure 9 for the FBP reconstruction using the tamtubes-20211201 dataset made
of 94 x 94 = 8836 three-dimensional projections containing Nz = 360 sample points
each. The reconstruction obtained at resolution 6 = 200 pum is displayed in Figure 4. This
dataset is roughly six times larger than that considered in Figure 9 and leads to increased
execution times with roughly the same factor. Even for high-resolution reconstructions,
the execution times remain quite small compared to the time necessary to acquire such
dataset using the fastest spectrometers. Again, using a GPU backend leads to interesting
speed-up factors compared to the CPU runtime.

3.2. Benchmarking for TV-regularized least-squares single source imag-
ing

We considered the same datasets as in Section 3.1 and performed

the image reconstructions using the TV-regularized least-squares model

implemented in the PyEPRI package with the same targeted resolu-
tions. In our experiments, we used a tolerance parameter tol = 1073
to automatically stop the iterations of the Condat-Vii solver when the
relative distance between two consecutive scheme iterates is below tol
(see Appendix Appendix B). This setting enables fast reconstruction
of good quality images but it must be noted that achieving accurate
convergence towards the solution of the underlying minimization prob-
lem (4) involves in practice significantly lower settings of the tolerance
parameter (typically tol < 107), which can increase the number of it-
erations and thus the overall execution time. The observed execution
times are presented in Figure 11 and Figure 12.

2
10% mm cPU (numpy)

3 CPU (torch)
I GPU (torch)
EE GPU (cupy)

=
o
r

10°

execution time (s)

H
<
L

(50 x 25 x 25)
pixel size = 1 mm

(100 x 50 x 50) (200 x 100 x 100)
pixel size = 500 um pixel size = 250 um

Figure 11: Execution times for TV-regularized least-squares reconstruction of the
Susillo. We display here the execution times measured when performing image recon-
struction for different resolutions from the fusillo dataset using the TV-regularized least-
squares model implemented in PyEPRI. Those execution times can be compared to those
obtained using FBP reconstruction over the same dataset presented in Figure 9. We can
observe that the TV-based reconstruction model can result in slightly higher execution
times on this dataset (up to a factor of 5 depending on the selected backend), but it re-
mains very fast nonetheless (especially with GPU backends) and provides a significant
improvement in terms of image quality in practice.

2
10% oy CPU (numpy)

3 CPU (torch)
B GPU (torch)
I GPU (cupy)

=
o
4

=
o
=)

execution time (s)

._.
<
L

(28 x 28 x 38) (55 x 55 x 75) (110 x 110 x 150)
pixel size = 400 pm pixel size = 200 pm pixel size = 100 um

Figure 12: Execution times for TV-regularized least-squares reconstruction of TAM
solution in tubes. We display the execution times obtained when addressing the recon-
struction of the TAM solution contained in tubes (see Figure 3) using the TV-based image
reconstruction algorithm of the PyEPRI package. Those execution times can be compared
to those presented in Figure 10. The image reconstructed with resolution 6 = 200 um is
displayed in Figure 5 and can be compared to that obtained using FBP, displayed in Fig-
ure 4. We can see that, on this dataset (which is larger than the fusillo one), the TV-based
image reconstruction model yields faster execution times than FBP. However, this should
be taken with caution, as in the case of the TV-based algorithm, a stricter adjustment of
the tolerance parameter in order to achieve accurate convergence can increase the execu-
tion time.

3.3. Benchmarking for TV-regularized least-squares multiple sources
imaging

In this section, we focus on the execution time related to the TAM
and TEMPO separation from the sample presented in Figure 6 using
the TV-regularized least-squares multisources image reconstruction al-
gorithm implemented in the PyEPRI package. For this dataset, fast
and visually acceptable reconstruction results can be obtained by using
tol = 107*. However, we observed that the quality of the image sep-
aration could benefit from the use of a fine convergence criterion. For
that reason, we performed our experiments using a tolerance parameter

tol = 107>, leading to longer execution times than in the single image
reconstruction framework. The results are presented in Figure 13.

=
o
W

I CPU (numpy)
3 CPU (torch)
I GPU (torch)
EE GPU (cupy)

funy
o
N

execution time (s)
= =

o o

2 >

=
o
|

-

(15 x 30 x 15)
(20 x 50 x 20)
pixel size = 1 mm

(30 x 60 x 30) (60 x 120 x 60)
(40 x 100 x 40) (80 x 200 x 80)
pixel size = 500 ym pixel size = 250 pm

Figure 13: Execution times for multiple EPR sources imaging. We performed the joint
reconstruction of the TAM and TEMPO images from the sample presented in Figure 6.
The reconstruction was done for different targeted resolutions using the multiple EPR
imaging algorithm implemented in the PyEPRI package. Below each experiment, we
display the size (N]* x N;* x N;*) of the reconstructed TAM image (top), the size
(NBO x NP0 N3BI0) of the reconstructed TEMPO image (middle), and the pixel
size § common to both images (bottom). We used tol = 107> as stopping criterion as
we observed that this setting improved the separation result on this dataset. The images
displayed in Figure 7 and Figure 8 correspond to the reconstruction obtained with pixel
size § = 500 um and tol = 107, Note that the setting tol = 10~ leads to roughly twice
faster reconstructions and still visually acceptable separation results. We can see that
even such challenging image reconstruction task can be done in a relatively low amount
of computation time using the PyEPRI package.

4. Conclusion and perspectives

This package has been carefully developed and tested, we sincerely
hope it will useful to the EPR community. We strongly encourage in-
terested users to contact us, as we will be happy to assist them if they
encounter any difficulties in using the package. In a next release, we
plan to add support for 4D spectral-spatial EPR imaging: this involves
implementing a fast and accurate 4D projection operator, its adjoint,
and use those low-level operators to build some more complex image
reconstruction pipelines. Our long-term goal is to maintain the PyEPRI
package up-to-date and enrich it with robust and efficient EPR image
reconstruction features, keeping the initial spirit of providing both user-
friendly and developer-friendly tools. As Python provides a simple and
effective framework to build, combine and share features, we think that
this package opens room for building and sharing new advanced EPR
image processing applications based on the many tools developed and
shared by the image processing and machine learning communities.

Appendix A. Forward finite differences scheme

Let u € R? be a d-dimensional discrete image with discrete domain
Qc 7% (in practice, d = 2 or 3). The forward finite differences of u
correspond to the signal V,,(u) = (Vﬁ,l))(u),...,Vﬁ‘,?(u)) e (RY)? defined
by, for all i € {1,2,...,d},

uk +6;) —uk) if k+6;€Q
0 otherwise,

VkeQ, VOuk) = {

where 6; € R? is the vector containing zero everywhere excepting the
i-th entry that takes the value 1.

Appendix B. Generic Condat-Vii solver

Let K > 1 and let & = R% x --- x R® denote the set of sequence
of images u = (uj,up,...,ux) with domains Q, Qp, ..., Qg. The

generic Condat-Vii solver implemented in the PyEPRI package aims to
compute a minimizer of an energy E : & — R of the type

K
Yu=(uy,...,ux) €&, Eu)= F(u)+/lZTV(u/-),
j=1

where F : & — R denotes a differentiable function with Lipschitz con-
tinuous gradient VF. The single image framework corresponds to the
case K =1 but we will describe the solver in the more general case,
where K > 1. Notice that, in this framework, the gradient of the data-
fidelity term, VF(u), is made of K elements

OF(u) OF(u)
6141 ’ auz T

Vi = (ur,... ug) €8, VF(u):(6F(”))ea.

’ (9”1(

Given two time step parameters 7 > 0, o > 0, and some initial vari-
d
ables u©® € &, 7® € & and p© = (p(lo),p(;), ... ,pg)) € Hf:] (Rgf) , the
scheme consists in iterating for n > 0,
(n+1) _ (n) —(n) .
p; = Ig (pj +0AVy, (uj)) for 1<j<K

OF (u™)
() _ on _
u; uj T(—auj

u =20~ for 1< j<K

(B.1a)
Adiv,, (pﬁ,"*”)) for 1<j<K (B.lb)

(B.1¢)

where we have set

pjk)
Ypje R, VkeQ;, Tg(ppk) = ———=——=,
bi T P a1 Tl
and divy, = —Vj, denotes the opposite adjoint of the forward finite

differences operator V.

The primal and dual steps 7 and o involved in (B.1) are auto-
matically tuned according to [35, Theorem 1] in order to ensure the
convergence of the numerical scheme towards a minimizer of E. The
PyEPRI implementation of Scheme (B.l) provides an optional toler-
ance parameter tol which can be used to stop the iterations of the
scheme when

D =y < w0 - u], (B.2)

i.e., when the relative distance between two consecutive iterates is less
than tol. The implemented function also enable the evalution of the
energy of the iterates E(u™) which is helpful to monitor the conver-
gence of the scheme towards a minimizer of E.

References

[1] L.J. Berliner, H. Fujii, Magnetic resonance imaging of biological spec-
imens by electron paramagnetic resonance of nitroxide spin labels, Sci-
ence 227 (4686) (1985) 517-519. doi:10.1126/science.2981437.

[2] P. Kuppusamy, P. Wang, J. L. Zweier, M. C. Krishna, J. B. Mitchell,
L. Ma, C. E. Trimble, C. J. C. Hsia, Electron paramagnetic resonance
imaging of rat heart with nitroxide and polynitroxyl-albumin, Biochem-
istry 35 (22) (1996) 7051-7057. doi:10.1021/bi952857s.

[3] E. Martyna, R. Bell, D. Hleihel, E. D. Barth, C. McFaul, C. R. Haney,
J. Bielanska, K. Pustelny, K.-H. Ahn, C. A. Pelizzari, M. Kochergin-
sky, H. J. Halpern, Electron paramagnetic resonance oxygen image hy-
poxic fraction plus radiation dose strongly correlates with tumor cure in
FSa fibrosarcomas, International Journal of Radiation Oncology Biology
Physics 71 (2) (2008) 542-549. doi:10.1016/j.ijrobp.2008.02.
022.

[4] D. A. Komarov, Y. Ichikawa, K. Yamamoto, N. J. Stewart, S. Matsumoto,
H. Yasui, I. A. Kirilyuk, V. V. Khramtsov, O. Inanami, H. Hirata, In
vivo extracellular pH mapping of tumors using electron paramagnetic
resonance, Analytical Chemistry 90 (23) (2018) 13938-13945, pMID:
30372035. doi:10.1021/acs.analchem.8b03328.

[5]1 A. Taguchi, S. DeVience, B. Driesschaert, V. V. Khramtsov, H. Hirata,
In vitro simultaneous mapping of the partial pressure of oxygen, pH
and inorganic phosphate using electron paramagnetic resonance, Analyst
145 (9) (2020) 3236-3244. doi:10.1039/d0an00168f.

(6]

(71

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

B. Gallez, Oxygenation status in normal tissues, pathological tissues
and malignant tumors: A pO2 database based on electron paramagnetic
resonance (epr) oximetry measurements, Applied Magnetic Resonance
52 (10) (2021) 1395-1450. doi:10.1007/s00723-021-01358-7.

K. Kimura, N. Iguchi, H. Nakano, H. Yasui, S. Matsumoto, O. Inanami,
H. Hirata, Redox-sensitive mapping of a mouse tumor model using sparse
projection sampling of electron paramagnetic resonance, Antioxidants &
Redox Signaling 36 (1-3) (2022) 57-69, pMID: 33847172. doi:10.
1089/ars.2021.0003.

M. C. Emoto, H. Sato-Akaba, Y. Matsuoka, K. ichi Yamada, H. G. Fujii,
Non-invasive mapping of glutathione levels in mouse brains by in vivo
electron paramagnetic resonance (EPR) imaging: Applied to a kindling
mouse model, Neuroscience Letters 690 (2019) 6-10. doi:10.1016/7.
neulet.2018.10.001.

Y. Takakusagi, R. Kobayashi, K. Saito, S. Kishimoto, M. C. Krishna,
R. Murugesan, K.-i. Matsumoto, EPR and related magnetic resonance
imaging techniques in cancer research, Metabolites 13 (1) (2023). doi:
10.3390/metabo13010069.

C. Simon, C. Lion, H. Ahouari, H. Vezin, S. Hawkins, C. Biot, EPR
imaging of sinapyl alcohol and its application to the study of plant
cell wall lignification, Chemical Communications 57 (2021) 387-390.
doi:10.1039/D0CC05218C.

M. Sathiya, J.-B. Leriche, E. Salager, D. Gourier, J.-M. Tarascon,
H. Vezin, Electron paramagnetic resonance imaging for real-time mon-
itoring of Li-ion batteries, Nature communications 6 (2015). doi:
10.1038/ncomms7276.

A. Niemdoller, P. Jakes, R.-A. Eichel, J. Granwehr, EPR imaging of
metallic lithium and its application to dendrite localisation in battery
separators, Scientific reports 8 (1) (2018) 14331. doi:10.1038/
s41598-018-32112-y.

F. Geng, Q. Yang, C. Li, B. Hu, C. Zhao, M. Shen, B. Hu, Operando
EPR and EPR imaging study on a NaCrO2 cathode: Electronic property
and structural degradation with Cr dissolution, The Journal of Physical
Chemistry Letters 12 (2) (2021) 781-786, pMID: 33410689. doi:10.
1021/acs. jpclett.0c03327.

S. Kang, X. Lou, M. Shen, F. Geng, B. Hu, Visualizing lithium deposition
and identifying two types of dendrites in extreme-fast-charging full cells
across the entire lifespan by operando EPR and EPR imaging, The Jour-
nal of Physical Chemistry Letters 15 (50) (2024) 12248-12256, pMID:
39635912. doi:10.1021/acs. jpclett.4c03022.

M. Abou Fadel, X. Zhang, A. De Juan, R. Tauler, H. Vezin, L. Duponchel,
Extraction of pure spectral signatures and corresponding chemical maps
from EPR imaging data sets: Identifying defects on a CaF, surface due
to a laser beam exposure, Analytical chemistry 87 (2015) 3929-3935.
do0i:10.1021/ac504733u.

L. Binet, D. Gourier, S. Derenne, Potential of epr imaging to detect traces
of primitive life in sedimentary rocks, Earth and Planetary Science Letters
273 (2008) 359-366. doi:10.1016/j.epsl.2008.06.052.

C. Johnson, D. McGarry, J. Cook, N. Devashayam, J. Mitchell, S. Subra-
manian, M. Krishna, Maximum entropy reconstruction methods in elec-
tron paramagnetic resonance imaging, Annals of Operations Research
119 (2003) 101-118. doi:10.1023/A:1022978322046.

M. Tseitlin, T. Czechowski, S. S. Eaton, G. R. Eaton, Regularized op-
timization (RO) reconstruction for oximetric EPR imaging, Journal of
Magnetic Resonance 194 (2) (2008) 212-221. doi:10.1016/j. jmr.
2008.07.002.

Y. Ikebata, H. Sato-Akaba, T. Aoyama, H. Fujii, K. Itoh, H. Hirata,
Resolution-recovery for EPR imaging of free radical molecules in mice,
Magnetic Resonance in Medicine: An Official Journal of the Interna-
tional Society for Magnetic Resonance in Medicine 62 (3) (2009) 788—
795. doi:10.1002/mrm.22029.

D. Johnson, R. Ahmad, G. He, A. Samouilov, J. Zweier, Compressed
sensing of spatial electron paramagnetic resonance imaging, Magnetic
Resonance in Medecine 72 (3) (2014) 893-901. doi:10.1002/mrm.
24966.

S. Durand, Y.-M. Frapart, M. Kerebel, Electron paramagnetic resonance
image reconstruction with total variation and curvelets regularization, In-
verse Problems 33 (11) (2017) 114002. doi:10.1088/1361-6420/
aa8412.

R. Ahmad, A. Samouilov, J. Zweier, Accelerated dynamic EPR imag-
ing using fast acquisition and compressive recovery, Journal of Magnetic

https://doi.org/10.1126/science.2981437
https://doi.org/10.1021/bi952857s
https://doi.org/10.1016/j.ijrobp.2008.02.022
https://doi.org/10.1016/j.ijrobp.2008.02.022
https://doi.org/10.1021/acs.analchem.8b03328
https://doi.org/10.1039/d0an00168f
https://doi.org/10.1007/s00723-021-01358-7
https://doi.org/10.1089/ars.2021.0003
https://doi.org/10.1089/ars.2021.0003
https://doi.org/10.1016/j.neulet.2018.10.001
https://doi.org/10.1016/j.neulet.2018.10.001
https://doi.org/10.3390/metabo13010069
https://doi.org/10.3390/metabo13010069
https://doi.org/10.1039/D0CC05218C
https://doi.org/10.1038/ncomms7276
https://doi.org/10.1038/ncomms7276
https://doi.org/10.1038/s41598-018-32112-y
https://doi.org/10.1038/s41598-018-32112-y
https://doi.org/10.1021/acs.jpclett.0c03327
https://doi.org/10.1021/acs.jpclett.0c03327
https://doi.org/10.1021/acs.jpclett.4c03022
https://doi.org/10.1021/ac504733u
https://doi.org/10.1016/j.epsl.2008.06.052
https://doi.org/10.1023/A:1022978322046
https://doi.org/10.1016/j.jmr.2008.07.002
https://doi.org/10.1016/j.jmr.2008.07.002
https://doi.org/10.1002/mrm.22029
https://doi.org/10.1002/mrm.24966
https://doi.org/10.1002/mrm.24966
https://doi.org/10.1088/1361-6420/aa8412
https://doi.org/10.1088/1361-6420/aa8412

(23]

[24]

(25]

(26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

[36]

(37]

(38]

[39]

[40]

[41]

Resonance 273 (2016) 105-112. doi:10.1016/j.jmr.2016.10.001.
Z. Qiao, G. Redler, B. Epel, H. Halpern, A balanced total-variation-
Chambolle-Pock algorithm for EPR imaging, Journal of Magnetic Res-
onance 328 (2021). doi:10.1016/j.jmr.2021.107009.

R. Abergel, M. Bousséa, S. Durand, Y.-M. Frapart, Electron Paramag-
netic Resonance Image Reconstruction with Total Variation Regulariza-
tion, Image Processing On Line 13 (2023) 90-139. doi:10.5201/
ipol.2023.414.

M. Boussda, R. Abergel, S. Durand, Y.-M. Frapart, Ultrafast multiple
paramagnetic species EPR imaging using a total variation based model,
Journal of Magnetic Resonance 357 (2023) 107583. doi:10.1016/7.
jmr.2023.107583.

Bruker, Xepr version 2.6b.36, https://www.bruker.com/
de/products-and-solutions/mr/epr-instruments/
epr-research- instruments/xepr-software.html, (2009).

S. R. Sweger, S. Pribitzer, S. Stoll, Bayesian probabilistic analysis of
DEER spectroscopy data using parametric distance distribution mod-
els, The Journal of Physical Chemistry A 124 (30) (2020) 6193-6202.
doi:10.1021/acs. jpca.0c05026.

A. H. Barnett, J. Magland, L. af Klinteberg, A parallel nonuniform fast
fourier transform library based on an “exponential of semicircle" kernel,
SIAM Journal on Scientific Computing 41 (5) (2019) C479-C504. doi:
10.1137/18M120885X.

A. H. Barnett, Aliasing error of the exp (ﬁ V1 - zz) kernel in the nonuni-
form fast fourier transform, Applied and Computational Harmonic Anal-
ysis 51 (2021) 1-16. doi:10.1016/j.acha.2020.10.002.

Y.-h. Shih, G. Wright, J. Andén, J. Blaschke, A. H. Barnett, cuFIN-
UFFT: a load-balanced GPU library for general-purpose nonuniform
FFTs, in: 2021 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW), 2021, pp. 688—-697. doi:10.1109/
IPDPSW52791.2021.00105.

L. Condat, D. Kitahara, A. Contreras, A. Hirabayashi, Proximal split-
ting algorithms for convex optimization: A tour of recent advances,
with new twists, SIAM Review 65 (2) (2023) 375-435. doi:10.1137/
20M1379344.

A. Chambolle, T. Pock, An introduction to continuous optimization
for imaging, Acta Numerica 25 (2016) 161-319. doi:10.1017/
5096249291600009X.

L. Condat, A Primal-Dual Splitting Method for Convex Optimization
Involving Lipschitzian, Proximable and Linear Composite Terms, Jour-
nal of Optimization Theory and Applications 158 (2) (2013) 460-479.
do0i:10.1007/s10957-012-0245-9.

B. C. Vi, A splitting algorithm for dual monotone inclusions involving
cocoercive operators, Advances in Computational Mathematics 38 (3)
(2013) 667-681. doi:10.1007/s10444-011-9254-8.

A. Chambolle, T. Pock, On the ergodic convergence rates of a first-order
primal-dual algorithm, Mathematical Programming 159 (1) (2016) 253—
287. doi:10.1007/s10107-015-0957-3.

A. Chambolle, T. Pock, A First-Order Primal-Dual Algorithm for Con-
vex Problems with Applications to Imaging, Journal of Mathemat-
ical Imaging and Vision 40 (1) (2011) 120-145. doi:10.1007/
s10851-010-0251-1.

D. Gabay, B. Mercier, A dual algorithm for the solution of nonlin-
ear variational problems via finite element approximation, Computers
& mathematics with applications 2 (1) (1976) 17-40. doi:10.1016/
0898-1221(76)90003-1.

J. Eckstein, Some saddle-function splitting methods for convex program-
ming, Optimization Methods and Software 4 (1) (1994) 75-83. doi:
10.1080/10556789408805578.

A. Beck, M. Teboulle, A fast iterative shrinkage-thresholding algorithm
for linear inverse problems, SIAM Journal on Imaging Sciences 2 (1)
(2009) 183-202. doi:10.1137/080716542.

N. Parikh, S. Boyd, Proximal algorithms, Foundations and Trends® in
Optimization 1 (3) (2014) 127-239. doi:10.1561/2400000003.

Z. Qiao, G. Redler, B. Epel, Y. Qian, H. Halpern, Implementation
of GPU-accelerated back projection for EPR imaging, Journal of X-
ray science and technology 23 (4) (2015) 423-—433. doi:10.3233/
XST-150498.

https://doi.org/10.1016/j.jmr.2016.10.001
https://doi.org/10.1016/j.jmr.2021.107009
https://doi.org/10.5201/ipol.2023.414
https://doi.org/10.5201/ipol.2023.414
https://doi.org/10.1016/j.jmr.2023.107583
https://doi.org/10.1016/j.jmr.2023.107583
https://www.bruker.com/de/products-and-solutions/mr/epr-instruments/epr-research-instruments/xepr-software.html
https://www.bruker.com/de/products-and-solutions/mr/epr-instruments/epr-research-instruments/xepr-software.html
https://www.bruker.com/de/products-and-solutions/mr/epr-instruments/epr-research-instruments/xepr-software.html
https://doi.org/10.1021/acs.jpca.0c05026
https://doi.org/10.1137/18M120885X
https://doi.org/10.1137/18M120885X
https://doi.org/10.1016/j.acha.2020.10.002
https://doi.org/10.1109/IPDPSW52791.2021.00105
https://doi.org/10.1109/IPDPSW52791.2021.00105
https://doi.org/10.1137/20M1379344
https://doi.org/10.1137/20M1379344
https://doi.org/10.1017/S096249291600009X
https://doi.org/10.1017/S096249291600009X
https://doi.org/10.1007/s10957-012-0245-9
https://doi.org/10.1007/s10444-011-9254-8
https://doi.org/10.1007/s10107-015-0957-3
https://doi.org/10.1007/s10851-010-0251-1
https://doi.org/10.1007/s10851-010-0251-1
https://doi.org/10.1016/0898-1221(76)90003-1
https://doi.org/10.1016/0898-1221(76)90003-1
https://doi.org/10.1080/10556789408805578
https://doi.org/10.1080/10556789408805578
https://doi.org/10.1137/080716542
https://doi.org/10.1561/2400000003
https://doi.org/10.3233/XST-150498
https://doi.org/10.3233/XST-150498

	Motivations
	Package overview
	Backend system for CPU & GPU compatibility
	Data import
	Projection operators
	Backprojection operators
	Projection–backprojection operation using Toeplitz kernels
	Optimization algorithms
	TV-regularized least-squares
	Condat-Vũ solver

	EPR imaging features
	Single source imaging using filtered backprojection
	Single source imaging using TV-regularized least-squares
	Multiple sources imaging using TV-regularized least-squares

	CPU & GPU benchmarking
	Benchmarking for single source imaging using filtered backprojection
	Benchmarking for TV-regularized least-squares single source imaging
	Benchmarking for TV-regularized least-squares multiple sources imaging

	Conclusion and perspectives
	Forward finite differences scheme
	Generic Condat-Vũ solver

